
Parameter Estimation and
Application for Static Nonlinear
and Dynamic Linear Systems

Lin Ye

Supervisor: A/Prof. Steven W. Su

Faculty of Engineering and Information Technology
University of Technology Sydney

This dissertation is submitted for the degree of
Doctor of Philosophy

May 2018





Production Note:
Signature removed prior to publication.





Acknowledgements

I would like to express my sincere gratitude to my supervisor A/Prof. Steven W.
Su for his continual support, guidance, help and encouragement during my PhD
study. A/Prof. Steven W. Su has brought me into the topics of parameter estimation
and system identification, and provided brilliant insights in my research work. It
is my honor to have a supervisor who always inspires me to achieve higher targets
and overcome difficulties. His conscientious and meticulous attitude on research has
significant influence on my work.

I am grateful to Prof. Hung T. Nguyen (Swinburne University of Technology) for
his kind support. I would also like to thank Dr. Ying Guo (Commonwealth Scientific
and Industrial Research Organisation), and Prof. Branko G. Cellar (University of New
South Wales) for their support.

I am also grateful to my colleagues in A/Prof. Steven W. Su’ research group, in
particular, Ahmadreza Argha, Tao Zhang, Wentian Zhang, Hairong Yu, Yao Huang,
etc., for their selfless help. Working together with them will be a good memory. I am
also grateful to my friends, Zhichao Sheng, Ye Shi, Haimin Zhang, Zhiyuan Shi, Daniel
Roxby.

My deepest gratitude goes to my parents for their immeasurable support and
encouragement throughout my graduate studies.





Abstract

General issues associated with parameter estimation have been extensively studied.
During the past several decades, a vast number of methods have been developed for
solving different parameter estimation issues in different areas. Thanks to numerous
newly-introduced areas, the parameter estimation and its related techniques still play
important roles and need to be expanded to solve new challenges. Since the research
topics of parameter estimation are extremely wide, this dissertation is concerned with
two topics within parameter estimation related to calibration of MEMS accelerometer
and modelling of oxygen uptake.

It is challenging to obtain the unknown parameters of tri-axial accelerometer
accurately based on auto-calibration as the cost function is nonlinear and non-convex.
Furthermore, it is more challenging to solve this nonlinear and non-convex cost function
online to overcome the variation of parameter caused by the external change of
environment. To overcome these challenges, an iterative parameter estimation method
with the experimental design to solve the accelerometer model is proposed. Furthermore,
two algorithms are explored based damped recursive estimation and expectation
maximum algorithm to online estimate the unknown parameter in the model. This
topic can be summarised as a parameter estimation problem of a special nonlinear
static system. Over the past decades, the modelling of oxygen uptake response to
exercise has always been a challenging topic due to measurement noise, insufficient
stimulations of the system and individual differences of human beings. To overcome
these difficulties, a nonparametric estimation method is investigated for the modelling
of oxygen uptake response and ensure its accuracy and reliability. The second topic can
be summarised as a parameter estimation problem of a noisy dynamic linear system
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with limited stimulation. These two topics are highly prized for academic significance
but also remained open due to their challenges in mathematics.

First, for parameter estimation problem of the offline auto-calibration of accelerom-
eter, a 6-orientation G-optimal experimental scheme is proposed for a special second-
degree model based on the statistical experimental design. Then, a new linearisation
approach is developed to apply the proposed G-optimal experimental scheme. Then, a
convergence-guaranteed recursive parameter estimation algorithm is developed that
can be easily implemented in a portable wearable device. The region of convergence of
the proposed algorithm is proved. Numerous simulations and experiments are carried
out to validate the efficiency of the proposed method.

Second, for parameter estimation problem of the online auto-calibration of ac-
celerometer, a linearisation method of the 6-parameter tri-axial accelerometer model
is explored. Then, a modified damped recursive least square (MDLRS) estimation
method is proposed to estimate the unknown parameters in real time. Meanwhile,
the MDRLS can iteratively remove the bias caused by the linearisation during the
online estimation process. The convergence speed and estimation effectiveness of the
proposed method are discussed based on both simulations and experiments. The results
show that the proposed method can achieve similar accuracy with significantly fewer
measurements. In the end, the region of convergence of the proposed online estimation
method is analysed and discussed based on Monte Carlo simulation. Simulations and
experiments also demonstrate the performance of the proposed method.

Third, in real life, the misalignments exist between axes for some tri-axial ac-
celerometers. Therefore, the 9-parameter model can achieve higher accuracy for those
accelerometers. However, this model will reduce accuracy for those accelerometers
without misalignments. To online estimate the unknown parameter with automatic
model selection of tri-axial accelerometer, a sparse least square (SPARLS) estimation
is explored. To apply this SPARLS, a linearisation method of the 9-parameter model
is proposed. Based on the linearised method, the SPARLS is modified to solve the
unknown parameter in real time while penalising the insufficient parameters. Therefore,
the model of tri-axial accelerometer can be adjusted automatically in real time to
remove the insignificant parameters caused by noise. Then, the conditions for the con-
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vergence of this iterative approach are identified and investigated based on simulations
for different situations. A self-designed device is also used to validate the performance
of the proposed algorithm.

Forth, for modelling oxygen uptake response to exercise system, a nonparametric
estimation method for impulse response is developed to identify any order systems. To
estimate the impulse response based on a simple step input signal, a novel kernel-based
estimation method is investigated. The proposed method can efficiently reduce the
order of impulse response model by incorporating a L1 norm penalty term. Furthermore,
the overall penalty terms can be converted into a special elastic net to simplify the
calculation procedure. Then, to consider the prior information, kernels are investigated
by extensive simulations, and the stable spline (SS) kernel is recommended as the
best candidate. It is demonstrated by experiments and simulations that the proposed
method is efficient for the modelling of impulse response of oxygen uptake to dynamic
exercise, which often confronts a highly noised measurement under the stimulation of a
simple input signal. Finally, an averaged impulse response model is established, which
can quantitatively describe the oxygen uptake on-kinetics for treadmill exercise.
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