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ABSTRACT 

The design of electrode materials depends critically on understanding the 

underlying electrochemical processes. Material composition, morphology, structure, 

and preparation method affect and can alter electrochemical performance of 

electrochemically active materials. In this research project, a series of phosphate-

based polyanionic electrode materials have been fabricated and their 

electrochemical properties for the use in lithium-ion and sodium-ion batteries are 

evaluated.  

We successfully prepared carbon-coated LiFePO4 cathode materials by industrial 

ball milling and a solid-state reaction with Li2CO3, NH4H2PO4, and FeC2O4·2H2O as 

starting materials. Soluble starch as the primary carbon source was investigated 

for its capability of generating a highly graphitic carbon coating, whilst sufficiently 

controlling the crystal growth of LiFePO4. XRD analysis, Raman spectroscopy, and 

electrochemical testing revealed the significant impact of the amount of starch 

added to the pre-sintered precursor on phase purity, carbon quality, and 

electrochemical performance of the final LiFePO4/C composite. The optimum 

soluble starch content to achieve a highly sp2-coordinated carbon coating is 10 

wt%, which enabled our LiFePO4/C composite to achieve competitive reversible 

capacities as well as improved rate performance  

The spray method is well-trusted in practical applications, such as food 

manufacturing, fertilizers, oxide ceramics, and pharmaceuticals. The ability to 

produce uniformly spherical particle clusters ranging from nano- to micrometre in 

size is one of the main advantages of this method, which is immensely important 

for large scale production of electrochemically active materials for the energy 

storage market. In this report, we systematically evaluated spray-drying conditions 

and equipment settings in regards to electrochemical performance of carbon 

coated LiFePO4 cathode materials. In an optimisation trial, the most suitable 

process conditions for the precursor materials and spray-dryer model used to 

prepare pure and practical LiFePO4 cathode materials were identified. The impact 
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of different organic additives on the resulting particle morphology of the final 

product was also investigated. It was found that the addition of polyvinyl alcohol 

(PVA) generates particle clusters that provide a high tap density product without 

sacrificing electrochemical performance. The LiFePO4 cathode material prepared 

with the addition of PVA achieved remarkable rate performance results and could 

maintain a capacity of 113.95 mA h g-1 at 10C. 

Lithium-ion batteries (LIBs) are widely implemented to power portable electronic 

devices and are increasingly in demand for large-scale applications. One of the 

major obstacles for this technology is still the low cost-efficiency of its 

electrochemical active materials and production processes. In this work, we 

present a novel impregnation–carbothermal reduction method to generate a 

LiFePO4–carbon paper hybrid electrode, which does not require a metallic current 

collector, polymeric binder or conducting additives to function as a cathode 

material in a LIB system. A shell of LiFePO4 crystals was grown in situ on carbon 

fibres during the carbonization of microcrystalline cellulose. The LiFePO4–carbon 

paper electrode achieved an initial reversible areal capacity of 197 μA h cm−2 

increasing to 222 μA h cm−2 after 500 cycles at a current density of 0.1 mA cm−2. 

The hybrid electrode also demonstrated a superior cycling performance for up to 

1000 cycles. The free-standing electrode could be potentially applied for flexible 

lithium-ion batteries. 

Sodium-ion batteries (NIBs) are an emerging technology, which can meet 

increasing demands for large-scale energy storage. One of the most promising 

cathode material candidates for sodium-ion batteries is Na3V2(PO4)3 due to its high 

capacity, thermal stability, and sodium (Na) superionic conductor 3D (NASICON)-

type framework. In this work, the authors have significantly improved 

electrochemical performance and cycling stability of Na3V2(PO4)3 by introducing a 

3D interconnected conductive network in the form of carbon fibre derived from 

ordinary paper towel. The free-standing Na3V2(PO4)3-carbon paper 

(Na3V2(PO4)3@CP) hybrid electrodes do not require a metallic current collector, 

polymeric binder, or conducting additives to function as a cathode material in an 
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NIB system. The Na3V2(PO4)3@CP cathode demonstrates extraordinary long-term 

cycling stability for 30 000 deep charge– discharge cycles at a current density of 

2.5 mA cm-2. Such outstanding cycling stability can meet the stringent 

requirements for renewable energy storage. 
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