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Applications of Matrix Spaces in Quantum Information and

Computational Complexity
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Yinan Li

Abstract

This thesis explores the applications of matrix spaces in quantum information and com-

putational complexity, specifically in the areas of quantum state/channel discrimination,

entanglement transformation and isomorphism testing. We achieve the following contri-

butions:

• We derive a necessary condition which determines whether a set of orthogonal bipar-

tite states can be distinguished by positive-partial-transpose (PPT) operations, in

the many-copy scenario. We reduce the discrimination task to the following problem:

Decide whether there exist a nonzero bipartite matrix with positive partial-transpose,

such that all its eigenvectors with nonzero eigenvalues is orthogonal to a given bi-

partite vector space. As applications, we reprove and extend a variety of existing

results, including the local indistinguishability of the bipartite maximally entan-

gled state and its orthogonal complement [Yu, Duan and Ying, IEEE transaction

on Information Theory, 2014] and the maximum dimension of non-positive-partial-

transpose subspaces [Johnston, Physical Review A, 2013].

• We show that determining the parallel distinguishability of quantum channels is

equivalent to determining whether the orthogonal complement of a given matrix

space contains nonzero positive semidefinite matrices. Our characterization imme-

diately implies a necessary condition to decide the parallel distinguishability. We

further prove that our condition is also sufficient for two large families of quantum

channels, which leads to an alternating proof for the parallel distinguishability of
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unitary operations [Aćın, Physical Review Letters, 2001]. We also present an il-

lustrative example showing our necessary condition cannot determine the parallel

distinguishability.

• We systematically study the tripartite-to-bipartite entanglement transformations by

stochastic local operations and classical communication (SLOCC). Such a problem

is equivalent to computing the maximal rank of a matrix space [Chitambar, Duan

and Shi, Physical Review A, 2010]. We analyze the SLOCC convertibility in both the

finite-copy and asymptotic regimes. In particular, we derive explicit formulas which

compute asymptotic entanglement transformation rates for two families of tripartite

states by resorting to certain results of the structure of matrix spaces, including the

study of matrix semi-invariants. Significantly, we show that the problem of decid-

ing the asymptotic SLOCC convertibility of tripartite pure states to the bipartite

maximally entangled states and the non-commutative symbolic determinant identity

testing problem is algorithmically equivalent, which builds a new connection between

problems in algebraic complexity and problems in asymptotic SLOCC entanglement

transformations.

• We devise algorithms which test isometry between alternating matrix spaces over

finite field. Algorithms for such a problem in time polynomial in the underlying

vector space size resolves the believed bottleneck case of the group isomorphism

problem, i.e. testing isomorphism of p-groups of class 2 and exponent p in time poly-

nomial in the group order. Our approach is to view it as a linear algebraic analog

of the graph isomorphism problem. We devise an average-case efficient algorithm

for the alternating matrix space isometry problem over a key range of parameters.

in a random model of alternating matrix spaces in vein of the Erdős-Rényi model

of random graphs. To devise our algorithm, we developed linear algebraic indi-

vidualization and refinement techniques, which are crucial in the first average-case

efficient algorithm for graph isomorphism, devised by Babai, Erdős, and Selkow in

the 1970s [Babai, Erdős and Selkow, SIAM Journal on Computing, 1980]. We also

adapt Luks’ dynamic programming technique for graph isomorphism [Luks, STOC,

1999] to slightly improve the worst-case time complexity of the alternating matrix

space isometry problem.
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