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Applications of Matrix Spaces in Quantum Information and

Computational Complexity

by

Yinan Li

Abstract

This thesis explores the applications of matrix spaces in quantum information and com-

putational complexity, specifically in the areas of quantum state/channel discrimination,

entanglement transformation and isomorphism testing. We achieve the following contri-

butions:

• We derive a necessary condition which determines whether a set of orthogonal bipar-

tite states can be distinguished by positive-partial-transpose (PPT) operations, in

the many-copy scenario. We reduce the discrimination task to the following problem:

Decide whether there exist a nonzero bipartite matrix with positive partial-transpose,

such that all its eigenvectors with nonzero eigenvalues is orthogonal to a given bi-

partite vector space. As applications, we reprove and extend a variety of existing

results, including the local indistinguishability of the bipartite maximally entan-

gled state and its orthogonal complement [Yu, Duan and Ying, IEEE transaction

on Information Theory, 2014] and the maximum dimension of non-positive-partial-

transpose subspaces [Johnston, Physical Review A, 2013].

• We show that determining the parallel distinguishability of quantum channels is

equivalent to determining whether the orthogonal complement of a given matrix

space contains nonzero positive semidefinite matrices. Our characterization imme-

diately implies a necessary condition to decide the parallel distinguishability. We

further prove that our condition is also sufficient for two large families of quantum

channels, which leads to an alternating proof for the parallel distinguishability of

Yinan.Li@student.uts.edu.au


vi Abstract

unitary operations [Aćın, Physical Review Letters, 2001]. We also present an il-

lustrative example showing our necessary condition cannot determine the parallel

distinguishability.

• We systematically study the tripartite-to-bipartite entanglement transformations by

stochastic local operations and classical communication (SLOCC). Such a problem

is equivalent to computing the maximal rank of a matrix space [Chitambar, Duan

and Shi, Physical Review A, 2010]. We analyze the SLOCC convertibility in both the

finite-copy and asymptotic regimes. In particular, we derive explicit formulas which

compute asymptotic entanglement transformation rates for two families of tripartite

states by resorting to certain results of the structure of matrix spaces, including the

study of matrix semi-invariants. Significantly, we show that the problem of decid-

ing the asymptotic SLOCC convertibility of tripartite pure states to the bipartite

maximally entangled states and the non-commutative symbolic determinant identity

testing problem is algorithmically equivalent, which builds a new connection between

problems in algebraic complexity and problems in asymptotic SLOCC entanglement

transformations.

• We devise algorithms which test isometry between alternating matrix spaces over

finite field. Algorithms for such a problem in time polynomial in the underlying

vector space size resolves the believed bottleneck case of the group isomorphism

problem, i.e. testing isomorphism of p-groups of class 2 and exponent p in time poly-

nomial in the group order. Our approach is to view it as a linear algebraic analog

of the graph isomorphism problem. We devise an average-case efficient algorithm

for the alternating matrix space isometry problem over a key range of parameters.

in a random model of alternating matrix spaces in vein of the Erdős-Rényi model

of random graphs. To devise our algorithm, we developed linear algebraic indi-

vidualization and refinement techniques, which are crucial in the first average-case

efficient algorithm for graph isomorphism, devised by Babai, Erdős, and Selkow in

the 1970s [Babai, Erdős and Selkow, SIAM Journal on Computing, 1980]. We also

adapt Luks’ dynamic programming technique for graph isomorphism [Luks, STOC,

1999] to slightly improve the worst-case time complexity of the alternating matrix

space isometry problem.
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Chapter 1

Introduction

Quantum mechanics, in addition to serving as the physical law to govern the universe, has

been gradually revolutionizing our understanding of computation and information process-

ing. Quantum algorithms and protocols which utilize the puzzling features of quantum

mechanics, such as quantum superposition and quantum entanglement, are devised to deal

with classically hard problems, such as integer factorization and key distribution. On the

other hand, the intrinsic non-commutative feature of quantum mechanics unveils a richer

structure in the manipulation of quantum information. The impact of quantum mechan-

ics has infiltrated many aspects of computer and information science, including the rapid

development of quantum cryptography, quantum complexity theory and quantum Shannon

theory.

However, our knowledge of quantum computation and information is still limited. Even

studies of fundamental tasks, such as quantum state discrimination and entanglement

transformation, have not advanced due to complicated mathematical structures. New

mathematical theories need to be discovered or adopted in order to characterize compli-

cated quantum processes. In this thesis, we exploit the theory of matrix spaces, which

studies the algebraic and geometric properties of the linear spaces of matrices, to explore

the feasibility and limitations in quantum state/channel discrimination and entanglement

1



2 Chapter 1. Introduction

transformation. Such a theory not only provides powerful mathematical tools to charac-

terize the distinguishability of quantum states and channels and the convertibility of en-

tanglement, it also builds up new connections between quantum information and invariant

theory and complexity theory. Moreover, we utilize the emerging “linear algebraic analog”

viewpoint to attack the alternating matrix space isometry problem, which is equivalent to

the long-believed bottleneck case of the group isomorphism problem. In the following four

chapters, we present our contributions in detail. Each of these chapters is self-contained

and can be read separately.

We start with the study of the PPT-distinguishability of bipartite quantum states in the

many-copy scenario, which is to distinguish the bipartite quantum states chosen from a

set of known ones using operations which completely preserve the positivity of partial

transpose. The many-copy scenario stands for the case that arbitrarily many but finite

copies of the unknown states are provided. Such a problem plays a central role in the con-

text of quantum nonlocality, as sets of PPT-indistinguishable orthogonal bipartite states

exhibit the strongest form of nonlocality manifested in the setting of LOCC discrimina-

tion [Ban11].

A similar problem is the distinguishability of quantum channels, which is to identify the

unknown quantum channel which is chosen from a set of known channels. Determining the

perfect distinguishability of quantum channels has been shown more sophisticated, as we

have more freedom in choosing the input states and discrimination schemes (e.g. parallel

schemes or sequential schemes). The first characterization for the perfect distinguishability

of quantum channels is by Duan, Feng and Ying [DFY09], who presented discrimination

protocols using the unknown quantum channels as well as an additional quantum channel,

determined by the set of known quantum states. However, as a natural generalization from

the quantum state discrimination problem, the distinguishability of quantum channels by

the parallel scheme, which is to use the unknown channel alone within finite blocklength,

remains unknown.

The aforementioned two problems can be converted into the formalism of extendibility

problems. Given a subspace S of some Hilbert space H, the goal of an extendibility

problem is to determine whether there exists a finite integer k, such that the orthogonal
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complement of S⊗k admits some particular elements or properties. Extendibility prob-

lems has been used to characterize many theoretical problems in quantum information

theory. We show that the two discrimination problems can be formulated as extendibil-

ity problem with respect to matrix spaces, i.e. a subspace of the whole matrix space. In

Chapter 2 and Chapter 3, with such formalisms, we derive necessary conditions for the

PPT-distinguishability of orthogonal bipartite states and the parallel-distinguishability of

quantum channels. As byproducts, we also reprove and extend several well-known results

in the literature. We turn to the study of transforming a tripartite pure state to a bi-

partite pure state via stochastic local operations and classical communication (SLOCC)

in Chapter 4. Chitambar, Duan and Shi [CDS10] proved that deciding the feasibility of

tripartite-to-bipartite SLOCC entanglement transformation is equivalent to computing the

maximal rank of the matrix space, determined by the given tripartite pure state. The max-

imal rank of a matrix space is defined as the largest rank of matrices within. We exhibit

novel results in both finite-copy and asymptotic settings, which lead to an algorithmically

effective characterization of those tripartite pure states which can be transformed to the

bipartite maximally entangled state by SLOCC, in the asymptotic setting.

It is worth noting that the problem of computing the maximal rank has been studied

for over 50 years in the context of computational complexity theory, under the name

of Edmonds’ problem [Edm67]. Since 2003, the study of Edmonds’ problem has been

to investigate the implications of circuit lower bounds [KI04]. On the other hand, recent

progress on its “non-commutative” version reveals a close connection with invariant theory.

In particular, an important idea was raised in [IKQS15], which postulates that matrix

spaces can be viewed and studied as a linear algebraic analog of bipartite graphs. Such

a “linear algebraic analog” viewpoint can be understood by viewing vectors as a linear

algebraic analog of vertices, and matrices as a linear algebraic analog of edges. This analog

opens up the possibilities of transforming combinatorial techniques for graph-theoretical

problems to the study of algebraic properties of matrix spaces and has been shown to

be extremely useful in quantum information theory. An exemplification is the concept

of non-commutative graphs of quantum channels, which is generalized by Duan, Severini

and Winter [DSW13] from the confusability graphs of classical channels, based also on the

linear algebraic analog viewpoint.
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In Chapter 5, we refine the linear algebraic idea to study the alternating matrix space

isometry problem (AltMatSpIso) as a linear algebraic analog of the graph isomorphism

problem (GraphIso). The AltMatSpIso problem asks to decide whether two given alter-

nating matrix spaces are the same up to a basis-change transformations. 1 The motivation

of studying AltMatSpIso is to tackle the classic hard isomorphism testing problem, test-

ing isomorphism of p-groups of class 2 and exponent p in time polynomial in the group

order, which is the believed bottleneck case of group isomorphism problem (GroupIso).

To obtain a better understanding on the “linear algebraic analog” viewpoint, we present a

comparison between GraphIso and AltMatSpIso in Figure 1.1. In particular, we devise

GraphIso AltMatSpIso

Objects
n-vertex graphs dimension m
with m edges n× n alternating space over Fq

Symmetry Symmetric group General linear group

Worst-case Quasipolynomial qn
2 · poly(n,m, log q)

Complexity [Bab16a, Bab16b] [FN70, Mil78]

Average-case
Linear time [BES80] qO(n+m) [LQ17a]

Complexity

Random Model Erdős-Rényi model [ER59]
Linear algebraic

Erdős-Rényi model [LQ17a]

Practical Nauty & Traces [MP14] Magma & Gap

Group-Theoretic
Permutation group algorithm Matrix group algorithm

Technique

Combinatorial Individualization Linear algebraic analog of
Technique and refinement Individualization and refinement

Figure 1.1: A systematic comparison between GraphIso and AltMatSpIso.

the first average-case efficient algorithm for AltMatSpIso over a key range of parame-

ters in a random model of alternating matrix spaces in vein of the Erdős-Rényi model of

random graphs. Notably, our algorithm is inspired by the first average-case efficient algo-

rithm for graph isomorphism, presented by Babai, Erdős and Selkow in the 1970s [BES80].

To devise such an algorithm, we develop linear algebraic analog of individualization and

refinement techniques, which are crucial in the development of the worst-case complexity

of GraphIso.
1A matrix A ∈ M(n,F) is alternating, if for any v ∈ Fn, vtAv = 0. An alternating matrix space is a

linear space of alternating matrices. We point out that the general matrix space isometry problem is at least
as hard as AltMatSpIso. We will not discuss it in this thesis, despite that it is an interesting algorithmic
problem. One of the reason is that we have not observed any connections with other isomorphism problems.
In a follow-up work [LQ18], we reduce other isomorphism problems, including code equivalence and lattice
isomorphism, into problems with respect to matrix spaces.
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In Chapter 6, we provide a brief summary of our results presented in Chapter 2, 3, 4

and 5. We highlight some interesting and important results, which indicates the power

and importance of the theory of matrix spaces. Besides, we discuss more on the “linear

algebraic analog” viewpoint, and provide several promising directions for further study.

1.1 Quantum Mechanics in a Nutshell

This section briefly introduces some basic quantum mechanical notions which shall be em-

ployed throughout the remainder of this thesis. It is written from a more mathematical,

rather than physical, perspective. The contents are based on the postulates of quantum

mechanics. We assume the readers are familiar with the Dirac notations and basic linear

algebra. For a complete introduction to quantum information and computation, we refer

the readers to the excellent textbook by Nielsen and Chuang [NC11], or more compre-

hensive ones by Wilde [Wil13] and Watrous [Wat18]. More advanced concepts will be

introduced later, when necessary.

We use R (R+), N and C to denote the set of (positive) real numbers, positive integers and

complex numbers. Quantum systems are completely characterized by the quantum states

in the state space. The state spaces are Hilbert spaces with finite dimension2, denoted

as Hn where n indicates its dimension. A pure quantum state is a unit vector |ψ〉 in the

underlaying Hilbert space Hn. The inner product of two quantum states |ψ〉 , |φ〉 is denoted

by 〈ψ|φ〉. We use {|0〉 , . . . , |d− 1〉} to denote the computational basis of Hn, where |k〉

also stands for the vector where the (k + 1)th entry equals to 1 and the rest are 0. The

state space of M composition quantum systems Hn0 , . . . , HnM−1 is given by the tensor

product of each individual state space, denoted by Hn0 ⊗ · · · ⊗ HnM−1 . Quantum states

in composition quantum systems are normally called multipartite quantum states. For

instance, we use |Ψ〉ABC ∈ HnA ⊗HnB ⊗HnC to denote a tripartite pure state shared by

Alice Bob and Charlie. A multipartite pure state |Φ〉 ∈ Hn0 ⊗ · · · ⊗ HnM−1 is called a

product state, if it is of the form |ϕ0〉⊗· · ·⊗|ϕM−1〉, where |ϕj〉 ∈ Hnj for j = 0, . . . ,M−1;

otherwise we call |Φ〉 an entangled state. In the bipartite case, any pure state |ψ〉AB ∈

Hm ⊗ Hn admits the Schmidt decomposition, i.e. |ψ〉AB =
∑r−1

i=0

√
λi |αi〉A |βi〉B, where

2Throughout this thesis we focus on finite dimensional spaces only.
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r = min{m,n}, 0 ≤ λ0, . . . , λr−1 ≤ 1 satisfying
∑r−1

i=0 λi = 1, and {|α0〉A , . . . , |αr−1〉A}

and {|β0〉B , . . . , |βr−1〉B} from complete basis of Hm and Hn, respectively. λ0, . . . , λr−1 are

called the Schmidt coefficients, and the number of nonzero Schmidt coefficients of |ψ〉AB

is called the Schmidt rank of |ψ〉AB, denoted by Sch(ψAB). It is easy to see that |ψ〉AB is

entangled if and only if Sch(ψ) ≥ 2.

Let L(Hn,Hm) denote the set of linear operators from Hn to Hm and use L(Hn) for the

abbreviation of L(Hn,Hn). An operator ρ ∈ L(Hn) is positive (semi)definite if for any

nonzero |ψ〉 ∈ Hn, 〈ψ| ρ |ψ〉 > 0 (〈ψ| ρ |ψ〉 ≥ 0). We use ρ > 0 (ρ ≥ 0) to represent that ρ is

positive definite (positive semidefinite). The trace of ρ is defined as Tr(ρ) :=
∑n−1

i=0 〈i| ρ |i〉.

We say ρ is a density operator if it is positive semidefinite with trace 1. A mixed quantum

state of a quantum system is described by a density operator ρ on the state space Hn.

We use D(Hn) to denote the set of density operators over Hn. Specifically, the pure state

|ψ〉 corresponding to the density operator |ψ〉〈ψ|, which is the outer product of itself. The

spectral decomposition of ρ ∈ L(Hn) is given by ρ :=
∑n−1

i=0 λi |ϕi〉〈ϕi|, where λi is the

eigenvalue of ρ and |ϕi〉 is the corresponding eigenvector. The support of ρ is then defined

as the vector space spanned by those eigenvectors with positive eigenvalues, denoted by

supp(ρ) = span{|ϕi〉 : λi > 0}.

The closed evolutions of quantum systems are characterized by the unitary operators, which

correspond to the solution of Schrödinger equation [Sch26], as it describes the changes over

time of the quantum system. U ∈ L(Hn) is unitary if and only if U †U = In
3, where U †

denotes the conjugate transpose of U . The actions of a unitary operator on a pure state

|ψ〉 and a mixed state ρ are given by U |ψ〉 and UρU †, respectively. The dynamics of

open quantum systems are characterized by quantum operations, or equivalently, quantum

channels. From a mathematical perspective, a quantum channel is a completely positive

and trace-preserving (CPTP) linear map from the input space L(Hn) to the output space

L(Hm). A linear map E : L(Hn) → L(Hm) is completely positive if for every positive

integer k, I ⊗ E : L(Hk ⊗Hn)→ L(Hk ⊗Hm) maps all positive semidefinite operators in

L(Hk ⊗ Hn) to semidefinite ones in L(Hk ⊗ Hm), where I denotes the identity map. A

linear map E : L(Hn)→ L(Hm) is trace-preserving, if Tr(ρ) = Tr(E(ρ)) for all ρ ∈ L(Hn).

3In denotes the identity operator onHn. The subscript n may be abbreviated when there is no confusion.
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Each CPTP map can be represented by a set of Choi-Kraus operators, i.e. there exist

{Ei ∈ L(Hn,Hm) : i = 1, . . . , k}, such that E(ρ) =
∑k

i=1EiρE
†
i [Cho75, Kra83].

The way to observe the quantum system is through quantum measurement. Mathemat-

ically speaking, a k-outcome quantum measurement M is identified by a collection of

measurement operators {Mi ∈ L(Hn,Hm) : i = 0, . . . , k − 1} satisfying
∑k−1

i=0 M
†
iMi = In.

The index i refers to the measurement outcome. When measuring a quantum system in

state |ψ〉 with M, the probability that the outcome is k is 〈ψ|M †iMi |ψ〉. The state after

the measurement becomes Mi|ψ〉
〈ψ|M†iMi|ψ〉

. When we only focus on the classical outcomes, it

is convenient to analyze the measurement via Positive Operator-Valued Measure (POVM)

formalism. A k-outcome POVM is identified by {Pi ∈ L(Hn,Hm) : i = 0, . . . , k − 1},

where Pi is semidefinite for i = 0, . . . , k − 1 and
∑k−1

i=0 Pi = I. The probability that the

outcome is i is 〈ψ|Pi |ψ〉.

1.2 Matrix Spaces in a Nutshell

A matrix space is a linear subspace of the linear space of all n×n matrices. In algorithms,

a matrix space is given by a tuple of matrices. As the central concept in this thesis, matrix

spaces has been studied in different area of mathematics for decades. In the following, we

describe some useful ideas to study matrix spaces.

Let F be a field. M(n,F) stands for the space of all n×n matrices over F. A dimension m

matrix space B of M(n,F) is the linear space spanned by m linearly independent matrices.

As a linear space, the matrix space B is isomorphic to a vector space VB of Fn2
, by mapping

each matrix B ∈ B to a “longer vector” vB, whose entries are matrix elements of B. We

can also induce a inner product structure on M(n,F) based on this connection. Namely,

the inner product of two matrices B1 and B2 is defined as the inner product of vB1 and

vB2 . This property will be utilized in Chapter 2 and 4, to study the discriminations of

quantum states and quantum operations.

On the other hand, matrix spaces inherit linear algebraic properties. One of the natural

generalization would be the concept of rank : the (maximal) rank of a matrix space is

defined as the largest rank of matrices therein. To better understand this concept, it is



8 Chapter 1. Introduction

convenient to view matrix space as a symbolic matrix, whose entries are linear functions

in variables {x1, . . . , xm} over the field F. Take a linear basis of B, say B1, . . . , Bm, the

matrix x1B1 + · · · + xmBm is a symbolic matrix, and we shall use the same symbol B

to represent it. When the variables are commutative, determine the rank of the symbolic

matrix B over rational function field is equivalent to determine the maximal rank of the

matrix space B. More details of the algebraic properties of matrix space can be found in

Chapter 5.

Finally, we point out that matrix spaces can be also studied as 3-tensors, by listing the

tuple of (linear basis) matrices (e.g. Figure 1.2). Although two 3-tensors may represent

the same matrix spaces, the representation is more intuitive and illustrative when we view

matrix spaces as a linear algebraic analog of graphs, in particular, when transferring graph-

theoretical techniques into the linear algebraic setting. In Chapter 6, deriving the linear

algebraic analog of the individualization and refinement technique benefits a lot from such

a viewpoint.

Figure 1.2: A 3-tensor.



Chapter 2

PPT-distinguishability of Orthogonal

Bipartite States

In this chapter, we investigate the PPT-distinguishability of orthogonal bipartite states

in the many-copy scenario, i.e. arbitrarily many but finite copies (uses) of the unknown

state are provided. In particular, we reduce the discrimination problem into the formalism

of extendibility problem, which helps us to devise an efficient computable and necessary

condition to decide the PPT-distinguishability. This chapter is organized as follows: We

first review the local distinguishability of orthogonal quantum states in Section 2.1. After

providing essential notations and preliminaries (Section 2.2), we discuss our main results

in Section 2.3, based on [LWD17]. We close in Section 2.4 with a brief summary.

9
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2.1 The Local Distinguishability of Orthogonal Quantum

States

The discrimination of quantum states is the task of identifying the unknown quantum state

of a quantum system from a prior-known set of possibilities. Such a task is one of the

pillars of quantum information theory. When we can access the whole quantum system,

quantum mechanics ensures that only orthogonal quantum states can be distinguished

perfectly, i.e. with probability 1. However, in most situations, we only have local access

to a composite quantum systems, hence the distinguishability can be completely different.

Generally speaking, we are given a multipartite quantum system which is distributed to

spatially separated parties. Each party is restricted to act locally on its respective sub-

system by performing arbitrary quantum operations. In addition, they can communicate

classical data with each other. To achieve the perfect discrimination, they need to propose

a joint protocol in such a manner. These protocols are normally referred to local operations

and classical communication (LOCC). When there are only two possible multipartite pure

states to be distinguished by LOCC, Walgate et al. [WSHV00] proved that LOCC dis-

crimination protocols always exist. However, when the number of possibilities increases,

local discriminations may be infeasible. For instance, the 4 2⊗2 Bell states are not locally

distinguishable [GKR+01].

Essentially, the discrepancy of the global and local distinguishability of multipartite or-

thogonal states reveals quantum nonlocality, as there is a gap between the local information

which we have access to and the global information stored in the composite system. In

the setting of local discrimination, it can be understood as the identity of the unknown

state can be only obtained by applying global operations to the composite system in-

stead of having local access only. Thus, the investigation of the local discrimination of

orthogonal multipartite states provides a natural strategy to study quantum nonlocality

despite the fact that most of the celebrated manifestations of quantum nonlocality arise

from entangled states. Bennett et al. [BDF+99] observed the strange phenomenon re-

ferred to as nonlocality without entanglement, which revealed that entanglement is not

always necessary for exhibiting quantum nonlocality. They presented a set of 9 orthogo-

nal bipartite product pure states which cannot be distinguished perfectly by LOCC. Since
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then, the local discrimination of orthogonal quantum states has been extendedly studied

in [BDM+99, WH02, DMS+03, HSSH03, Wat05, HMM+06, DFJY07, FS09] (and refer-

ences therein).

However, the aforementioned local indistinguishability can be overcome if we increase the

number of available copies of the unknown state. For instance, we have previously discussed

that any 2⊗2 Bell state cannot be distinguished from the rest by LOCC [Fan04, GKRS04].

Ghosh et al. [GKRS04] pointed out that two copies of the unknown state are sufficient

for local distinguishability. Remarkably, Bandyopadhyay asserted that any N orthogonal

multipartite pure states are local distinguishable with at most N − 1 copies [Ban11].

Consequently, if we remove the restriction to have only single access to the unknown pure

state, the nonlocality exhibited in distinguishing multipartite pure states will no longer

exist. On the other hand, when at least one of the possible states is mixed, we may not

distinguish these states perfectly, even if arbitrarily many but finite copies are provided.

For instance, it is impossible to distinguish an arbitrary bipartite maximally entangled

state with the normalized projection onto its orthogonal complement by LOCC, even

given arbitrarily many but finite many copies [YDY14]. In some sense, th nonlocality

presented in local discrimination is more robust in mixed states for it persists even in the

domain of multiple copies, whereas in case of pure states it does not.

Moreover, we can further ask that what is the strongest form of nonlocality manifested in

the setting of local discrimination? To answer such a question, note that we are comparing

the amount of information we can obtain using LOCC and global operations, which can

be interpreted as the probability of successful identifying the unknown states. We focus

on the unambiguous local discrimination [DFJY07, BW09]. Protocols for unambiguous

local discrimination determine the identity of the unknown states perfectly with some

nonzero probability. Namely, we say a set of quantum states is locally indistinguishable in

the many-copy scenario if they cannot be distinguished by LOCC unambiguously, when

arbitrarily many but finite copies of the unknown state are given. Clearly, these sets

of quantum states can be viewed as the strongest form of nonlocality manifested in the

setting of local discrimination. It is of great interest to consider the construction and

verification of such sets of states. In [Ban11], Bandyopadhyay provided a way to construct
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locally indistinguishable orthogonal quantum states in the many-copy scenario using the

unextendible product basis (UPB).

In general, the local distinguishability is hard to characterize even in the single-copy set-

ting, as the structure of LOCC operations are rather sophisticated. A common method to

remedy this obstacle is to study distinguishability by quantum operations which completely

preserve the positivity of partial transpose, usually abbreviated by PPT-distinguishability

or distinguishability by PPT operations. The family of PPT operations admits a neat

mathematical characterization and contains all possible LOCC operations as a subset.

Therefore, if a set of orthogonal states cannot be distinguished by PPT operations, it is

also locally indistinguishable. Meanwhile, the notion of PPT is crucial in many areas of

quantum information theory. It was originally developed by Peres [Per96] and Horodecki

et al. [HHH96] for the separability tests. Later on, the notion of PPT was introduced to

the study of entanglement transformation [Ish04], entanglement distillation [Rai01], and

the classical and quantum capacity of quantum channels [LM15, WXD17].

In Section 2.3, we investigate the PPT-indistinguishability of orthogonal bipartite quan-

tum states in the many-copy scenario. We first reduce the problem of determining PPT-

distinguishability of orthogonal bipartite states with k copies to decide whether a bipartite

subspace S is k-PPT-extendible, that is, if there exist nonzero PPT operators of which the

support is orthogonal to S⊗k. Note that the k-PPT-extendible spaces are naturally gener-

alized from the k-extendible subspaces, introduced by Cubitt, Chen and Harrow [CCH11].

With such a formalism, we derive a simple criterion to decide whether a given bipartite

space is not k-PPT-unextendible for arbitrary k ∈ N. This criterion then can be utilized to

decide the PPT-indistinguishability in the many-copy scenario. Moreover, we utilize this

criterion to show that an arbitrary bipartite entangled state and its orthogonal complement

are PPT-indistinguishable in the many-copy scenario, which reproves and extends the re-

sults in [YDY14]. On the other hand, our criterion can be applied to study the minimum

dimension of PPT-unextendible subspaces in Hm ⊗Hn. Johnston [Joh13] explicitly con-

structs a dimension-(m− 1)(n− 1) subspace S in Hm⊗Hn which is 1-PPT-unextendible,

matching the bounds for unextendible subspaces [CMW08]. We extend Johnston’s result

by proving the subspace he constructed is k-PPT-unextendible for any k ∈ N.
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2.2 Notations and Preliminaries

We focus on distinguishing orthogonal bipartite quantum states. We say two quantum

states ρ1, ρ2 ∈ D(Hn) are orthogonal, denoted by ρ1 ⊥ ρ2, if and only if Tr(ρ†1ρ2) = 0.

We use ≤ to denote the subspace relation, i.e. S′ ≤ S if and only if S is a subspace of S′.

We say a density operator ρ is support on S, if supp(ρ) ≤ S. For a subspace S ≤ Hn,

the orthogonal complement of S is denoted and defined as S⊥ := {|ψ〉 ∈ Hn| 〈ψ|ϕ〉 =

0, ∀ |ϕ〉 ∈ S}. The projection onto the subspace S is denoted and defined by PS :=

|ψ0〉〈ψ0| + · · · + |ψN−1〉〈ψN−1|, where {|ψ0〉 , . . . , |ψN−1〉} is a set of orthonormal basis

of S. The normalized projection onto S is defined as ρS = PS
Tr(PS) . We use {|i〉〈j| : i =

0, . . . , n−1, j = 0, . . . ,m−1} to denote the computational basis of L(Hm,Hn). The partial

transpose operation (with respect to the second system) Γ : L(Hm ⊗Hn)→ L(Hm ⊗Hn)

maps |i〉〈j|⊗|k〉〈l| to |i〉〈j|⊗|l〉〈k|, and we simply use ρΓ to denote the operator after taking

partial transpose. We say ρ ∈ D(Hm ⊗Hn) is a PPT state, if ρΓ is positive semidefinite.

In addition, w say ρ ∈ D(Hm ⊗Hn) is a PPT-definite state, if ρΓ is positive definite.

For the definition of (unambiguous) PPT distinguishability of orthogonal bipartite quan-

tum states, we simply adapt the definitions in [YDY14].

Definition 2.1. Promise that a bipartite quantum system is prepared in one of the pos-

sible states in {ρi ∈ D(Hm ⊗ Hn) : ρj ⊥ ρk, ∀ ‘′j, k = 0, . . . , N − 1}. Given one copy of

the unknown state, we say a set of orthogonal bipartite states {ρ0, . . . , ρN−1} is

• unambiguous local distinguishable, if there exists a set of POVM operators

{P1, . . . , PN} which can be implemented by a LOCC protocol (LOCC POVM), such

that Tr(Piρj) = pjδij for all i, j = 0, . . . , N − 1, where δij = 0 if and only if i 6= j

and δii = 1 for all possible i.

• unambiguous PPT-distinguishable, if there exists a set of POVM operators

{P0, . . . , PN−1} where PΓ
i is positive semidefinite for i = 0, . . . , N−1 (PPT POVM),

such that Tr(Piρj) = pjδij for all i, j = 0, . . . , N − 1. (δij = 0 if and only if i 6= j

and δij = 1 if and only if i = j.)

• local (PPT) indistinguishable, if it is not unambiguous local (PPT) indistin-

guishable.
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Since any LOCC protocols belongs to the set of all PPT operations, {ρ0, . . . , ρN−1} is un-

ambiguous local distinguishable implies {ρ0, . . . , ρN−1} is unambiguous PPT-distinguishable.

Thus If we can show a set of orthogonal quantum states is PPT-indistinguishable, they

must be locally indistinguishable. Note that the definition can be generalized to the

situation when multiple copies are provided. Thus the PPT-indistinguishability in the

many-copy scenario implies local indistinguishability in the many-copy scenario.

We say a subspace S ≤ Hm⊗Hn is PPT-extendible, if there exist nonzero PPT operators

ρ ∈ D(Hm ⊗ Hn), such that supp(ρ) ≤ S⊥. In other words, there exist nonzero PPT

operators of which the support contains in the orthogonal complement of S. We say S is

k-PPT-extendible if S⊗k is PPT-extendible. We say S is strongly PPT-unextendible if S

is not k-PPT-extendible for any k ∈ N. Note that, S ≤ Hm⊗Hn is PPT-indistinguishable

implies S⊥ contains only entangled states, as any product states have positive partial-

transpose. Wallach [Wal02] and Parthasarathy [Par04] proved that the maximum dimen-

sion of subspaces in Hm ⊗Hn which contain only entangled state is (m− 1)(n− 1). This

implies the minimum dimension of PPT-unextendible subspaces is at least m+n−1. John-

ston [Joh13] construct the following subspace Sm,n, of which the dimension is m + n − 1

and is PPT-unextendible 1:

Sm,n = span{|ψs〉 =
m−1−s∑
j=0

|j〉 |m− 1− s− j〉 : s = 0, . . . ,m− 1;

|ϕt〉 =

min{n−1,t}∑
j=t−m+1

|t− j〉 |j〉 : t = m, . . . ,m+ n− 2}.

(2.1)

Eventually, we introduce several notions and results from matrix analysis. Given an n×n

matrix H, HI,J denotes the |I| × |J | submatrix of H with respect to the row index subset

I = {i1, . . . , i|I|} and column index subset J = {j1, . . . , j|J |}. When I = J , HI,I is called

a principal submatrix and the determinant of HI,I is called a principal minor. For I =

{1, . . . , i}, HI,I is the ith leading principal submatrix for i = 1, . . . , n. For J = {j, . . . , n},

HJ,J is the jth trailing principal submatrix for j = 1, . . . , n. The determinants of leading

1In [Joh13], the constructed subspace is S(m,n) = span{|j〉 |k + 1〉 − |j + 1〉 |k〉 : 0 ≤ j ≤ m − 2, 0 ≤
k ≤ n− 2}, which satisfies that any ρ ∈ D(Hm ⊗Hn) supporting on S has non-positive partial transpose.
The subspace Sm,n is taken as the orthogonal complement of S(m,n).
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(trailing) principal submatrices are called leading (trailing) principal minors. With these

notations, we exhibit the following useful results to decide the positive (semi)definiteness:

Theorem 2.2 ([HJ12]).

• Let H be Hermitian, i.e. H† = H. If all the leading (trailing) principal minors of H

are positive, H is positive definite. ( Sylvester’s criterion)

• For any positive definite matrix A, the determinant and all principal minors are

positive.

2.3 PPT-indistinguishability of Orthogonal Bipartite States

2.3.1 A Sufficient Condition for PPT-indistinguishability in the Many-

copy Scenario

We start from deriving a sufficient condition for PPT-indistinguishability of orthogonal

bipartite quantum states in the many-copy scenario. We first observe that, if there exists

k ∈ {0, . . . , N−1} such that for any nonzero PPT operator P ∈ L(Hm⊗Hn), Tr(Pρk) 6= 0,

then S cannot be distinguished by PPT POVM by definition 2.1. Based on this observa-

tion, we can easily derive the following:

Proposition 2.3. For a set of orthogonal quantum states {ρ0, . . . , ρN−1}, if there exists

k ∈ {0, . . . , N − 1} such that supp(ρk) is strongly PPT-unextendible, then {ρ0, . . . , ρN−1}

is PPT-indistinguishable in the many-copy scenario.

This proposition enables us to reduce determining PPT-indistinguishability in the many-

copy scenario to determining the strongly PPT-unextendibility. Such problems are re-

ferred to the extendibility problem. A typical one is to determine whether the orthog-

onal complement of a given bipartite subspace contains nonzero product states, which

plays an important role in the study of super-activation of zero-error classical capac-

ity of quantum channel [CCH11, Dua09]. We can convert the k-PPT-extendibility of
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S = span{|ψi〉 ∈ Hm ⊗ Hn : i = 0, . . . ,M − 1} to determining the feasibility of the

following semidefinite constraints:

〈ψ|P |ψ〉 = 0, ∀ |ψ〉 ∈ {|ψ0〉 , . . . , |ψM−1〉}⊗k,

P ∈ L((Hm ⊗Hn)⊗k), P ≥ 0, PΓ ≥ 0,
(2.2)

where {|ψ0〉 , . . . , |ψM−1〉}⊗k = {|ψj0〉 ⊗ · · · ⊗ |ψjk−1
〉 : j0, . . . , jk−1 ∈ {0, . . . ,M − 1}}. Al-

though SDP can be efficiently solved by convex optimization packages such as CVX [GB14]

in Matlab, the dimensions of the above constrains grows exponentially when k increasing,

which makes it infeasible when dealing with even k = 20. Thus, we require a witness for

the strongly PPT-unextendibility, which is efficient computable.

Theorem 2.4. If there is a PPT-definite operator P ∈ L(Hm ⊗Hn) supporting on S ≤

Hm ⊗Hn, then S is strongly PPT-unextendible.

Proof. It is easy to see that P is PPT-definite if and only if T (P ) > 0, where T (P ) is

given by the following semidefinite program:

T (P ) = max{t ∈ R : 0 ≤ R ≤ P, RΓ ≥ tImn}. (2.3)

Utilizing this SDP characterization, we then prove that P⊗k supports on S⊗k for any k ∈ N.

To see this, we only need to show that T (P1 ⊗ P2) ≥ T (P1)× T (P2) for any PPT-definite

operators P1 and P2. Assume that the optimal solutions to SDP (2.3) of T (P1) and T (P2)

are {R1, t1} and {R2, t2}, respectively. It is easy to derive that 0 ≤ R1⊗R2 ≤ P1⊗P2 and

RΓ
1 ⊗RΓ

2 ≥ t1t2I. Then {R1 ⊗R2, t1t2} is a feasible solution to SDP (2.3) when replacing

P by P1 ⊗ P2, which means that T (σ1 ⊗ σ2) ≥ t1t2 > 0. It follows immediately that

T (P⊗k) > 0, or equivalently P⊗k is PPT-definite, for any k ∈ N.

Now assume that there exists k0 ∈ N such that Q ∈ L((Hm ⊗Hn)⊗k0) is a nonzero PPT

operator supporting on the orthogonal complement of S⊗k0 . Since P⊗k0 supports on S⊗k0 ,

we know that

Tr(P⊗kQ) = Tr((P⊗k)ΓQΓ) > 0, (2.4)

where the second inequality holds since P⊗k is PPT-definite, which leads to the contra-

diction.



Chapter 2. PPT-distinguishability of Orthogonal Bipartite States 17

Following Theorem 2.4, we can directly obtain a sufficient condition for PPT-indistinguishability

in the many-copy scenario:

Corollary 2.5. For a set of orthogonal quantum states {ρ0, . . . , ρN−1}, if there exists

k ∈ {0, . . . , N − 1} such that there is a PPT-definite operator supporting on supp(ρk),

then {ρ0, . . . , ρN−1} is PPT-indistinguishable in the many-copy scenario.

2.3.2 Constructions of PPT-indistinguishable Orthogonal Bipartite States

in the Many-copy Scenario

One major method for constructing orthogonal quantum states which are locally indistin-

guishable in the many-copy scenario is to invoke the unextendible product basis (UPB). A

set of orthogonal product states {|Ψ0〉 , . . . , |ΨN−1〉} ⊆ Hm ⊗Hn is a UPB if the orthog-

onal complement of S = span{|Ψ0〉 , . . . , |ΨN−1〉} contains no product state. Denote the

orthogonal complement of S by S⊥. Then ρS and ρS⊥ cannot be distinguished by LOCC,

even given arbitrarily large but finite copies [Ban11]. In the following, we use corollary 2.5

to construct orthogonal local (PPT) indistinguishable states in the many-copy scenario.

Theorem 2.6. Given a bipartite entangled state |ϕ〉 ∈ Hm⊗Hn, let Sϕ = {|ψ〉 ∈ Hm⊗Hn :

〈ψ|ϕ〉 = 0}. Then |ϕ〉〈ϕ| and ρSϕ are PPT-indistinguishable in the many copy scenario.

Proof. Piani and Mora [PM07] implicitly proved that ρSϕ is PPT-definite, and the theorem

then follows by corollary 2.5. Here we provide an alternating proof to the PPT-definiteness

of ρSϕ . Let λmin(P ) and λmax(P ) be the minimum and maximum eigenvalues of the

operator P , respectively. Note that ρSϕ = 1
mn−1(Imn − |ϕ〉〈ϕ|). ρSϕ is PPT-definite if

and only if λmin(Imn − |ϕ〉〈ϕ|Γ) > 0, or equivalently, λmax(|ϕ〉〈ϕ|Γ) < 1. Let the Schmidt

decomposition of |ϕ〉 be |ϕ〉 =
∑r−1

i=0 λi |αi〉 |βi〉 with 1 > λ2
0 ≥ · · · ≥ λ2

r−1 > 0 and
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λ2
0 + · · ·+ λ2

r−1 = 1. Then |ϕ〉〈ϕ|Γ can be represented as

|ϕ〉〈ϕ|Γ =

r−1∑
i=0

λ2
i |αi〉〈αi| ⊗ |βi〉〈βi|+

∑
i6=j

λiλj |αi〉 〈αj | ⊗ |βj〉 〈βi|

=
r−1∑
i=0

λ2
i |αi〉 |βi〉〈αi| 〈βi|+

∑
i>j

λiλj
2

[(|αi〉 |βj〉+ |αj〉 |βi〉)(〈αi| 〈βj |+ 〈αj | 〈βi|)]

−
∑
i>j

λiλj
2

[(|αi〉 |βj〉 − |αj〉 |βi〉)(〈αi| 〈βj | − 〈αj | 〈βi|)].

(2.5)

Thus, the eigenvalues of |ϕ〉〈ϕ|Γ are λ2
i and ±λiλj

2 . Since 1 > λ0 ≥ · · · ≥ λr−1 > 0,

λmax(|ϕ〉〈ϕ|Γ) = λ2
1 < 1, which derives In2 − |ϕ〉〈ϕ|Γ is PPT-definite.

Remark 2.7. Theorem 2.6 immediately implies that any maximally entangled state and

the normalized projection onto its orthogonal complement are PPT-indistinguishable in

the many-copy scenario [YDY14]. The proof of Theorem 2.6 is more intrinsic, as the proof

in [YDY14] highly relies on the symmetry of maximally entangled state.

2.3.3 Minimum Dimension of Strongly PPT-unextendible Spaces inHm⊗

Hn

In this subsection we show the subspace Sm,n ≤ Hm⊗Hn (see Equation (2.1)) constructed

by Johnston in [Joh13] is strongly PPT-unextendible, which derives the minimum dimen-

sion of strongly PPT-unextendible subspaces in Hm ⊗Hn is also m+ n− 1.

Theorem 2.8. Let

Sm,n = span{|ψs〉 =
m−1−s∑
j=0

|j〉 |m− 1− s− j〉 : s = 0, . . . ,m− 1;

|ϕt〉 =

min{n−1,t}∑
j=t−m+1

|t− j〉 |j〉 : t = m, . . . ,m+ n− 2}.

Then there exist PPT-definite operators supporting on Sm,n. Moreover, Sm,n is strongly

PPT-unextendible.
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Proof. We shall prove that there exist x0, x1, . . . , xm−1 ∈ R+ and ym, . . . , ym+n−2 ∈ R+,

such that

ρΓ
m,n =

m−1∑
s=0

xm−1−s |ψs〉〈ψs|Γ +
m+n−2∑
t=m

yt |ϕt〉〈ϕt|Γ (2.6)

is PPT-definite. For s = 0, . . . ,m− 1 and t = m, . . . ,m+ n− 2, we have

|ψs〉〈ψs|Γ =
m−1−s∑
j1,j2=0

|j1〉 〈j2| ⊗ |m− 1− s− j2〉 〈m− 1− s− j1| ,

|ϕt〉〈ϕt|Γ =

min{n−1,t}∑
j1,j2=t−m+1

|t− j1〉 〈t− j2| ⊗ |j2〉 〈j1| .

(2.7)

Represent ρΓ
m,n as a matrix with respect to the computational basis. We participate

{|j〉 |k〉 : j = 0, . . . ,m− 1, k = 0, . . . , n− 1} into the following families:

Pa = {|m− 1− a+ k〉 |k〉 : 0 ≤ k ≤ a}, a = 0, . . . ,m− 1;

Qb = {|l〉 |l + b〉 : 0 ≤ l ≤ min{n− 1− b,m− 1}}, b = 1, . . . , n− 1.
(2.8)

Let Pa and Qb denote the submatrices spanned by Pa and Qb, respectively, for a =

0, . . . ,m − 1 and b = 1, . . . , n − 1. We have the decomposition ρΓ
m,n = (⊕m−1

a=0 Pa) ⊕

(⊕n−1
b=1Qb). Thus, we reduce ourselves to show the existence of x0, x1, . . . , xm−1 ∈ R+,

ym, . . . , ym+n−2 ∈ R+, such that

Pa =


xa xa−1 · · · x0

xa−1
...

... ym
...

...
...

...

x0 ym · · · ym+a−1


(a+1)×(a+1)

0 ≤ a ≤ m− 1, (2.9)

Qb =



xm−1−b · · · x0 ym · · · ym+b−1

...
...

...
...

...
...

x0
...

...
...

...
...

ym
...

...
...

...
...

...
...

...
...

...
...

ym+b−1 · · · · · · · · · · · · y2m+b−2


m×m

1 ≤ b ≤ n−m, (2.10)
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Qb =



xm−1−b · · · x0 ym · · · yn−1

...
...

...
...

...
...

x0
...

...
...

...
...

ym
...

...
...

...
...

...
...

...
...

...
...

yn−1 · · · · · · · · · · · · y2n−b−2


(n−b)×(n−b)

n−m < b ≤ n− 1, (2.11)

are positive definite.

We first show that P0, . . . , Pm−1 can be positive definite. Let xa = ym−1+a for a =

1, . . . ,m− 1. Then Pa reduce to

Pa =


xa xa−1 · · · x0

xa−1
...

... x1

...
...

...
...

x0 x1 · · · xa


(a+1)×(a+1)

. (2.12)

When a = 0, Pa = x0 and we set x0 as an arbitrary positive real number x′0. Assume we

have chosen x′0, x
′
1, . . . , x

′
m−2 such that Pa is positive definite for a = 0, . . . ,m − 2. Note

that

Pm−1 =


xm−1 x′m−2 · · · x′0

x′m−2
...

... x′1
...

...
...

...

x′0 x′1 · · · xm−1


m×m

. (2.13)

We shall choose xm−1 such that Pm−1 is positive definite. One possibility is to show

the leading principal minors of Pm−1 are positive definite, then Pm−1 is positive definite

by Sylvester’s criterion (Theorem 2.2). As xm−1 is the only variable, the kth leading

principal minor of Pm−1 being positive definite will put a linear constraint on xm−1 for

k = 2, . . . ,m− 1. Moreover, the coefficient of xm−1 is positive, as it equals the (k − 1)th

leading principal minor of Pm−2 (which is positive as Pm−2 is positive definite by our

assumption). In addition, to make the determinant of Pm positive, we put a quadratic

constraint on xm, where the coefficient of x2
m is positive as well. This is due to the fact that

it equals the determinant of P ′m−3. Thus we have m−1 linear constraints and 1 quadratic
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constraint on xm, where the coefficients of xm in the linear constraints are positive and the

coefficients of x2
m in the quadratic constraint is positive. We can always choose a sufficient

large x′m−1 to satisfy all these constraints, which makes Pm−1 positive definite as well.

Next, we claim that there exist y′2m−1 such that Q1 is positive definite, where

Q1 =


xm−2 · · · x0 ym

...
...

... ym+1

x0
...

...
...

ym ym+1 · · · y2m−1


m×m

=


x′m−2 · · · x′0 x′1

...
...

... x′2

x′0
...

...
...

x′1 x′2 · · · y2m−1


m×m

. (2.14)

Note that, the leading principal minors of Q1 is positive as they coincide with the leading

principal minors and determinant of P ′m−2. This ensures the first m − 1 leading princi-

pal minor of Q1 is positive. We can choose y2m−1 ∈ R+ such that the determinant of

Q1 is positive, which implies that Q1 is positive definite by Sylvester’s criterion (Theo-

rem 2.2). This put a linear constraint on y2m−1 with positive coefficient, which equals the

determinant of P ′m−2. It is easy to see that we can always find y2m−1 ∈ R+ satisfy the

constraint. For Q2, . . . , Qn−m, we determine y2m, . . . , ym+n−2 adaptively by repeating the

above argument, such that Qb is positive definite for b = 2, . . . n−m.

Finally, we prove that with the above choices of all the variables, Qb is also positive definite

for b = n−m+ 1, . . . , n− 1. Note that Qn−m+1 is exactly the (m− 1)th trailing principal

submatrix of Qn−m−1.

Qn−m+1 =



x2m−n−2 · · · x0 ym · · · yn−1

...
...

...
...

...
...

x0
...

...
...

...
...

ym
...

...
...

...
...

...
...

...
...

...
...

yn−1 · · · · · · · · · · · · yn+m−3


(m−1)×(m−1)

. (2.15)
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Qn−m−1 =



x2m−n · · · x0 ym · · · yn−2

...
...

...
...

... yn−1

x0
...

...
...

...
...

ym
...

...
...

...
...

...
...

...
...

...
...

yn−2 yn−1 · · · · · · · · · yn+m−3


m×m

. (2.16)

By Theorem 2.2, we know the trailing principal minors of Qn−m−1 are positive definite,

and derive the trailing principal minors of Qn−m+1 are positive definite as well, which

means Qn−m+1 is positive definite by Sylvester’s criterion. In fact, it is easy to verify

that Qn−m+k corresponding to some principal submatrix of Qn−m−1, for k = 1, . . . ,m.

By Sylvester’s criterion again, we can derive the positive definiteness. This concludes our

proof.

2.4 Summary and Discussion

In this chapter, we have studied the PPT-distinguishability of orthogonal bipartite states in

the many-copy scenario. Constructing PPT-indistinguishable orthogonal bipartite states is

helpful to deepen our understanding on quantum nonlocality. We reduce deciding the PPT-

indistinguishability of orthogonal bipartite states to deciding whether a given bipartite

subspace is (strongly) PPT-unexntedible. Such a reduction implies a necessary condition

for the PPT-distinguishability. We exploit our condition to show that arbitrary entangled

pure state and its orthogonal complement are PPT indistinguishable, even arbitrarily large

but finite copies are provided. This extends one of the main results in [YDY14]. We also

proved tight lower bound for the dimension of strongly PPT-unextendible subspaces.

It is worth noting that bipartite subspaces are one-to-one corresponding to matrix spaces

by utilizing the Choi-Jamio lkowski isomorphism. Thus the PPT-extendibility of bipartite

subspaces can be also defined with respect to matrix spaces. Although we have not been

benefit from such a conversion, we believe that the language of matrix spaces may provide

a general framework in the study of discrimination problems. Such a point will be further

emphasized in the next chapter.



Chapter 3

Distinguishing Quantum Channels with

Parallel Schemes

In this chapter, we study the distinguishability of quantum channels using parallel schemes.

We completely characterize the distinguishability with respect to the matrix space gen-

erated by the Choi-Kraus operators of the two given quantum channels, which can be

also formulated as a type of extendibility problem. This chapter is organized as follows:

We first review the development of quantum channel discrimination in Section 3.1. We

introduce some preliminaries in Section 3.2, followed by the study of the parallel distin-

guishability of quantum channels in Section 3.3. Our main results are based on [DGLL16].

We close in Section 3.4 with a brief summary.

23
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3.1 Introduction: Quantum Channel Discrimination

The quantum channel discrimination problem is a natural generalization of quantum states

discrimination. It is the task of identifying an unknown quantum channel, given the

promise that it is secretly chosen from a set of known quantum channels. However, charac-

terizing the perfect distinguishability of quantum channels is not as easy as characterizing

the perfect distinguishability of quantum states. There are three main differences between

these two discrimination problems. First, quantum channels are reusable; second, the

input states can be chosen freely, and thus can be entangled with an auxiliary system or

between different uses; and third, the unknown quantum channel can be applied in many

essentially different ways, such as in parallel or in sequence. The first two viewpoints are

quite accessible. While, we review several seminal results to get a better understanding

on the third difference. Unitary channels are fundamental to both quantum computation

and quantum mechanics, as important concepts such as quantum circuits and the time

evolution of quantum systems are contained in the family of unitary channels. Aćın [Aćı01]

and D’Ariano et al. [DLPP01] firstly proved that any set of unitary channels can be distin-

guished perfectly. Their strategy is to prepare an N -partite quantum state and apply the

unknown unitary channels N times, each party one time. The resulting quantum states

will be orthogonal and can be distinguished perfectly. Intuitively, this kind of protocol is

called parallel scheme. On the other hand, Duan, Feng and Ying [DFY07] proved that

unitary channels can also be distinguished perfectly in a sequential scheme, that is, we

apply the unknown channel on the input state step by step. These two schemes stand for

the use of spatial resources (entanglement or circuits) and the temporal resources (running

steps or discriminating time), which enable us to optimize the discrimination protocols by

combining these two schemes to fulfill some certain resource requirements. Interestingly,

there exist a pair of (entanglement breaking) channels which cannot be perfect distin-

guished using parallel schemes, this can be done using sequential schemes with only two

channel evaluations [HHLW10].

With respect to the fruitful structure of quantum channel discrimination, the perfect

or optimal distinguishabilities of other specific families of quantum channels, including

the projective measurements, Pauli channels and oracle operators, have been addressed
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in [JFDY06, DSK05, CKT+07, Wat08, CY10]. However, until 2009, a complete (math-

ematical) characterization of the perfect distinguishability of two quantum channels was

finally settled in the seminal work of Duan, Feng and Ying [DFY09]. The protocol is a

combination of parallel and sequential schemes. We first apply the unknown quantum

channel (secretly chosen from channels E and F) onto an N -partite input states, where

N is a finite integer. Then we adapt an auxiliary quantum channel, determined by E and

F , to obtain orthogonal output states. In [DFY09], the condition on E and F ensures the

two output states can be orthogonal, which can be distinguished perfectly.

However, such perfect discrimination protocols may not be feasible in practice, as im-

plementing the auxiliary channels could be expensive, and they depends crucially on the

set of (priori known) quantum channels. Thus, it would be important to obtain a better

understanding of the distinguishability of quantum channels using parallel schemes only,

as shown in figure 3.1. Moreover, we point out that the parallel scheme is the natural gen-

eralization of the discrimination of quantum states with multiple copies. Recent highlights

are the indentification of the (multiple) quantum Chernoff bound [ACMnT+07, Li16].

|Φ〉〈Φ|RQ

Input

IR

O

O

O

...

...

(IR ⊗O)⊗N (|Φ〉〈Φ|RQ)

Output

Figure 3.1: Parallel scheme to distinguish an unknown quantum channel O ∈ {E ,F}
with N uses on the input state |Φ〉〈Φ|RQ, where IR representing the identity channel is
applied on the auxiliary system R.

In section 3.3, we investigate the parallel distinguishability for arbitrary two quantum

channels. We first convert the problem of deciding parallel discrimination of two quantum

channels E and F to the problem of deciding whether there exists k ∈ N, such that the



26 Chapter 3. Distinguishing Quantum Channels with Parallel Schemes

orthogonal complement of S⊗kE,F contains nonzero positive semidefinite matrices. Here SE,F

stands for a matrix space generated by the Choi-Kraus operators of E and F . We then

obtain a necessary condition for parallel discrimination, following a similar idea as that

used for the PPT-distinguishability of quantum states. Such a condition is also sufficient if

the given matrix space is of dimension-1 or self-adjoint. Interestingly, the dimension-1 case

provides an alternate proof for the parallel distinguishability of unitary channels [Aćı01].

However, we also demonstrate that this condition is not sufficient by providing several

illustrative examples.

3.2 Notations and Preliminaries

In this chapter we focus on quantum channels discrimination, and some auxiliary systems

are allowed. Quantum channels (CPTP maps) such as E ,F : L(Hn) → L(Hm) are given

by their Choi-Kraus operators {Ei ∈ L(Hn,Hm) : i = 1, . . . , NE} and {Fj ∈ L(Hn,Hm) :

j = 1, . . . , NF}, respectively. We say E is an isometry, if E has only one Choi-Kraus

operator1. If E is an isometry and m = n, we say E is a unitary channel. The matrix

space SE,F ≤ L(Hn) is generated by the Choi-Kraus operators of E and F by SE,F :=

span{E†iFj : i = 1, . . . , NE , j = 1, . . . , NF}, and the orthogonal complement of SE,F is

defined as S⊥E,F := {A ∈ L(Hn) : Tr(A†B) = 0, ∀ B ∈ SE,F}. Since L(Hn) ∼= M(n,C),

the space of n × n matrices over complex field, operator spaces such as SE,F can be also

represented as matrix spaces after claiming a set of linear bases of Hn. We denote the

principal system by Q and the auxiliary system by R in the subscript. Note that for

any quantum state ρ ∈ L(Hn) and quantum channel E : L(Hn) → L(Hm), there exists

a pure state |Ψ〉RQ ∈ HnR ⊗ HnQ , such that E(ρ) = TrR(IR ⊗ EQ(|Ψ〉〈Ψ|RQ)). Thus in

most of the quantum channel discrimination protocols, we allow auxiliary systems (with

underlaying Hilbert space Hn) and use pure states as inputs. We say two quantum channel

E and F are (entanglement-assisted) disjoint, if there exist |Ψ〉RQ ∈ HnR ⊗HnQ such that

supp(IR ⊗ EQ(|Ψ〉〈Ψ|RQ)) ∩ supp(IR ⊗FQ(|Ψ〉〈Ψ|RQ)) = {0}.

1Let the Choi-Kraus operator of an isometry E be E ∈ L(Hn,Hm), then E†E = In. We also call such
an linear operator E as an isometry.
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For the perfect distinguishability of two quantum channels, we present the sufficient and

necessary condition [DFY09] here:

Theorem 3.1. Given two quantum channels E ,F , described by the Choi-Kraus operators

{Ei ∈ L(Hn,Hm) : i = 1, . . . , NE} and {Fj ∈ L(Hn,Hm) : j = 1, . . . , NF}, respectively,

then E and F are perfectly distinguishable if and only if: (1) E and F are disjoint; (2)

In 6∈ SE,F .

Thus, when we are focusing on the parallel distinguishability, the two quantum channels

must priorly satisfy the condition in Theorem 3.1. Moreover, the parallel distinguishability

can be formally defined as follows:

Definition 3.2. Given two quantum channels E ,F , described by the Choi-Kraus operators

{Ei ∈ L(Hn,Hm) : i = 1, . . . , NE} and {Fj ∈ L(Hn,Hm) : j = 1, . . . , NF}, respectively,

then E and F are said to be parallel distinguishable, if there exists k ∈ N, such that there

exists an input state |Ψ〉RQ ∈ H⊗knR ⊗HnQ
⊗k, IR⊗E⊗kQ (|Ψ〉〈Ψ|RQ) ⊥ IR⊗F⊗kQ (|Ψ〉〈Ψ|RQ).

The numerical range of a linear operator B ∈ L(Hn) is defined as the set W (B) :=

{〈ψ|B |ψ〉 : ∀ |ψ〉 ∈ Hn, 〈ψ|ψ〉 = 1}. The celebrated Toeplitz-Hausdorff theorem indicates

that W (B) is convex for any linear operator B [HJ12]. the angular numerical range of B

is defined as W(B) :=
⋃
t>0W (tB). By the convexity of W (B), W(B) can be C, a half

space with a straight line passing through 0 as the boundary, or a pointed cone with 0 as

the vertex. We can then define the field angle of A according to these cases as follows:

Definition 3.3. For a linear operator B ∈ L(Hn), the field angle of B, denoted by Θ(B),

is defined as follows:

• If W(B) = C, Θ(B) = 2π;

• If W(B) is a half space, then Θ(B) = π;

• If W(B) is a pointed cone, then Θ(B) is the angle between the two boundary rays

of the cone.
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3.3 Parallel Distinguishability of Quantum Channels

3.3.1 Characterizing the Parallel Distinguishability

We first derive an equivalent formulation of the parallel distinguishability of two quantum

channels E ,F . E and F are parallel distinguishable if and only if there exists an input

state |Ψ〉RQ such that IR ⊗ EQ(|Ψ〉〈Ψ|RQ) ⊥ IR ⊗FQ(|Ψ〉〈Ψ|RQ). Equivalently, we have

Tr(IR ⊗ EQ(|Ψ〉〈Ψ|RQ)IR ⊗FQ(|Ψ〉〈Ψ|RQ)) = 0, (3.1)

Note that we have |Ψ〉RQ = (In ⊗ X) |EPRn〉RQ, where Tr(X†X) = 1 and |EPRn〉 =

1√
n

∑n−1
i=0 |i〉 |i〉 stands for the maximally entangled state. Replacing E and F by their

Choi-Kraus operators {Ei : i = 1, . . . , NE} and {Fj : j = 1, . . . , NF}, we obtain

∑
i,j

Tr(E†iFjXX
†)Tr(F †jEiXX

†) = 0. (3.2)

We derive that XX† needs to be orthogonal to E†iFj for all possible i and j, i.e. XX† ∈

S⊥E,F . Note that the Choi-Kraus operator of E⊗k is {Ei1 ⊗ · · · ⊗ Eik : ∀j = 1, . . . , k, ij =

1, . . . , NE}, which leads to the following:

Proposition 3.4. Given two quantum channels E ,F : L(Hn)→ L(Hm), described by the

Choi-Kraus operators {Ei : i = 1, . . . , NE} and {Fj : j = 1, . . . , NF}, respectively, then E

and F are parallel distinguishable within k uses of the unknown quantum channel if and

only if there exist nonzero positive semidefinite operators in the orthogonal complement of

S⊗kE,F .

Proposition 3.4 illustrates that the parallel distinguishability of E ,F is completely char-

acterized by the operator space SE,F ≤ L(Hn) ∼= M(n,C). A natural question to ask is,

given an arbitrary matrix space S ≤ M(n,C), can we construct two quantum channels

E ,F such that S = SE,F? The answer is affirmative. Assume S is spanned by a tuple

of matrices B1, . . . , BN , where N ≤ n2 is the dimension of S. Without loss of gener-

ality, we assume B†iBi ≤ In for i = 1, . . . , N . We prove that for each Bi, there exist

two isometries Ui, Vi ∈ L(Hn,Hn′) where n′ ≥ 2n, such that Bi = U †i Vi. To see this,
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let the singular value decomposition of Bi be
∑n−1

k=0 σi,k |ψi,k〉 〈φi,k|, where 0 ≤ σi,k ≤ 1.

Let Ui =
∑n

k=1 |αi,k〉 〈ψi,k| and Vi =
∑n

k=1 |βi,k〉 〈φi,k|. For each i, {|αi,0〉 , |αi,n−1〉} and

{|βi,0〉 , . . . , |βi,n−1〉} are two sets of orthogonal states in Hn, which need to be determined

such that Bi = U †i Vi. To achieve this, we need

〈αi,j |βi,k〉 = 0 〈αi,k|βi,k〉 = σi,k, ∀ j, k ∈ {0, . . . n− 1}. (3.3)

To achieve this, we choose n mutually orthogonal dimension-2 subspaces in Hn′ , denoted

by Ki,k for k = 0, . . . , n− 1. In each Ki,k we can choose two quantum states |αi,k〉 , |βi,k〉

such that 〈αi,k|βi,k〉 = σi,k. This can be done since 0 ≤ σi,k ≤ 1. (When σi,k = 1, Ki,k

can be reduced to a dimension 1 subspace.) For n′ ≥ 2n, these subspaces always exist.

In the end, we can construct two quantum channels E and F with Choi-Kraus operators

{ 1√
N
Ui ⊗ |i〉 : i = 1, . . . , N} and { 1√

N
Vj ⊗ |j〉 : j = 1, . . . , N} such that S = SE,F .

Combine Proposition 3.4 and the above construction, the parallel distinguishability of

quantum channels can be formulated as follows: Given a matrix space S ≤M(n,C), decide

whether there exists k ∈ N, such that the orthogonal complement of S⊗k contains nonzero

positive semidefinite matrices. Similarly, we say S is k-positive-extendible, if S⊗k contains

nonzero positive semidefinite matrices. Otherwise we say S is k-positive-unextendible. If

for any k ∈ N, S is k-positive-unextendible, we say S is strongly positive-unextendible.

Note that Theorem 2.4 also implies a sufficient condition to determine whether a matrix

space is strongly positive-unextendible:

Theorem 3.5. If S ≤ M(n,C) contains positive definite matrices, then S is strongly

positive-unextendible.

Exploiting this theorem, we can immediately obtain a necessary condition for parallel

distinguishability:

Corollary 3.6. Let E ,F : L(Hn) → L(Hm) be two quantum channels, described by the

Choi-Kraus operators {E1, . . . , ENE} and {F1, . . . , FNF}, respectively. If SE,F contains

positive definite operators, then E and F are not parallel distinguishable.
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3.3.2 Determining the Parallel Distinguishability for Two Families of

Quantum Channels

Corollary 3.6 turns out to be surprisingly useful. For instance, Harrow et al. [HHLW10]

construct two quantum channels E ,F such that they are not parallel distinguishable, but

can be distinguished perfectly by sequential schemes. In particular, the matrix space SE,F

with respect to these channels contains positive definite matrices. In this subsection, we

investigate when corollary 3.6 is also sufficient to determine the parallel distinguishability.

Theorem 3.7. Given a matrix space S ∈M(n,C), if S is self adjoint, i.e. S† = {B† : B ∈

S} or dim(S) = 1, then S is strongly positive-unextendible if and only if S contains positive

definite matrices. Moreover, if S contains no positive definite matrix, we can determine

the minimum integer k where the orthogonal complement of S⊗k contains nonzero positive

definite operator.

Remark 3.8. Theorem 3.7 implies that two different unitary channels U ,V (with Choi-

Kraus operators U and V , respectively) are parallel distinguishable, which reproves the

result in [Aćı01]. Since SU ,V = 〈U †V 〉 is rank 1, and U †V is not positive definite if and

only if U 6= V .

Proof. We first deal with the case when S is self-adjoint. Then S admits a set of Hermitian

basis, i.e. S = 〈B1, . . . , BN 〉 where Bi is Hermitian for i = 1, . . . , N and 〈·〉 denotes the

linear span. By Farkas’ lemma of semi-definite programming [Roc15], either

• There is a linear combination of B1, . . . , BN equal to a positive definite matrix; or

• There is a nonzero positive semidefinite matrix T such that Tr(BiT ) = 0 for i =

1, . . . , N .

The first statement is equivalent to the existence of a positive definite matrix in S and the

second one is equivalent to T ∈ S⊥. Thus if there is no positive definite matrix in S,

we can always find a nonzero positive semidefinite matrix in S⊥. This also indicates that,

if SE,F is self-adjoint, they can be perfectly distinguished (with single use) if and only if

SE,F contains no positive definite operator.
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Now we consider the case when dim(S) = 1. Let S = 〈B〉, where B ∈ L(Hn). We shall

prove that, if B is not positive definite, there exists k ∈ N such that we can find a nonzero

positive semidefinite matrix P such that Tr(B⊗kP ) = 0. Note that it is equivalent to have

0 ∈ W (B⊗k) for some k ∈ N. If 0 6∈ W (B), we know that W (B) 6⊆ eit(0,∞) for some

t ∈ R, otherwise eitB ∈ S is positive definite. Thus, the angular numerical rangeW(B) is a

cone in C with vertex 0 and contains W (B). So, there are µ1 = r1e
iθ1 , µ2 = r2e

iθ2 ∈W (B)

with r1, r2 > 0 and θ1 < θ2 < θ1 + π so that θ1 ≤ arg(µ) ≤ θ2 for all µ ∈ W (B), where

arg(µ) denotes the argument of the complex number µ. This also indicates that the field

angle of B equals θ2− θ1. For simplicity, we may replace B by e−i
θ1+θ2

2 B and assume that

W (B) ⊆ {µ ∈ C : −Θ(B)

2
≤ arg(µ) ≤ Θ(B)

2
}.

Now let B = H + iG, where H,G are Hermitian matrices and H need to be positive

definite. In addition, we can find a unitary U such that

B0 := U †H−1/2BH−1/2U = U †(In + iH−1/2GH−1/2)U =


1 + a1i

. . .

1 + adi

 , (3.4)

where a1 ≥ · · · ≥ ad. It is clear that W(B) = W(B0) and a1 = tan Θ(B)
2 and ad =

− tan Θ(B)
2 . Furthermore, we have W(B⊗k) = W(B⊗k0 ). Since B0 is diagonal, the field

angle of B⊗k0 equals kΘ(B0) = kΘ(B). Then 0 ∈ W (B⊗k) if and only if k ≥ π
Θ(B) , which

is always finite if Θ(B) > 0.

In conclusion, if B ∈ L(Hn) is not positive definite, than there exist nonzero positive

semidefinite operators which are orthogonal to B
⊗d π

Θ(B)
e2. And for any k < π

Θ(B) , there is

no nonzero positive semidefinite operator which is orthogonal to B⊗k.

3.3.3 A Counterexample for the Sufficiency of Corollary 3.6

Although corollary 3.6 appears to be useful in several interesting cases, we present the

following simple matrix space S which not only contains no positive definite matrix, but

2dxe equals the smallest integer which is larger than x ∈ R.
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also strongly positive-unextendible.

Theorem 3.9. Let S = 〈B1, B2〉 ≤M(n,C) with B1 =


1 0 0

0 i 0

0 0 0

 and B2 =


0 0 0

0 1 0

0 0 i

.

Then S contains no positive definite matrix and is unextendible.

Proof. It is easy to verify that there is no positive definite matrix in S. Now we use

mathematical induction to show that for arbitrary k ∈ N, there is no nonzero positive

semidefinite matrix in the orthogonal complement of S⊗k. When k = 1, it is easy to

verify S⊥ contains no positive definite matrix. Assume for k = N , there is no nonzero

positive semidefinite matrix in (S⊗N )⊥. For k = N+1, such a positive semidefinite matrix

T ∈ (S⊗N+1)⊥ exists, we have

Tr(T (B1 ⊗M)) = 0, Tr(T (B2 ⊗M)) = 0, (3.5)

where M ∈ S⊗N . Since B1 and B2 are diagonal, without loss of generality we assume

T =


T0 0 0

0 T1 0

0 0 T2

 where T0, T1 and T2 are positive semidefinite and at least one of them

is nonzero. Rewriting Equation (3.5), we obtain

Tr(T0M) + iTr(T1M) = 0, − iTr(T1M) + Tr(T2M) = 0. (3.6)

If T0 + T2 6= 0, let T ′ = T0 + T2 and Tr(T ′M) = 0 for all M ∈ S⊗N . Thus T ′ is

a nonzero positive semidefinite matrix in the orthogonal complement of S⊗N , which is

a contradiction. Otherwise, we have T0 = T2 = 0, T1 6= 0 and Tr(T1M) = 0 for all

M ∈ S⊗N , again a contradiction. Thus there is no nonzero positive semidefinite matrix

in the orthogonal complement of S⊗N+1.

The matrix space in Theorem 3.9 can be applied to construct another pairs of quantum
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channels which are not parallel distinguishable but perfect distinguishable. Let the Choi-

Kraus operators of E ,F : H3 → H8 be

{ 1√
2

(|0〉〈0| − |1〉〈1|+ |3〉〈2|)⊗ |0〉 , 1√
2

(|1〉〈1| − |2〉〈2|+ |3〉〈0|)⊗ |1〉},

{ 1√
2

(|0〉〈0| − i |1〉〈1|+ |2〉〈2|)⊗ |0〉 , 1√
2

(|1〉〈1| − i |2〉〈2|+ |0〉〈0|)⊗ |1〉},
(3.7)

respectively. Denote SE and SF as the operator space spanned by the Choi-Kraus operators

of E and F . Then it is easy to verify SE ∩ SF = {0}. Following the procedure introduced

in [DFY09], we can choose the 3×3 maximally entangled state |EPR3〉RQ = 1√
3
(|00〉+|11〉+

|22〉) such that supp(IR ⊗ EQ(|EPR3〉〈EPR3|)) ∩ supp(IR ⊗ FQ(|EPR3〉〈EPR3|)) = {0},

i.e. E and F are disjoint. Since SE,F has no positive definite matrix, we know I3 6∈ SE,F .

By Theorem 3.1, we know E and F can be distinguished perfectly.

3.4 Summary and Discussion

In this chapter, we have investigated the parallel distinguishability of quantum channels.

The motivations of studying the parallel distinguishability of quantum channels is realis-

tic: we would like to avoid the use of adaptive strategy and auxiliary quantum channels in

channel discrimination tasks. We have derived a necessary condition to decide the parallel

distinguishability of quantum channels, based on the characterization with respect to ma-

trix spaces. In addition, we have proved that the necessary condition is also sufficient to

determine the parallel distinguishability for two families of quantum channels, including

unitary channels [Aćı01]. We also exhibit two quantum channels which neither satisfy our

necessary condition, nor can they be distinguished using parallel schemes.

To obtain our results, a key step is to derive the characterization of parallel distinguisha-

bility terms of matrix spaces. This opens up the possibilities to utilizing powerful mathe-

matical tools in matrix analysis, such as the theory of numerical range and Farkas’ lemma

for semidefinite programming. It is also worth noting that, the structure of matrix spaces

and their orthogonal complement (with respect to the Hilbert-Schmidt inner product) is

much more complicated than that of vector spaces, which may deserve further study.





Chapter 4

Tripartite-to-Bipartite SLOCC

Entanglement Transformation

In this chapter, we investigate the feasibility of transforming a tripartite pure state to a

bipartite one via SLOCC, in both finite-copy and asymptotic settings. Notably, deciding

the feasibility can be reduced to computing the maximal rank of a given matrix space,

which has been studied in the context of computational complexity theory for decades.

We first review the development of (tripartite-to-bipartite) SLOCC entanglement trans-

formation and illustrate the closed connection with computational complexity theory in

Section 4.1. Section 4.2 summarizes several previous results and mathematical tools. We

study the tripartite-to-bipartite SLOCC entanglement transformation with multiple copies

in Section 4.3, and focus on the asymptotic setting in Section 4.4. We close in Section 4.5

with a brief summary. This chapter is based on [LQWD18].

35



36 Chapter 4. Tripartite-to-Bipartite SLOCC Entanglement Transformation

4.1 Introduction

Quantum entanglement is unarguably of great utility in quantum information processing

and quantum computing. It is instrumental in quantum computational speed-up, quantum

communication, quantum cryptography and so on. Exploring the structure of quantum

entanglement is at the very heart of quantum information theory and one of the most

fruitful branches is to discuss the possibility of transforming a pure entangled state into

another one, using local operations and classical communication (LOCC).

The most seminal work in the study of bipartite entanglement transformation is by Nielsen [Nie99].

He proved that the feasibility of converting a pure entangled state |ψ〉AB, shared by Al-

ice and Bob, to another pure entangled state |φ〉AB by LOCC (symbolically denoted by

|ψ〉AB
LOCC−→ |φ〉AB) is completely characterized by the majorization condition: |ψ〉AB

LOCC−→

|φ〉AB if and only if (λ0, . . . , λr−1) is majorized by (µ0, . . . , µr−1)1, where λ0 ≥ · · · ≥ λr−1

and µ0 ≥ · · · ≥ µr−1 are Schmidt coefficients of |ψ〉AB and |φ〉AB, respectively. However,

the majorization condition also indicates that pairs of bipartite entangled states exist which

cannot be converted to each other. Consequently, two surprising phenomena were subse-

quently explored: Jonathan and Plenio [JP99] observed that there exist bipartite entangled

states |ψ1〉AB, |ψ2〉AB and |φ〉AB, such that |ψ1〉AB

LOCC

6−→ |ψ2〉AB but |ψ1〉AB ⊗ |φ〉AB

LOCC

6−→

|ψ2〉AB ⊗ |φ〉AB. The role of |φ〉AB is similar to a catalyst in a chemical process and this

type of LOCC transformation is called the catalyst-assisted LOCC transformation. On

the other hand, Bandyopadhyay et al. [BRS02] discovered that there exist bipartite entan-

gled states |ψ1〉AB, |ψ2〉AB such that |ψ1〉AB

LOCC

6−→ |ψ2〉AB but |ψ1〉⊗kAB

LOCC

6−→ |ψ2〉⊗kAB for some

positive integer k. The use of multiple copies in entanglement transformations is referred

to as the Multi-copy LOCC transformations. Both types of transformations have been

extensively studied, see [DFJY05, DFLY05b, DFLY05a, FDY06, SDY05, FDY06] and the

references therein for a partial list.

Although Nielsen’s condition is mathematically concise, it is hard to generalize for mul-

tipartite entanglement. Hitherto, characterizations for multipartite LOCC entanglement

transformation have only been settled for specific families of multipartite states [XD07,

1x = {x1, . . . , xn} is majorized by y = {y1, . . . , yn} if for each k = 1, . . . , n,
∑k
j=1 x

↓
j ≤

∑k
j=1 y

↓
j with

equality holding when k = d, where the ↓ indicates that elements are to be taken in descending order.
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KT10, TGP10]. Meanwhile, the analysis of LOCC transformations does not allow us to

classify entangled states into some coarse grained classes, which may be used to provide

a rough but more transparent picture. This is due to the fact that continuous labels are

needed to parametrize classes of entangled states which admits local unitary transforma-

tions, even in the bipartite case. To remedy this obstacle, one possible solution is to

consider stochastic LOCC (SLOCC) transformations, i.e. seeking a LOCC protocol which

transforms a multipartite entangled state to another with a non-vanishing probability.

Such a paradigm successfully works in the bipartite case. Vidal [Vid99] proved that a pure

entangled state |ψ〉AB can be converted to another pure entangled state |φ〉AB by SLOCC

if and only if the Schmidt rank of |ψ〉AB is no less than that of |φ〉AB. Furthermore, he

derived a simple formula which gave the optimal probability for bipartite conversion (with

a single copy). Afterwards, Feng, Duan and Ying illustrated that the catalyst may also

boost the optimal probability in SLOCC bipartite entanglement transformations [FDY05].

They also proved that, catalyst-assisted and multi-copy LOCC transformations achieve the

same optimal success probability, which established a surprising equivalence between these

two phenomena [DFY05].

However, even in the SLOCC setting, the situation becomes much more complicated when

the number of subsystems increases. Dür, Vidal and Cirac [DVC00] concluded that a

three-qubit system can be partitioned into 6 equivalence classes (defined by SLOCC con-

vertibility between states in the same class). Such a classification enables us to reduce

the feasibility of SLOCC transformations to deciding whether two given three-qubit states

belong to the same equivalent class. Unfortunately, the same approach fails for more than

four qubits, as four-qubit systems contain an uncountable number of SLOCC inequivalent

classes [VDDMV02, GW10]. In turn, we may need to seek relatively simple criterion for

determining the convertibility of arbitrary multipartite states, like the Schmidt rank for

bipartite SLOCC transformation. The notion of “simple” here can be made precise by

using the language of computational complexity theory, which groups problems according

to the amount of resources needed to solve them. For instance, determining the SLOCC

transformations of bipartite pure states requires omputational resources to increase poly-

nomially in the dimension of either subsystem undergoing the transformation. Thus, the

bipartite SLOCC transformation problem belongs to the complexity class P, the set of
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problems which admits a deterministic polynomial-time algorithm2. However, Chitambar,

Duan and Shi proved that deciding the SLOCC transformation of tripartite pure states is

NP-hard, which is widely believed to be intractable. Such a result rules out the possibility

of the existence of simple criterion to decide the SLOCC convertibility of tripartite or

multipartite states.

Although multipartite SLOCC transformation is hard in general, we may focus on spe-

cial but realistic cases. One of the most famous one is to convert a specific bipartite

state |ϕ〉AB, shared by Alice and Bob, from a tripartite state |Ψ〉ABC, shared by Alice,

Bob and Charlie. In this circumstance, for Charlie’s part, he could perform arbitrary

local operations and communicates classical information to assist Alice and Bob. In the

LOCC setting, such a transformation has been studied under the name of entanglement

of assistance [DFM+99, SVW05]. Such a model was then studied extensively in differ-

ent settings, which introduced several new concepts and applications such as localizable

entanglement [VPC04, PVMDC05], concurrence of assistance [GMS05], random state en-

tanglement [FL07], entanglement of collaboration [GS06, Gou06] and entanglement comb-

ing [YE09].

In the SLOCC setting, Chitambar, Duan and Shi [CDS10] studied the multipartite-to-

bipartite SLOCC transformations. They identified a surprising algorithmic connection:

determining the multipartite-to-bipartite SLOCC transformation is equivalent to the cel-

ebrated polynomial identity testing (PIT) problem, which lies in the heart of (algebraic)

complexity theory. Such an equivalence also ensures multipartite-to-bipartite SLOCC

transformations to be tractable, as PIT admits a randomized polynomial-time algorithm

using Schwartz-Zippel lemma [Sch80]. Notably, when we focus on tripartite states, the

convertibility is completely determined by the maximal rank of tripartite states and the

Schmidt rank of the bipartite states [CDS10]. Here, the maximal rank of a tripartite state

|Ψ〉ABC, denoted as mrk(ΨABC) equals the largest Schmidt rank of bipartite states, which

belong to the support of the reduced density operator TrC(|Ψ〉〈Ψ|ABC). Utilizing the Choi-

Jamio lkowski isomorphism between bipartite states and linear operators, computing the

maximal rank of a given tripartite pure state is equivalent to computing the maximal rank

2In this chapter, all the algorithms which related to deciding the convertibility of entangled states have
as input the classical description of the states.
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of a given matrix space, which equals the largest rank of matrices in the matrix spaces.

Note that in [CMW08], Cubbit, Montanaro and Winter have discussed the dimension of

subspaces with bounded Schmidt rank, which then transformed into the study of matrix

spaces with bounded rank.

Matrix Spaces, shrunk Subspaces and invariant Theory. As the tripartite case is

our main interest, we take a short cut and introduce the development of computing the

maximal rank of a matrix space. The maximal rank problem has been studied extensively

in the community of computational complexity theory under the name of th Edmonds’

problem [Edm67]3. The decision version of the Edmonds’ problem is to decide whether

a given matrix space contains full rank matrices; and is better known as the Symbolic

Determinant Identity Testing (SDIT) problem, which is equivalent to PIT for weakly-

skew arithmetic circuits. The original motivation for studying Edmonds’ problem is its

applications to certain combinatorial problems, most notably the maximum matching

problem on graphs, as exploited by Tutte [Tut47], Edmonds [Edm67] and Lovász [Lov89].

Since 2003, a major reason to study SDIT is based on implications to circuit lower bounds,

as shown in the seminal work by Kabanets and Impagliazzo [KI04]. Note that SDIT

admits a randomized polynomial-time algorithm [Lov79]. However, derandomizing SDIT

could be extremely difficult, as Kabanets and Impagliazzo [KI04] proved that an explicit

deterministic polynomial-time algorithm for SDIT would imply strong circuit lower bounds

which seem beyond the current techniques.

An important concept related to the maximal rank of matrix spaces is shrunk subspaces:

For B ≤M(n,C), subspace U ≤ Cd satisfying dim(B(U)) < dim(U) (B(U) := span{B(U) :

B ∈ B}) is called a shrunk subspace of B. Shrunk subspaces emerge in several mathe-

matical areas. The first appearance of shrunk subspaces seems to be in T. G. Room’s

treatise on determinants in the 1930s [Roo38]. An intuitive way to understand shrunk

subspaces is to view them as linear algebraic analog of shrunk subsets as in Hall’s mar-

riage theorem [Hal35]. Recall that for a bipartite graph G = (L ∪ R,E) where |L| = |R|,

Hall’s marriage theorem states that G has a perfect matching if and only if G does not

3Edmonds’ problem was originally stated with respect to symbolic matrices over integer field, and can
be extended to matrix spaces over an arbitrary sufficiently large field in the literature (e.g. in complex
field [Gur03]). We only point out the underlaying field in our statement when necessary, otherwise it is
considered as the complex field.
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have a shrunk subset, that is a subset S ⊆ L such that |S| > |N(S)| where N(S) denotes

the set of neighbors of S. Getting back to the matrix space setting, we postulate viewing

matrix spaces as a linear algebraic analog of the bipartite graphs. We view vector spaces

U ∼= V ∼= Cn as a linear algebraic analog of the left and right vertex sets of size n; we view

the matrix space B of dimension m, of which the matrices epresents linear maps from U

to V , as a linear algebraic analog of the edge set E of size m. In such a linear algebraic

world, if the given matrix space contains full-rank matrices, the linear algebraic analog of

bipartite graph has a perfect matching, which is essentially a bijection between the left

and right vertex set. Similarly, the shrunk subspaces are naturally viewed as the linear

algebraic analog of the shrunk subset. It is clear that if B possesses shrunk subspaces, then

B contains no full-rank matrices. However, unlike in the classical setting, it is not true that

any singular matrix space has shrunk subspaces. For instance, the 3× 3 skew-symmetric

matrix space

〈


0 1 0

−1 0 0

0 0 0

 ,


0 0 1

0 0 0

−1 0 0

 ,


0 0 0

0 0 1

0 −1 0

〉 ≤M(3,C) (4.1)

has neither a full-rank matrix nor a shrunk subspace [FR04].

Shrunk subspaces appear in non-commutative algebra as follows. Suppose B ≤M(n,F) is a

matrix space over some field F and spanned by {B1, . . . , Bm} ⊆M(n,F). Let {x1, . . . , xm}

be a set of non-commuting variables, and form a matrix B = x1B1 + · · · + xmBm whose

entries are linear forms in xi’s. Matrices of this type have been studied in non-commutative

algebra in the context of the free skew field since the 1970s [Coh75]. The rank of such a

matrix over the free skew field, which was named non-commutative rank and denoted by

ncrk(·), was shown to be the minimum integer c such that there exists a subspace U ≤ Fn

with dim(U)−dim(B(U)) = n−c [FR04]. Thus, ncrk(B) < n if and only if B have shrunk

subspaces.

Another way to reach the concept of shrunk subspaces is to consider matrix spaces with

maximal ranks bounded from above [EH88]. Characterizing these matrix spaces is known

to be a difficult problem; in fact, such matrix spaces basically correspond to certain torsion-

free sheaves on projective spaces [EH88]. To make progress on this topic, one approach is

to consider certain “witnesses” that can serve as an upper bound on the maximal rank.
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As previously discussed, shrunk subspaces can be used as such witnesses. Specifically, if

a matrix space B ≤M(n,F) has a shrunk subspace U with dim(U)− dim(B(U)) = c > 0,

then it is clear that mrk(B) ≤ n− c.

An important characterization of matrix spaces with shrunk subspaces comes from invari-

ant theory. Consider the group action of (A,C) ∈ SL(n,F) × SL(n,F) on M(n,F)⊕m by

sending (B1, . . . , Bm) to (AB1C
t, . . . , ABmC

t) (At denotes the transpose of A). The group

action induces an action on the ring of polynomial functions on M(n,F)⊕m. Let R(n,m)

be the ring of those polynomials invariant under this action. R(n,m) is called the ring of

matrix semi-invariants (for matrices of size n×n) [IQS17a, DM17]. The common zeros of

the homogeneous polynomials of positive degrees in R(n,m), denoted as N(R(n,m)), is

referred to as the nullcone of this invariant ring in the invariant theory literature. The link

to these matrix spaces which have shrunk subspaces is the following result from invariant

theory, proved using the celebrated Hilbert-Mumford criterion.

Theorem 4.1 ([BD06, ANS07]). (B1, . . . , Bm) ∈M(n,F)⊕m is in N(R(n,m)) if and only

if 〈B1, . . . , Bm〉 has a shrunk subspace.

Therefore, matrix spaces with shrunk subspaces are characterized by those polynomials in

R(n,m).

Invariant theory also helps to certify those matrix spaces with no shrunk subspaces. Given

a matrix space B ≤ M(n,F), if B does not have a shrunk subspace, we could present a

short witness to certify this fact. For example, if B contains a full-rank matrix B, then

exhibiting B is enough to certify that B does not contain shrunk subspaces. However, as

mentioned, it is possible that a matrix space has neither a full-rank matrix nor a shrunk

subspace. To resolve this difficulty, we first recall what polynomials in R(n,m) look like.

This task is usually resolved in the so-called first fundamental theorem for R(n,m).

Theorem 4.2 ([DW00, SvdB01, DZ01, ANS07]). Every nonzero homogeneous polynomial

in R(n,m) is of degree kn for some k ∈ N, and is a linear combination of polynomials of

the form det(X1 ⊗ A1 + · · · + Xm ⊗ Am) where the Xis are n × n variable matrices, and

the Ais are k × k matrices over F.
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Theorem 4.2 motivates the following definition. For a matrix space B ≤M(n,F), the kth

blow-up of B is defined as B[k] := B⊗M(k,F). If B possesses shrunk subspaces, then B[k] has

shrunk subspaces for any positive integer k. On the other hand, if B = 〈B1, . . . , Bm〉 has no

shrunk subspace, then it is not in the nullcone of R(n,m) (Theorem 4.1). This implies that

there exist k ∈ N and A1, . . . , Am ∈M(k,F), such that det(A1⊗B1 + · · ·+Am⊗Bm) 6= 0

(Theorem 4.2), which simply says that B[k] contains full-rank matrices. To see that k is

finite is classical: by Hilbert’s basis theorem, N(R(n,m)) can be defined by finitely many

polynomials, therefore k must be finite. Recently, exciting progress suggests that k can be

taken to be no more than n − 1 as long as |F| is large enough [DM17]; see also [IQS17b]

for a simpler proof of k ≤ n+ 1. Summarizing the above we have

Theorem 4.3 ([DM17, IQS17b]). Suppose |F| = nΩ(1)4. If B ≤ M(n,F) does not have

shrunk subspace, then for some k ≤ n+ 1, B ⊗M(n,F) contains a full-rank matrix.

The full-rank matrices as in Theorem 4.3 serve as a witness for B to have no shrunk

subspace. We can also easily formulate an algorithmic problem around shrunk subspaces,

known as the non-commutative rank problem [FR04] or non-commutative Edmonds’ prob-

lem in [IQS17a]. That is, given a matrix space B ≤M(n,F), decide whether B has a shrunk

subspace U ≤ Fn. Recent advances imply that this problem can be solved deterministically

in polynomial time.

Theorem 4.4 ([GGOW16, IQS17b]). There exists a deterministic polynomial-time algo-

rithm to decide whether a given matrix space B ≤ M(d,F) has shrunk subspaces or not

when |F| = nΩ(1).

In this chapter, we first study tripartite-to-bipartite SLOCC entanglement transformation

in the finite-copy setting. Our main contribution is to present illustrative examples of tri-

partite states where their maximal rank is strictly super-multiplicative, i.e. mrk(|Ψ1〉ABC⊗

|Ψ2〉ABC) > mrk(|Ψ1〉ABC) × mrk(|Ψ2〉ABC). Meanwhile, given two copies of the tri-

partite states in our constructions, they can be converted into two copies of bipartite

maximally entangled state via SLOCC, whereas a single copy of such a state cannot.

In addition, we present a simple sufficient condition on |Ψ1〉ABC and |Ψ2〉ABC such that

4Ω(1) is asymptotic in n.
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mrk(|Ψ1〉ABC ⊗ |Ψ2〉ABC) > mrk(|Ψ1〉ABC) ×mrk(|Ψ2〉ABC) holds. These results can be

easily proved by basic results of matrix spaces. Taking one step further, we investigate

the information-theoretic limit of tripartite-to-bipartite SLOCC entanglement transfor-

mation, characterized by the SLOCC entanglement transformation rate [YGD14, VC15].

The SLOCC entanglement transformation rate between |Ψ〉ABC and |ψ〉AB is the largest

ratio m(n)/n when n goes to infinity, where m(n) equals the number of copies of |ψ〉AB

one can obtain from |Ψ〉⊗nABC. Due to the super-multiplicativity of the maximal rank, the

asymptotic rate could be extremely difficult to compute. We exploit certain results of

the structure of matrix spaces, including the study of matrix semi-invariants, to derive

explicit formulas which compute the asymptotic rate for two families of tripartite states

(with any bipartite states). Surprisingly, these formulas enable us to establish new con-

nections between certain problems in algebraic complexity theory and asymptotic SLOCC

transformation (see [CDS08, VC15] for other connections): determining the asymptotic

SLOCC convertibility of a tripartite pure state to the bipartite maximally entangled state

is equivalent to determining whether a given matrix space contains shrunk subspaces, the

decision version of the non-commutative rank problem. Meanwhile, such an equivalence

ensures that there exist deterministic polynomial-time algorithms to determine whether

this condition holds for a given tripartite state [GGOW16, IQS17b].

4.2 Notations and Preliminaries

In the rest of this chapter, we focus on tripartite pure states, shared by Alice, Bob and

Charlie, in the Hilbert space Hn⊗Hn⊗Hn′ , normally denoted by |Ψ〉ABC or |Φ〉ABC. Our

aim is to decide the SLOCC convertibility of |Ψ〉ABC to the tensor product of a bipartite

pure state |ψ〉AB shared by Alice and Bob, and an arbitrary state (say |0〉C) possessed

by Charlie. To simplify the notations, we omit Charlie’s state and write |Ψ〉ABC
SLOCC−→

|φ〉AB to denote that the aforementioned SLOCC transformation. In particular, we use

|EPRn〉AB := 1√
n

∑n−1
i=0 |i〉A |i〉B to denote the maximally entangled state in Hn ⊗ Hn

(shared by Alice and Bob).

The reduced density operator of |Ψ〉ABC (shared by Alice and Bob) is defined and denoted

as ρΨ
AB := TrC |Ψ〉〈Ψ|ABC. The Choi-Jamio lkowski isomorphism is the bijective linear map
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J : Hm ⊗ Hn → M(m × n,C), defined as J(|i〉 ⊗ |j〉) := |i〉 〈j| for all i = 0, . . . ,m − 1

and j = 0, . . . , n − 1. In addition, the Choi-Jamio lkowski isomorphism ensures that the

Schmidt rank of |ψ〉AB equals rk(J(|ψ〉AB)), the matrix rank of J(|ψ〉AB). The matrix

space associated with the tripartite pure state |Ψ〉ABC (with respect to Alice and Bob),

denoted by M(ΨABC), is obtained by applying the Choi-Jamio lkowski isomorphism to

the support of ρΨ
AB. The maximal rank of |Ψ〉ABC can be then defined and denoted

as mrk(ΨABC) := max{rk(B) : B ∈ M(ΨABC)}. The tripartite-to-bipartite SLOCC

convertibility can be characterized as follows:

Theorem 4.5 (Chitambar, Duan and Shi [CDS10]). |Ψ〉ABC
SLOCC−→ |ψ〉AB if and only if

mrk(ΨABC) ≥ Sch(ψAB).

The SLOCC protocol for Theorem 4.5, as proposed in [CDS10], takes the following form:

Firstly, Charlie makes a measurement on his party and broadcasts the result to Alice

and Bob via classical communication; then Alice and Bob propose an SLOCC protocol

based on Charlie’s results, which converts the state shared by themselves to the desired

one. This “one-way” protocol coincide with the one exhibited in the entanglement of

assistance [DFM+99, SVW05]. There also exist “two-way” protocols, introduced in the

entanglement of collaboration [GS06, Gou06]. This type of protocols allows Alice and Bob

make measurements before Charlie make measurements, and broadcast their outcomes to

Charlie as well. In the LOCC setting, such “two-way” protocols are necessary for some

tripartite-to-bipartite entanglement transformations [GS06]. Here, in the SLOCC setting,

we emphasize that the “one-way” protocols are sufficient [CDS10].

Note that Theorem 4.5 can be also applied when multiple copies of the tripartite states are

provided. In this circumstances, the number of copies of the desired bipartite states would

be our main concern. Taking one step further, it is the super-multiplicativity of maximal

rank plays the role in the tripartite-to-bipartite SLOCC entanglement transformations.

Note that the Schmidt ranks of bipartite states are multiplicative, i.e. Sch(ψ1 ⊗ ψ2) =

Sch(ψ1)Sch(ψ2) holds for arbitrary |ψ1〉 , |ψ2〉 ∈ Hn ⊗ Hn. For the maximal rank, by

definition, we can easily verify that maximal rank is super-multiplicative, i.e. mrk(Ψ1 ⊗

Ψ2) ≥ mrk(Ψ1)mrk(Ψ2) for |Ψ1〉 , |Ψ2〉 ∈ Hn ⊗Hn ⊗Hn′ . Clearly, if it is not strict, then

the multiple-copy transformation has no difference with the single-copy transformation.
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Otherwise, one could expect that the use of multiple copies can increase the conversion

probability of some tripartite-to-bipartite transformations from zero to positive.

From an information-theoretic perspective, we can extend the multiple-copy setting to the

asymptotic setting, i.e. let the number of available copies goes to infinity. The limitation

of the convertibility of given tripartite state and bipartite state is characterized by the

SLOCC entanglement transformation rate [YGD14, VC15], defined and denoted as

R(ΨABC, ψAB) := sup
N∈N

{
1

N
max{M : |Ψ〉⊗NABC

SLOCC−→ |ψ〉⊗MAB }
}
. (4.2)

Note that max{M : |Ψ〉⊗NABC
SLOCC−→ |ψ〉⊗MAB } = blogSch(ψAB)mrk(|Ψ〉⊗NABC)c for every fixed

N ∈ N. We are motivated to define the asymptotic maximal rank of |Ψ〉ABC as

mrk∞(ΨABC) := sup
N∈N

N

√
mrk(Ψ⊗NABC). (4.3)

If maximal rank is multiplicative, the asymptotic maximal rank equals the maximal rank

itself; otherwise, it might be hard to compute the asymptotic quantities, due to the diffi-

culty caused by the super-multiplicativity.

To make the asymptotic maximal rank more tractable, we point out that taking supremum

“supN∈N” can be replaced by taking limit “limN→∞”:

Lemma 4.6. mrk∞(ΨABC) is finite for all tripartite pure states |Ψ〉ABC ∈ Hn⊗Hn⊗Hn′,

and mrk∞(ΨABC) := limN→∞
N

√
mrk(Ψ⊗NABC).

Proof. We shall utilize the following lemma:

Lemma 4.7 ([BNS98]). Suppose c1, c2, . . . , cN , . . . is a nonnegative sequence such that

cN ≤ kN for some k ≥ 0, and cM + cN ≤ cM+N for all M,N ∈ N. Then limN→∞
cN
N

exists and is finite.

Let cN = log2mrk(Ψ⊗NABC). It is easy to see cN ≤ N log2 n, as mrk(Ψ⊗NABC) ≤ nN . Then we

can choose k = log2 n. To prove cM + cN ≤ cM+N , note that rk(A)× rk(B) = rk(A⊗B)

holds for any matrices A, B. Then it is easy to derive the maximal rank function is super-

multiplicative, i.e. mrk(ΨABC ⊗ ΦABC) ≥ mrk(ΨABC)mrk(ΦABC), which leads to cM +
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cN ≤ cM+N . These ensure that limN→∞
1
Nmrk(Ψ⊗NABC) exists and is finite by Lemma 4.7.

On the other hand, by Fekete’s Lemma [Fek23], the condition that cM + cN ≤ cM+N for

all M,N ∈ N implies that supN∈N
cN
N = limN→∞

cN
N . This concludes the proof.

As we will explore maximal rank and asymptotic maximal rank in the rest of this chapter,

it would be simpler to deal with matrix spaces rather than tripartite pure states. We

introduce some background knowledge of matrix spaces which will be useful in our proofs.

Firstly, the maximal rank and asymptotic maximal rank of matrix spaces can be defined

in the same manner: For B ≤M(n,C), mrk(B) := max{rk(B) : B ∈ B} and mrk∞(B) :=

supN∈N
N
√
mrk(B⊗N ) = limN→∞

N
√
mrk(B⊗N ). If mrk(B) < n, we say B is singular.

Note that maximal rank is invariant under the group action of GL(n,C) × GL(n,C).

Namely, for (P,Q) ∈ GL(n,C)×GL(n,C), we have mrk(B) = mrk(PBQ), where PBQ :=

span{PBQ : B ∈ B}. We say B1 and B2 are equivalent, if ∃(P,Q) ∈ GL(n,C)×GL(n,C)

such that B1 = PB2Q. The image and kernel of B ∈ M(n,C) is defined as Im(B) :=

〈
⋃
B∈B Im(B)〉 and Ker(B) :=

⋂
B∈BKer(B). A singular matrix space B is called image

(kernel)-nondegenerate, if mrk(B) < dim(Im(B)) (mrk(B) < n−dim(Ker(B))). B is called

non-degenerate, if it is both image-degenerate and kernel-degenerate.

A vector space U ≤ Cn is called a shrunk subspace of B ≤ M(n,C), if dim(B(U)) =

dim(〈
⋃
B∈B B(U)〉) < dim(U). Matrix spaces which possess shrunk subspaces are called

shrinking. As we have mentioned before, this definition is reminiscent of the shrunk subset

as in the famous Hall’s marriage theorem [Hal35]. Although shrinking matrix spaces are

manifestly singular, there exist matrix spaces, such as the skew-symmetric matrix space

with odd dimension, which have neither full-rank matrix nor shrunk subspace. Neverthe-

less, the maximal rank of such matrix spaces cannot be too small, as proved by Fortin and

Reutenauer:

Theorem 4.8 ([FR04]). Let B ≤ M(n,C) which has no shrunk subspace. Then 1
2n ≤

mrk(B) ≤ n.

Shrinking matrix spaces admit a specific structural result. Let U be a shrunk subspace

of B ≤ M(n,C), satisfying dim(U) = n − q > dim(B(U)) = p for some p, q ∈ N. Let
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{|αq〉 , . . . , |αn−1〉} and {|β0〉 , . . . , |βp−1〉} be the linear bases of U and B(U), respec-

tively. Extend them to full bases of Cn, say Cn = 〈|α0〉 , . . . , |αq−1〉 , |αq〉 , . . . , |αn−1〉〉 =

〈|β0〉 , . . . , |βp−1〉 , |βp〉 , . . . , |βn−1〉〉. Let P =
∑n−1

i=0 |βi〉 〈i| and Q =
∑n−1

j=0 |j〉 〈αj |, where

{|0〉 , . . . , |n− 1〉} is the original bases of matrices in B. It is clear that P,Q ∈ GL(n,C).

Take B′ = PBQ. For B′ ∈ B′, divide B′ into the following block form:

B′ =

 Bp×q Bp×(n−q)

B(n−p)×q B(n−p)×(n−q)


n×n

, (4.4)

where Bp×q ∈ span{|βi〉 〈αj | : 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1}, Bp×(n−q) ∈ span{|βi〉 〈αj | :

0 ≤ i ≤ p−1, q ≤ j ≤ n−1}, B(n−p)×q ∈ span{|βi〉 〈αj | : p ≤ i ≤ n−1, 0 ≤ j ≤ q−1} and

B(n−p)×(n−q) ∈ span{|βi〉 〈αj | : p ≤ i ≤ n−1, q ≤ j ≤ n−1}. Note that B(n−p)×(n−q) = 0,

since matrix B ∈ B always maps U into a subspace of B(U). Therefore, B′ ∈ B′ possesses

the following form:

B′ =

 Bp×q Bp×(n−q)

B(n−p)×q 0


n×n

. (4.5)

Generally, every matrix space, of which the matrices therein are of the form 4.5 with

parameter p + q < n, “compresses” some subspace into a lower-dimension one. These

matrix spaces are called compression matrix spaces (with parameter p + q < n) in the

literature [EH88]. Define

A(p, q, n) := 〈{|i〉 〈j| : 0 ≤ i ≤ p−1, 0 ≤ j ≤ n−1}
⋃
{|i〉 〈j| : p ≤ i ≤ n−1, 0 ≤ j ≤ q−1}〉

(4.6)

to be the matrix space spanned by the elementary matrices of the first p rows and the first

q columns. We call A(p, q, n) maximal compression matrix space if p + q < n. We can

also define A(p, q,m, n) ≤M(m×n,C) to be the matrix space spanned by the elementary

matrices of the first p rows and the first q columns, and call it maximal compression matrix

space if p + q < min{m,n}. It is not hard to see every compression matrix space with

parameter p+ q < n is a subspace of A(p, q, n). Thus, we have the following:

Lemma 4.9. Let B ≤M(n,C) with shrunk subspace U ≤ Cn. Assume dim(U) = n− q >

dim(B(U)) = p. Then mrk(B) < mrk(A(p, q, n)).
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4.3 Multi-Copy Transformation

In this section, we provide an affirmative answer to the strict super-multiplicativity of

maximal rank. It then reveals that some tripartite-to-bipartite SLOCC entanglement

transformation can be achieved by providing multiple copies (of the tripartite states). In

this sense, we say |Ψ〉ABC can be converted into |ψ〉ABC by SLOCC with multiple copies, if

there exist positive integer k ≥ 2, such that |Ψ〉⊗kABC
SLOCC−→ |ψ〉⊗kAB while |Ψ〉ABC

SLOCC

6−→ |ψ〉AB.

We first propose the following:

Theorem 4.10. Let n be an odd number and

|Ψ(n)〉ABC :=

√
2

n(n− 1)

∑
0≤i<j≤n−1

(|i〉 |j〉 − |j〉 |i〉)AB ⊗ |ij〉C . (4.7)

Then we have

mrk(Ψ(n)ABC) = n− 1, mrk(Ψ(n)⊗2
ABC) = n2 > (n− 1)2. (4.8)

Equivalently, |Ψ(n)〉ABC

SLOCC

6−→ |EPRn〉AB⊗|0〉C but |Ψ(n)〉⊗2
ABC

SLOCC−→ |EPRn〉⊗2
AB⊗|0〉

⊗2
C . In

fact, any tripartite state |Φ〉ABC with M(ΦABC) = span{|i〉 〈j|−|j〉 〈i| : 0 ≤ i < j ≤ n−1},

which is the n× n skew-symmetric matrix space, satisfies Equation (4.8).

Proof. It is known that for odd n, the maximal rank of the n× n skew-symmetric matrix

space is n − 1 [FR04]. We will prove mrk(M(Ψ(n)⊗2
ABC)) = n2 by explicitly construct a

full-rank matrix. Let {Bi,j = |i〉 〈j| − |j〉 〈i| : 0 ≤ i < j ≤ n − 1} be the linear bases of

M(Ψ(n)ABC). We claim that P :=
∑

0≤i<j≤n−1Bi,j ⊗ Bi,j has rank n2, or equivalently,

Ker(P ) = {0}. Note that P is in the block matrix form:

P =


0 B0,1 · · · B0,n−1

−B0,1 0 · · · B1,n−1

...
...

. . .
...

−B0,n−1 −B1,n−1 · · · 0

 . (4.9)

We consider the system of linear equations P |x〉 = 0, where |x〉 =
∑n−1

i,j=0 xi(j) |i〉 |j〉 and

xi(j) are unknown variables. Denote |xi〉 =
∑n−1

j=0 xi(j) |j〉. For 1 ≤ k ≤ n − 2, we can
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rewrite the linear equations with respect to |xi〉’s as

−
k−1∑
i=0

Bi,k |xi〉+
n−1∑
i=k+1

Bk,i |xi〉 = 0. (4.10)

For k = 0, we have
∑n−1

i=1 B0,i |xi〉 = 0; for k = n− 1, we have
∑n−2

i=0 Bi,n−1 |xi〉 = 0. Since

Bj,k |xi〉 = xi(k) |j〉 − xi(j) |k〉, we can derive the following from the above n equations:

n−1∑
i=1

(xi(0) |i〉 − xi(i) |0〉) = 0,

−
k−1∑
i=0

(xi(k) |i〉 − xi(i) |k〉) +
n−1∑
i=k+1

(xi(i) |k〉 − xi(k) |i〉) = 0, k = 1, . . . , n− 2

n−2∑
i=0

(xi(n− 1) |i〉 − xi(i) |n− 1〉) = 0.

(4.11)

These equations implies xi(j) = 0 for all 0 ≤ i 6= j ≤ n − 1 and
∑

i6=k xi(i) = 0 for

k = 0, . . . , d−1. Furthermore, we have
∑

i6=k xi(i)−
∑

i6=k+1 xi(i) = xk+1(k+1)−xk(k) = 0

for k = 0, . . . , n−2, and
∑

i6=n−1 xi(i)−
∑

i6=0 xi(i) = x0(0)−xn−1(n−1) = 0 for k = n−1.

These ensures that xk(k) = 0 for k = 0, . . . , n− 1. Therefore, |x〉 = 0 is the only solution

for P |x〉 = 0, which derives mrk(M(Ψ(n)⊗2
ABC)) = rank(P ) = n2.

The above theorem implies the existence of multiple-copy tripartite-to-bipartite SLOCC

entanglement transformation. For general multipartite states, the existence of multiple-

copy SLOCC transformations is settled in [CCD+10]. Moreover, the state |Ψ(n)〉ABC

constructed in the above theorem also has the following property: with one single copy,

|Ψ(n)〉ABC cannot be transformed to n⊗n maximally entangled state by SLOCC, but can

do so with two copies.

Taking one step further, we can further show that, given two singular matrix spaces, as

long as they are nondegenerate, the maximal rank of their tensor product can be strictly

larger than the product of their maximal ranks.

Theorem 4.11. Given two tripartite states |Ψ〉ABC , |Φ〉ABC ∈ Hn ⊗Hn ⊗Hn′, let B1 =

M(ΨABC) ≤ M(n,C) and B2 = M(ΦABC) ≤ M(n,C). If both B1 and B2 are singular,

then mrk(ΨABC ⊗ ΦABC) > mrk(ΨABC)mrk(ΦABC) if
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• B1 is image-nondegenerate and B2 is kernel-nondegenerate; or

• B2 is image-nondegenerate and B1 is kernel-nondegenerate.

Proof. It is equivalent to prove mrk(B1 ⊗ B2) > mrk(B1)mrk(B2). The following obser-

vation from ref. [IKS10] would be useful.

Lemma 4.12 (Lemma 2.2 in ref. [IKS10]). Given two matrices X, Y ∈ M(n,C). If

YKer(X) 6≤ Im(X), then rk(X+rY) > rk(X) except for at most rk(X) + 1 elements r ∈ C.

For the necessary part, We focus on the first condition. The second condition holds by

replacing B1 and B2 with each other. Choose B1 ∈ B1 and B2 ∈ B2 with the highest rank,

i.e. rk(B1) = mrk(B1) < n and rk(B2) = mrk(B2) < n. Define the following two matrix

spaces:

X := {B ∈ B1 : Im(B) ≤ Im(B1)} ≤ B1, Y := {B2 ∈ B2 : Ker(B2) ≤ Ker(B)} ≤ B2.

(4.12)

We claim that X and Y are two proper subspaces in B1 and B2, respectively. Otherwise,

assuming X = B1, we have mrk(B1) = rk(B1) = dim(Im(B1)) = dim(Im(B1)), which

is a contradiction. If Y = B2, we have dim(Ker(B2)) = dim(Ker(B2)) = n − rk(B2) =

n−mrk(B2), which is also a contradiction. We can choose B′1 ∈ B1 and B′2 ∈ B2 such that

Im(B′1) 6≤ Im(B1) and Ker(B2) 6≤ Ker(B′2).

Then we prove that there exists r ∈ C such that rk(B1 ⊗B2 + rB′1 ⊗B′2) > rk(B1 ⊗B2)

by Lemma 4.12. Note that Ker(B1 ⊗ B2) = span{Ker(B1) ⊗ Cn,Cn ⊗ Ker(B2)} and

Im(B1 ⊗ B2) = Im(B1) ⊗ Im(B2). We only need to show (B′1 ⊗ B′2)(Cn ⊗ Ker(B2)) 6≤

Im(B1)⊗ Im(B2). Note that B′2Ker(B2) ≤ Im(B2), as B2 has the highest rank in B2 (by

Lemma 4.12). While B′2Ker(B2) 6= {0} as B′2 6∈ Y. Therefore, we can find a nonzero

vector |u〉 ∈ Ker(B2), such that 0 6= B′2 |u〉 ∈ Im(B2). On the other hand, since B′1 6∈ X ,

there exists |v〉 ∈ Cn such that B′1 |v〉 6∈ Im(B1). Thus, |v〉 ⊗ |u〉 ∈ Ker(B1 ⊗ B2) and

(B′1 ⊗ B′2) |v〉 ⊗ |u〉 6∈ Im(B1) ⊗ Im(B2). By Lemma 4.12, there exist r ∈ C such that

rk(B1⊗B2+rB′1⊗B′2) > rk(B1⊗B2), which impliesmrk(B1⊗B2) > mrk(B1)mrk(B2).
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4.4 Asymptotic Transformation

To characterize the asymptotic convertibility of tripartite pure states to bipartite pure

states, we need to evaluate the SLOCC entanglement transformation rate. More impor-

tantly, we are more interested in what kind of tripartite pure states can be used to obtain

the bipartite maximally entangled states by SLOCC asymptotically. To resolve these prob-

lems, the main obstacle is the difficulty in computing the asymptotic maximal rank of the

tripartite states. In the rest of this section, we derive explicit formulas to compute the

asymptotic maximal rank of two large families of tripartite pure states in Hn⊗Hn⊗Hn′ ,

using powerful results from the theory of matrix spaces. Then we utilize these two formulas

to answer the second question. Namely, we provide a complete characterization to those

tripartite pure states which can be converted to bipartite maximally entangled states by

SLOCC, asymptotically. We summarize our results with respect to matrix spaces in the

following:

Theorem 4.13. Given a tripartite pure state |Ψ〉ABC ∈ Hn⊗Hn⊗Hn′, let B = M(ΨABC) ≤

M(n,C).

1. If B has no shrunk subspace, mrk∞(B) = n;

2. If B = A(p, q, n) for some p+ q < n,

mrk∞(B) = nmax{2−D(1−α||p′), 2−D(α||q′)}, (4.13)

where p′ = p
n , q′ = q

n , α = log2(n−q)−log2 p
log2((n−p)(n−q))−log2(pq) and D(a||b) := a log2

a
b + (1 −

a) log2
1−a
1−b .

We shall split the proof of Theorem 4.13 into the next two subsections. For simplicity, we

shall directly work with matrix spaces. Before this, we explain how these two formulas leads

to a complete characterization of asymptotic convertibility to the maximally entangled

state:

Theorem 4.14. A tripartite pure state |Ψ〉ABC ∈ Hn ⊗Hn ⊗Hn′ can be transformed to

|EPRn〉AB via SLOCC with rate 1 if and only if M(ΨABC) has no shrunk subspace.
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Proof. We shall utilize the two formulas in Theorem 4.13. Note that if M(ΨABC) has

no shrunk subspace, Theorem 4.13 1 indicates the feasibility of asymptotic convertibility

to the maximally entangled state. On the other hand, we show that if M(ΨABC) has

shrunk subspaces, mrk∞(ΨABC) < n. By Lemma 4.9, we know there exist p+ q < n such

that mrk(M(ΨABC)) ≤ mrk(A(p, q, n)). Referring to Equation (4.13), 2−D(1−α||p′) < 1

and 2−D(α||q′) < 1 as q′ < α < 1 − p′ (Lemma 4.22). Therefore, for any p + q < n,

mrk∞(A(p, q, n)) < n. This concludes the proof.

Recall that deciding whether a matrix space contains shrunk subspaces is exactly the

non-commutative SDIT problem. Exploiting Theorem 4.4, we have the following:

Corollary 4.15. There exist deterministic polynomial-time algorithms to determine whether

a tripartite pure state |Ψ〉ABC ∈ Hn⊗Hn⊗Hn′ can be transformed to |EPRn〉AB by SLOCC

with rate 1, asymptotically.

4.4.1 Asymptotic Maximal Rank of Matrix Spaces without Shrunk Sub-

space

We first compute the asymptotic maximal rank of matrix spaces without shrunk subspace.

Clearly, if B ≤M(n,C) possesses full-rank matrices, mrk∞(B) = n. Thus we can restrict

ourselves to singular matrix spaces. Note that, Theorem 4.10 illustrates that two copies

of skew-symmetric matrix space Bs with odd dimension will contain full-rank matrices.

In the asymptotic setting, we can derive that the asymptotic maximal rank equals n, as

there is a subsequence of the number series { N
√
mrk(B⊗Ns )}N∈N which converges to n. To

prove Theorem 4.13 1, we point out that the property of possessing no shrunk subspace is

stable under tensor product.

Lemma 4.16. If B1,B2 ≤M(n,C) have no shrunk subspace, then B1⊗B2 have no shrunk

subspace.

Proof. By Theorem 4.1 and Theorem 4.2, there exist finite positive integers k1, k2, such

that B1 ⊗ M(k1,C) and B2 ⊗ M(k2,C) are non-singular. Thus B1 ⊗ B2 ⊗ M(k1k2,C)

contains full-rank matrices. By Theorem 4.1 and Theorem 4.2 again, we know B1 ⊗ B2

have no shrunk subspace.
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The above lemma ensures that, if B ≤M(n,C) has no shrunk subspaces, B⊗N ≤M(nN ,C)

has no shrunk subspaces. By Theorem 4.8, we know 1
2n

N ≤ mrk(B⊗N ) ≤ nN . This derives

mrk∞(B) = n as limn→∞
N

√
1
2n

N = n.

4.4.2 Asymptotic Maximal Rank of Maximal Compression Matrix Spaces

In this subsection, we deal with maximal compression matrix spaces A(p, q, n) with pa-

rameter p+q < n. To obtain the formula in Theorem 4.13 2, we exhibit an explicit formula

to compute the maximal rank of A(p, q, n)⊗N with respect to p, q, n for arbitrary N ∈ N.

Then we prove that the regularization of the rank formula converges to Equation (4.13).

It would be convenient to deal with the symbolic matrix of A(p, q,m, n)5. The entries

of symbolic matrices are filled with 0 and ∗. More precisely, the (i, j)th entry of the

symbolic matrix is ∗ if and only if there exist matrices in A(p, q,m, n) such that the

(i, j)th entry of which is non-zero. Due to the structure of A(p, q,m, n), these ∗s can be

chosen as arbitrary complex numbers independently. The rank of a symbolic matrix P ,

denoted by rk(P ), is defined as the largest rank it may achieve when replacing ∗’s with

suitable complex numbers. Clearly, rk(P ) equals the maximal rank of its corresponding

A(p, q, n). Moreover, it is easy to see that, the symbolic matrix of A(p1, q1,m1, n1)⊗· · ·⊗

A(pN , qN ,mN , nN ) is P1 ⊗ · · · ⊗ PN , where Pk is the symbolic matrix of A(pk, qk,mk, nk)

for k = 1, . . . , N , and the multiplication rules of {0, ∗} are 0 × 0 = 0, 0 × ∗ = ∗ × 0 = 0,

∗ × ∗ = ∗.

As a warm-up, we first show how to compute the maximal rank of the tensor product of

two maximal compression matrix spaces.

Lemma 4.17. Given two maximal-compression matrix spaces B1 = A(p1, q1,m1, n1) and

B2 = A(p2, q2,m2, n2) with p1 + q1 < min{m1, n1} and p2 + q2 < min{m2, n2}, we have:

mrk(B1⊗B2) = p1p2 +min{(n1−q1)q2, p1(m2−p2)}+min{(m1−p1)p2, q1(n2−q2)}+q1q2.

(4.14)

5The symbolic matrix defined here is simplified from the normal definition, which can be found
in [IQS17a, GGOW16]. Moreover, we do not require p + q < min{m,n}, as our goal is to use symbolic
matrices to simplify the notations when looking for suitable row and column exchanges.
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Proof. Note that the symbolic matrix P of B1 ⊗ B2 can be divided and indexed into the

following form:

P =



A1,1 · · · A1,q1 A1,q1+1 · · · A1,n1

... P0
...

... P1
...

Ap1,1 · · · Ap1,q1 Ap1,q1+1 · · · Ap1,n1

Ap1+1,1 · · · Ap1+1,q1

... P2
... 0

Am1,1 · · · Am1,q1


m1m2×n1n2

, (4.15)

where Ai,j equals the symbolic matrix of B2 for all possible i and j, and the lower-right

block of total size (m1 − p1)m2 × (n1 − q1)n2 are all zero. Denote the upper-left block of

size p1m2×q1n2 by P0; the upper-right block of p1n2×(n1−q1)n2 by P1 and the lower-left

block of size (m1 − p1)m2 × q1n2 by P2.

Rearranging rows and columns: We will show that, after properly rearranging rows

and columns, P0, P1 and P2 become symbolic matrices of maximal compression matrix

spaces (and each parameters will be identified). This can be achieved as follows: In P1,

we move all columns with more than p1p2 ∗s to the left (by exchanging with the original

ones on the left) and move all rows with more than (n1 − q1)q2 ∗s to the top. In P2, we

move all rows with more than q1q2 ∗s to the top and move all columns with more than

(m1 − p1)p2 ∗s to the left. These row and column manipulations can be achieved by left

and right multiplying with invertible matrices Q1 ∈ M(m1m2,C) and Q2 ∈ M(n1n2,C),

respectively. More precisely, let P ′ =

P ′0 P ′1

P ′2 0

 be the symbolic (block) matrix of A′ =

Q1(B1 ⊗ B2)Q2. It can be verified that P ′1 is the symbolic matrix of A1 = A(p1p2, (n1 −

q1)q2, p1m2, (n1−q1)n2) and P ′2 is the symbolic matrix of A2 = A((m1−p1)p2, q1q2, (m1−

p1)m2, q1n2). In fact, it is also easy to see that P ′0 is the symbolic matrix of A0 =

A(p1p2, q1q2, p1m2, q1n2). Note that A′ is equivalent to B1 ⊗ B2. We can now focus on

evaluating the maximal rank of A′.

Proving mrk(A′) = mrk(A1) + mrk(A2): Note that we can always find E′′ ∈ A′ with

rk(E′′) = mrk(A′), F ′ =

F ′0 F ′1

F ′2 0

 ∈ A′ with rk(F ′1) = mrk(B′1), and F ′′ =

F ′′0 F ′′1

F ′′2 0

 ∈
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A′ with rk(F ′′2 ) = mrk(B′2). We claim that there exist α, β, γ ∈ C, such that E′ =

αE′′ + βF ′ + γF ′′ =

E′0 E′1

E′2 0

 ∈ A′ satisfies rk(E′) = mrk(A′), rk(E′1) = mrk(A1) and

rk(E′2) = mrk(A2). To see this, consider the matrix xE′′ + yF ′ + zF ′′, where x, y, z are

variables. As rk(E′′) = mrk(A′) := r, there exists at least one r× r submatrix of E′′ with

rank r. Let f1 be the determinant of the corresponding submatrix in xE′′+ yF ′+ zF ′′. f1

is a nonzero homogeneous polynomial in C[x, y, z] of degree r. Similarly, let s = mrk(B′1)

and t = mrk(B′2). Then there exists at least one s×s (t×t) submatrix of xE′′+yF ′+zF ′′ in

the upper-right (lower-left) part, such that if we denote its determinant by f2 (f3), then f2

(f3) is a nonzero homogeneous polynomial in C[x, y, z] of degree s (t). Since f = f1f2f3 is

also a nonzero polynomial in C[x, y, z], there exists (α, β, γ) ∈ C3 such that f(α, β, γ) 6= 0.

Such (α, β, γ) then translates to our desired conditions for αE′′ + βF ′ + γF ′′.

Take such E′ =

E′0 E′1

E′2 0

 ∈ A′. Since p1 + q1 < min{m1, n1} and p2 + q2 < min{m2, n2},

we have p1p2 < (n1 − q1)(n2 − q2) and q1q2 < (m1 − p1)(m2 − p2). Then submatrix in

the upper-right part of P ′1 has full row rank p1p2, and the lower-left part of P ′2 has full

column rank q1q2. For any possible choice of E′0 ∈ A′0, we can use the upper-right part of

P ′1 to eliminate the first p1p2 rows of P ′0 without changing the rank of P ′. Similarly, we

can use the lower-left part of P ′2 to eliminate the first q1q2 columns of P ′0 without changing

the rank of P ′. After these row and column operations (which can be achieved by left

and right multiplying invertible matrices again), E′ is transformed to

 0 E′1

E′2 0

, which

implies that

mrk(A1 ⊗A2) = rk(E′1) + rk(E′2) = mrk(A1) +mrk(A2)

=mrk(A(p1p2, (n1 − q1)q2, p1m2, (n1 − q1)n2)) +mrk(A((m1 − p1)p2, q1q2, (m1 − p1)m2, q1n2))

=p1p2 + min{(n1 − q1)q2, p1(m2 − p2)}+ min{(m1 − p1)p2, q1(n2 − q2)}+ q1q2.

(4.16)

Let us examine an example to illustrate the above procedure. Consider B1 = B2 =
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A(1, 1, 3), where the symbolic matrix of A(1, 1, 3) is P =


∗ ∗ ∗

∗ 0 0

∗ 0 0

. It is easy to see

mrk(A(1, 1, 3)) = 2. Following the first step in Lemma 4.17, we exchange rows and

columns to obtain an equivalent matrix space A′ of A(1, 1, 3)⊗2. This can be done by

choosing Q = |00〉〈00| + |01〉〈01| + |02〉〈02| + |10〉〈10| + |11〉 〈20| + |12〉〈12| + |20〉 〈11| +

|21〉〈21|+ |22〉〈22| and let A′ = QA(1, 1, 3)⊗2Q. More precisely, Multiplying Q with P⊗2

form the left exchanges the 5th row with the 7th row of P⊗2; multiplying Q with P⊗2

from the right exchanges the 5th column with the 7th column.

P⊗2 =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ 0 0 ∗ 0 0 ∗ 0 0

∗ 0 0 ∗ 0 0 ∗ 0 0

∗ ∗ ∗ 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0



QP⊗2Q =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ 0 0 ∗ ∗ 0 0 0 0

∗ 0 0 ∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0



. (4.17)

Let P ′0 be the submatrix of size 3 × 3 in the upper-left corner (of QP⊗2Q); P1 be its

submatrix of size 3 × 6 in the upper-right corner and P2 be its submatrix of size 6 × 3

in the lower-left corner. It is easy to see that P0 is the symbolic matrix of A(1, 1, 3), P1

is the symbolic matrix of A(1, 2, 3, 6), and P2 is the symbolic matrix of A(2, 1, 6, 3). We

can compute mrk(A(1, 1, 3, 3)⊗2) = 1 + 2 + 2 + 1 = 6 by looking at the form of P ′, which

coincide with the one computed by Lemma 4.17.

This example also indicates that the smaller matrix spaces after dividing P ′, e.g.A(1, 2, 3, 6)

and A(2, 1, 6, 3), may not be maximal-compression matrix spaces any more, as 1 + 2 =

min{3, 6}. (Recall that A(p, q,m, n) is a maximal-compression matrix space if p + q <

min{m,n}.) Thus, we cannot apply Lemma 4.17 recursively to capture a general formula

to compute the maximal rank of A(p, q,m, n)⊗N . Fortunately, for m = n, we have the

following:
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Lemma 4.18. Given a maximal-compression matrix space A(p, q, n) and N ∈ N, the

maximal rank of A(p, q, n)⊗N+1 equals

N∑
k=0

(
N

k

)(
min{pN−k+1(n− p)k, qk(n− q)N−k+1}+ min{qk+1(n− q)N−k, pN−k(n− p)k+1}

)
.

(4.18)

Proof. The proof idea is as follows: First, we use induction to show that the symbolic

matrix of A(p, q, n)⊗N can be transformed into an upper-anti-block-diagonal form, by ap-

propriate row and column rearrangements. Note that all these block (symbolic) matrices

either equals zero, or corresponds to A(p, q,m, n) with different parameters. Second, we

explicitly compute the maximal rank of those anti-diagonal A(p, q,m, n)s. Combining

these two observations, we apply the similar techniques in Lemma 4.17 to obtain Equa-

tion (4.18).

For the first step, we will illustrate the following observation:

observation 4.19. For N ≥ 1, there exist invertible matrices Q1 ∈ M(nN ,C) and Q2 ∈

M(nN ,C), such that the symbolic matrix P ′ of A′ = Q1A(p, q, n)⊗NQ2 is of upper-anti-

block-diagonal form:

P ′ =



P0,2N−1−1 · · · P0,l · · · P0

...
...

...
... 0

Pl,2N−1−1
... Pl

... 0
...

...
...

...
...

P2N−1−1 0 0 · · · 0


. (4.19)

1. For the anti-diagonal block matrices, label them as P0, . . . , P2N−1−1. Let h(l) be

the hamming weight of l ∈ {0, . . . , 2N−1 − 1}, i.e. the number of 1’s in the binary

expansion of l. Then Pl is the symbolic matrix of

Bl = A(pN−h(l)(n−p)h(l), qh(l)+1(n−q)N−h(l)−1, pN−h(l)−1(n−p)h(l)n, qh(l)(n−q)N−h(l)−1n).

(4.20)

2. For the upper-left block matrices, label them as Pu,v for u, v ∈ {0, 2N−1 − 1}, where

u is the label of the anti-diagonal block matrix Pu on the right of Pu,v and v is the
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label of anti-diagonal block matrix Pv below Pu,v. If h(u) ≥ h(v), Pu,v = 0; otherwise

Pu,v is the symbolic matrix of

Bu,v = A(pN−h(u)(n−p)h(u), qh(v)+1(n−q)N−h(v)−1, pN−h(u)−1(n−p)h(u)n, qh(v)(n−q)N−h(v)−1n).

(4.21)

Proof of Observation 4.19. We show the observation holds by induction on N . It holds

for N = 1 trivially. Assume for A(p, q, n)⊗N , observation 4.19 holds. Without loss of gen-

erality we assume A(p, q, n)⊗N is of the form in Equation (4.19). For, A(p, q, n)⊗N+1 =

A(p, q, n)⊗N ⊗A(p, q, n), let Pl be the symbolic matrix of the lth anti-diagonal block. It is

sufficient to examine Pl⊗P , where P is the symbolic matrix ofA(p, q, n). Following the first

step in Lemma 4.17, there exist two invertible matrices Ql1 and Ql2, such that Ql1Pl⊗PQl2 =P l0 P l1

P l2 0

, where P l1 is the symbolic matrix of Bl0 = A(pN−h(l)+1(n − p)h(l), qh(l)+1(n −

q)N−h(l), pN−h(l)(n − p)h(l)n, qh(l)(n − q)N−h(l)n), and P l2 is the symbolic matrix of Bl1 =

A(pN−h(l)(n−p)h(l)+1, qh(l)+2(n−q)N−h(l)−1, pN−h(l)−1(n−p)h(l)+1n, qh(l)+1(n−q)N−h(l)−1n),

where l0 and l1 denote the N -bit strings in which the first (N − 1)-bit strings equal the

binary expansion of l. Moreover, we observe that Bl0 and Bl1 remain as the anti-diagonal

blocks in Ql1A(p, q, n)⊗N+1Ql2 (Qli is the enlarged matrix of Qli for i = 1, 2). Then the first

fact in observation 4.19 follows since h(l0) = h(l) and h(l1) = h(l) + 1.

For the second fact, for given u, v ∈ {0, . . . , 2N−1−1}, u 6= v and h(u) < h(v), we examine

Pu,v ⊗ P where Pu,v is the symbolic matrix of Bu,v = A(pN−h(u)(n − p)h(u), qh(v)+1(n −

q)N−h(v)−1, pN−h(u)−1(n − p)h(u)n, qh(v)(n − q)N−h(v)−1n). Note that Pu,v has the same

“full” rows as that of Pu and has the same “full” columns as that of Pv. Here a “full” row

(column) means the corresponding row (column) contains ∗ only. Denote the invertible

matrix being responsible for the row rearrangements of Pu ⊗ P by Qu1 and the invertible

matrix being responsible for the column rearrangements of Pv ⊗ P by Qv2. These two

matrices will also rearrange the rows and columns of Pu,v⊗P , respectively. For simplicity,

denote Bu = A(p1, q1,m1, n1) and Bv = A(p2, q2,m2, n2), then Bu,v = A(p1, q2,m1, n2).
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Write Pu,v in the block matrix form

Pu,v =



A1,1 · · · A1,q2 A1,q2+1 · · · A1,n2

... P u,v0

...
... P u,v1

...

Ap1,1 · · · Ap1,q2 Ap1,q2+1 · · · Ap1,n2

Ap1+1,1 · · · Ap1+1,q2

... P u,v2

... 0
Am1,1 · · · Am1,q2


, (4.22)

where Ai,j are symbolic matrix of A(p, q, n) for all possible i and j. Qu1 is responsible for

moving all rows with more than (n2 − q2)q ∗s in P u,v1 and all rows with more than q2q ∗s

in P u,v2 to the top of them. To see this, note that all rows with more than (n2− q2)q ∗s in

P u,v1 is determined by those “full” rows in Pu,v, which are exact those rows in Pu; all those

rows with more than q2q ∗s in P u,v2 is determined by those “full” rows in P . Thus coincide

with those rows in Pu. Similarly, Qv2 is responsible to move all columns with more than

p1p ∗s in P u,v1 and all columns with more than (m1 − p1)p ∗s in P u,v2 to the left. Denote

P ′u,v =

P u,v0
′
P u,v1

′

P u,v2
′

0

 be the symbolic (block) matrix after the aforementioned row and

column rearrangement of Pu,v. We can then conclude that P u,v1
′

is the symbolic matrix of

A(pN−h(u)+1(d− p)h(u), qh(v)+1(d− q)N−h(v), pN−h(u)(d− p)h(u)d, qh(v)(d− q)N−h(v)d), and

P u,v2
′
is the symbolic matrix ofA(pN−h(u)(d−p)h(u)+1, qh(v)+2(d−q)N−h(v)−1, pN−h(u)−1(d−

p)h(u)+1d, qh(v)+1(d − q)N−h(v)−1d). In addition, we can verify that P u,v0
′

is the symbolic

matrix of A(pN−h(u)+1(d − p)h(u), qh(v)+2(d − q)N−h(v)−1, pN−h(u)(d − p)h(u)d, qh(v)+1(d −

q)N−h(v)−1d). In addition, P u,v0
′
, P u,v1

′
and P u,v2

′
in the symbolic matrix of A(p, q, n)⊗N+1,

after applying all these row and column rearrangements, will be relabeled as Pu0,v1, Pu0,v0

Pu1,v1 according to their corresponding anti-block terms (In this case, Pu1,v0 corresponds

to the lower-right block, which is 0).

To see the second statement in observation 4.19 holds for N+1, we only need to show that

if h(u) ≥ h(v), Pu,v = 0. For u, v ∈ {0, . . . , 2N − 1} and u 6= v, let u = u′b and v = v′c,

where u′, v′ ∈ {0, . . . , 2N − 1} equal the first (N − 1)-bit strings of the binary expansion of

u and v, and b, c ∈ {0, 1} are variables. If h(u) ≥ h(v) derives that either h(u′0) ≥ h(v′0),

h(u′0) ≥ h(v′1) = h(v′) + 1 or h(u′1) ≥ h(v′1), it will imply that h(u′) ≥ h(v′). By
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the induction hypothesis, Pu′,v′ = 0 and Pu,v = 0 holds automatically. Otherwise, if

h(u) ≥ h(v) derives h(u′1) ≥ h(v′0) and Pu′,v′ is nonzero, we can also observe that Pu′1,v′0

equals 0, as it is the lower-right part of P ′u,v. This concludes the proof.

Now we focus on those anti-diagonal blocks. The following observation explicitly computes

the maximal rank of Al for l = 0, . . . , 2N−1 − 1:

observation 4.20. Let h(l) = k, the maximal rank of Bl = A(pN−k+1(n − p)k, qk+1(n −

q)N−k, pN−k(n− p)kn, qk(n− q)N−kn) equals

min{pN−k+1(n− p)k, qk(n− q)N−k+1}+ min{qk+1(n− q)N−k, pN−k(n− p)k+1}. (4.23)

Proof. Note that the rank of A(pN−k+1(n − p)k, qk+1(n − q)N−k, pN−k(n − p)kn, qk(n −

q)N−kn) equals

min{pN−k+1(n− p)k + qk+1(n− q)N−k, pN−k(n− p)kn, qk(n− q)N−kn}. (4.24)

If pN−k(n−p)k ≤ qk(n−q)N−k, we only need to compare pN−k+1(n−p)k+qk+1(n−q)N−k

and pN−k(n− p)kn. Note that

pN−k(n− p)kn− (pN−k+1(n− p)k + qk+1(n− q)N−k) = pN−k(n− p)k+1− qk+1(n− q)N−k.

(4.25)

We further distinguish two cases. When pN−k(n − p)k+1 ≥ qk+1(n − q)N−k, we take

pN−k+1(n − p)k + qk+1(n − q)N−k. When pN−k(n − p)k+1 < qk+1(n − q)N−k, we take

pN−k(n− p)kn = pN−k+1(n− p)k + pN−k(n− p)k+1. These two cases then can be unified

in the following equation

min{pN−k+1(n− p)k + qk+1(n− q)N−k, pN−k(n− p)kn, qk(n− q)N−kn}

=pN−k+1(n− p)k + min{qk+1(n− q)N−k, pN−k(n− p)k+1}.
(4.26)

Similarly, if pN−k(n− p)k > qk(n− q)N−k, we obtain

min{pN−k+1(n− p)k + qk+1(n− q)N−k, pN−k(n− p)kn, qk(n− q)N−kn}

= min{pN−k+1(n− p)k, qk(n− q)N−k+1}+ qk+1(n− q)N−k.
(4.27)
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Note that, pN−k(n−p)k ≤ qk(n−q)N−k implies pN−k+1(n−p)k ≤ pqk(n−q)N−k < qk(n−

q)N−k+1, where the second inequality uses p+ q < n as A(p, q, n) is maximal-compression.

Similarly, pN−k(n − p)k > qk(n − q)N−k implies qk+1(n − q)N−k < qpN−k(n − p)k <

pN−k(n−p)k+1. This observation allows us to combine Equation (4.26) and Equation (4.27)

to obtain

mrk(Bl) = min{pN−k+1(n− p)k, qk(n− q)N−k+1}+ min{qk+1(n− q)N−k, pN−k(n− p)k+1}.

(4.28)

Finally, we combine observations 4.19 and 4.20 to prove that mrk(A(p, q, n)⊗N+1) =∑2N−1
l=0 mrk(Bl). Then Equation (4.18) follows. Without loss of generality we assume the

symbolic matrix of A(p, q, n)⊗N+1 equals the one in Equation (4.9). Adapting the similar

argument in the second step in the proof of Lemma 4.17. We can find B ∈ A(p, q, n)⊗N+1

with rank(B) = mrk(A′), and if write B into the upper-anti-block-diagonal form as shown

in Equation (4.9), we can assume rk(Bl) = rk(Pl) for 0 ≤ l ≤ 2N − 1, where Bl is the

block matrix corresponding to the symbolic matrix Pl in Equation (4.9) with same size

and location. Let λ = log2
n−p
q , µ = log2

n−q
p , α = µ

λ+µ . We can derive

k ≤ bαN + α− 1c ⇔ pN−k(n− p)k+1 ≤ qk+1(n− q)N−k (4.29)

and

k ≤ bαN + αc ⇔ pN−k+1(n− p)k ≤ qk(n− q)N−k+1. (4.30)

Choose N ′ = bαN + αc = bαN + α − 1c + 1. For any l ∈ {l : h(l) ≤ N ′ − 1}, Bl can be

chosen to have full row rank. For any l ∈ {l : h(l) ≥ N ′ + 1}, Bl can be chosen to have

full column rank. Now we claim that, for Bu,v, where u 6= v and u, v ∈ {2N − 1}, we can

use the anti-block matrices Bu and Bv to eliminate Bu,v. By observation 4.19, we only

need to consider those Pu,v satisfying h(u) < h(v). In this case, either h(u) ≤ N ′ − 1,

or h(v) ≥ N ′ + 1. If h(u) ≤ N ′ − 1, we can use Bu to clear Bu,v, since Bu has full row

rank. The other case is similar. These yield that mrk(A(p, q, n)⊗N+1) =
∑2N−1

l=0 mrk(Bl),

which, together with Equation (4.28), allow us to conclude the proof.
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Now we are ready to compute the asymptotic maximal rank for maximal-compression

matrix spaces. We restate Theorem 4.13 2 here:

Theorem 4.13 2, restated. Let B = A(p, q, n) where p+ q < n.

mrk∞(B) = nmax{2−D(1−α||p′), 2−D(α||q′)}, (4.31)

where p′ = p
n , q′ = q

n , α = log2(n−q)−log2 p
log2((n−p)(n−q))−log2(pq) and D(a||b) := a log2

a
b +(1−a) log2

1−a
1−b .

Proof. Let λ = log2
n−p
q , µ = log2

n−q
p , α = log2(n−q)−log2 p

log2((n−p)(n−q))−log2(pq) = µ
λ+µ and N ′ =

bαN + αc as discussed in Lemma 4.18. We can rewrite Equation (4.18) explicitly as the

following:

rk(A(p, q, n)⊗(N+1)) =

N ′−1∑
k=0

(
N

k

)
pN−k(n− p)kn+

N∑
k=N ′+1

(
N

k

)
qk(n− q)N−kn

+

(
N

N ′

)(
pN−N

′+1(n− p)N ′ + qN
′+1(n− q)N−N ′

)
=

N ′∑
k=0

(
N

k

)
pN−k(n− p)kn+

N∑
k=N ′

(
N

k

)
qk(n− q)N−kn

−
(
N

N ′

)(
pN−N

′
(n− p)N ′+1 + qN

′
(n− q)N−N ′+1

)
.

(4.32)

Let p′ = p
n and q′ = q

n , we have p′ + q′ < 1. The above quantity is upper and lower

bounded by

rk(A(p, q, n)⊗(N+1)) ≤ nN+1
( N ′∑
k=0

(
N

k

)
p′
N−k

(1−p′)k+

N−N ′∑
k=0

(
N

k

)
q′
N−k

(1−q′)k
)
; (4.33)

rk(A(p, q, n)⊗(N+1)) ≥ nN+1
(N ′−1∑
k=0

(
N

k

)
p′
N−k

(1− p′)k +
N−N ′−1∑
k=0

(
N

k

)
q′
N−k

(1− q′)k
)
.

(4.34)

We shall use the following inequalities:

Lemma 4.21 (Lemma 4.7.2 in Ref. [Ash90]). For N ′ < Np, we have:

1√
2N

2−ND(N
′

N
||p) ≤

N ′∑
k=0

(
N

k

)
pk(1− p)N−k ≤ 2−ND(N

′
N
||p). (4.35)
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To apply Lemma 4.21 to prove Equation (4.13), we need Nq′ < N ′ < N(1− p′) holds for

sufficiently large N . We first prove the following:

Lemma 4.22. Let p′, q′ and α be defined as above. We have q′ < α < 1− p′.

Proof. By expressing α explicitly with respect to p′ and q′, we need to prove

q′ <
log2

1−q′
p′

log2
1−q′
p′ + log2

1−p′
q′

, 1− p′ >
log2

1−q′
p′

log2
1−q′
p′ + log2

1−p′
q′

. (4.36)

This is equivalent to show

(1− q′)1−q′q′
q′
> p′

1−q′
(1− p′)q′ , (1− p′)1−p′p′

p′
> (1− q′)p′q′1−p

′
. (4.37)

Consider the function f(x, y) = xy(1 − x)1−y with x, y ∈ (0, 1). The partial derivative in

x is
∂

∂x
f(x, y) =

xy−1(y − x)

(1− x)y
. (4.38)

For any fixed y, maxx∈(0,1) f(x, y) = f(y, y). Then inequality (4.37) holds by choosing

x = 1− p′, y = q′ and x = 1− q′, y = p′.

Recall N ′ = bαN + αc. To ensure that Nq′ < N ′ < N(1 − p′), it is sufficient to satisfy

that α+ α
N < 1− p′ and q′ < α− 1−α

N . Since α, p′, and q′ are fixed, these can be achieved

as long as N > max{ α
1−p′−α ,

1−α
α−q′ } > 0. Now, applying the upper bound in Lemma 4.21

to inequality (4.33), we obtain

rk(A(p, q, n)⊗(N+1)) ≤ nN+1(2−ND(N
′

N
||1−p′) + 2−ND(1−N

′
N
||1−q′)). (4.39)

Note that −D(a||p) is increasing for 0 < a < p, and α(N+1)−1 ≤ bα(N+1)c ≤ α(N+1).

We can replace N ′

N by α+ α
N , and 1− N ′

N by 1− α+ 1−α
N , which gives that

rk(A(p, q, n)⊗(N+1)) ≤ nN+1(2−ND(α+ α
N
||1−p′) + 2−ND(1−α+ 1−α

N
||1−q′)). (4.40)

Let N go to infinity. Since Lp norm converges L∞ norm when p→ +∞, we have

rk∞(A(p, q, n)) ≤ nmax{2−D(α||1−p′), 2−D(1−α||1−q′)}. (4.41)
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Similarly, applying the lower bound in Lemma 4.21 to inequality (4.34), we obtain

rk(A(p, q, n)⊗(N+1)) ≥ nN+1

(N + 1)2
(2−ND(N

′−1
N
||1−p′) + 2−ND(1−N

′−1
N
||1−q′))

≥ dN+1

(N + 1)2
(2−ND(α+α−2

N
||1−p′) + 2−ND(1−α+ 1−α

N
||1−q′)).

(4.42)

The second inequality holds since N ′−1
N ≥ α+ α−2

N and 1− N ′−1
N ≥ 1− α+ 1−α

N . Thus we

have

rk∞(A(p, q, n)) ≥ nmax{2−D(α||1−p′), 2−D(1−α||1−q′)}. (4.43)

Since D(a||b) = D(1− a||1− b), combining inequalities (4.41) and (4.43), we have

rk∞(A(p, q, n)) = nmax{2−D(1−α||p′), 2−D(α||q′)}. (4.44)

4.5 Summary and Discussion

In this chapter, we have systematically studied the tripartite-to-bipartite SLOCC entan-

glement transformations in multiple-copy and asymptotic settings. We have constructed

tripartite pure states which cannot be transformed to the bipartite maximally entangled

state by SLOCC with a single copy, but can do so with two copies. Such an interesting

phenomenon not only reveals that maximal rank can be strictly super-multiplicative, but

also illustrates the existence of multiple-copy SLOCC entanglement transformations in the

tripartite-to-bipartite setting. Meanwhile, we have exhibited a simple condition which can

be used to construct and verify tripartite states whose maximal ranks are strictly super-

multiplicative. This condition also implies that, except for the degenerated case, the strict

super-multiplicativity holds for most tripartite states of which their maximal ranks are

not full.

In the asymptotic setting, we have derived explicit formulas to compute the tripartite-

to-bipartite entanglement transformation rate of two families of tripartite states with re-

spect to their asymptotic maximal ranks. Surprisingly, these formulas lead to a complete
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characterization of the asymptotic convertibility of tripartite pure state and the bipartite

maximally entangled state, i.e. a tripartite pure states can be transformed to the bipartite

maximally entangled state by SLOCC in the asymptotic setting if and only if its corre-

sponding matrix space contains no shrunk subspace. Note that the latter problem is known

as the non-commutative SDIT problem. Furthermore, based on the recent progress on the

non-commutative rank problem [GGOW16, IQS17b], there exist deterministic polynomial-

time algorithms to decide whether a tripartite state can be transformed to the maximally

entangled state by SLOCC, asymptotically. Most prominently, our characterization not

only provide another connection between certain problems in algebraic complexity the-

ory and questions regarding asymptotic SLOCC entanglement transformations, but also

provide another relation of the commutative and non-commutative SDIT problem.

Through our investigation, powerful results from the theory of matrix spaces serve as our

main tools. As we have shown that the structure of matrix spaces is crucial in the study

of tripartite-to-bipartite SLOCC entanglement transformations. Advanced results, such

as matrix semi-invariants, can also be exploited to derive beautiful results. In particular,

we would like to further discuss the postulate: “Matrix spaces can be viewed and studied

as a linear algebraic analog of bipartite graphs.” Although this viewpoint is not original

from our work, it enables us to import combinatorial ideas for graphs into the study

of algebraic structures of matrix spaces. As we have mentioned before, the existence

of full-rank matrices in a given matrix space can be viewed as the “bipartite perfect

matching” in the linear algebraic analog of bipartite graphs (Section 4.1). Although there

exist matrix spaces which have no full-rank matrices or shrunk subspaces, properties of

graphs may not always be generalized into the “linear algebraic world” in a good manner.

However, such a viewpoint is helpful to come up with new insights from a combinatorial

perspective. For instance, if the matrix space is promised to be spanned by rank-1 matrices

or triangularizable matrices, Ivanyos et al. [IKQS15] devised an deterministic polynomial-

time algorithm which outputs a matrix of maximal rank of the given matrix space. Their

framework is based on a generalization of Wong sequences, which can be viewed as a

linear algebraic analog of augmenting paths, introduced for devising classical bipartite

perfect matching algorithms.
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It is worth noting that we apply the techniques used in this chapter about manipulating

matrix spaces to study rank-critical matrix spaces. This type of matrix spaces satisfy

that any matrix space which properly contains it has the maximal rank strictly greater

than that of it. Rank-critical matrix spaces have wide applications and interpretations

in both algebraic geometry and computational complexity theory. In [LQ17b], we derive

a complete characterization from the complexity perspective, which recovers a previous

sufficient condition obtained by Draisma [DRA06] from a geometric perspective. We also

investigate rank-critical spaces in the context of compression and primitive matrix spaces

and derives several interesting structural results.



Chapter 5

Testing Isometry between Alternating

Matrix Spaces

In this chapter, we study the algorithmic problem of testing isometry between two al-

ternating matrix spaces. It is known that solving such a problem in time polynomial in

the size of the underlying vector space is equivalent to testing isomorphism of p-groups

of class 2 and exponent p in time polynomial in the group order – the widely believed

bottleneck case of the group isomorphism problem. We propose a venue of attack for the

alternating matrix space isometry problem by viewing it as a linear algebraic analog of the

graph isomorphism problem. We first revisit the development of the alternating matrix

space isometry problem, including its connection with graph and group isomorphism prob-

lems, in Section 5.1. Then we describe the outline of our main algorithm in Section 5.2,

and provide a detailed proof in Section 5.4. Furthermore, we apply Luks’ dynamic pro-

gramming technique for GraphIso to slightly improve the worst-case time complexity of

AltMatSpIso in Section 5.5. We summarize our results in Section 5.6. This chapter is

based on [LQ17a].

67
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5.1 Introduction

Let Fq be the finite field with q elements. An n× n matrix B over Fq is alternating if for

every u ∈ Fnq , utBu = 0. Λ(n, q) denotes the linear space of n × n alternating matrices

over Fq, and a dimension-m subspace of Λ(n, q) is called an m-alternating (matrix) space.

GL(n, q) denotes the general linear group of degree n over Fq. We study the following

problem.

Problem 5.1 (Alternating matrix space isometry problem, AltMatSpIso). Given the

linear bases of two m-alternating spaces G,H in Λ(n, q), decide whether there exists A ∈

GL(n, q), such that AtGA := {AtBA : B ∈ G} = H (as subspaces).

If such a T exists, we say G andH are isometric. As will be explained later, AltMatSpIso

has been studied, mostly under other names, for decades. It lies at the heart of the group

isomorphism problem (GroupIso), and has an intimate relationship with the celebrated

graph isomorphism problem (GraphIso). As a problem in NP∩coAM, its worst-case time

complexity has barely been improved over the brute-force algorithm, which runs in time

qΘ(n2) · poly(n,m, log q). In fact, a qO(n+m)-time algorithm is already regarded as very

difficult.

Let us recall one formulation of GraphIso. For n ∈ N, let [n] = {1, 2, . . . , n}, and

Sn denotes the symmetric group on [n]. A simple undirected graph is just a subset of

Λn := {{i, j} : i, j ∈ [n], i 6= j}. A permutation σ ∈ Sn induces a natural action on Λn.

The following formulation of GraphIso as an instance of the setwise transporter problem

is well-known [Luk82].

Problem 5.2 (GraphIso, group-theoretic definition). Given two subsets G,H of Λn,

decide whether there exists σ ∈ Sn, such that Gσ := {{σ(i), σ(j)} : {i, j} ∈ G} = H (as

subsets).

The formulations of AltMatSpIso and GraphIso as in Problem 5.1 and Problem 5.2

are quite similar. As a related note, it reminds us the formulations of the bipartite

perfect matching problem and the Edmonds’ problem, introduced in [IKQS15, IQS17a,

IQS17b, GGOW16] and mentioned in Section 4.1. It is natural for us to view and
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study AltMatSpIso as a linear algebraic analog of GraphIso. On the other hand,

AltMatSpIso has been studied for decades as an instance, in fact, the long-believed bot-

tleneck case, of the GroupIso. This problem also has an intricate relationship with the

GraphIso. In the next two subsections, we briefly review for two the connections.

5.1.1 Relation with the Group Isomorphism Problem

GroupIso asks to decide whether two finite groups (of the same order n) are isomorphic

or not. The difficulty of this problem depends crucially on how we represent the groups

in the algorithms. If our goal is to obtain an algorithm running in time polynomial in n,

then we may assume that we have at our disposal the Cayley (multiplication) table of the

group, as we can recover the Cayley table from most reasonable models for computing with

finite groups. Therefore, in the main text we restrict our discussion to this very redundant

model, which is meaningful mainly because we do not know of a poly(n)-time or even an

no(logn)-time algorithm [Wil14] (log to the base 2), despite that a simple nlogn+O(1)-time

algorithm has been known for decades [FN70, Mil78]. The past few years have witnessed a

resurgence of activity on algorithms for this problem with worst-case analysis with respect

to the group order; we refer the readers to [GQ17a] which contains a survey of these

algorithms.

It is long believed that p-groups form the bottleneck case for GroupIso. In fact, the

decades-old quest for a polynomial-time algorithm has focused on class-2 p-groups, with

little success. Even if we restrict further our study to consider p-groups of class 2 and

exponent p, the problem is still difficult. A group G is a p-group of exponent p if every

element in G has order p. A group G is of class 2 if the commutator subgroup [G,G] :=

{g−1h−1gh : g, h ∈ G} is normal in G. Recent works [LW12, BW12, BMW17, IQ18] solve

some nontrivial subclasses of this group class, and have led to substantial improvement in

practical algorithms. But the methods in these works do not seem helpful enough to lead

to any improvement for the worst-case time complexity of the general class.

By a classical result of Baer [Bae38] (see also [Wil09]), testing isomorphism of p-groups

of class 2 and exponent p in time polynomial in the group order reduces to solving

AltMatSpIso over Fp in time pO(m+n). We revisit the reduction here: Suppose we
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are given two p-groups of class 2 and exponent p. G1 and G2 of order p`. For Gi, let

bi : Gi/[Gi, Gi]×Gi/[Gi, Gi]→ [Gi, Gi] be the commutator map, defined by

bi(g1[Gi, Gi], g2[Gi, Gi]) = [g1, g2], ∀ g1, g2 ∈ Gi. (5.1)

By the class 2 and exponent p assumption, Gi/[Gi, Gi] are elementary Abelian groups of

exponent p. For G1 and G2 to be isomorphic it is necessary that [G1, G1] ∼= [G2, G2] ∼= Zmp
and G1/[G1, G1] ∼= G2/[G2, G2] ∼= Znp for some m,n ∈ N satisfying m+n = `. Furthermore,

it is easy to see bis are alternating bilinear maps. So we have alternating bilinear maps

bi : Fnp × Fnp → Fmp . G1 and G2 are isomorphic if and only if there exist A ∈ GL(n, p) and

D ∈ GL(m, p) such that for every u, v ∈ Fnp , b1(A(u), A(v)) = D(b2(u, v)). Representing

bi as a tuple of alternating matrices Bi = (B1, . . . , Bm) ∈ Λ(n, p)m, it translates to asking

whether AtB1A = BD2 . Letting Bi be the linear span of Bi, this becomes an instance of

AltMatSpIso with respect to B1 and B2.

When p > 2, we can reduce AltMatSpIso to the isomorphism testing of p-groups of

class 2 and exponent p using the following construction. Starting from G ∈ Λ(n, p)m

representing G, G can be viewed as representing a bilinear map b : Fnp × Fnp → Fmp . Define

a group G with operation ◦ over the set Fmp × Fnp as

(v1, u1) ◦ (v2, u2) = (v1 + v2 +
1

2
b(u1, u2), u1 + u2). (5.2)

It can be verified that G is a p-group of class 2 and exponent p, and it is then easy to

verify that two such groups G1 and G2 built from G1 and G2 are isomorphic if and only

if G1 and G2 are isometric.

When working with groups in the Cayley table model and working with AltMatSpIso

in time pO(m+n), the above procedures can be performed efficiently. Because of these

reductions and the current status of GroupIso, we see that AltMatSpIso lies at the

heart of GroupIso, and solving AltMatSpIso in qO(m+n) is already very difficult.
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5.1.2 Relation with the Graph Isomorphism Problem

The celebrated graph isomorphism problem asks to decide whether two undirected simple

graphs are isomorphic. The relation between AltMatSpIso and GraphIso is very del-

icate. Roughly speaking, the two time-complexity measures of AltMatSpIso, qO(n+m)

and poly(n,m, q), sandwiches GraphIso in an interesting way. For one direction, solving

AltMatSpIso in time qO(n+m) can be reduced to solving GraphIso for graphs of size

qO(n+m) by first reducing it to solve GroupIso for groups of order qO(n+m) as above,

and then to solve GraphIso for graphs of size qO(n+m) by the reduction from GroupIso

to GraphIso [KST93]. Therefore, a polynomial-time algorithm for GraphIso implies

an algorithm for AltMatSpIso in time qO(n+m). For the other direction, Grochow

and Qiao [GQ17b] showed that solving GraphIso in polynomial time reduces to solv-

ing AltMatSpIso over Fq in time poly(n,m, q) with q = poly(n).

It is reasonable to examine whether the recent breakthrough of Babai [Bab16a, Bab16b], a

quasipolynomial-time algorithm for GraphIso, helps with reducing the time complexity

of AltMatSpIso. This seems unlikely. One indication is that the brute-force algorithm

for AltMatSpIso is already quasipolynomial with respect to qO(n+m). Other evidence is

that Babai noted that his algorithm did not seem to be helpful for improving GroupIso,

and posed GroupIso as one roadblock for putting GraphIso in P [Bab16a, Section 13.2].

Since AltMatSpIso captures the long-believed bottleneck case for GroupIso, the current

results for GraphIso are unlikely to improve the time complexity to qO(n+m). There is

also an explanation from the technical viewpoint [GR16]. Roughly speaking, the barrier

in the group-theoretic framework for GraphIso is dealing with large alternating groups,

as other composition factors like projective special linear groups can be handled by brute-

force in quasipolynomial time, so for the purpose of a quasipolynomial-time algorithm

these groups are not a concern. On the other hand, for AltMatSpIso it is exactly the

projective special linear groups that form a bottleneck.
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5.1.3 Current Status and ALgorithmic Results

It is not hard to show that AltMatSpIso ∈ NP ∩ coAM, so it is unlikely to be NP-

complete unless the polynomial hierarchy collapse to the second level [GMW86]. As to the

worst-case time complexity, the brute-force algorithm for AltMatSpIso runs in time qn
2 ·

poly(m,n, log q), by simply enumerating the elements in GL(n, q) and verifying whether

it is an isometry. Another analyzed algorithm for AltMatSpIso offers a running time of

q
1
4

(n+m)2+O(n+m) when q = p is a prime, by first reducing to testing isomorphism of class-2

and exponent-p p-groups of order pn+m, and then applying Rosenbaum’s N
1
4

logpN+O(1)-

time algorithm for p-groups of order N [Ros13]. This is only better than the brute-force

one when m < n.1 It is somewhat embarrassing that for a problem in NP∩ coAM, we are

barely able to achieve an improvement over the brute-force algorithm in a limited range

of parameters.

On the other hand, practical algorithms for AltMatSpIso have been implemented. As

far as we know, the currently implemented algorithms for AltMatSpIso can handle the

case when m+ n ≈ 20 and p ≈ 13, but absolutely not the case if m+ n ≈ 200, though for

m+n ≈ 200 and say p ≈ 13 the input can be stored in a few megabytes.2 For GraphIso,

the programs Nauty and Traces [MP14] can test isomorphism of graphs stored in giga-

bytes in a reasonable amount of time. Therefore, unlike GraphIso, AltMatSpIso seems

difficult even in the practical sense.

From the discussion above, we see that solving AltMatSpIso with a worst-case time com-

plexity qO(n+m) is already a difficult target. In a very true sense, our current understanding

of the worst-case time complexity of AltMatSpIso is like the situation for GraphIso

in the 1970s. In the development of algorithms for GraphIso, one breakthrough was to

develop average-case efficient algorithms: for almost all graphs in certain random mod-

els, isomorphism testing can be performed efficiently. The first of such algorithms was

devised by Babai, Erdős and Selkow [BES80], which tests isomorphism for all but o(2(n2))

1As pointed out in [BMW17], there are numerous unanalyzed algorithms [O’B94, ELGO02] which may

lead to some improvement, but qcn
2

· poly(n,m, log q) for some constant 0 < c < 1 is a reasonable over
estimate of the best bound by today’s method.

2We thank James B. Wilson, who maintains a suite of algorithms for p-group isomorphism testing, for
communicating his hands-on experience to us. We take the responsibility for any possible misunderstanding
or not knowing of the performance of other implemented algorithms.
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of the 2(n2) graphs on n vertices in time O(n2). This algorithm was then improved by

Lipton [Lip78], Karp [Kar79], and Babai and Kučera [BK79]. The random models used in

the average-case analysis is the celebrated Erdős-Rényi model [ER59, ER63, Bol01], which

is the uniform probability distribution over the set of size-m subsets of Λn. That is, each

subset is endowed with probability 1/
((n2)
m

)
.

Recall the “linear algebraic” idea: Vectors in Fnq are viewed as vertices; matrices in an

m-alternating space are viewed as edges. The qO(n+m) measure can be thought of as

polynomial in the number of “vertices” and the number of “edges”. Based on the “linear

algebraic” viewpoint, we could expect to derive an average-case efficient algorithm for

AltMatSpIso runs in time qO(m+n). Simultaneously, we may also formulate a model of

random alternating matrix space over Fq as follows: Let
[ ]

q
be the Gaussian binomial

coefficient with base q. The linear algebraic Erdős-Rényi model, LinER(n,m, q), is defined

as the uniform probability distribution over the set of dimension-m subspaces of Λ(n, q).

That is, each subspace is endowed with probability 1/
[(n2)
m

]
q
.

Here, the parameter m comes into the theme. because qm, while no more than q(
n
2), is not

necessarily bounded by a polynomial in qn. This is in contrast to GraphIso, where the

edge number is at most quadratic in the vertex number. In particular, when m = Ω(n2),

the brute-force algorithm is already in time qO(n+m). On the other hand, when m is very

small compared to n, say m = O(1), we can enumerate all elements in GL(m, q) in time

qO(1), and apply the isometry testing for alternating matrix tuples from [IQ18] which runs

in randomized time poly(n,m, q). Therefore, the qO(n+m)-time measure makes most sense

when m is comparable with n, in particular when m = Θ(n).

The above discussion, as well as the one related to the non-commutative rank problem and

the linear algebraic analog of bipartite graphs, indicate that realities in the combinatorial

world and the linear algebraic world can be quite different. So meaningful results cannot

be obtained by adapting the results for graphs to alternating matrix spaces in a straightfor-

ward fashion. One purpose is to provide further evidence that, despite potential technical

difficulties, certain ideas that have been developed for GraphIso can be adapted to work

with AltMatSpIso as well. We take a short cut, by presenting our main algorithmic

result:
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Theorem 5.1 (Main result). Suppose m = cn for some constant c. There is an algo-

rithm which, for almost but at most 1/qΩ(n) fraction of alternating matrix spaces G in

LinER(n,m, q), tests any alternating matrix space H for isometry to G in time qO(n).

An important ingredient in Theorem 5.1, the utility of which should go beyond the

average-case setting, is an adaptation of the individualization technique for GraphIso to

AltMatSpIso. We also realize a reformulation of the refinement technique for GraphIso

as used in [BES80] in the AltMatSpIso setting. Individualization and refinement are very

influential combinatorial ideas for GraphIso and have been crucial in the progress of the

worst-case time complexity of GraphIso, including Babai’s recent breakthrough [Bab16a,

Bab16b], but were missing in the GroupIso context.

In addition, for an m-alternating space G in Λ(n, q), we define the autometry group of

G, Aut(G) as A ∈ GL(n, q) : AtGA = G. The proof of Theorem 5.1 implies the following,

which can be viewed as a weaker correspondence of the classical result that most graphs

have trivial automorphism groups [ER63].

Corollary 5.2. Suppose m = cn for some constant c. All but 1/qΩ(n) fraction of alter-

nating matrix spaces in LinER(n,m, q) have autometry groups of size qO(n).

Another piece of evidence which supports the usefulness of the “linear algebraic” view-

point is by adapting Luks’ dynamic programming technique for GraphIso [Luk99] to

AltMatSpIso. In the GraphIso setting, this technique improves the naive n! · poly(n)

time bound to the 2O(n) time bound, which can be understood as replacing the number of

permutations n! with the number of subsets 2n. In the linear algebraic setting, the analog

would be replacing Θ(qn
2
), the number of invertible matrices over Fq, with the number of

subspaces in Fnq (which is roughly q
1
4
n2+O(n)). We show that this is indeed possible.

Theorem 5.3. AltMatSpIso can be solved in time q
1
4

(m2+n2)+O(m+n).

Note that the quadratic term on the exponent of the algorithm in Theorem 5.3 is 1
4(m2 +

n2), slightly better than the one based on Rosenbaum’s result [Ros13], which is 1
4(m+n)2.
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5.2 Towards the Main Algorithm

We now describe the outline of the algorithm for Theorem 5.1, which is inspired by the

first average-case efficient algorithm for GraphIso by Babai, Erdős, and Selkow [BES80].

We will recall the individualization and refinement technique therein. We define a linear

algebraic individualization, and propose a reformulation of the refinement step. Then we

present an outline of the main algorithm. During the procedure we will also see how the

“linear algebraic” viewpoint guides the generalizations here.

5.2.1 A Variant of the Naive Refinement Algorithm

Two properties of random graphs are used in the average-case analysis of the algorithm

in [BES80]. The first property is that most graphs have the first d3 log ne largest degrees

distinct. The second property, which is relevant to us, is the following.

Let G = ([n], E) be a simple and undirected graph. Let r = d3 log ne, S = [r] and T =

[n]\[r]. Define B = (S
⋃
T, F ) as the bipartite graph induced by the cut [r]∪{r+1, . . . , n},

where F = {(i, j) : i ∈ S, j ∈ T, {i, j} ∈ E}. For each j ∈ T , assign a length-r bit string

fj as follows: fj ∈ {0, 1}r such that fj(k) = 1 if and only if (k, j) ∈ F for k = [r]. It

is easy to verify that, all but at most 1
O(n) fraction of graphs satisfy that fj’s are distinct

over j ∈ T .

Let us see how the above property alone, together with the individualization and refinement

heuristic, give an average-case algorithm in nO(logn) for GraphIso. Suppose G satisfies

the property stated in the last paragraph, and we would like to test isomorphism between

G = ([n], E) and an arbitrary graph H = ([n], E′). Let SG ⊆ {0, 1}r be the set of r bit

strings obtained in the procedure above, with respect to the cut [r] ∪ {r + 1, . . . , n}. The

above property guarantees that |SG| = n− r. In the individualization step, we enumerate

all r-tuple of vertices in H with a multiplicative cost at most nr. For a fixed r-tuple

(i1, . . . , ir) ∈ [n]r, we perform the refinement step, that is, label the remaining vertices

in H according to their adjacency relations with (i1, . . . , ir) to obtain another set of bit-

strings SH . If SG 6= SH we neglect this r-tuple. If SG = SH , then we can form a bijective

map between [n] and [n], by mapping j to ij for j ∈ [r], and the rest according to their
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labels. Finally check whether this bijective map induces an isomorphism. See Figure 5.1

for an illustrative example about how the individualization and refinement procedures

work.

(a) Graph G (b) Individualization

(11)

(01)

(10)

(c) Refinement

Figure 5.1: For a given graph G. Individualize the top (red) and lower left (blue)
vertices. We obtain the induced bipartite graphs and label the rest of vertices based on
their adjacency relations with the individualized vertices.

The above algorithm runs in time nO(logn), which tests isomorphism between G and H

given that G satisfies the required property. In particular, this algorithm also implies that

for such G, |Aut(G)| ≤ nO(logn). To recover the algorithm in [BES80], assuming that

the largest r degrees are distinct (the first property mentioned in the beginning), one can

canonicalize the choice of the r-tuples by choosing the one with largest r degrees for both

G and H.

5.2.2 Individualization and Refinement in the AltMatSpIso Setting

We aim to generalize the above idea to the setting of AltMatSpIso. To do this, we

first make sense of what individualization means in the alternating space setting. We

then discuss how the refinement step may be generalized, and indicate how we follow an

alternative formulation of it.

Let G,H ≤ Λ(n, q) be two m-alternating spaces for which we want to test isometry. As

the case in subSection 5.2.1, we will look for properties of G which enable the average-case

analysis, and perform individualization on H side. For i ∈ [n], let ei denotes the ith

standard basis vector of Fnq .

Individualization. In the graph setting, individualizing r vertices in H can be under-

stand as follows. First we fix a size-r subset L of [n] as well as an order on the elements
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in L. The result is a tuple of distinct vertices (i1, . . . , ir) ∈ [n]r. Enumerating such tuples

incurs a multiplicative cost of at most nr.

In the alternating space setting, we simply view vectors in Fnq as vertices, connected by

matrices in H. Consider the following procedure: First fix a dimension-r subspace L of

Fnq with an ordered basis, which is represented by a tuple of linearly independent vectors

(v1, . . . , vr) ∈ (Fnq )r. Enumerating all such dimension-r subspaces incurs a multiplicative

cost of at most qrn. Up to this point, this is in complete analogy with the graph setting.

We may stop here and say that an r-individualization amounts to fix an r-tuple of linearly

independent vectors.

We can go a bit further though. As will be clear in the following, it is beneficial if

we also fix a complement subspace R of L, i.e. R ≤ Fnq satisfying L ∩ R = {0} and

〈L ∪ R〉 = Fnq . This adds another multiplicative cost of qr(n−r), which is the number

of complement subspaces of a fixed dimension-r subspace in Fnq . In the graph setting,

this step is not necessary, because for any L ⊆ [n] there exists a unique complement

subset R = [n] \ L. To summarize, by an r-individualization, we mean choosing a direct

sum decomposition Fnq = L ⊕ R where dim(L) = r and dim(R) = n − r, together with

an ordered basis (v1, . . . , vr) of L. Enumerating all r-individualizations incurs a total

multiplicative cost of at most q2rn−r2
.

Towards a refinement step as in [BES80]. In the GraphIso setting, individualizing

r vertices which gives (i1, . . . , ir) ∈ [n]r allows us to focus on isomorphisms that respect

this individualization, which are those isomorphism φ between two graphs G and H such

that φ(j) = ij for j ∈ [r]. There are at most (n− r)! such isomorphisms. Since r is usually

set as O(log n), just naively trying all such permutations does not help. Therefore the

individualization is usually accompanied with a refinement type technique. Specifically,

For an individualization L = (i1, . . . , ir), set R = [n]\L. The refinement step as in [BES80]

assigns every v ∈ R a label according to its adjacency relation with respect to (i1, . . . , ir),

an ordered set of vertices in L. Each label in fact corresponds to a subset of L, and an

individualization-respecting isomorphism has to preserve this adjacency relation for every

vertex in R. Such a restriction turns out to be quite severe for most graphs: as mentioned

in subSection 5.2.1, for most graphs G, the adjacency relations between (1, 2, . . . , r) and
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j ∈ [n] \ [r] are completely different over j. For such a graph G and any individualization

of H, this means that there is at most one way to extend φ(j) = ij for j ∈ [r] to an

isomorphism between G and H.

In the AltMatSpIso setting, an r-individualization also allows us to focus on isometries

which respect the decomposition L ⊕ R and the ordered basis (v1, . . . , vr) of L, namely

those φ such that φ(ei) = vi for i ∈ [r], and φ(〈er+1, . . . , en〉) = R. There are at most

q(n−r)2
such isometries. Since r will be also set to be very small - in fact a constant here

- we also need some refinement type argument.

We may simply generalize the refinement step in [BES80]. For u ∈ R, we can record its

“adjacency relation” with respect to an r-individualization v := (v1, . . . , vr) as a subspace

of L ∼= Frq as follows. For H ∈ H ≤ Λ(n, q), define H(v, u) := (vt
1Hu, . . . , v

t
rHu)t ∈ Frq, and

H(v, u) := {H(v, u) : Q ∈ H}. H(v, u)is a subspace in Frq which records the “adjacency

relation” between (v1, . . . , vr) and u under H. It can be verified that an individualization-

respecting isometry has to preserve this adjacency relation. It is tempting to check then on

the G side, where we individualize the first r standard basis (which produces (e1, . . . , er)

and 〈er+1, . . . , en〉), whether for most G’s it is the case that every v ∈ 〈er+1, . . . , en〉 gets a

unique label. If this is so, then the number of individualization-respecting isomorphisms

can also be significantly reduced. However, this cannot be the case when r is small, as

there are q(n−r)2
vectors in R but there are at most qr

2
subspaces in Frq.

Since we are looking for linear maps from 〈er+1, . . . , en〉 to R, the above counting argument

does not make much sense, as it mostly concerns setwise maps from 〈er+1, . . . , en〉 to R. It

is indeed the case, and we further note that the map from u ∈ R to H(v, u) ≤ Frq defines

a sheaf over the projective space P(R). So, such labels have some nontrivial relation to

glue together to form a sheaf. (See the related concept of kernel sheaves as in [KV12].)

It may be possible to use these observations to define a reasonable refinement step in the

alternating matrix space setting as follows.

A reformulation of the refinement step. To resolve the above problem, we reformulate

the idea in the GraphIso setting as follows. On the G side we start with the standard indi-

vidualization [r]∪{r+1, . . . , n} with an order on [r] as (1, . . . , r), which induce the bipartite

graph B = (S∪T, F ) where S = [r], T = [n]\[r], and the edge set F is induced from G. On
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the H side, a fixed individualization, say Fnq = L ∪R, L = (i1, . . . , ir) ⊆ [n]r, also induces

a bipartite graph C = (L∪R,F ′), where F ′ is induced from H. A bijective ψ : T → R is a

right-side isomorphism between B and C if it is not only an isomorphism between T and R,

but also induces an isomorphism between B and C as bipartite graphs. With respect to the

chosen individualizations on G and H sides, let RIso(B,C) be the set of right-side isomor-

phisms, IndIso(G,H) be the set of individualization-respecting isomorphisms from G to H.

Note that both RIso(B,C) and IndIso(G,H) can be embedded to the set of bijective maps

between T and R. The key observation is that an individualization-respecting isomorphism

has to be a right-side isomorphism between B and C, i.e. IndIso(G,H) ⊆ RIso(B,C).

Also note that either |RIso(B,C)| = 0 (e.g. when B and C are not right-isomorphic),

or |RIso(B,C)| = |RAut(B)| where RAut(B) := RIso(B,B). The refinement step as

in subSection 5.2.1 achieves two goals. Firstly on the G side, most G’s in ER(n,m)

have the corresponding induced bipartite graph B with |RAut(B)| = 1. This means that

|RIso(B,C)| ≤ 1. Secondly, given H with a fixed individualization which induce the bipar-

tite graph C, there is an efficient procedure to decide whether B and C are right-isomorphic

(e.g. by comparing the labels), and if they do, enumerate all right-isomorphisms (actually

unique).

In the AltMatSpIso setting, on the G side we start with the standard individualization

S = 〈e1, . . . , er〉, T = 〈er+1, . . . , en〉 with the ordered basis (e1, . . . , er) of S. We can also

define a correspondence of the bipartite graph in this setting, which is the matrix space

B′ = {
[
e1 · · · er

]t
G
[
er+1 · · · en

]
: G ∈ G} ≤M(r × (n− r), q), (5.3)

where
[
e1 · · · er

]
and

[
er+1 · · · en

]
denotes the n×r and n×(n−r) matrices listing the

column vectors {e1, . . . , er} and {er+1, . . . , en}, respectively.
[
e1 · · · er

]t
G
[
er+1 · · · en

]
stands for the upper-right r×(n−r) submatrix of G (recall that G ∈ G is represented with

respect to the standard basis). Similarly, the individualization on the H side yields L⊕R

with an ordered basis of L, (v1, . . . , vr) where vi ∈ Fnq . Take any basis of R = 〈vr+1, . . . , vn〉.

We can construct

C′ = {
[
v1 · · · vr

]t
H
[
vr+1 · · · vn

]
: H ∈ H} ≤M(r × (n− r), q). (5.4)
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We say A ∈ GL(n − r, q) is a right-side equivalence between B′ and C′ if B′A := {B′A :

B′ ∈ B′} = C′ (as subspaces). Let RIso(B′, C′) be the set of right-side equivalences between

B′ and C′, and IndIso(G,H) the set of individualization-respecting isometries between G

and H. Similarly, both RIso(B′, C′) and IndIso(G,H) can be embedded in the set of

invertible linear maps from T to R (which is isomorphic to GL(n − r, q)), and we have

IndIso(G,H) ⊆ RIso(B′, C′). Furthermore, RIso(B′, C′) is either empty (e.g. B′ and C′ are

not right-side equivalent), or a coset of RAut(B′) := RIso(B′,B′). So in analogy with the

GraphIso setting, for our purpose the goals become:

1. for mostm-alternating space G ≤ Λ(n, q) (as discussed in subSection 5.1.3, we assume

m = cn for some constant c), setting r to be some constant, we have |RAut(B′)| ≤

qO(n), and

2. for G’s satisfying 1, RIso(B′, C′) can be enumerated efficiently.

5.2.3 Algorithm Outline

Now we outline our algorithm which tests isometry between two m-alternating spaces

G,H ∈ Λ(n, q), given their linear basis G = 〈G1, . . . , Gm〉 and H = 〈H1, . . . ,Hm〉. In the

outline we assume r = 4 and m = n− 4, and deal with the general case in Section 5.4.

We first define the property on G for the sake of average-case analysis. Given those

Gk ∈ Λ(n, q) linearly spanning G, we can form a 3-tensor G ∈ Fn×n×mq where G(i, j, k)

denotes the (i, j)th entry of Gk. Let B′ be the upper-right r× (n− r)×m subtensor of G,

with B′k being the corresponding corner in Gk. Let B′ = 〈B′1, . . . , B′m〉 as discussed above.

A ∈ RAut(B′) ≤ GL(n− r, q) if and only if there exists D ∈ GL(m, q) such that ∀i ∈ [m],∑
j∈[m] di,jB

′
j = B′iA, where di,j is the (i, j)th entry of D. It will be more convenient if

we flip B′, which is of size r × (n − r) × m, to the B, which is of size (n − r) × m × r

(Figure 5.2). Slicing B along the third index, we obtain an r-tuple of (n−r)×m matrices,

denoted by B1, . . . , Br (figure 5.3).

Define the set of equivalences of B as

Aut(B) := {(A,D) ∈ GL(n− r, q)×GL(m, q) : ∀i ∈ [r], ABiD
−1 = Bi}. (5.5)
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Figure 5.2: The 3-tensor G, and flipping B′ to get B.

Figure 5.3: Slicing B.

Note that RAut(B′) is the projection of Aut(B) to the first component. We define the

adjoint algebra of B as

Adj(B) := {(A,D) ∈ M(n− r, q)⊕M(m, q) : ∀i ∈ [r], ABi = BiD}. (5.6)

(A,D) ∈ M(n−r, q)⊕M(m, q) is called invertible, if both A and D are invertible. Clearly,

Aut(B) consists of the invertible elements in Adj(B). Recall that we focus on the case that

r = 4 and m = n − r = n − 4. It can be shown that the adjoint algebra of 4 random

matrices in M(m, q) is of size qO(n) with probability 1 − 1/qΩ(n). The key to prove this

statement is the stable notion from geometric invariant theory [MFK94] in the context of

the left-right action of GL(m, q) × GL(m, q) on matrix tuples M(m, q)r. In this context,

a matrix tuple (B1, . . . , Br) ∈ M(m, q)r is stable, if for every nontrivial subspace U ≤ Fn
q ,

dim(〈∪i∈[r]Bi(U)〉) > dim(U). An upper bound on |Adj(B)| can be obtained by analyzing

this notion using some classical algebraic results and elementary probability calculations.

The property we impose on G is that the corresponding |Adj(B)| ≤ qO(n). It can be verified

that this property does not depend on the choices of bases of G.

Now we have achieved our first goal: defining a good property satisfied by most G’s. Let

us see how this property enables an algorithm for such G’s. For an arbitrary H ≤ Λ(n, q),
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at a multiplicative cost of q2rn−r2 ∈ qO(n) (recall that r = 4) we can enumerate all r-

individualizations of H. Consider a fixed one, say Fnq = L ⊕ R with an ordered basis

(v1, . . . , vr) of L and R = 〈vr+1, . . . , vn〉 represented by an arbitrary basis {vr+1, . . . , vn}.

We construct C′ with respect to the chosen individualization, flip to get C, and slice C into

r m×m matrices (C1, . . . , Cr) as we have done to B′. The task then becomes to compute

Adj(B,C) := {(A,D) ∈M(n− r, q)⊕M(m, q) : ∀i ∈ [r], ABi = CiD}. (5.7)

Viewing A and D as variable matrices, ABi = CiD are linear equations on A and D, so

the solution set can be computed efficiently. Note that |Adj(B)| ≤ qO(n). For Adj(B,C)

to contain an invertible element, it must be that |Adj(B,C)| = |Adj(B)| ≤ qO(n). In

this case, we can enumerate all elements in Adj(B,C) in time qO(n). For each element

(A,D) ∈ Adj(B,C), test whether it is invertible, and if so, test whether the A in that

solution induces an isometry together with the individualization. This completes a high-

level description of the algorithm. In particular, the above procedure implies that if G

satisfies |Adj(B)| ≤ qO(n), then |Aut(G)| ≤ qO(n).

5.3 Preliminaries

We collect and restate some notation and definitions for our proofs. q is reserved for prime

powers, and p for primes. For n ∈ N, [n] := {1, . . . , n}. Fq denotes the field of size q.

For i ∈ [n], ei denotes the ith standard basis vector of Fnq . M(s× t, q) denotes the linear

space of matrices of size s × t over Fq, and M(s, q) := M(s × s, q). Is denotes the s × s

identity matrix. For A ∈ M(s × t, q), At denotes the transpose of A. GL(n, q) is the

general linear group of degree n over Fq, which consists of all n × n invertible matrices

over Fq. Λ(n, q) is the linear space of alternating matrices of size n×n over Fq. We denote

Nn :=
(
n
2

)
= dim(Λ(n, q)), or just N if n is obvious from the context. We use

[
n
k

]
q

for the

Gaussian binomial coefficient with base q, and
(
n
k

)
for the ordinary binomial coefficient.

For N ∈ N and m ∈ [N ] ∪ {0},

[
N

m

]
q

=
(1− qN )(1− qN−1) · · · (1− qN−m+1)

(1− q)(1− q2) · · · (1− qm)
(5.8)
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counts the number of dimension-m subspaces in FNq .

By a random vector in FNq , we mean a vector of length N where each entry is chosen

independently and uniformly at random from Fq. By a random matrix in M(s× t, q), we

mean a matrix of size s× t where each entry is chosen independently and uniformly at ran-

dom from Fq. By a random alternating matrix in Λ(n, q), we mean an alternating matrix

of size n where each entry in the strictly upper triangular part is chosen independently

and uniformly at random from Fq. Then the diagonal entries are set to 0, and the lower

triangular entries are set in accordance with the corresponding upper triangular ones.

Lemma 5.4. Let N ∈ N and m ∈ [N ] ∪ {0}.

1. For a fixed subspace U in FNq of dimension m, the number of complements of U in

FNq is qm(N−m). Here we say a subspace V is a complement of U , if V ∩ U = {0}

and 〈V ∪ U〉 = FNq .

2. A random matrix A ∈M(N ×m, q) is of rank m with probability ≥ 1−m/qN−m+1.

Moreover, this probability is greater than 1
4 .

Proof. For 1. Let U = 〈u1, . . . , um〉. We first count the number of (N−m)-tuple of vectors

(v1, . . . , vN−m) which are linear independent, and does not contain in U . This can be done

recursively. We first choose a vector as v1 which is not of the form λ1u1 + . . . λmum, where

λ1, . . . , λm ∈ Fq. The number of possible choice are qN − qm. To choose vk+1, the number

of possible choice is qN−qm+k, as vk is not of the form λ1u1 + . . . λmum+µ1v1 + · · ·+µkvk,

where λ1, . . . , λm, µ1, . . . , µk−1 ∈ Fq. Thus, the total number of (N −m)-tuple of vectors

is (qN − qm)(qN − qm+1) · · · (qN − qN−1).

Note that each subspace spanned by the above chosen (N − m)-tuple of vectors is a

complement of U . While different tuples of vectors could span the same subspaces. Note

that different dimension-(N − m) subspaces have the same number of (N − m)-tuple

of vectors as their linear bases, as they are one-to-one correspondences and connected

by the change-of-bases transformations. Count the number of (N − m)-tuple of vectors

which generate a fixed dimension-(N −m) subspaces, which equals (qN−m − 1)(qN−m −

q) · · · (qN−m − qN−m−1). To conclude, the number of complement subspaces of a fixed
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dimension-m subspace U in FNq can be computed by

(qN − qm)(qN − qm+1) · · · (qN − qN−1)

(qN−m − 1)(qN−m − q) · · · (qN−m − qN−m−1)
= qm(N−m). (5.9)

For 2, we have

Pr[rk(A) = m|A ∈M(N ×m, q)] = (1− 1/qN )(1− 1/qN−1) . . . (1− 1/qN−m+1)

≥ 1− (1/qN + 1/qN−1 + · · ·+ 1/qN−m+1)

≥ 1−m/qN−m+1.

(5.10)

Meanwhile, Pr[rk(A) = m|A ∈M(N×m, q)] = (1−1/qN )(1−1/qN−1) . . . (1−1/qN−m+1) >

(1− 1/2N )(1− 1/2N−1) . . . (1− 1/2N−m+1) > 1
2 ·

3
4 ·

7
8 · · · · ≈ 0.288788 > 1/4.

5.3.1 Matrix Tuples and Matrix Spaces

An r-matrix tuple of size s×t over Fq is an element inM(s×t, q)r. An r-matrix space of size

s× t over Fq is a dimension-r subspace in M(s× t, q). An m-alternating (matrix) tuple of

size n over Fq is an element from Λ(n, q)m. An m-alternating (matrix) space of size n over

Fq is a dimension-m subspace in Λ(n, q). We employ G,H, . . . to denote alternating spaces,

and G,H, . . . to denote alternating tuples. B, C, . . . are for (not necessarily alternating nor

square) matrix spaces, and B,C, . . . for (not necessarily alternating nor square) matrix

tuples3. We say that a matrix tuple B represents a matrix space B, if the matrices in B

form a spanning set (not necessarily a basis) of B. Given A ∈ M(s, q), D ∈ M(t, q), and

B = (B1, . . . , Br) ∈M(s× t, q)r, ABD is the tuple (AB1D, . . . , ABrD). For D ∈M(r, q),

BD := (
∑

i∈[r] d1,iBi,
∑

i∈[r] d2,iBi, . . . ,
∑

i∈[r] dr,iBi), where di,j is the (i, j)th entry of D.

Two alternating tuples G = (G1, . . . , Gm) and H = (H1, . . . ,Hm) in Λ(n, q)m are isometric,

if there exists A ∈ GL(n, q), AtGA = H. Two alternating spaces G and H in Λ(n, q) are

isometric, if there exists A ∈ GL(n, q), such that AtGA = H (equal as subspaces). Given

alternating tuples G ∈ Λ(n, q)m and H ∈ Λ(n, q)m representing G and H respectively,

G and H are isometric, if and only if there exists D ∈ GL(m, q) such that G and HD

3To clarify, in other chapters we use C to denote the complex field.
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are isometric – in other words, there exist A ∈ GL(n, q) and D ∈ GL(m, q), such that

AtGA = HD. We use Iso(G,H) ⊆ GL(n, q) to denote the set of isometries between G and

H. When G = H, the isometries between G and G are also called autometries. The set

of all autometries forms a matrix group, i.e. Aut(G) = Iso(G,G) ≤ GL(n, q). Iso(G,H) is

either empty or a right coset of Aut(G). Analogously, we can define the corresponding

concepts for tuples, such as Iso(G,H) and Aut(G).

Two matrix tuples B = (B1, . . . , Br) and C = (C1, . . . , Cr) in M(s× t, q)r are equivalent,

if there exist A ∈ GL(s, q) and D ∈ GL(t, q), such that AB = CD. Two matrix spaces B

and C in M(s× t, q) are equivalent, if there exist A ∈ GL(s, q) and D ∈ GL(t, q), such that

AB = CD (equal as subspaces). By abuse of notation, we use Iso(B, C) ≤ GL(s, q)×GL(t, q)

to denote the set of equivalences between B and C, and let Aut(B) = Iso(B,B). Iso(B, C)

is either empty or a left coset of Aut(B). Similarly we can define Iso(B,C) and Aut(B).

A trivial but useful observation is that Iso(B,C) and Aut(B) are naturally contained in

certain subspaces of M(s, q)⊕M(t, q). Following [Wil09], we define the adjoint algebra of

B ∈M(s× t, q)r as

Adj(B) := {(A,D) ∈M(s, q)⊕M(t, q) : AB = BD}. (5.11)

The adjoint algebra (of matrix tuples) is a classical concept, and has been recently studied

in the context of p-group isomorphism testing by Wilson et al. [Wil09, LW12, BW12,

BMW17]. We further define the adjoint space between B and C in M(s× t, q)r as

Adj(B,C) := {(A,D) ∈M(s, q)⊕M(t, q) : AB = CD}. (5.12)

(A,D) ∈M(s, q)⊕M(t, q) is called invertible if both A and D are invertible. Then Aut(B)

(Iso(B,C)) consists of invertible elements in Adj(B) (Adj(B,C)). An easy observation is

that, if B and C are isometric, then any isometry between B and C defines a bijection

between Adj(B,C) and Adj(B). Note that the Adj(B,C) and AdjB can be viewed as

linearizations of Iso(B,C) and Aut(B), respectively, which allows us to decide whether

B and C are equivalent, and compute a generating set of Aut(B). These two tasks can

be performed efficiently by using (sometimes with a little twist) existing algorithms for
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testing module isomorphism [CIK97, BL08, IKS10] and computing the unit group in a

matrix algebra [BO08].4

Given B = (B1, . . . , Br) ∈ M(s × t, q)r, let Im(B) := 〈∪i∈[m]Im(Bi)〉 and Ker(B) :=

∩i∈[m]Ker(Bi). We say B is image-nondegenerate (kernel-nondegenerate), if Im(B) = Fsq
(Ker(B) = {0}). If B is an alternating tuple in Λ(n, q)m, then B is image-nondegenerate

if and only if it is kernel-nondegenerate, as Im(B) and Ker(B) are orthogonal. B is non-

degenerate if it is both image-nondegenerate and kernel-nondegenerate. It is easy to see

that, if B is image-nondegenerate (kernel-nondegenerate), then the projection of Adj(B)

to the first (second) component along the second (first) component is injective.

For a matrix tuple B = (B1, . . . , Br) ∈ M(s × t, q)r and a (vector) subspace U ≤ Ftq,

the image of U under B is B(U) := 〈∪i∈[m]Bi(U)〉. It is easy to verify that, (AB)(U) =

A(B(U)), and (BD)(U) = B(D(U)). U ≤ Ftq is trivial if U = {0} or U = Ftq.

Definition 5.5. B ∈M(s× t, q)r is stable, if B is nondegenerate, and for every nontrivial

subspace U ≤ Ftq,
dim(B(U))

dim(U) > s
t .

Remark 5.6. In Definition 5.5, we can replace nondegenerate with image-nondegenerate,

as the second condition already implies kernel-nondegenerate.

Stable matrix tuples admits interesting properties, and we shall utilizing the following

lemma:

Lemma 5.7. If B is stable, then any nonzero (A,D) ∈ Adj(B) is invertible.

Proof. Take any (A,D) ∈ Adj(B). If D = 0, then AB = BD = 0. Since B is image-

nondegenerate, A has to be 0.

Suppose now that D is not invertible nor 0, so Ker(D) is not {0} nor Ftq. By AB(Ker(D)) =

BD(Ker(D)) = 0, we know A(B(Ker(D))) = 0, and B(Ker(D)) ≤ Ker(A). As B is stable,

we have dim(B(Ker(D))) > s
t dim(Ker(D)), thus dim(Ker(A)) > s

t dim(Ker(D)). On

the other hand, AB(Ftq) = BD(Ftq). Since B is image-nondegenerate, B(Ftq) = Im(B) =

4On the other hand, Iso(G,H) and Aut(G) for alternating tuples do not permit such easy linearization.
Therefore testing isometry between G and H [IQ18] and computing a generating set for Aut(G) [BW12]
requires new ideas, including exploiting the ∗-algebra structure.
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Fsq. So AB(Ftq) = Im(A) = B(Im(D)). As B is stable, dim(Im(A)) > s
t dim(Im(D)) if

Im(A) is non-trivial. It follows that s = dim(Im(A)) + dim(Ker(A)) > s
t (dim(Im(D)) +

dim(Ker(D))) = s
t · t = s. This is a contradiction, so D has to be invertible or Im(A) is

trivial. If Im(A) = {0}, by the similar discussion we can derive D = 0 as well, which is

a contradiction. If Im(A) = Fsq, AB is kernel-nondegenerate, so D has to be invertible, as

otherwise BD would not be kernel-nondegenerate.

If D is invertible, then BD is image-nondegenerate. A has to be invertible, as otherwise

AB would not be image-nondegenerate.

Remark 5.8. Briefly speaking, the stable concept corresponds to the concept of simple as

in the representation theory of associative algebras. Lemma 5.7 is an analog of the Schur’s

lemma there. Both the stable concept and the simple concept are special cases of the

stable concept in geometric invariant theory [MFK94, KIN94], specialized to the left-right

action of GL(s, q) × GL(t, q) on M(s × t, q)r, and the conjugation action of GL(s, q) on

M(s, q)r, respectively.

Specifically, consider a tuple of square matrices B ∈M(s, q)r, which can be understood as

a representation of an associative algebra with r generators. This representation is simple

if and only if it does not have a non-trivial invariant subspace, that is U ≤ Fsq, such that

B(U) ≤ U . This amounts to say that there does not exist A ∈ GL(s, q) such that every

B in ABA−1 is of the block-matrix form

B1 B2

0 B3

, where B1 ∈M(s′, q), 1 ≤ s′ ≤ s− 1.

On the other hand, the stable concept can be rephrased as the following. B ∈M(s× t, q)r

is stable, if there do not exist A ∈ GL(s, q) and D ∈ GL(t, q) such that every B ∈ ABD−1

is of the form

B1 B2

0 B3

 where B1 is of size s′ × t′, 1 ≤ t′ ≤ t− 1, such that s′

t′ ≤
s
t .

Lemma 5.7 can be understood as an analog of Schur’s lemma, which states that if B ∈

M(s, q)r is simple then a nonzero homomorphism A ∈M(s, q) of B (e.g. ABA−1 = B) has

to be invertible.

Lemma 5.9. Let A ⊆M(n, q) be a field containing λIn, λ ∈ Fq. Then |A| ≤ qn.

Proof. (Communicated by G. Ivanyos.) Let A be an extension field of Fq with extension

degree d. Then Fnq is an A-module, or in other words, a vector space over A. So Fnq ∼= Am
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as vector spaces over A for some m ∈ N. Considering them as Fq vector spaces, we have

n = md so d divides n. It follows that |A| = qd ≤ qn.

By Lemma 5.7 and 5.9, we have the following.

Proposition 5.10. If B ≤M(s× t, q)r is stable, then |Adj(B)| ≤ qs.

Proof. As B is stable, it is nondegenerate, so the projection of Adj(B) ≤M(s, q)⊕M(t, q)

to M(s, q) (naturally embedded in M(s, q) ⊕ M(t, q)) along M(t, q) is injective. By

Lemma 5.7, the image of the projection is a finite division algebra over Fq containing

λIs. So by Wedderburn’s little theorem, it is a field. By Lemma 5.9, the result follows.

The following proposition about stable matrix spaces is also useful in our proof.

Proposition 5.11. Given B = (B1, . . . , Br) ∈ M(s × t, q)r, let Bt = (Bt
1, . . . , B

t
r) ∈

M(t× s, q)r. Then B is stable if and only if Bt is stable.

Proof. First we consider the nondegenerate part. If u ∈ Fsq satisfies B(u) = {0}, then it is

easy to verify that Bt(Fsq) is contained in the hyperplane defined by u, e.g. ut(Bt(Fsq)) = 0.

If B(Ftq) 6= Fsq, then there exists some u ∈ Fsq such that ut(B(Ftq)) = 0, so u ∈ Ker(Bt).

Therefore B is nondegenerate if and only if Bt is nondegenerate.

In the following we assume that B is nondegenerate, and check nontrivial subspaces to

show that B is not stable if and only if Bt is not stable. This can be seen easily from

the discussion in Remark 5.8. Assume B is not stable. There exist A ∈ GL(s, q) and

D ∈ GL(t, q) such that every B ∈ ABD−1 is of the form

B1 B2

0 B3

, where B1 is of size

s′ × t′, 1 ≤ t′ ≤ t − 1, such that s′

t′ ≤
s
t . Note that s′ > 0; otherwise B is degenerate, so

1 ≤ s′ ≤ s
t ·t
′ < s. Now consider (ABD−1)

t
, the elements in which is of the form

Bt
1 0

Bt
2 Bt

3

.

Note that Bt
3 is of size (t− t′)× (s− s′) where 1 ≤ s− s′ ≤ s− 1, 1 ≤ t− t′ ≤ t− 1, and

t−t′
s−s′ ≤

t
s . It indicates that (ABD−1)

t
is not stable, and Bt being not stable follows. This

concludes the proof.
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5.3.2 Random Alternating Matrix Spaces

We formally define the random models which will be used in the average-case analysis. As

we have mentioned before, the linear algebraic Erdős-Rényi model is defined as follows:

Definition 5.12 (linear algebraic Erdős-Rényi model). The linear algebraic Erdős-Rényi

model, LinER(n,m, q), is the uniform probability distribution over the set of dimension-m

subspaces of Λ(n, q), where each subspace is endowed with probability 1/
[
N
m

]
q
.

We also introduce the following model, which is much more useful in our analysis.

Definition 5.13 (Naive models for matrix tuples and matrix spaces). The naive model

for alternating tuples, NaiT(n,m, q), is the probability distribution over the set of all

m-tuples of n × n alternating matrices, where each tuple is endowed with probability

1/qNm.

The naive model for alternating spaces, NaiS(n,m, q), is the probability distribution over

the set of alternating spaces in Λ(n, q) of dimension no larger than m, where the probability

at some G ≤ Λ(n, q) of dimension 0 ≤ d ≤ m equals the number of m-tuples of n × n

alternating tuples that represent G, divided by qNm.

We now justify that working with the naive model suffices for the analysis even in the linear

algebraic Erdős-Rényi model. Consider the following setting. Suppose we have E(n,m, q),

a property of dimension-m alternating spaces in Λ(n, q), and wish to show that E(n,m, q)

holds with high probability in LinER(n,m, q). E(n,m, q) naturally induces E′(n,m, q),

a property of alternating tuples in Λ(n, q)m that span dimension-m alternating spaces. It

is usually the case that there exists a property F (n,m, q) of all m-alternating tuples in

Λ(n, q)m, so that F (n,m, q) and E′(n,m, q) coincide when restricting to those alternating

tuples spanning dimension-m matrix spaces. If we could prove that F (n,m, q) holds with

high probability, then since a nontrivial fraction of m-tuples do span dimension-m spaces,

we would get that E(n,m, q) holds with high probability as well. The following proposition

summarizes and makes precise the above discussion.

Proposition 5.14. Let E(n,m, q) and F (n,m, q) be defined as above. Suppose F (n,m, q)

happens with probability ≥ 1 − f(n,m, q) in NaiT(n,m, q), where 0 ≤ f(n,m, q) < 1/4.

Then in LinER(n,m, q), E(n,m, q) happens with probability > 1− 4 · f(n,m, q).
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Proof. The number of tuples for which F (n,m, q) fails is no larger than f(n,m, q) · qNm.

Clearly the worst case for E′(n,m, q) is when each of them spans an m-alternating space, so

we focus on this case. Recall that E′(n,m, q) is induced from a property of m-alternating

spaces. That is, if two tuples span the same m-alternating space, then either both of

them satisfy E′(n,m, q), or neither of them satisfies E′(n,m, q). Since the number of m-

alternating spaces for which E(n,m, q) fails is ≤ f(n,m, q) · qNm

(qm−1)(qm−q)...(qm−qm−1)
. The

fraction of m-alternating spaces for which E(n,m, q) fails is no larger than f(n,m, q) ·
qNm

(qN−1)(qN−q)...(qN−qN−m+1)
< 4 · f(n,m, q), where 4 comes from Lemma 5.4 2.

Random matrix spaces. For s, t, r ∈ N, we can define the Erdős-Rényi model for

bipartite graphs on the vertex set [s] × [t] with edge set size r by taking every subset of

[s] × [t] of size r with probability
(
st
r

)−1
. Analogously, we can define the following in the

matrix space and matrix tuple setting.

Definition 5.15. 1. The bipartite linear algebraic Erdős-Rényi model, BipLinER(s×

t, r, q), is the probability distribution over the set of all r-matrix space in M(s× t, q),

where each matrix space is endowed with probability 1/
[
st
r

]
q
.

2. The bipartite naive model for matrix tuples, BipNaiT(s × t, r, q), is the probability

distribution over the set of all r-matrix tuple in M(s × t, q)r, where each matrix

space is endowed with probability 1/qstr.

5.4 Proof of the Main Algorithm

We first define the property F (n,m, q, r) of m-alternating tuples in Λ(n, q)m for the

average-case analysis, where r is the parameter for individualization. To lower bound

the probability, we will in turn work with a stronger property F ′(n,m, q, r), which will

be also defined. Utilizing F (n,m, q, r), we then expand the high-level idea displayed in

subSection 5.2.3 into a rigorous algorithm.



Chapter 5. Testing Isometry between Alternating Matrix Spaces 91

5.4.1 Properties of Alternating Spaces and Alternating Tuples

An m-alternating space G ≤ Λ(n, q) induces

B′G := {
[
e1 · · · er

]t
G
[
er+1 · · · en

]
: G ∈ G} ≤M(r × (n− r), q), (5.13)

of which the dimension is at most m. Define the right-side equivalence of B′G

RAut(B′G) := {A ∈ GL(n− r, q) : B′GA = B′G}. (5.14)

An element in RAut(B′G) is called a right-side equivalence of B′G .

Definition 5.16. Let E′(n,m, q, r) be a property of m-alternating spaces in Λ(n, q), de-

fined as follows. Given an m-alternating space G in Λ(n, q), let B′G be the matrix space

in M(r × (n − r), q) defined as in Equation (5.13). G ∈ E′(n,m, q, r) if and only if

|RAut(B′)| ≤ qn−r.

Right-side equivalence is a useful concept which leads to our algorithm (as seen in Sec-

tion 5.2.2), but what we actually need is the following linearization of RAut(B′).

Definition 5.17. Let E(n,m, q, r) be a property of m-alternating spaces in Λ(n, q), de-

fined as follows. Given an m-alternating space G in Λ(n, q), let B′G be the matrix space

in M(r × (n − r), q) defined as in Equation (5.13). G ∈ E(n,m, q, r), if and only if

|{A ∈M(n− r, q) : B′GA ≤ B′G}| ≤ qn−r.

Clearly, G ∈ E′(n,m, q, r) implies G ∈ E(n,m, q, r). Thus, lower bound on the probability

of G 6∈ E(n,m, q, r) implies lower bound on the probability of G 6∈ E′(n,m, q, r).

We define a property F (n,m, q, r) for alternating tuples that corresponds to E(n,m, q, r).

Given G = (G1, . . . , Gm) ∈ Λ(n, q)m, we can analogously construct a matrix tuple

B′G := ([e1, . . . , er]
tG1[er+1, . . . , en], . . . , [e1, . . . , er]

tGm[er+1, . . . , en]) ∈M(r×(n−r), q)m.

(5.15)

Definition 5.18. Let F (n,m, q, r) be a property of m-alternating tuples in Λ(n, q)m,

defined as follows. Given an m-alternating tuple G in Λ(n, q)m, let B′G be the m-matrix
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tuple in M(r× (n− r), q)m defined as in Equation (5.15). G ∈ F (n,m, q, r), if and only if

|{A ∈M(n− r, q) : ∃D ∈M(m, q), B′GA = B′DG }| ≤ qn−r.

It is not hard to see that F (n,m, q, r) is a proper extension of E(n,m, q, r).

Proposition 5.19. Suppose G ∈ Λ(n, q)m represents an m-alternating space G ≤ Λ(n, q).

Then G is in F (n,m, q, r) if and only if G is in E(n,m, q, r).

Proof. Let B′G and B′G be the matrix space and matrix tuple defined as above for G and

G, respectively. Clearly B′G represents B′G , so B′GA represents B′GA. Finally note that

B′GA = B′DG for some D ∈M(n, q) if and only if the linear span of B′GA is contained in the

linear span of B′G, that is B′GA ≤ B′G .

Instead of working with B′G and {A ∈ GL(n−r, q) : ∃D ∈ GL(m, q),B′GA = B′DG }, it is more

convenient to flip B′G, an m-matrix tuple of size r × (n− r), to get BG, an r-matrix tuple

of size (n − r) ×m. Then the collection {A ∈ M(n − r, q) : ∃D ∈ M(m, q),B′GA = B′DG }

is exactly {A ∈ M(n − r, q) : ∃D ∈ M(m, q), ABG = BGD}, which is closely related to

the adjoint algebra concept for matrix tuples as defined in Equation (5.11). Let π1 :

M(n− r, q)⊕M(m, q)→ M(n− r, q) be the projection to the first component along the

second. {A ∈ M(n − r, q) : ∃D ∈ M(m, q), ABG = BGD} is then just π1(Adj(BG)). We

may reformulate definition 5.18 as the following.

Lemma 5.20 (Definition 5.18, alternative formulation.). F (n,m, q, r) is a property of

m-alternating tuples in Λ(n, q)m, defined as follows. Given an m-alternating tuple G in

Λ(n, q)m, let BG be the r-matrix tuple in M((n − r) × m, q)r defined as above. G ∈

F (n,m, q, r) if and only if |π1(Adj(BG))| ≤ qn−r.

Our algorithm will be based on the property F (n,m, q, r). To show that F (n,m, q, r) holds

with high probability though, we turn to study the following stronger property.

Definition 5.21. Let F ′(n,m, q, r) be a property of m-alternating tuples in Λ(n, q)m,

defined as follows. Given anm-alternating tuple G in Λ(n, q)m, let BG be the r-matrix tuple

in M((n− r)×m, q)r defined as above. G ∈ F ′(n,m, q, r) if and only if |Adj(BG)| ≤ qn−r.



Chapter 5. Testing Isometry between Alternating Matrix Spaces 93

Clearly G ∈ F ′(n,m, q, r) implies G ∈ F (n,m, q, r). To show that G ∈ F ′(n,m, q, r) holds

with high probability, Proposition 5.10 immediately implies the following, which directs

us to make use of the stable property.

Proposition 5.22. Let G and BG be defined as above. If B is stable, then G ∈ F ′(n,m, q, r).

5.4.2 Estimate the Probability of G ∈ F ′(n,m, q, r)

We now show that G ∈ F ′(n,m, q, r) holds with high probability in NaiT(n,m, q), where

m = cn for some positive constant c. The integer r is chosen so that r ≥ 4· n−rm if n−r ≥ m,

and r ≥ 4 · mn−r if m ≥ n−r. When n is large enough this is always possible. Let s := n−r

and t := m. By Proposition 5.22, to show F ′(n,m, q, r) holds with high probability, we can

alternatively show that for most G ∈ NaiT(n,m, q), the corresponding BG in M(s× t, q)r

is stable. A simple observation is that NaiT(n,m, q) induces BipNaiT(s×t, r, q) obtained

by flipping the upper right s × t corners of the alternating matrices (see Figure 5.2). So

we only need to estimate the probability of B ∈ BipNaiT(s× t, r, q) being stable.

By our choice of r, we obtain an r-matrix tuple in M(s × t, q) with r ≥ 4 · max(s,t)
min(s,t) . By

Proposition 5.11, we know Pr[B ∈ BipNaiT(s × t, r, q) is stable] = Pr[C ∈ BipNaiT(t ×

s, r, q) is stable] via the transpose map. So it is enough to consider the case when s ≥ t.

Proposition 5.23. Give positive integers s, t, and r such that s ≥ t ≥ 16, s
t := b ≥ 1 (b is

a constant), and r ≥ 4b. Then B is stable with probability 1− 1
qΩ(t) in BipNaiT(s× t, r, q),

where Ω(t) hides a positive constant depending on b.

Proof. We will upper bound the probability of B being not stable in BipNaiT(s× t, r, q):

P := Pr[B is degenerate, or ∃U ≤ Ftq, U non-trivial,
dim(B(U))

dim(U)
≤ s

t
]. (5.16)

By the union bound, we have:

P ≤
∑
U≤Ftq ,

1≤dim(U)≤t−1

Pr[
dim(B(U))

dim(U)
≤ s

t
] + Pr[B is degenerate]. (5.17)



94 Chapter 5. Testing Isometry between Alternating Matrix Spaces

About B being degenerate. By remark 5.6, we only need to bound the image-degenerate

case. Note that the columns of Bi’s form a linear basis of Im(B). By forming an s ×

rt matrix A =
[
B1 B2 · · · Br

]
, this amounts to upper bound the probability that

Pr[rk(A) < s|A ∈M(s× rt, q)]. As rt ≥ 4bt = 4s,

Pr[rk(A) = s|A ∈M(s× rt, q)] ≥ Pr[rk(A) = s|A ∈M(s× 4s, q)] ≥ 1− s/q3s+1,

where the last inequality is from Lemma 5.4 2. So we have Pr[B is image-degenerate] ≤

1/qΩ(t) since s = bt.

Reduce to work with nontrivial subspaces with the same dimension. Now we

focus on upper bound
∑

U≤Ftq ,1≤dim(U)≤t−1 Pr[dim(B(U))
dim(U) ≤ s

t ]. For a nontrivial subspace

U ≤ Ftq, let

BU := {B ∈M(s× t, q)r :
dim(B(U))

dim(U)
≤ s

t
}. (5.18)

For two subspace U1, U2 ≤ Ftq of the same dimension d ∈ {1, . . . , t − 1}, we claim that

|BU1 | = |BU2 |. Let X ∈ GL(t, q) be any invertible matrix such that X(U2) = U1, and

consider the map TX : M(s× t, q)r →M(s× t, q)r defined by sending B to BX. It is easy

to see that TX is a bijection between BU1 and BU2 . The claim then follows and we have

Pr
B

[
dim(B(U1))

dim(U1)
≤ s

t
] = Pr

B
[
dim(B(U2))

dim(U2)
≤ s

t
]. (5.19)

Setting Ud = 〈e1, . . . , ed〉, we apply union bound again and derive

∑
U≤Ftq ,

1≤dim(U)≤t−1

Pr[
dim(B(U))

dim(U)
≤ s

t
] =

∑
1≤d≤t−1

[
t

d

]
q

Pr[dim(B(Ud)) ≤
s

t
· d]. (5.20)

Upper bound
[
t
d

]
q

Pr[dim(B(Ud)) ≤ s
t ·d]. For d = 1, . . . , t−1, denote Pd := Pr[dim(B(Ud)) ≤

s
t · d]. Note that for any matrix B ∈ M(s× t, q), B(Ud) is spanned by the first d column

vectors of B. So for B = (B1, . . . , Br) ∈ M(s × t, q)r, B(Ud) is spanned by the first d

columns of Bi’s. Collect those columns to form a matrix A ∈M(s× rd, q), we can derive

Pd = Pr[dim(B(Ud)) ≤ bd] = Pr[rk(A) ≤ bbdc|A ∈M(s× rd, q)]. (5.21)
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Note that we substituted bd with bbdc as that does not change the probability. Equa-

tion (5.21) suggests the following to upper bound of Pd. For A to be of rank ≤ bbdc, there

must exist bbdc columns such that other columns are linear combinations of them. So

we enumerate all subsets of {1, . . . , rd} of size bbdc to locate the bbdc linear independent

columns. Fill in these columns arbitrarily, and fill the other columns as linear combina-

tions of them to construct the matrix A. This procedure suggests an upper bound on

Pd:

Pd ≤

(
rd
bbdc
)
· qsbbdc · qbbdc(rd−bbdc)

qsrd
. (5.22)

When 1 ≤ d ≤ t/2, we further derive that

[
t

d

]
q

Pd ≤

(
rd
bbdc
)
· qsbbdc · qbbdc(rd−bbdc) ·

[
t
d

]
q

qsrd

≤ qrd · qsbd · qbd(rd−bd) · qtd

qsrd

≤ 1

q(sr−sb−t−r)d−b(r−b)d2 ,

(5.23)

where in the second inequality, we use the fact that
(
rd
bbdc
)
≤ 2rd ≤ qrd,

[
t
d

]
q
≤ qtd and

bbdc(rd− bbdc) ≤ bd(rd− bd) since r ≥ 4b.

Let f(d) = (sr − sb − t − r)d − b(r − b)d2. It is easy to see that f(d) achieves minimum

at d = 1 or d = t/2 when 1 ≤ d ≤ t
2 . We compute that f(1) = (br − b2 − 1)t+ b2 − r − br

and f( t2) = (1
4br−

1
4b

2− 1
2)t2− 1

2rt. Since r ≥ 4b and b ≥ 1, br− b2− 1 ≥ 3b2− 1 > 0 and

1
4br −

1
4b

2 − 1
2 ≥

3
4b

2 − 1
2 > 0, these two lower bounds then yield that

[
t

d

]
q

Pd ≤
1

qΩ(t)
∀ 1 ≤ d ≤ t/2. (5.24)

When t/2 ≤ d ≤ t− 3, we replace
[
t
d

]
q

by
[
t
t−d
]
q

in inequality (5.23) and obtain

[
t

d

]
q

Pd ≤

(
rd
bbdc
)
· qsbbdc · qbbdc(rd−bbdc) ·

[
t
t−d
]
q

qsrd
≤ qrd · qsbd · qbd(rd−bd) · qt(t−d)

qsrd

≤ 1

q(sr−sb+t−r)d−b(r−b)d2−t2 .
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It can be seen that the function g(d) = (sr − sb + t − r)d − b(r − b)d2 − t2 achieves

minimum at d = t/2 or d = t − 3 when t/2 ≤ d ≤ t − 3. We know that g( t2) = f( t2) =

(1
4br−

1
4b

2− 1
2)t2− 1

2rt and compute g(t− 3) = (3br− 3b2− r− 3)t+ 3r+ 9b2− 9br. Since

r ≥ 4b and b ≥ 1, 3
4b

2 − 1
2 > 0 and 9b2 − 4b − 3 > 0 when b ≥ 1, these two lower bounds

then yield that [
t

d

]
q

Pd ≤
1

qΩ(t)
, ∀ t/2 ≤ d ≤ t− 3. (5.25)

When d = t − 2, recall that Pt−2 = Pr[rk(A) ≤ b(t − 2)|A ∈ M(s × r(t − 2), q)]. Since

t ≥ 16 (i.e. s ≥ 16b), r(t − 2) ≥ 4b(t − 2) ≥ d7
2se. Also note that b(t − 2) < bt = s.

Therefore

Pt−2 ≤ Pr[rk(A) < s|A ∈M(s× d7
2
se, q)] ≤ s/q

5
2
s+1 (5.26)

by Lemma 5.4 2. Then

[
t

t− 2

]
q

Pt−2 ≤
sq2t

q
5
2
s+1

=
bt

q( 5
2
b−2)t+1

≤ 1

qΩ(t)
(5.27)

The case when d = t− 1 is similar, and we can obtain

[
t

t− 1

]
q

Pt−1 ≤
1

qΩ(t)
. (5.28)

We concludes the proof by combining inequalities (5.24), (5.25), (5.27), (5.28).

5.4.3 Algorithm Analysis

We now present a detailed description and analysis of the main algorithm as Algorithm 2,

and prove Theorem 5.1.

As described in Section 5.2, we first discuss the individualization step. Recall that an r-

individualization is a direct sum decomposition of Fnq = L⊕R, where L and R are subspaces

of Fq and L is equipped with an ordered basis (v1, . . . , vr). In our main algorithm, we need

to enumerate all r-individualizations, and the following proposition realizes this.

Proposition 5.24. There is a deterministic algorithm that lists all r-individualizations

in Fnq in time qO(rn). Each individualization Fnq = L ⊕ R is represented as an invertible
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matrix
[
v1 · · · vr u1 · · · un−r

]
∈ GL(n, q), where (v1, . . . , vr) is the chosen ordered

basis of L and {u1, . . . , un−r} forms a linear basis of R.

Proof. We present the algorithm formally as Algorithm 1. Let us first outline what the

Algorithm 1 Algorithm for listing r-individualizations in Fnq
Input: A positive integer r.
Output: a list T of invertible matrices of size n.

1: T ← ∅
2: Listing all r-tuples of linearly independent vectors.
3: for all dimension-r L ≤ Fnq with an ordered basis (v1, . . . , vr) do
4: (u1, . . . , un−r)← An ordered basis of a complement of L
5: for all (n− r)-tuples of vectors (w1, . . . , wn−r) from L do
6: T ← [v1, . . . , vr, u1 + w1, . . . , un−r + wn−r]
7: end for
8: end for

algorithm does. Line 2 lists all r-tuples of linearly independent vectors, which can be

viewed as enumerating all dimension-r subspaces L equipped with an ordered basis. This

steps can be done easily in time qrn · poly(n, log q) as there are (qn − 1)(qn − q) · · · (qn −

qr−1) ≤ qrn such r-tuples. From Line 3 to 8 the algorithm computes all complements of

L, and represent each complement R by an (n− r)-tuple of vectors which span R. Collect

these two tuples to form an n×n invertible matrix. To compute the complements, we first

compute one linear basis of an arbitrary complement of L, by solving the linear equations

defined by vi’s, e.g. vt
ix = 0 where x is a vector of variables for i = 1, . . . , r. Denote the

solution by the (n − r)-tuple of (linear independent) vectors (u1, . . . , un−r). The linear

spans of the (n− r)-tuples (u1 +w1, . . . , un−r +wn−r) go over all complements of L when

(w1, . . . , wn−r) go over all (n − r)-tuples of vectors from L, which can be done in time

qr(n−r). The total cost is q2rn−r2 ∈ qO(rn). Other steps can be achieved via linear algebra

computations. This concludes the proof.

Algorithm 1 produces a list T of invertible matrices in GL(n, q). More precisely, matrices

in T admits a structural property.
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Proposition 5.25. For every A =
[
v1 · · · vr vr+1 · · · vn

]
∈ GL(n, q), there uniquely

exists A1 =
[
v1 · · · vr u1 · · · un−r

]
∈ T , where 〈vr+1, . . . , vn〉 = 〈u1, . . . , un−r〉, and

A0 ∈ GL(n− r, q), such that A = A1

Ir 0

0 A0

.

Proof. Notes that every invertible matrix A =
[
v1 · · · vr vr+1 · · · vn

]
can be viewed

as a change-of-basis matrix, mapping ei to vi for i ∈ [n] where V = {v1, . . . , vn} is

a linear basis of Fnq . Clearly, we can find A1 =
[
v′1 · · · v′r u′1 · · · u′n−r

]
∈ T ,

where 〈vr+1, . . . , vn〉 = 〈u1, . . . , un−r〉. This is because matrices in T coincide with r-

individualizations of Fnq , and A1 corresponding to the one where Fnq = 〈(v′1, . . . , v′r)〉 ⊕

〈u′1, . . . , u′n−r〉. We simply pick A1 such that v′i = vi for i ∈ [r] and 〈u′1, . . . , u′n−r〉 =

〈vr+1, . . . , vn〉. Note that A1 is responsible to map ei to vi for i ∈ [r], while the map-

ping from ei to vi for i ∈ [n] \ [r] cannot be achieved by A1, as it is only responsible to

map the subspace 〈e1, . . . , er〉 to the subspace 〈u′1, . . . , u′n−r〉. To further realize the basis

change, we need another invertible A0 and the decomposition A = A1

Ir 0

0 A0

 follows.

The uniqueness can be derived as A1 need to be unique.

Now we formally present our average-case algorithm as Algorithm 2, with some implemen-

tation details.

Line 7. BG is constructed by taking the upper-right r × (n − r) corners of Gi’s to get

an m-matrix tuple B′G ∈M(r × (n− r), q)m, and flipping B′G to obtain an r-matrix

tuple BG ∈M((n− r)×m, q)r. See also Figure 5.2 and 5.3.

Line 14. CH is constructed as follows. For a given invertible matrix A1 ∈ T . Let H1 =

At
1HA1. Then perform the same procedure as in Line 7 for H1.

Line 9, 16. π1 denotes the projection of M(n − r, q) ⊕ M(m, q) to M(n − r, q) along

M(m, q).

Line 22. To test whether A0 = A2A
−1
1 is an isometry between G and H, we test whether

At
0GA0 and H span the same alternating space.
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Algorithm 2 Average-case algorithm for AltMatSpIso

Input: Two m-alternating tuples G = (G1, . . . , Gm) and H = (H1, . . . ,Hm) in Λ(n, q)m

representing m-alternating spaces G,H ≤ Λ(n, q), respectively. m = cn for some
constant c, and n is large enough (larger than some fixed function of c).

Output: Either certify that G does not satisfy F (n,m, q, r), or a set S consisting of all
isometries between G and H. (If S = ∅ then G and H are not isometric.)

1: S ← ∅.
2: if n− r ≥ m then
3: Set r ∈ N such that r ≥ 4 · n−rm
4: else
5: Set r ∈ N such thatr ≥ 4 · m

n−r
6: end if
7: Construct BG ∈M((n− r)×m, q)r as described before definition 5.21.
8: Compute a linear basis of Adj(BG).
9: if dim(π1(Adj(BG))) > n− r then

10: Return “G does not satisfy F (n,m, q, r).”
11: else
12: Produce T which lists all r-individualizations in Fnq as invertible matrices of size n

by Algorithm 1.
13: end if
14: for all A1 ∈ T do
15: Construct CH ∈ M((n − r) ×m, q)r with respect to the r-individualization repre-

sented by A1.
16: Compute a linear basis of Adj(BG,CH).
17: if dim(π1(Adj(BG,CH))) > n− r then
18: Go to the next r-individualization.
19: else
20: for all A0 ∈ π1(Adj(BG,CH)) do
21: if A0 is invertible then

22: A2 ←
[
Ir 0
0 A0

]
23: if A = A2A

−1
1 is an isometry between G and H then

24: S ← A
25: else
26: Go to the next A0 ∈ π1(Adj(BG,CH)).
27: end if
28: else
29: Go to the next A0 ∈ π1(Adj(BG,CH)).
30: end if
31: end for
32: end if
33: end for
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Complexity analysis. It is straightforward to verify that the algorithm runs in time

qO(n): the multiplicative cost of enumerating r-individualization is at most q2rn−r2
, and

the multiplicative cost of enumerating π1(Adj(BG,CH)) starting from line 14 is at most

qn−r. All the other steps are basic tasks in linear algebra so can be carried out efficiently.

When m = cn and n larger than a fixed function of c, all but at most 1/qΩ(n) fraction

of G ≤ Λ(n, q) satisfy F (n,m, q, r) by propositions 5.23, 5.22, and 5.14. Note that Ω(n)

hides a constant depending on c.

To see the correctness, first note that by the test step in line 23, only isometries will be

added to S. So we only need to verify that, when G is in F (n,m, q, r), then every isometry

A ∈ Iso(G,H) will be added to S. Recall that A ∈ GL(n, q) is an isometry from G to H if

and only if there exists D ∈ GL(m, q) such that A0
tGA0 = HD, which is equivalent to G =

(A−1)t(HD)A−1. By Proposition 5.25, A−1 ∈ GL(n, q) can be written uniquely as A−1 =

A1A
−1
2 where A1 represents an r-individualization, and A2 admits the block-diagonal formIr 0

0 A0

 where A0 ∈ GL(n − r, q). As we enumerate all the r-individualization, the

invertible matrix A1 will be encountered by Algorithm 1. The invertible matrix A0 will be

encountered when enumerating the elements of π1(Adj(BG,CH)) and forms A2 as shown

in line 22. Since At
2GA2 = At

1(HD)A1 = (At
1HA1)D, we derive that A ∈ Iso(G,H) and

added to S.

5.5 Dynamic Programming

In this section, we utilize Luks’ dynamic programming technique [Luk99] for GraphIso

to derive a deterministic algorithm for AltMatSpIso. Note that, for a matrix group

G ≤ GL(n, q) (specified by a list of generators), we can view G as a permutation group on

the domain Fnq . So basic tasks like membership testing and pointwise transporter can be

implemented in time qO(n) by permutation group algorithms. Furthermore, we can obtain

a generating set of a matrix group G of size qO(n) in time qO(n) by Sims’ method [Sim78].

These algorithms are classical and can be found in [Luk90, Ser03]. Also we emphasize that,

if we are required to compute a coset of a subgroup H ≤ G, the coset will be specified by

a list of generators of H and a coset representative g ∈ G.
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As mentioned in Section 5.1, for GraphIso, the dynamic programming technique improves

the (worst-case) brute-force n! · poly(n) time bound to the 2O(n) time bound, which can

be understood as replacing the number of permutations n! with the number of subsets 2n.

In the AltMatSpIso setting, the dynamic programming technique is more transparent

when working with the subset transporter problem: Given a permutation group P ≤ Sn

and two subsets S1, S2 ⊆ [n] of size k, this technique gives a 2k ·poly(n)-time algorithm to

compute P (S1 → S2) := {σ ∈ P : σ(S1) = S2} (see also [BQ12] for a brief introduction).

To illustrate the idea in the matrix group setting, we start with the subspace transporter

problem.

Problem 5.3 (Subspace transporter problem). Let G ≤ GL(n, q) be given by a set of

generators, and let V , W be two subspaces of Fnq of dimension d. The subspace transporter

problem asks to compute the coset G(V →W ) = {g ∈ G : g(V ) = W}.

The subspace transporter problem admits the following brute-force algorithm. Fix a basis

(v1, . . . , vd) of V , and enumerate all ordered basis of W at the multiplicative cost of qd
2
.

For each ordered basis (w1, . . . , wd) of W , compute the coset {g ∈ G : ∀i ∈ [d], g(vi) = wi}

by adaptively using the pointwise transporter algorithm. This gives an algorithm running

in time qd
2+O(n). Analogous to the permutation group setting, we aim to replace O(qd

2
),

the number of ordered basis of Fdq , with q
1
4
d2+O(k), the number of subspaces in Fdq , via

the dynamic programming technique. For this, we first show how to enumerate all these

subspaces.

Remark 5.26. The above algorithm can be also use to enumerate the autometry group

of G by replacing H by G when G satisfy property F (n,m, q, r). And corollary 5.2 follows

immediately.

Lemma 5.27. There exists a deterministic algorithm that enumerates all subspaces of Fnq ,

and for each subspace computes an ordered basis, in time q
1
4
n2+O(n).

Proof. Algorithm 3 enumerates all subspaces of Fnq , where a dimension-k subspace V is

identified by a k-tuple of linear independent vectors (v1, . . . , vk) in Fnq which span V . To

analyze the complexity of Algorithm 3, note that the multiplicative cost which dominate
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Algorithm 3 Enumerates all subspaces in Fnq
Input: Fnq .
Output: Lists Sk of k-tuples of (linear independent) vectors which represents dimension-k

subspaces of Fq for k = 0, . . . , n.
1: Sk ← ∅ for k = [n] and S0 ← {0}.
2: for all i ∈ [n] do
3: for all (v1, . . . , vi−1) ∈ Si−1 do
4: for all u 6∈ 〈v1, . . . , vi−1〉 do
5: if (v1, . . . , vi−1, u) 6∈ Si then
6: Si ← (v1, . . . , vi−1, u)
7: else
8: Go to the next u 6∈ 〈v1, . . . , vi−1〉
9: end if

10: end for
11: end for
12: end for

the time complexity is to go over all subspaces of Fnq . The total number equals

[
n

0

]
q

+

[
n

1

]
q

+ · · ·+
[
n

n

]
q

≤ (n+ 1)

[
n

dn2 e

]
q

≤ (n+ 1)q
1
4
n2 ∈ q

1
4
n2+O(logq n). (5.29)

Enumerate all vectors which are not in a given dimension-k subspaces (line 4) add a

multiplicative cost qn − qk ∈ qO(n). All the other steps can be achieved by linear algebra

computation. Thus, the total complexity of Algorithm 3 is q
1
4
n2+O(n).

Theorem 5.28. There exists a deterministic algorithm that solves the subspace transporter

problem in time q
1
4
d2+O(n).

Proof. Algorithm 4 can be used to solve the subspace transporter problem. We first fix

an ordered basis (v1, . . . , vd) of V . For k ∈ [d], let Vk = 〈v1, . . . , vk〉. For g ∈ G(V →W ), g

maps Vk to some dimension-k subspace U of W . As the brute-force algorithm enumerate all

possible d-tuples of basis vectors of W , we are motivate to replace the enumeration of basis

by enumerating all possible subspaces. That is, we maintain a dynamic programming table

consists of cells indexed by all subspaces of W . For a dimension-k subspace U , specified

by a tuple of basis vectors, the corresponding cell will store the coset G(Vk → U) = {g ∈

G : g(Vk) = U}. A list of subspaces can be obtained by Algorithm 3 in time q
1
4
d2+O(d)

(Lemma 5.27). G(V →W ) can be obtained by read-out the cell indexed by U = W .
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Algorithm 4 Subspace transporter

Input: A matrix group G ≤ GL(n, q). Two dimension-d subspaces V,W ≤ Fnq .
Output: G(V →W ).

1: Specify an ordered basis of V by (v1, . . . , vd). Let Vk = 〈v1, . . . , vk〉 for k ∈ [d].
2: Compute a list of all subspaces of W by Algorithm 3.
3: G(Vl → U)← ∅ for all dimension-l subspaces U ≤W , where l ∈ [d].
4: G(V0 → {0})← G.
5: for all k ∈ [d] do
6: for all U ≤W , dim(U) = k do
7: for all U0 ≤ U , dim(U0) = k − 1 do
8: for all u ∈ U \ U0 do
9: Compute [G(Vk−1 → U0)](vk → u)

10: G(Vk → U)← [G(Vk−1 → U0)](vk → u)
11: end for
12: end for
13: Obtain a generating set of G(Vk → U) of size qO(n)

14: end for
15: end for
16: G(V →W )← G(Vd →W )

We fill in the dynamic programming table adaptively in an increasing order according to k.

For k = 0, we set G({0} → {0}) = G. Assume for k ∈ [d], we have computed G(Vl → U ′)

for all subspaces U ′ ≤W of dimension l where 0 ≤ l ≤ k− 1. To compute G(Vk → U) for

a fixed U ≤ W of dimension k, note that any g ∈ G(Vk → U) has to map Vk−1 to some

dimension-(k − 1) subspace U0 ≤ U , and vk to some vector u ∈ U \ U0. This gives that

G(Vk → U) =
⋃

U0≤U,
dim(U0)=k−1

⋃
u∈U\U0

[G(Vk−1 → U0)](vk → u). (5.30)

For a fixed dimension-(k − 1) subspace U0 ≤ U and u ∈ U \ U0, we compute [G(Vk−1 →

U0)](vk → u) (line 9) as follows. We can read G(Vk−1 → U0) from the table, then compute

[G(Vk−1 → U0)](vk → u) using the pointwise transporter algorithm (e.g. see proposition

(3.9) in Luks’ report [Luk93]). The number of u in U \ U0 is no more than qk, and the

number of dimension-(k − 1) subspaces of U is also no more than qk. After taking these

two unions, apply Sims’ method [Sim78] to get a generating set of size qO(n) (line 13).

Therefore we can compute each cell in time at most q2d · qO(n) = qO(n). Therefore the

whole dynamic programming table can be filled in time q
1
4
d2+O(d) · qO(n) = q

1
4
d2+O(n).
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Now, we intend to derive an algorithm for AltMatSpIso, using the dynamic programming

technique. We settle the following problem first.

Problem 5.4 (Alternating matrix transporter problem). Let H ≤ GL(n, q) be given by

a set of generators, and let A,B ∈ Λ(n, q) be two alternating matrices. The alternating

matrix transporter problem asks to compute the coset H(A→ B) = {g ∈ H : gtAg = B}.

The alternating matrix transporter problem admits a brute-force algorithm which runs in

time qΘ(n2)+O(n), by simply enumerate all elements in H and test whether they transform

A to B. Note that the alternating matrix transporter problem can not be converted into an

instance of pointwise transporter problem over domain F
1
2
n(n−1)

q , as we cannot transform

the action of g ∈ G on B ∈ Λ(n, q) into the permutation group setting.

Theorem 5.29. There exists a deterministic algorithm that solves the alternating matrix

transporter problem in time q
1
4
n2+O(n).

Proof. Algorithm 5 solves the alternating matrix transporter problem.

Algorithm 5 Alternating matrix transporter

Input: A matrix group H ≤ GL(n, q). Two alternating matrix A,B ∈ Λ(n, q).
Output: H(A→ B).

1: Specify an ordered basis of Fnq = 〈e1, . . . , en〉 represent A. Let Ed = 〈e1, . . . , ed〉 for
d ∈ [n].

2: H(A|Ed → B|U )← ∅ for all dimension-d subspaces U ≤ Fnq where d ∈ [n].
3: H(A|{0} → B|{0})← H.
4: for all d ∈ [n] do
5: for all dimension-d U ≤ Fnq do
6: for all dimension-(d− 1) U0 ≤ U do
7: for all u ∈ U \ U0 do
8: Compute

[
[H(A|Ed−1

→ B|U0)](ed → u)
]
(A|Ed−1×ed → B|U0×u)

9: H(A|Ed → B|U )←
[
[H(A|Ed−1

→ B|U0)](ed → u)
]
(A|Ed−1×ed → B|U0×u)

10: end for
11: end for
12: Obtain a generating set of H(A|Ed → B|U ) of size qO(n)

13: end for
14: end for
15: H(A→ B)← H(A|En → B|Fnq )

Let (e1, . . . , en) be the standard basis vectors of Fnq which represents A. Let Ed =

〈e1, . . . , ed〉 for d ∈ [n]. For an alternating matrix B, and an ordered basis (u1, . . . , ud) of
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a dimension-d U ≤ Fnq , we define

B|U :=
[
u1 · · · ud

]t
B
[
u1 · · · ud

]
∈ Λ(d, q). (5.31)

B|U stands for the restriction of B to the subspace U . For a vector v and U with the

ordered basis as above, we define

BU×v =
[
u1 · · · ud

]t
Bv ∈ Fdq . (5.32)

Algorithm 5 output a dynamic programming table, which is a list indexed by all subspaces

of Fnq . These subspaces will be specified by an arbitrary tuple of ordered basis, which can

be obtained in time q
1
4
n2+O(n) utilizing Algorithm 3. For any U = 〈u1, . . . , ud〉 ≤ Fnq (of

dimension d), its corresponding cell stores the coset

H(A|Ed → B|U ) = {g ∈ H : g(Ed) = U, gt(A|Ed)g = B|U}. (5.33)

We will fill in the list adaptively in the increasing order of the dimension d. The base

case d = 0 is trivial. Assume we have already compute the coset H(A|El → B|U ′) for all

dimension-l subspace U ′ ≤ Fnq and 0 ≤ l ≤ d − 1. To compute H(A|Ed → B|U ) for some

U ≤ Fnq of dimension d, we point out that any g ∈ H(A|Ed → B|U ) satisfies the following:

On the one hand, g must map Ed−1 to some dimension-(d − 1) subspace U0 ≤ U , and

A|Ed−1
∈ Λ(d − 1, q) to B|U0 ∈ Λ(d − 1, q). On the other hand, g sends ed to some

u ∈ U \ U ′, and A|Ed−1×ed ∈ Fd−1
q to B|U ′×u ∈ Fd−1

q . We construct H(A|Ed → B|U ) by

H(A|Ed → B|U ) =
⋃

U0≤U,
dim(U0)=d−1

⋃
u∈U\U0

[
[H(A|Ed−1

→ B|U0)](ed → u)
]
(A|Ed−1×ed → B|U0×u).

(5.34)

For fixed dimension-(d − 1) subspace U0 and u ∈ U \ U0, we compute
[
[H(A|Ed−1

→

B|U0)](ed → u)
]
(A|Ed−1×ed → B|U0×u) (line 8) as follows. We read H(A|Ed−1

→ B|U0)

from the table, compute [H(A|Ed−1
→ B|U0)](ed → u) using the pointwise transporter

algorithm. As [H(A|Ed−1
→ B|U0)](ed → u) induces an action on Fd−1

q corresponding to

the last column of A|Ed with the last entry (which is 0) being removed,
[
[H(A|Ed−1

→

B|U0)](ed → u)
]
(A|Ed−1×ed → B|U0×u) can be computed by another pointwise transporter
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algorithm. We go over the two unions and apply Sims’ method to obtain a generating set

of size qO(n). The multiplicative cost for filling in each cell is at most q2d · qO(n) ∈ qO(n),

and the total time complexity is then q
1
4
n2+O(n).

We are now ready to prove Theorem 5.3.

Theorem 5.3, restated. Given G = (G1, . . . , Gm) and H = (H1, . . . ,Hm) in Λ(n, q)m

representing two m-alternating spaces G,H ≤ Λ(n, q), there exists a deterministic algo-

rithm for AltMatSpIso in time q
1
4

(m2+n2)+O(m+n).

Proof. We claim that Algorithm 6 can be used to AltMatSpIso.

Algorithm 6 AltMatSpIso

Input: Two m-alternating tuples G = (G1, . . . , Gm) and H = (H1, . . . ,Hm) in Λ(n, q)m

representing m-alternating spaces G,H ≤ Λ(n, q).
Output: Iso(G,H).

1: Specify an ordered basis of Fmq = 〈e1, . . . , em〉. Let Ek = 〈e1, . . . , ek〉 for k = [m].

2: IsoG,H ← ∅. Iso(GEk ,HV )← ∅ for all dimension-k subspaces V ≤ Fmq and k ∈ [m].

3: Iso(G{0},H{0})← GL(n, q)×GL(m, q).
4: for all k ∈ [m] do
5: for all dimension-k V ≤ Fmq do
6: for all dimension-(k − 1) V0 ≤ V do
7: for all v ∈ V \ V0 do
8: Compute

[
[Iso(GEk−1 ,HV0)](ek → v)

]
(Gek → Hv)

9: Iso(GEk ,HV )→ B|U )←
[
[Iso(GEk−1 ,HV0)](ek → v)

]
(Gek → Hv)

10: end for
11: end for
12: Obtain a generating set of Iso(GEk ,HV ) of size qO(n)

13: end for
14: end for
15: Iso(G,H)← π1(Iso(GEm ,HFmq ))

Let (e1, . . . , em) be the standard basis of Fmq and let Ek = 〈e1, . . . , ek〉 for k ∈ [m].

Let GEk = (G1, . . . , Gk) ∈ Λ(n, q)k. For a vector v =
[
a1, · · · , am

]t
∈ Fmq , define

Hv :=
∑

i∈[m] aiHi ∈ Λ(n, q). For a dimension-k subspace V ≤ Fmq with an ordered

basis (v1, . . . , vk), HV := (Hv1 , . . . ,Hvk) ∈ Λ(n, q)k.

The algorithm outputs a dynamic programming table, which is a list indexed by subspaces

of Fmq . By Lemma 5.27, we can obtain these subspaces specified by an ordered basis in
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time q
1
4
m2+O(m) using Algorithm 3. The cell corresponding to a dimension-k subspace

V ≤ Fmq stores the coset

Iso(GEk ,HV ) = {(g, h) ∈ GL(n, q)×GL(k, q) : gt(GEk)g = (HV )h}, (5.35)

where Hh = (
∑

j∈[m] h1,jHj ,
∑

j∈[m] h2,jHj , . . . ,
∑

j∈[m] hm,jHj), where [hi,j ]i,j∈[m] forms

the invertible matrix representing h ∈ GL(n, q).

We will fill in the dynamic programming table adaptively in the increasing order of the

dimension k. The base case k = 0 is trivial. Now assume we have computed Iso(GEl ,HV )

for all V ≤ Fnq of dimension l and 0 ≤ l ≤ k − 1. To compute Iso(GEk ,HV ) for a

given dimension-k subspace V ≤ Fnq , note that any (g, h) ∈ Iso(GEk ,HV ) satisfies the

following. On the one hand, h sends Ed−1 to some dimension-(k − 1) subspace V0 ≤ V ,

and (g, h) ∈ Iso(GEk−1 ,HV0). On the other hand, h sends ek to some v ∈ V \ V0, and g

sends Gek to Hv. We construct Iso(GEd ,HV ) by

Iso(GEk ,HV ) =
⋃

V0≤V,
dim(V0)=k−1

⋃
v∈V \V0

[
[Iso(GEk−1 ,HV0)](ek → v)

]
(Gek → Hv). (5.36)

Now, for fixed V0 and v, we compute
[
[Iso(GEk−1 ,HV0)](ek → v)

]
(Gek → Hv) (line 8)

as follows. Iso(GEk−1 ,HV0) can be read from the table. [Iso(GEk−1 ,HV0)](ek → v) is

an instance of the pointwise transporter problem of GL(n, q) × GL(k, q) acting on Fmq ,

which can be solved in time qO(m).
[
[Iso(GEk−1 ,HV0)](ek → v)

]
(Gek → Hv) is an instance

of the alternating matrix transporter problem, which can be solved, by Algorithm 5,

in time q
1
4
n2+O(n). Going over the two unions adds a multiplicative factor of q2k for

k ∈ [m], and then we apply Sims’ method to reduce the size of the generating set to

qO(n) (line 12). Therefore each cell can be computed in q2k · q
1
4
n2+O(n+m) ∈ q

1
4
n2+O(m+n).

The whole dynamic programming table can be filled in time q
1
4
m2+O(m) · q

1
4
n2+O(n+m) ∈

q
1
4

(n2+m2)+O(n+m). To obtain Iso(G,H), we simply perform the projection π1 of GL(n, q)×

GL(m, q) to GL(n, q) along GL(m, q) (line 15).



108 Chapter 5. Testing Isometry between Alternating Matrix Spaces

5.6 Summary and Discussion

In this chapter, we have exhibited an average-case efficient algorithm (Algorithm 2) which

tests isometry for most alternating matrix spaces in the linear algebraic Erdős-Rényi model

LinER(n,m, q) with any other m-alternating spaces in Λ(n, q) in time qO(n). We have

also devised a deterministic algorithm (Algorithm 6) for AltMatSpIso in q
1
4 (n2 +m2) +

O(n + m). Our average-case algorithm is inspired by the seminal work of Babai, Erdős

and Selkow [BES80], which introduced the first average-case efficient algorithm for testing

isomorphism between most graphs in the Erdős-Rényi model and any other graphs in lin-

ear time. To derive Algorithm 2, we have viewed and studied AltMatSpIso as a linear

algebraic analog of GraphIso, and developed a linear algebraic analog of the individual-

ization and refinement technique. To derive Algorithm 5, we have adapted Luks’ dynamic

programming technique for GraphIso to devise a q
1
4

(n2+m2)+O(n+m)-time algorithm for

AltMatSpIso, which is slightly better than the brute-force algorithm (when m ∈ O(n))

and Rosenbaum’s algorithm [Ros13]. Algorithm 6 can be also served as a piece of evidence

to support the “linear algebraic” viewpoint.

We would like to mention a bit more on GraphIso and AltMatSpIso. In the history of

GraphIso, Two (families of) algorithmic ideas have been most responsible for the worst-

case time complexity improvements. The first idea, which refers to the combinatorial

idea, is to use certain combinatorial techniques including individualization, vertex or edge

refinement, and more generally the Weisfeiler-Lehman refinement [WL68]. The second

idea, which we call the group-theoretic idea, is to reduce GraphIso to certain problems

in permutation group algorithms, and then settle those problems using group-theoretic

techniques and structures. A major breakthrough utilizing the group-theoretic idea is

the polynomial-time algorithm for graphs with bounded degree by Luks [Luk82]. Some

combinatorial techniques have been implemented and used in practice [MP14], though

the worst-case analysis usually does not favor such algorithms (see e.g. [CFI92]). On

the other hand, while group-theoretic algorithms for GraphIso more than often come

with a rigorous analysis, such algorithms usually only work with a restricted family of

graphs (see e.g. [Luk82]). The major improvements on the worst-case time complexity of
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GraphIso almost always rely on both ideas. The recent breakthrough, a quasipolynomial-

time algorithm for GraphIso by Babai [Bab16a, Bab16b], is a clear evidence. Even

the previous record, a 2Õ(
√
n)-time algorithm by Babai and Luks [BL83], relies on both

Luks’ group-theoretic framework [Luk82] and Zemlyachenko’s combinatorial partitioning

lemma [ZKT85].

Let us return to AltMatSpIso. It is clear that AltMatSpIso can be studied in the

context of matrix groups over finite fields. Despite that matrix groups algorithms are

normally harder than permutation group algorithms. If a qO(n+m)-time algorithm for

AltMatSpIso is the main concern, then we can view GL(n, q) acting on the domain Fnq
of size qn, so group-theoretic tasks are not a bottleneck. In addition, a group-theoretic

framework for matrix groups in the vein of the corresponding permutation group results

in [Luk82] has also been developed by Luks [Luk92]. Therefore, if we aim at a qO(n+m)-

time algorithm for AltMatSpIso, the group-theoretic aspect is relatively developed. On

the other hand, the other major idea, namely the combinatorial refinement idea, seemed

missing in the context of AltMatSpIso. We hope that, the ingredients presented in

this chapter may open the door to systematically examine and adapt such combinato-

rial refinement techniques for GraphIso to improve the worst-case time complexity of

AltMatSpIso.





Chapter 6

Conclusion

In this thesis, we apply the theory of matrix spaces to investigate fundamental problems

in quantum information and computational complexity. We have contributed in the areas

of PPT-distinguishability of orthogonal bipartite states, the parallel distinguishability of

quantum channels, the tripartite-to-bipartite SLOCC entanglement transformation, and

the alternating matrix isometry. We conclude that the theory of matrix spaces can be

utilized in the following three aspects.

The first application of matrix spaces is to formulate problems in quantum information

with respect to matrix spaces. We have shown how to convert the PPT-distinguishability

of orthogonal bipartite states and the parallel distinguishability of quantum channels into

the formalism of extendibility problems with respect to matrix spaces. Essentially, they

are equivalent to deciding whether a given matrix space is strongly PPT-unextendible

or strongly positive-unextendible. Note that similar problems have been widely studied

with respect to vector spaces. Extendibility problems with respect to matrix spaces can

be viewed as a natural generalizations, and admit a much more complicated structure.

Another significant formulation appears in the study of tripartite-to-bipartite SLOCC

entanglement transformation, where determining the (one-shot) SLOCC convertibility is

equivalent to computing the maximal rank of matrix spaces. Such a formulation has led

to the equivalence between asymptotic SLOCC convertibility of tripartite pure states to

the bipartite maximally entangled state and the non-commutative symbolic determinant

identity testing.
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The second application of matrix spaces crucially relies on the first one. By formulating

problems with respect to matrix spaces, We have access to powerful mathematical results

in the theory of matrix spaces. For instance, we have proposed semidefinite programs

to decide whether a given matrix space is PPT-unextendible or positive-unextendible.

Specifically, we have capitalized on the theory of numerical range and the Farkas lemma

of semidefinite programming to characterize the strong positive-unextendibility of two

families of matrix spaces. We have resorted the shrunk subspaces concept, as well as

matrix semi-invariants, to derive explicit formulas which compute the asymptotic SLOCC

transformation rate for two families of tripartite states. These formulas are sufficient to

derive a complete characterization of the asymptotic SLOCC convertibility to the bipartite

maximally entangled state. In addition, to devise the average-case efficient algorithm for

the alternating matrix space isometry problem, we have analyzed the property of the

adjoint algebra of matrix spaces for the sake of average-case analysis, and the proof idea

is inspired by the stable concept in geometric invariant theory.

The last application of matrix spaces, which might be the most interesting and important,

is to provide a promising method to transform combinatorial ideas into the study of alge-

braic structures. More precisely, the “linear algebraic analog” viewpoint postulated that

matrix spaces can be viewed and studied as a linear algebraic analog of bipartite graphs,

and alternating matrix spaces can be viewed and studied as a linear algebraic analog of

graphs. This viewpoint enables us to interpret concepts related to matrix spaces as linear

algebraic generalizations from concepts in graphs. For instance, the shrunk subspace of

matrix spaces can be viewed as a linear algebraic analog of the shrunk subset, originat-

ing from the well-known Hall’s marriage theorem. On the other hand, such a viewpoint

inspires us to adapt combinatorial techniques for graph-theoretic problems to study their

linear algebraic counterparts. Important evidences include the linear algebraic analog of

individualization and refinement technique, which can be utilized to devise an average-case

efficient algorithm for testing isometry between alternating matrix space. Although the

“linear algebraic” world can be completely different from the classical world, the “linear

algebraic analog” viewpoint provides new insights and heuristics to tackle hard problems

with respect to matrix spaces.
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As the end of this thesis, we propose some open problems, which may deserve further

investigations. The first one is to complete characterize the strongly PPT-unextendible

and strongly positive-unextendible matrix spaces. These characterizations will lead to

complete solutions for deciding the PPT-distinguishability of orthogonal bipartite states

and the parallel distinguishability of quantum channels. The second open question is

to compute the asymptotic maximal rank for shrinking matrix spaces. Resolving such

a problem not only provides a complete characterization for the tripartite-to-bipartite

SLOCC entanglement transformation in the asymptotic setting, but also brings new insight

on derandomizing SDIT. The last but not least problem is to devise algorithms for the

alternating matrix space isometry problem in time polynomial in the underlying vector

space size. Such algorithms would remove perhaps the largest roadblock on the way to

solving group isomorphism problem in time polynomial in the group order. Although

there seems a long way to go, we believe that our viewpoint may lead to some non-trivial

improvement over the brute-force algorithm.
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[CFI92] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on

the number of variables for graph identification. Combinatorica, 12(4):389–

410, Dec 1992.

[Cho75] Man-Duen Choi. Completely positive linear maps on complex matrices.

Linear Algebra and its Applications, 10(3):285 – 290, 1975.
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[FN70] V. Felsch and J. Neubüser. On a programme for the determination of

the automorphism group of a finite group. In Computational Problems in

Abstract Algebra, pages 59 – 60. Pergamon, 1970.

[FR04] Marc Fortin and Christophe Reutenauer. Commutative/noncommutative

rank of linear matrices and subspaces of matrices of low rank. Séminaire
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