

ENHANCED RECOMMENDER SYSTEMS THROUGH CROSS-DOMAIN KNOWLEDGE TRANSFER

Qian Zhang

Faculty of Engineering and Information Technology

University of Technology Sydney

A thesis submitted for the Degree of

Doctor of Philosophy

June 2018

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

> Qian Zhang June 2018

Acknowledgements

I would like to express my sincere gratitude to my principal supervisor A./Professor Guangquan Zhang. Without his patience and encouragement, I would not have been able to finish this PhD journey. His richness in knowledge, his responsibility, his care for his students and his enthusiasm to research affected me deeply. During my PhD, the discussions I had with Professor Zhang inspired me and taught me a lot about research methodology. I also would like to express my thankfulness to my co-supervisor Distinguished Professor Jie Lu. The discussions with her and her valuable reviews and critical comments on my paper writing improve the quality of my dissertation a lot. I appreciate the selfless care and support of both these academics. I would also like to express my thankfulness to my co-supervisor Dr Dianshuang Wu. I thank him for all those discussions on the experiments and for his corrections to my thesis.

I would like to express my thankfulness to every member of the Decision Systems & e-Service Intelligence Lab (DeSI). It was such a joyful time to spend three-and-a-half years with you. Together the collision of our ideas sparked and inspired my research. I would like to especially thank Wei Wang, Peng Hao, Ruiping Yin and Feng Liu for the discussions on recommender systems and transfer learning. I kindly thank Ms Jemima Moore and Ms Michele Mooney for proofreading my thesis and publications. I am grateful to the School of Software in the Faculty of Engineering and Information Technology at the University of Technology Sydney for the travel support. I also thank the financial support I received from Australian Research Council (ARC) discovery project grant, which supports me to finish my study.

I would like to express my thankfulness to my family, my parents, my brother, my sister-in-law and my two nephews. Thank you for all your understanding and unconditional love and support during my three-and-a-half years abroad. I love you all.

Abstract

Recommender systems are widely used and have developed rapidly with the explosion of Web 2.0 technologies. The aim of recommender systems is to provide users with items (products or services) that match the users' preferences. Recommender systems provide users with personalized online product and service recommendations and are a ubiquitous part of today's online entertainment smorgasbord.

However, many real-world recommender systems suffer from data sparsity and user-preference drift issues which degrade the recommendation performance and lead to a poor user experience. For the user-preference drift issue, time-window and instance decaying approaches are widely applied, but one research gap is that existing methods proposed for adaptation and weighting decay are biased, since the direction of user preference drift was not appropriately addressed in their study. For the data sparsity issue, cross-domain recommender systems are used to handle data sparsity issues. These systems transfer knowledge from one domain that has adequate preference information to another domain that does not. One significant research gap in the existing methods is that they cannot ensure the knowledge extracted from the source domain is consistent with the target domain, which may impact the accuracy of the recommendations. This research addresses the aforementioned research gaps.

In this research, to solve these problems and enhance recommender systems, a user profile is enhanced with more information in various domains, including data in different time windows and different categories. For recommender systems with time labels, fuzzy set and fuzzy relation theories are adopted to model uncertain user behavior. A distance measure together with a related statistical guarantee is proposed to detect whether a user preference has drifted or not. A fuzzy user-preference drift detection-based recommendation method is proposed to model user preference and predict user ratings in temporal dynamics. For a crossdomain recommender system, to ensure knowledge consistency between the two domains, two sets of methods are developed for two different scenarios. For crossdomain recommender systems with non-overlapping entities, an adaptive knowledge transfer method for cross-domain recommender systems with consistent information transfer is proposed and applied to a telecom product recommender system and a business partner recommender system (Smart BizSeeker). Knowledge consistency is based on user and item latent groups, and domain adaptation techniques are used to map and adjust these groups in both domains to maintain consistency during the transfer learning process. For cross-domain recommender systems with partially overlapping entities, a kernel-induced knowledge transfer method is proposed. Domain adaptation is used to adjust the feature spaces of overlapping entities and diffusion kernel completion is used to obtain the non-overlapping entity correlations between two domains. It shows even with a small number of overlapping entities, knowledge transferred from the source domain to the target domain is very applicable and beneficial.

To conclude, this research addresses user-preference inconsistency which occurs in recommender systems in both different time windows and different categories. Different contexts (e.g. time) can be treated as different domains. Thus, this research aims to improve prediction accuracy and enhance recommender systems through cross-domain knowledge transfer. Extensive experiment results show that our proposed methods can generally achieve significant improvement in accuracy compared with the existing approaches.

Table of Contents

CI	ERTI	FICATE OF AUTHORSHIP/ORIGINALITY	ii
Ac	know	ledgements	iii
Ał	ostrac	t	v
Li	st of I	igures	ix
Li	st of]	fables	X
1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Research Questions and Objectives	6
	1.3	Research Significance	8
		1.3.1 Theoretical Significance	8
		1.3.2 Practical Significance	9
	1.4	Thesis Structure	10
	1.5	Publications Related to This Thesis	13
2	Lite	rature Review	14
	2.1	Recommender Systems	15

		2.1.1	Content-	based Recommender Systems	16
			2.1.1.1	Item representation	16
			2.1.1.2	User profiling	17
			2.1.1.3	Filtering and recommendation	17
		2.1.2	Collabor	ative Filtering-based Recommender Systems	18
			2.1.2.1	Memory-based Collaborative Filtering	19
			2.1.2.2	Model-based Collaborative Filtering	23
		2.1.3	Knowled	lge-based Recommender Systems	28
	2.2	Transf	er Learnin	g	31
		2.2.1	Instance	based Transfer Learning	32
		2.2.2	Feature I	Representation-based Transfer Learning	34
		2.2.3	Paramete	er-based and Relational Knowledge-based Transfer	
			Learning	;	36
	2.3	Cross-	domain Re	ecommender Systems	37
		2.3.1	CDRSs v	with Side Information	39
		2.3.2	CDRSs v	with Non-overlapping Entities	40
		2.3.3	CDRSs v	with Partially or Fully Overlapping Entities	41
3	A R	ecomm	ender Sys	tem by User-preference Drift Detection	44
	3.1	Introd	uction		44
	3.2	Prelim	inary of F	uzzy Logic	46
	3.3	Fuzzy	User-prefe	erence Consistency Model	47
	3.3	Fuzzy 3.3.1	User-prefe Fuzzy U	erence Consistency Model	47 47
	3.3	Fuzzy 3.3.1 3.3.2	User-prefe Fuzzy U Fuzzy U	erence Consistency Model	47 47 50
	3.3 3.4	Fuzzy 3.3.1 3.3.2 User-p	User-prefe Fuzzy U Fuzzy U Fuzzy U	erence Consistency Model . </td <td>47 47 50 55</td>	47 47 50 55

		3.4.2	Statistica	l Guarantee	57
		3.4.3	Interval-U	UP Density Decrement-based Drift Detection	
			Method		58
	3.5	Fuzzy	User-prefe	rence Drift Detection based Recommender System	60
		3.5.1	System C	Overview	60
		3.5.2	Experime	ent	61
			3.5.2.1	Experiment Setup	62
			3.5.2.2	Evaluating User-preference Drift Detection Method	63
			3.5.2.3	Result and Parameter Analysis	64
	3.6	Summa	ary		66
4	A C	ross-doi	main Reco	ommender System with Consistent Information	
•	Tran	sfer			67
	4.1	Introdu	ction		67
	4.2	Problei	n Formula	tion and Motivation	70
		4.2.1	Recomm	endation Task based on Tri-factorization in One	
			Domain		70
		4.2.2	Cross-do	main Transfer Learning Recommender System .	71
		4.2.3	Motivatio	on for Developing CIT	72
	4.3	A CDR	RS with Co	nsistent Information Transfer	75
		4.3.1	CIT Meth	nod Overview	75
		4.3.2	CIT Meth	nod	76
			4.3.2.1	Step 1: Clustering of users and items in both	
				domains	77
			4.3.2.2	Step 2: Domain adaptation of the user and item	
				groups	78

			4.3.2.3	Step 3: Consistent knowledge extraction	82
			4.3.2.4	Step 4: Group representation regulation	85
			4.3.2.5	Step 5: Recommendation in target domain	87
		4.3.3	Architect	ture of CIT	88
	4.4	Experi	ments and	Analysis	89
		4.4.1	Dataset a	nd Evaluation Metrics	89
		4.4.2	Experime	ental Settings and Baselines	91
		4.4.3	Results		93
		4.4.4	Paramete	r Analysis	100
	4.5	Discus	sion		101
		4.5.1	Guideline	es for Recommender System Developers	102
		4.5.2	Practical	Applications	103
	4.6	Summ	ary		104
			-		
5	A C	ross-do	main Rec	ommender System with Kernel-induced Knowl	-
5	A C edge	ross-do e Transf	main Rec	ommender System with Kernel-induced Knowl	- 106
5	A C edge 5.1	ross-do e Transf Introdu	main Rec er	ommender System with Kernel-induced Knowl	- 106 106
5	A C edge 5.1 5.2	ross-do e Transf Introdu Prelim	main Reco fer uction inaries and	ommender System with Kernel-induced Knowl	- 106 106 109
5	A C edge 5.1 5.2	ross-do e Transf Introdu Prelim 5.2.1	main Rec ier uction inaries and Recomm	ommender System with Kernel-induced Knowl	- 106 106 109
5	A C edge 5.1 5.2	ross-do e Transf Introdu Prelim 5.2.1	main Rec fer uction inaries and Recomm One Don	ommender System with Kernel-induced Knowl I Problem Formulation endation Task based on Matrix Factorization in nain	- 106 109 109
5	A C edge 5.1 5.2	ross-do e Transf Introdu Prelim 5.2.1	main Rec fer action inaries and Recomm One Don Problem	ommender System with Kernel-induced Knowl I Problem Formulation endation Task based on Matrix Factorization in nain Definition	- 106 109 109 110
5	A C edge 5.1 5.2	ross-do e Transf Introdu Prelim 5.2.1 5.2.2 A CDI	main Rec fer uction inaries and Recomm One Don Problem RS with Ke	ommender System with Kernel-induced Knowl	- 106 109 109 110 112
5	A C edge 5.1 5.2	ross-do e Transf Introdu Prelim 5.2.1 5.2.2 A CDI 5.3.1	main Rec fer action inaries and Recomm One Don Problem S with Ke KerKT M	ommender System with Kernel-induced Knowl I Problem Formulation I Problem Formulation endation Task based on Matrix Factorization in nain Definition ernel-induced Knowledge Transfer Iethod Overview	- 106 109 109 110 112 112
5	A C edge 5.1 5.2	ross-do e Transf Introdu Prelim 5.2.1 5.2.2 A CDI 5.3.1 5.3.2	main Rec fer action inaries and Recomm One Don Problem RS with Ke KerKT M KerKT M	ommender System with Kernel-induced Knowl I Problem Formulation I Problem Formulation endation Task based on Matrix Factorization in nain Definition ernel-induced Knowledge Transfer Iethod Iethod	- 106 109 109 110 112 112 113
5	A C edge 5.1 5.2 5.3	ross-do e Transf Introdu Prelim 5.2.1 5.2.2 A CDI 5.3.1 5.3.2	main Rec fer uction inaries and Recomm One Don Problem RS with Ke KerKT M KerKT M 5.3.2.1	ommender System with Kernel-induced Knowl I Problem Formulation I Problem Formulation endation Task based on Matrix Factorization in nain Definition Problem Formulation Matrix Factorization Note Definition Matrix Factorization India Matrix Factorization Matrix Factorization <td< td=""><td>- 106 109 109 110 112 112 113</td></td<>	- 106 109 109 110 112 112 113

			5.3.2.2	Step 2: Item feature regulation in both domains	117
			5.3.2.3	Step 3: Entity similarity measures in one domain	119
			5.3.2.4	Step 4: Kernel induced completion of inter-	
				domain user similarity	120
			5.3.2.5	Step 5: Collective matrix factorization with user	
				similarity constraints	123
	5.4	Experi	ments and	Analysis	125
		5.4.1	Datasets	and Evaluation Metrics	126
		5.4.2	Experime	ental Settings and Baselines	127
		5.4.3	Results		129
		5.4.4	Paramete	r Analysis	136
	5.5	Summ	ary		138
6	Con	clusion	and Futur	re Research	139
	6.1	Conclu	usions		139
	6.2	Future	Study		142
Bi	bliogr	aphy			145
At	brevi	ations			176
Ap	pend	ix A G	Geodesic F	low Kernel (GFK) Operators	177
Ap	pend	ix B P	roof of Ma	aps Ensuring Consistency	179

List of Figures

1.1	Thesis structure	11
3.1	An example of point-UP graph	56
3.2	Architecture of fuzzy user-preference drift detection-based recom-	
	mender system	61
3.3	Parameter analysis of user-preference drift detection-based method.	65
4.1	An example for CDRS	74
4.2	The CIT method procedure	76
4.3	An example of user group information adjustment in two domains	83
4.4	Conception framework of cross-domain recommender system using	
	CIT	89
4.5	Comparison results for CIT and five other baselines	100
4.6	Parameter analysis of CIT	102
5.1	Different scenarios of overlapping entities.	108
5.2	Procedure of the KerKT method.	114
5.3	Graphical view of user relationships in source and target domains	122
5.4	Parameter analysis of λ_u , λ_v on KerKT on Movielens dataset	137
5.5	Parameter analysis of λ on KerKT on Movielens dataset	137

List of Tables

2.1	Comparison of different recommendation techniques	30
2.2	Summary of literature reviews of cross-domain recommender systems.	43
3.1	Movie Representation for User u	49
3.2	Special value for fuzzy point-UP consistency relation	54
3.3	Synthetic item similarities for user-preference drift detection	63
3.4	Synthetic user ratings for user-preference drift detection	64
3.5	Comparison of UDD and a traditional method on Movielens Dataset	64
4.1	Statistical information on the original datasets for experiments on CIT	90
4.2	Description of data subsets in three categories for experiments on CIT	92
4.3	Prediction performance of CIT on a movie target domain	94
4.4	Prediction performance of CIT on a book target domain	95
4.5	Prediction performance of CIT on a music target domain	96
4.6	Comparison results of average MAE between CIT and five baselines	99
4.7	Comparison results of average RMSE between CIT and five baselines	100
5.1	Statistics of original datasets for experiments on KerKT	126
5.2	Description of data subsets for four tasks on KerKT	128

5.3	Overall comparison results between KerKT and six baselines on	
	the Movielens data	132
5.4	Overall comparison results between KerKT and six baselines on	
	the Netflix data.	133
5.5	Overall comparison results between KerKT and six baselines on	
	the AmazonBook data.	134
5.6	Overall comparison results between KerKT and six baselines on	
	the Douban data.	135
5.7	Comparison result of average MAE and RMSE on four tasks	
	between KerKT and six baselines.	136