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Abstract

Recommender systems are widely used and have developed rapidly with the

explosion of Web 2.0 technologies. The aim of recommender systems is to

provide users with items (products or services) that match the users’ preferences.

Recommender systems provide users with personalized online product and service

recommendations and are a ubiquitous part of today’s online entertainment

smorgasbord.

However, many real-world recommender systems suffer from data sparsity and

user-preference drift issues which degrade the recommendation performance and

lead to a poor user experience. For the user-preference drift issue, time-window

and instance decaying approaches are widely applied, but one research gap is that

existing methods proposed for adaptation and weighting decay are biased, since

the direction of user preference drift was not appropriately addressed in their study.

For the data sparsity issue, cross-domain recommender systems are used to handle

data sparsity issues. These systems transfer knowledge from one domain that has

adequate preference information to another domain that does not. One significant

research gap in the existing methods is that they cannot ensure the knowledge

extracted from the source domain is consistent with the target domain, which

may impact the accuracy of the recommendations. This research addresses the

aforementioned research gaps.



In this research, to solve these problems and enhance recommender systems, a

user profile is enhanced with more information in various domains, including data

in different time windows and different categories. For recommender systems

with time labels, fuzzy set and fuzzy relation theories are adopted to model

uncertain user behavior. A distance measure together with a related statistical

guarantee is proposed to detect whether a user preference has drifted or not. A

fuzzy user-preference drift detection-based recommendation method is proposed to

model user preference and predict user ratings in temporal dynamics. For a cross-

domain recommender system, to ensure knowledge consistency between the two

domains, two sets of methods are developed for two different scenarios. For cross-

domain recommender systems with non-overlapping entities, an adaptive knowledge

transfer method for cross-domain recommender systems with consistent information

transfer is proposed and applied to a telecom product recommender system and a

business partner recommender system (Smart BizSeeker). Knowledge consistency

is based on user and item latent groups, and domain adaptation techniques are

used to map and adjust these groups in both domains to maintain consistency

during the transfer learning process. For cross-domain recommender systems

with partially overlapping entities, a kernel-induced knowledge transfer method is

proposed. Domain adaptation is used to adjust the feature spaces of overlapping

entities and diffusion kernel completion is used to obtain the non-overlapping

entity correlations between two domains. It shows even with a small number of

overlapping entities, knowledge transferred from the source domain to the target

domain is very applicable and beneficial.

To conclude, this research addresses user-preference inconsistency which occurs

in recommender systems in both different time windows and different categories.

vi



Different contexts (e.g. time) can be treated as different domains. Thus, this

research aims to improve prediction accuracy and enhance recommender systems

through cross-domain knowledge transfer. Extensive experiment results show that

our proposed methods can generally achieve significant improvement in accuracy

compared with the existing approaches.
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