

Centre for Health Technologies School of Biomedical Engineering University of Technology Sydney



**Daniel N. Roxby** 

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy



## **CERTIFICATE OF AUTHORSHIP**

I, Daniel Ninio Roxby, certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by an Australian Government Research Training Program Scholarship.

Signature of Student:

Production Note: Signature removed prior to publication.

Date: 17 January 2018

#### ACKNOWLEDGEMENTS

Firstly, I am forever grateful to my parents, Peter and Tess Roxby, my brother Matthew Roxby and our many dogs, for their undying love, support and patience throughout the life of this PhD and my studies. If not for them, I could not go on.

I am appreciative of my supervisor Professor Hung T. Nguyen, Professor and Director for the Centre for Health Technologies, University of Technology Sydney, for taking me on as his student when by traditional standards, I should not have been. I have learnt a lot from his approach to research, innovation and challenges and quick, calm mind. I am also thankful for his support in extracurricular activities and our many geeky gadget chats.

My dearest friends, Daniel Wong and Gladys Cheung and close friends Akane Takana and Zhichao Sheng, you were always a message away whether it be for a complaint, support or a good meal. Thank you so so much.

To the CHT students, it's been a pleasure going through this journey with you all. Our studies have been one thing, but our chats during late nights, food and drinks have been another.

Thanks to Nham Tran and Simon Ting for their efforts and help. From you, I know how to be a better professional. Also thanks to the staff of UTS, especially Steven Su, Gyorgy Hutvagner, Adrian Bishop, Sarah Osvath, Ron Shimmon, Alex Angeloski and Joyce To for their help over the years as well as visiting scholar Pak-Lam Yu.

And finally, and importantly, Huiling Zhou, there are so many words of appreciation for you. The world I know and goals I have now, would be very different if not for you. I will always cherish our WeChats, FaceTimes, travels and many other memories. You have been a source of strength, support and improvement as we faced these PhD and life challenges.

# Contents

| 1. Introduction                                                | 2  |
|----------------------------------------------------------------|----|
| 1.1. Background                                                | 2  |
| 1.2. Motivation of Thesis                                      | 4  |
| 1.3. Objectives and Contribution                               | 6  |
| 1.4. Structure of Thesis                                       | 8  |
| 2. Literature Review                                           |    |
| 2.1. Outline                                                   |    |
| 2.2. Current Market for AIMDs                                  |    |
| 2.2.1. Cardiac Devices                                         |    |
| 2.2.2. Neuromodulators, Neurostimulators and Intrathecal Pumps |    |
| 2.2.3. Cochlear Implants                                       | 19 |
| 2.2.4. Technologies on the Horizon                             |    |
| 2.3. Current Environment for Powering AIMDs                    |    |
| 2.3.1. Batteries                                               |    |
| 2.3.2. Wireless Recharging and Powering                        |    |
| 2.3.3. Design Standards, Compliance and Regulation for AIMDs   |    |
| 2.4. Research in Powering AIMDs                                | 45 |
| 2.4.1. Wireless Charging                                       | 45 |
| 2.5. Energy Harvesting                                         |    |
| 2.5.1. Thermoelectric Harvesting                               |    |

|    | 2.5.2 | .2. Mechanical Energy Harvesting                    | 51 |
|----|-------|-----------------------------------------------------|----|
| 2. | .6. 1 | Microbial Fuel Cells                                | 53 |
|    | 2.6.1 | 1. How MFCs work                                    | 53 |
|    | 2.6.2 | 2. Microbe Selection in MFCs                        | 54 |
|    | 2.6.3 | 5.3. Membrane Selection in MFCs                     |    |
|    | 2.6.4 | .4. Electrode Selection in MFCs                     | 60 |
|    | 2.6.5 | 5.5. Implantable MFCs                               | 63 |
|    | 2.6.6 | 6.6. Other Considerations in MFCs                   | 77 |
| 2. | .7. ( | Glucose Enzymatic Biofuel Cells                     | 78 |
|    | 2.7.1 | 1.1. How GEBFCs work                                | 78 |
|    | 2.7.2 | 2.2. Enzyme Selection in GEBFCs                     | 79 |
|    | 2.7.3 | 2.3. Material Selection in GEBFCs                   | 81 |
|    | 2.7.4 | .4. Implantable GEBFCs                              |    |
|    | 2.7.5 | 7.5. Considerations in GEBFCs                       | 85 |
| 2. | .8. 1 | Research Gap and Proposed Strategy                  |    |
| 3. | MFC   | FC Parameter Optimisation for Improved Power Output | 92 |
| 3. | .1. ] | Introduction                                        | 92 |
| 3. | .2. 1 | Materials                                           | 94 |
| 3. | .3. 1 | Method                                              | 94 |
|    | 3.3.1 | .1. Preparation of Chemicals                        | 94 |
| 3. | .4. 1 | Microbe and Growth Conditions                       | 95 |

| 3.5. MF   | C Materials                                                      | 95  |
|-----------|------------------------------------------------------------------|-----|
| 3.5.1.    | Single Chamber MFCs                                              | 95  |
| 3.5.2.    | Dual Chamber MFCs                                                | 96  |
| 3.6. Me   | asurement Setup                                                  | 97  |
| 3.7. Bic  | omedical Implant Based Experimental Conditions                   |     |
| 3.7.1.    | Single Chamber MFCs                                              |     |
| 3.7.2.    | Dual Chamber MFCs                                                |     |
| 3.8. Res  | sults                                                            |     |
| 3.8.1.    | Single Chamber Fuel Cells                                        |     |
| 3.8.2.    | Dual Chamber Microbial Fuel Cells                                |     |
| 3.9. Dis  | scussion and Conclusion                                          | 116 |
| 4. Compre | essed Polypyrrole Electrodes for Glucose Enzymatic Biofuel Cells |     |
| 4.1. Intr | roduction                                                        |     |
| 4.2. Ma   | terials                                                          | 127 |
| 4.3. Me   | thod                                                             |     |
| 4.3.1.    | Preparation of Chemicals                                         |     |
| 4.3.2.    | Synthesis of 3-Methylthienyl Methacrylate (MTM)                  |     |
| 4.3.3.    | Initial Calculations                                             | 130 |
| 4.3.4.    | RAFT Polymerization of MTM                                       | 131 |
| 4.4. Exj  | perimental Work                                                  |     |
| 4.4.1.    | Electro-copolymerization to Poly(MTM)-Pyrrole Graft Copolymer    |     |

| 4.4.2.    | Monomer and Copolymer Analysis                                       | 133 |
|-----------|----------------------------------------------------------------------|-----|
| 4.4.3.    | Electrode Preparation and Characterization                           | 133 |
| 4.4.4.    | Glucose Enzymatic Biofuel Cell Studies                               | 134 |
| 4.5. Re   | sults                                                                | 135 |
| 4.5.1.    | Development of MTM Monomer                                           | 135 |
| 4.5.2.    | RAFT Polymerization of MTM                                           | 138 |
| 4.5.3.    | Electropolymerisation and Pyrrole Grafting of Poly(MTM)              | 143 |
| 4.5.4.    | Electrode Fabrication and Characterization                           | 147 |
| 4.5.5.    | Biofuel Cell Electrical Output                                       | 150 |
| 4.6. Dis  | scussion and Conclusion                                              | 152 |
| 5. High P | ower Output GEBFCs through Immobilization and Increased Conductivity | 161 |
| 5.1. Int  | roduction                                                            | 161 |
| 5.2. Ma   | aterials                                                             | 163 |
| 5.3. Me   | ethod                                                                | 164 |
| 5.3.1.    | Preparation of Chemicals                                             | 164 |
| 5.3.2.    | Composite Electrode Preparation for Improved Conductivity            | 164 |
| 5.3.3.    | Conductivity Measurements                                            | 166 |
| 5.3.4.    | Enzyme Immobilization Procedure                                      | 166 |
| 5.3.5.    | FTIR Analysis                                                        | 167 |
| 5.3.6.    | Biofuel Cell Studies                                                 | 167 |
| 5.4. Re   | sults                                                                | 168 |

| 5.4.1. Enzyme Immobilization to Improve Power Output                     | 168   |
|--------------------------------------------------------------------------|-------|
| 5.4.2. Increasing Electrode Conductivity through Ppy Composites          | 172   |
| 5.4.3. Biofuel Cells Using Ppy Composite and Immobilised Enzyme Electrod | es179 |
| 5.5. Discussion and Conclusion                                           | 184   |
| 6. Conclusion and Future Direction                                       | 194   |
| 6.1. Conclusion                                                          | 194   |
| 6.2. Future Direction                                                    | 201   |
| Appendix                                                                 | 206   |
| Basic Scientific Methods                                                 | 206   |
| Preparing Growth Media                                                   | 206   |
| Preparation of Trypic Soy Agar Plates                                    | 206   |
| Propagation of ATCC Received Shewanella Oneidensis MR-1                  | 207   |
| Preparation of Microbe Glycerol Laboratory Stocks                        | 207   |
| Cyclic Voltammetry                                                       | 207   |
| Streak Plating                                                           | 211   |
| Drop Plating                                                             | 214   |
| Resistances Used                                                         | 216   |
| LabView Programs for Monitoring Fuel Cells                               | 218   |
| Enzyme Reaction Rate Calculations                                        | 223   |
| Glucose Oxidase                                                          | 223   |
| Laccase                                                                  | 223   |

| History of AIMDs                                 | 225 |
|--------------------------------------------------|-----|
| Pacemakers                                       | 225 |
| Deep Brain Stimulators and Other Neuromodulators | 227 |
| Spinal Cord Stimulators                          | 228 |
| Cochlear Implants                                | 229 |
| Bibliography                                     | 234 |

# TABLE OF FIGURES

| Figure 1: St Jude / Abbott Medical Ellipse VR Implantable Cardioverter Defibrillator Device        |
|----------------------------------------------------------------------------------------------------|
| (St Jude Medical 2014)                                                                             |
| Figure 2: Illustration of a DBS device and how the leads run up to the electrodes in the brain     |
| (Therapeutic Goods Administration (TGA) 2016)                                                      |
| Figure 3: Medtronic Interstim II Implantable Sacral Neuromodulation Device (Medical Expo           |
| 2017)                                                                                              |
| Figure 4: Boston Scientific Precision Montage MRI Spinal Cord Stimulator (Boston                   |
| Scientific 2017b)16                                                                                |
| Figure 5: How a intrathecal pump sits within the body (Delhi Pain Management Centre 2017)          |
|                                                                                                    |
| Figure 6: Photo of the Medtronic MiniMed 670G Artificial Pancreas (Medtronic 2016d)21              |
| Figure 7: Person wearing the Medtronic neurostimulator charging device (Medtronic 2017a)           |
|                                                                                                    |
| Figure 8: Boston Scientific Vercise Charging System (Boston Scientific 2017d)27                    |
| Figure 9 Table A.1 from ISO 10993-1 on Evaluation tests for consideration (ISO 2009)45             |
| Figure 10: Illustration of how a microbial fuel cell operates                                      |
| Figure 11: Photograph of a H-Cell MFC                                                              |
| Figure 12: Photos of Various Materials Used as Microbial Fuel Cell Electrodes (Santoro et al.      |
| 2017)                                                                                              |
| Figure 13: 'Schematic of prototype MFC' from Han et al (Han, Yu & Liu 2010)65                      |
| Figure 14: 'Voltage outputs of MFC with external resistance of 500 $\Omega$ during initial several |
| cycles. (Arrows showed the replacement of SIF at the end of each cycle.)' from Han et al           |
| (Han, Yu & Liu 2010)                                                                               |

| Figure 15: 'Voltage generation of MFC in a typical cycle at stable state (external resistance of |
|--------------------------------------------------------------------------------------------------|
| 300 Ω)' from Han et al (Han, Yu & Liu 2010)                                                      |
| Figure 16: 'The new MFC configuration design simulated colonic environment as power              |
| supply for IMDs. 1: ORP transducer; 2: pH transducer; 3: external resistance; 4: simulated       |
| transverse colon; 5: feed inlet; 6: sampling port of cathodic area; 7: sampling port of anodic   |
| area; 8: liquid outlet; 9: cathodic plate; 10: simulated colonic haustra; 11: anodic plate' from |
| Dong et al (Dong et al. 2013)                                                                    |
| Figure 17: 'Voltage outputs of the experimental MFC. Batch operation stage (arrows showed        |
| the replacement of simulated colonic contents; A), continuous-operation stage (B)' from          |
| Dong et al (Dong et al. 2013)                                                                    |
| Figure 18: 'Polarization curves performed stably in continuous-flow operation from' Dong et      |
| al (Dong et al. 2013)                                                                            |
| Figure 19: Figure from Chiao et al with caption 'Exploded view of the fuel cell structure: (a)   |
| PDMS MFC assembly and (b) the PDMS electrode with micropillar structures' (Chiao 2008)           |
|                                                                                                  |
| Figure 20: Figure from Qian et al with caption 'Micro-MFC design and assembly. (A)               |
| Schematic representation of the MFC components. Arrows indicate microfluidic flow                |
| pathways of electrolytes; dashed lines indicate the alignment of components for anolyte flow.    |
| (B) Operating principles of a MFC. Bacteria in the anode chamber (white) metabolize organic      |
| feedstocks and produce protonsand electrons that are subsequently conducted to the cathode       |
| chamber (yellow) via PEM and an external circuit, respectively. (C) Photograph of a micro-       |
| MFC device filled with electrolytes. The signs denote the cathode and anode of the fuel cell,    |
| and a dashed line indicates the PEM. Scale bar is 2 cm' (Qian et al. 2009)71                     |
| Figure 21: Figure from Qian et al with caption 'MFC polarization curve (blue) and power          |
| output (red) measured as a function of current' (Qian et al. 2009)72                             |

| Figure 22: Figure from Ringeisen et al with caption 'Mini-MFC with cross sectional and top      |
|-------------------------------------------------------------------------------------------------|
| views' (Ringeisen et al. 2006)                                                                  |
| Figure 23: Figure from Ringeisen et al with caption 'Calculated Coulombic efficiency            |
| deduced from current at maximum power versus run time for GF (ss) and RVC () for                |
| cultures without exogenous mediators' (Ringeisen et al. 2006)73                                 |
| Figure 24: Figure from Ringeisen et al with caption ' (a) Current and (b) power versus run      |
| time for the miniMFC for DSP10 (ss) and Bacillus sp. ( ) cultures without exogenous             |
| mediators' (Ringeisen et al. 2006)74                                                            |
| Figure 25: Figure from Choi et al with caption 'Cross-sectional view of a micro-scale           |
| microbial fuel cell (MFC); space constraints (20 µm-tall anode chamber) by a                    |
| photolithographically defined PDMS layer. The anode and cathode chambers were formed            |
| between the glass chips and CEM (cation exchange membrane). The PDMS layer is a spacer          |
| to define the height of anode and cathode chambers to limit the bacterial biofilm formation'    |
| (Choi & Chae 2013)75                                                                            |
| Figure 26: Figure from Choi et al with caption '(a) Polarization curve and (b) power output of  |
| the MEMS MFCs with four different thicknesses of the PDMS spacers, measured as a                |
| function of current. The values are derived and calculated based on the maximum current         |
| value at a given external resistance (910k, 482k, 270k, 150k, 66k, 33k, 15k, 10k, 7k, 2.6k, 1k, |
| 428, 333, and 150 Ω)' (Choi & Chae 2013)                                                        |
| Figure 27: Figure from Parra et al with caption '(a) Exploded view of the MEMS MFC.             |
| Anolyte and catholyte circulate through corresponding chambers separated by a Nafion            |
| membrane. (b) Fuel cell experimental setup using potassium ferricyanide as electron sink at     |
| cathode' (Parra & Lin 2009)76                                                                   |
| Figure 28: Diagram Illustrating How GEBFCs Work                                                 |

| Figure 29: Nafion-117 Cut to either 25 or 40 mm Diameter for use as a Membrane in the            |
|--------------------------------------------------------------------------------------------------|
| DCMFC                                                                                            |
| Figure 30: Close up with Heat Shrink Wrapped Titanium Wire Connected to the RVC                  |
| Electrode via Silver Conductive Epoxy                                                            |
| Figure 31: Annotated Photo of a DCMFC Used in Experiments                                        |
| Figure 32: Annotated Measurement Setup during DCMFC Monitoring                                   |
| Figure 33: SCMFC Electrode Configuration - (a) Side-by-Side and (b) Top-Bottom100                |
| Figure 34: Different Connection Types for Arrays of DCMFCs (a) Parallel, (B) Series and          |
| (C) Hybrid of Series and Parallel                                                                |
| Figure 35: Recorded Voltages across a 3.9 MQ Resistor for Side-By-Side and Top-Bottom            |
| Electrode Configurations in SCMFCs                                                               |
| Figure 36: Recorded Voltages across a 3.9 M $\Omega$ resistance for stirred and static SCMFCs104 |
| Figure 37: Recorded Voltages across a 3.9 M $\Omega$ Resistance for SCMFCs with 0.5 mL, 1 mL     |
| and 2 mL Starting Inoculations                                                                   |
| Figure 38: Open Circuit Voltages for Mixed and Single Culture DCMFCS for the 6 to 7 Day          |
| Period                                                                                           |
| Figure 39: Polarization Curve for Mixed and Single Culture DCMFCs                                |
| Figure 40: Power Curves for Mixed and Single Culture DCMFCs107                                   |
| Figure 41: Microscope images of two colonies of the Mixed Culture DCMFC other than S.            |
| oneidensis MR-1 (a) Large Milk, (b) Sharp Yellow                                                 |
| Figure 42: Close up of streak plate for identifying mixed culture of DCMFC110                    |
| Figure 43: Open Circuit Voltages for LBB and TSB DCMFCS for the 6 to 7 Day Period111             |
| Figure 44: Polarisation Curves for TSB and LBB DCMFCs112                                         |
| Figure 45: Power Curves for TSB and LBB DCMFCs                                                   |

| Figure 46: Open Circuit Voltages for 25 mm and 40 mm Membrane DCMFCs for the 6 to 7           |
|-----------------------------------------------------------------------------------------------|
| Day Period                                                                                    |
| Figure 47: Polarisation Curve FOR 25 mm and 40 mm Membrane DCMFCS115                          |
| Figure 48: Power Curves for 25 mm and 40 mm Membrane DCMFCs115                                |
| Figure 49: Polarisation Curves for Parallel, Series, Parallel-Series and a Single LBB DCMFC   |
|                                                                                               |
| Figure 50: Power Curve for Parallel, Series, Parallel-Series and a Single LBB DCMFC117        |
| Figure 51: (a) a larger membrane, enabling more hydrogen through at any one time (b) a        |
| smaller membrane, creating a bottle neck of hydrogen needing access to the cathode electrode  |
|                                                                                               |
| Figure 52: Illustration of the method followed for the synthesis of 3-Methylthienyl           |
| Methacrylate                                                                                  |
| Figure 53: GEBFC Schematic                                                                    |
| Figure 54: MTM Monomer with Correspondingly Labelled NMR Peaks                                |
| Figure 55: NMR Spectra of Purified MTM Monomer Synthesised via esterification of 3-           |
| thiophene methanol via methacryloyl chloride                                                  |
| Figure 56: NMR Spectra of Crude Poly(MTM) Polymer Synthesised via RAFT                        |
| Polymerization. Note: due to limitations in the NMR analysis software, annotations of some    |
| peaks were added141                                                                           |
| Figure 57: NMR Spectra of Purified Poly(MTM) Polymer Synthesied via RAFT                      |
| Polymerization                                                                                |
| Figure 58: GPC Signal for Poly(MTM) With PolyStyrene Standard                                 |
| Figure 59: Charge Passed During the EP144                                                     |
| Figure 60: Photos of the Poly(MTM)-Pyrrole film as a result of the EP on the Pt electrode 144 |

| Figure 61: CV of Poly(MTM)-Pyrrole at 8, 9, 10 and 11 mV/s showing rectangular shape,       |
|---------------------------------------------------------------------------------------------|
| indicating pseudocapacitance                                                                |
| Figure 62: CV of Poly(MTM)-Pyrrole                                                          |
| Figure 63: Pseudocapacitance of Poly(MTM)-Py taken from CVs147                              |
| Figure 64: Photos of the compressed Ppy electrodes                                          |
| Figure 65: Near Rectangular shape of the compressed Ppy electrode showing some              |
| pseudocapacitance                                                                           |
| Figure 66: CVs of the compressed Ppy electrodes                                             |
| Figure 67: Pseudocapacitance of the Ppy electrode                                           |
| Figure 68: Voltage of time for compressed Ppy electrode GEBFCs                              |
| Figure 69: Polarization Curve for GEBFCs containing non-immobilised enzyme electrodes       |
|                                                                                             |
| Figure 70: Power curve for GEBFCs with non-immobilised enzyme electrodes152                 |
| Figure 71: (a) Photo of GEBFC running with enzymes leaching out. (b) Close up of the        |
| enzymes leaching out of the GEBFC electrodes. (c) End result of enzyme leaching from the    |
| GEBFC compressed Ppy electrodes                                                             |
| Figure 72: Voltages Over Time for GEBFC with Different Ratios of Ppy and Enzyme within      |
| the Electrodes                                                                              |
| Figure 73: Illustration of the Conductivity Measurement Setup                               |
| Figure 74: EI Procedure                                                                     |
| Figure 75: FTIR spectra for (a) Ppy, (b) Ppy with crosslinked LAC, (c) Ppy with crosslinked |
| GOx and (d) Ppy with bonded Glut                                                            |
| Figure 76: Voltages Over Time for Compressed Ppy Electrodes with Immobilised Enzymes        |
| in GEBFCs                                                                                   |

| Figure 77: Polarization Curve for a GEBFC Containing Compressed Ppy Electrodes with   |
|---------------------------------------------------------------------------------------|
| Immobilised Enzymes                                                                   |
| Figure 78: Power Curve for GEBFCs with Compressed Ppy Electrodes with Immobilised     |
| Enzymes                                                                               |
| Figure 79: Conductivities of the Ppy composites                                       |
| Figure 80: CV for a Compressed Ppy-RVC Electrode at a Scan Rate of 10 mV/s173         |
| Figure 81: CVs for a Compressed Ppy-RVC Electrode at Scan Rates from 100 to 1000 mV/s |
|                                                                                       |
| Figure 82: CV for a Compressed Ppy-Silv Electrode at a Scan Rate of 10 mV/s           |
| Figure 83: CVs for a Compressed Ppy-RVC Electrode at Scan Rates from 100 to 1000 mV/s |
|                                                                                       |
| Figure 84: Pseudocapacitances of Ppy Electrode Composites for Different Scan Rates175 |
| Figure 85: Voltages over Time for GEBFCs containing compressed Ppy and Ppy-silver     |
| composite electrodes                                                                  |
| Figure 86: Voltages over Time for GEBFCs containing compressed Ppy and Ppy-RVC        |
| composite electrodes                                                                  |
| Figure 87: Polarization Curve for GEBFCs containing Ppy electrodes and Polpyrrole RVC |
| composite electrodes                                                                  |
| Figure 88: Power Curve for GEBFCs Containing Ppy Electrodes and Ppy and RVC           |
| Composite Electrodes                                                                  |
| Figure 89: Polarization Curve for GEBFCs Containing Ppy electrodes and Ppy and Silver |
| Composite Electrodes                                                                  |
| Figure 90: Power Curve for GEBFCs Containing Ppy Electrodes and Ppy and Silver        |
| Composite Electrodes                                                                  |

| Figure 91: Voltages over Time for GEBFCs with Ppy and RVC Composite Electrodes with       |
|-------------------------------------------------------------------------------------------|
| Non-Immobilised and Immobilised Enzymes                                                   |
| Figure 92: Voltages over Time for GEBFCs with Ppy and Silver Composite Electrodes with    |
| Non-Immobilised and Immobilised Enzymes                                                   |
| Figure 93: Polarization Curves for GEBFCs containing Ppy and RVC Composite Electrodes     |
| with Immobilised and Non-Immobilised Enzymes                                              |
| Figure 94: Power Curves for GEBFCs containing Ppy and RVC Composite Electrodes with       |
| Immobilised and Non-Immobilised Enzymes                                                   |
| Figure 95: Polarization Curves for GEBFCs containing Ppy and Silver Composite Electrodes  |
| with Immobilised and Non-Immobilised Enzymes                                              |
| Figure 96: Polarization Curves for GEBFCs containing Ppy and Silver Composite Electrodes  |
| with Immobilised and Non-Immobilised Enzymes                                              |
| Figure 97 SEM micrograph of a compressed Ppy electrode                                    |
| Figure 98 SEM micrograph of a compressed Ppy-RVC electrode                                |
| Figure 99: SEM micrograph of a compressed Ppy-silver electrode                            |
| Figure 100: Schematic of Experiment for Powering a Medical Thermometer from a GEBFC       |
|                                                                                           |
| Figure 101: Photo of a body thermometer being powered by a BQ25504 and GEBFC 191          |
| Figure 102: Time Lapse of the Powering of a Medical Thermometer Experiment                |
| Figure 103 Figure 4 from Elgrishi et al regarding a 'schematic representation of an       |
| electrochemical cell for CV experiments' (Elgrishi et al. 2017)                           |
| Figure 104 Figure 1 from Kissinger Heineman - 'Typical excitation signal for cyclic       |
| voltammetry—a triangular potential waveform with switching potentials at 0.8 and $-0.2$ V |
| versus SCE' (Kissinger & Heineman 1983)210                                                |

| Figure 105 Figure 2 from Kissinger and Heineman – 'Cyclic voltammogram of 6                                             | mМ    |
|-------------------------------------------------------------------------------------------------------------------------|-------|
| K <sub>3</sub> Fe(CN) <sub>6</sub> in 1 M KNO <sub>3</sub> . Scan initiated at 0.8 V versus SCE in negative direction a | ıt 50 |
| mV/s. Platinum electrode, area = 2.54 mm <sup>2</sup> ' (Kissinger & Heineman 1983)                                     | .211  |
| Figure 106 Illustration of how to streak a TSA plate with bacteria                                                      | .213  |
| Figure 107: LabView GUI of MFC Data Logger                                                                              | .219  |
| Figure 108: LabView Backend of the MFC Data Logger                                                                      | .220  |
| Figure 109: LabView GUI of the GEBFC Data Logger                                                                        | .221  |
| Figure 110: LabView Back End of the GEBFC Data Logger                                                                   | .222  |

# **TABLE OF TABLES**

| Table 1: Specified Battery Lives for Various Medtonic Biomedical Devices4                   |
|---------------------------------------------------------------------------------------------|
| Table 2: Publicly Available Sales Revenues for 2016 and 2016 of Several AIMD Cardiac        |
| Product Companies                                                                           |
| Table 3: St Jude and Abbott Laboratories Three Quarter Sales Revenue (Abbott Laboratories   |
| 2017b)                                                                                      |
| Table 4: Publicly available revenues for 2015 and 2016 for various neuromodulator           |
| companies with product categories covered                                                   |
| Table 5: Sales revenue data collected from publicly available information in annual reports |
| for the 2016 cochlear implant market                                                        |
| Table 6: Power Schemes for Various AIMDs as per manufacturers 22                            |
| Table 7: Battery Chemistries for Various AIMD Batteries 25                                  |
| Table 8 Table of Standards Referred to in ISO 14708-1 (AS 2015) 29                          |
| Table 9 Relevant Standards for Sterilization of Medical Devices 33                          |
| Table 10: Table from Zhou et al with caption 'Human body energy expenditure for selected    |
| physical activities' (McArdle, Katch & Katch 2010; Shephard 2011; Starner 1996; Zhou et al. |
| 2017)                                                                                       |
| Table 11: Table from Zhou et al with caption 'Human skin temperature for different body     |
| measuring sites under variable ambient temperatures. All the data in the table are with     |
| unit °C and the number in the brackets are the standard deviation of the measuring          |
| temperatures while the unbracketed value is the mean temperature' (Suarez et al. 2016; Webb |
| 1992; Zhou et al. 2017)                                                                     |
| Table 12: Table from Zhou et al with caption 'Available energy from human body during       |
| daily activities' (Niu et al. 2004; Riemer & Shapiro 2011; Starner 1996)                    |

| Table 13: Various Bacteria Used in MFCs with Maximum Current or Power Density and         |
|-------------------------------------------------------------------------------------------|
| Electron Transfer Mechanisms                                                              |
| Table 14: Various materials used as MFC electrodes (Santoro et al. 2017)                  |
| Table 15: Adapted from Yuming & Hongyan table with caption as 'The Effects of Colonic     |
| Inner Environment on Microbial Fuel Cell Performance ' (Yuming & Hongyan 2017)68          |
| Table 16 List of Materials Used in the MFC Experiments 94                                 |
| Table 17 Various materials used for the Chapter 4 experiments 128                         |
| Table 18: Relevant Symbols and Values for RAFT Polymerisation Calculations                |
| Table 19: Integral Values from NMR analysis software for the crude batch of Poly(MTM)140  |
| Table 20: GPC Results of Poly(MTM) from RAFT Polymerisations 154                          |
| Table 21: List of Chemicals Used for EI, IC and Corresponding GEBFC Studies               |
| Table 22: Weights of Chemicals for Electrode Mixtures 165                                 |
| Table 23 Resistances used in MFC experiments for polarisation and power curves. Note that |
| they were used in decending order                                                         |
| Table 24 Resistances used in GEBFC experiments for polarisation and power curves. Note    |
| that they were used in decending order                                                    |
| Table 25: Summarised History of Pacemakers – Adapted from Aquilina et al (Aquilina 2006)  |
|                                                                                           |
| Table 26: Summarised History of Neuromodulators for DBS (Gardner 2013)                    |
| Table 27: History of Spinal Cord Stimulators (Gildenberg 2006; Thomson 2016)              |
| Table 28: History of Cochlear Implants (Eshraghi et al. 2012) 232                         |

## **AUTHORS PUBLICATIONS**

#### Published Papers

- Roxby, D.N., Ting, S.S. & Nguyen, H.T. 2017, 'Polypyrrole RVC biofuel cells for powering medical implants', *Engineering in Medicine and Biology Society (EMBC)*, 2017 39th Annual International Conference of the IEEE, IEEE, pp. 779-82.
- Roxby, D.N., Tran, N., Yu, P.-L. & Nguyen, H.T. 2016, 'Effect of growth solution, membrane size and array connection on microbial fuel cell power supply for medical devices', *Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the*, IEEE, pp. 1946-9.
- Roxby, D.N., Tran, N., Yu, P.-L. & Nguyen, H.T. 2015, 'Experimenting with microbial fuel cells for powering implanted biomedical devices', *Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE*, IEEE, pp. 2685-8.
- Roxby, D.N., Tran, N. & Nguyen, H.T. 2014, 'A simple microbial fuel cell model for improvement of biomedical device powering times', *Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE*, IEEE, pp. 634-7.

#### Abstract

 Roxby, D., Tran, N., Yu, P. & Nguyen, H., 'PERPETUALLY POWERING BIOMEDICAL DEVICES WITH MICROBIAL FUEL CELLS', Australian Biomedical Engineering Conference (ABEC), Melbourne, Australia. Retrieved from, http://www.abec.org. au/wp-content/uploads/2015/10/10.30-Roxbyabstract. pdf.

## NOMENCLATURE

| AIMD  | Active Implantable Medical Device          |
|-------|--------------------------------------------|
| Рру   | Polypyrrole                                |
| SEM   | Scanning Electron Microscopy               |
| MWCNT | Multiwalled Carbon Nanotubes               |
| MFC   | Microbial Fuel Cell                        |
| SCMFC | Single Chamber Microbial Fuel Cell         |
| DCMFC | Dual Chamber Microbial Fuel Cell           |
| BFC   | Biofuel Cell                               |
| GEBFC | Glucose Enzymatic Biofuel Cell             |
| RAFT  | Reversible Addition-Fragmentation Transfer |
| RVC   | Reticulated Vitreous Carbon                |
| PBS   | Phosphate Buffer Solution                  |
| LBB   | Luria Bertani Broth                        |
| TSB   | Tryptic Soy Broth                          |
| LBA   | Luria Bertani Agar                         |
| TSA   | Tryptic Soy Agar                           |
| GPC   | Gel Permeation Chromatography              |
| NMR   | Nuclear Magnetic Resonance                 |
| CV    | Cyclic Voltammetry / Voltammogram          |
| GOx   | Glucose Oxidase                            |
| LAC   | Laccase                                    |
| FTIR  | Fourier Transform Infrared Spectroscopy    |
| EP    | Electropolymerisation                      |
| EI    | Enzyme Immobilisation                      |
| IC    | Increased Conductivity                     |
| Glut  | Glutaraldehyde                             |
| DI    | Deionised                                  |

#### ABSTRACT

The most common example of an active implantable medical device (AIMD) is the pacemaker. In 2017, Abbott Laboratories said that 'more than 4 million people worldwide have an implanted pacemaker... and an additional 700, 000 patients receive the devices each year.' Other devices also exist, such as neurostimulators and cochlear implants which are implanted at different ages and whose batteries lives differ such that surgical replacement is required. With further technologies being developed and life expectancy rising, the incidence of this problem will increase.

Current wireless charging and energy harvesting solutions are not ideal. Wireless recharging continues to be researched where issues around alignment, power transfer efficiency and skin heating remain. Importantly, patient anxiety for their device's charge remains but at more regular intervals. Peltier cells can harvest heat energy from the body but must be unfeasibly large. Mechanical energy harvesting with piezoelectric, electrostatic and electromagnetic generators has potential, however, require patient movement or require risky attachment to organs.

Biological fuel cells have the potential to power AIMDs from glucose, using bacteria or enzymes to catalyse the capture of electrons. This study outlines methods to improve the power of both microbial fuel cells (MFCs) and glucose enzymatic biofuel cells (GEBFCs) for AIMDs.

Firstly, MFCs are used to find that positioning electrodes can improve the power output by 5 times as well as that fuel cell stirring can improve power by 1.2 times. These findings have implications where a patient can be upright or lying down, and active or sleeping. Internally, bacteria composition was found to be an important factor in power output, where MFCs that use of a mixed culture could provide 10.27  $\mu$ W of power whereas a single culture could

xiv

provide 5.94  $\mu$ W and that fuel cell stacking could achieve up to 1.6 V and 39  $\mu$ W. These findings speak to the size of a MFC and that power density is a significant challenge to implantation.

Alternatively, polypyrrole electrodes were developed for a GEBFC. The method involved a novel combination of RAFT and electro-polymerisation to create a polymer which had a high conversion efficiency of 80.9% and uniform polydispersity of 1.034. The disc electrodes were synthesised through a simple compression method, enabling high enzyme loading and suitability for manufacturing. Further improvements using glutaraldehyde crosslinking and high conductivity silver composites lead to harvesting of 451 mV, 128.2  $\mu$ W and 1.4 mA and ultimately, an actual medical device is powered.

Whilst there is significant potential, there are some areas for future work. MFCs will require significant work in miniaturization whilst also increasing the power output and making them biocompatible. GEBFCs using polypyrrole will likely also require further biocompatibility work as well as improvements in the conductivity and crosslinking of the material, which will help take care of several issues such as porosity, enzyme leaching, enzyme orientation, biofouling and electron transport.