University of Technology Sydney

DOCTORAL THESIS

Electron beam processing and spectroscopic characterisation of 2D materials and novel nanostructures

Author: Supervisor:

Christopher Elbadawi Assoc. Prof. Charlene LOBO

Prof. Igor AHARONOVICH

Prof. Kostya OSTRIKOV

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

in the

School of Mathematical and Physical Sciences

June 2, 2018

Declaration of Authorship

I, Christopher Elbadawi, declare that this thesis titled, "Electron beam processing

and spectroscopic characterisation of 2D materials and novel nanostructures" and the

work presented in it are my own. I confirm that:

• This work was done while in candidature for a research degree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly at-

tributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

• This research is supported by an Australian Government Research Training Pro-

gram Scholarship.

Signed: Pro

Production Note:

Signature removed prior to publication.

Date:

6/6/2018

Abstract

Interest in the inorganic two-dimensional (2D) materials black phosphorus (BP) and hexagonal boron nitride (hBN) has exponentially risen due to the distinct advantages they possess over their bulk counterparts. Excellent and unique mechanical, electronic and optical properties have recently been discovered which can potentially span a large range of conceptually new applications such as high speed flexible electronics, sub-diffractional nanophotonic devices, strain engineered variable sensors and robust quantum information processing systems.

To take advantage of these unique properties a greater understanding of the underlying chemical mechanisms involved in the manipulation/modification of BP and hBN is required. In this project, the nanofabrication tool focused electron beam induced processing (FEBIP) is used to do this all within a scanning electron microscope (SEM). FEBIP is a nanofabrication technique in which electrons are used to decompose surface adsorbed precursor molecules, typically under a constant partial pressure of a precursor gas. A highly focused beam can be used to deposit or etch nanoscale structures on a solid substrate. This technique differentiates itself from classical growth methods through other unique aspects, which include; growth of fully realised three-dimensional (3D) nanostructures, selective surface termination, defect generation and real-time imaging of chemical reaction fronts.

The aim of this project was to elucidate experimentally the fundamental processes that govern the chemical reactions occurring during FEBIP. The first study outlined in this thesis involves the creation of an automated scanning program to reliably manipulate the electron beam for accurate data acquisition and pattern formation. To showcase these capabilities, 3D Pt nanostructures such as high aspect ratio pillars and helices fabricated with Pt(PF₃)₄-mediated electron beam induced deposition. Postgrowth annealing in a water vapour environment was found to improve Pt deposit

purity by volatilising phosphorus contaminants in the form of phosphoric acid. Annealing in H_2O under optimized conditions, yielded platinum that is pure within the detection limit of wavelength dispersive x-ray spectroscopy.

Following from the information obtained through purification of phosphorus contaminants, attention was focused on the simulation of degradation of the highly unstable few-layer BP via electron beam irradiation performed *in-situ*. The real time imaging capabilities allowed for rapid stabilisation techniques to be found via controlled gas mixing and temperature dependent studies. The degradation pathway was found to proceed through the creation of phosphoric acid in a H₂O environment and is shown to be dependent on temperature. A low temperature heat cycle was then formulated to remove intercalated water and oxygen species to cease the degradation of few-layer BP for up to four weeks per heat cycle.

Next, chemical dry etching of hexagonal Boron Nitride (hBN) was performed in a water vapour environment to create nanostructure geometries such as high resolution patterns, nanoribbons, and particles with high fidelity. Steps are also taken toward deterministic generation of defects and single photon emitters in hBN. The product of the electron induced dissociation of hBN at the surface of the material results in the production of nitrogen and boron radicals which then react with H_2O to produce boric and nitric acids. These then can be used as etch precursors for other materials such as silver nanowires. This two step etching process was then reimagined using an *in-situ* delocalised plasma and electron beam irradiation to widen the scope of etch-able materials such as silver, using a gas phase etch process.

These results broaden the scope of material selection available in FEBIP. The exploitation of the unique aspects demonstrated with this technique in this project increases the applicability and versatility of FEBIP as a prominent tool for nanofabrication of 2D materials and complex 3D nanostructures. Furthermore, the results presented here constitute the first step towards integration of few-layer BP and hBN into

high-performance optoelectronic devices, quantum information systems and various environmental sensor applications.

Acknowledgements

Firstly, I would like to thank my supervisors and advisors Assoc. Prof. Charlene Lobo, Prof. Igor Aharonovich, Prof. Milos Toth and Prof. Kostya Ostrikov who gave me the opportunity to undertake this project. Throughout my candidature I was always given the time, support and guidance as well as creative freedom to pursue developments that may have evolved during my research. All of their hard work and academic expertise has been invaluable to me and for that I am extremely grateful.

The work done in this project would not have been possible without the support of my fellow and former PhD colleagues; Tran Trong Toan, Dr. Olivier Lee, Mehran Kianinia, John Scott, James Bishop, Johannes Froch, Dr. Xu Zaiquan, Minh Nguyen, Kerem Bray, and Mika Tham who would selflessly take their own time to work and assist with my research, thus I would like to extend my gratitude.

I would like to give a big thanks to Geoff McCredie, Katie McBean, Mark Berkahn and Herbert Yuan for their unparalleled technical expertise and continued assistance in the MAU throughout the candidature. I would also like to thank everyone else in the MAU, for which we had to endure the highs and lows together, thanks for all the good times. A special mention must go out to soon to be/former PhD candidates, Joshua Pritchard, Fadi Bonnie and Aaron Colusso for great moral support and friendship over the years.

I must also express thanks to everyone at UTS, I felt very welcomed and was given a lot of opportunities throughout my time here. I was lucky enough to meet people across many disciplines and have befriended many wonderful people over this time. A very special thank-you must go to the beautiful Ali Hunt who was always there for me and supported me during my time here. I would not be in this position without you.

Next, I would like to show my appreciation to all collaborators that I have had the pleasure to work with, including; Prof. Kostya Ostrikov and the plasma team, Dr. Sumeet Walia, Prof. Vipul Bansal and the team at RMIT, Dr. Miroslav Kolibal from BRNO university of technology and Dr. Erin Gloag and the ithree institute who have assisted/allowed me to assist in various projects over the years. A special mention must go to Prof. Kostya Ostrikov and CSIRO for providing a scholarship top-up.

Finally, a special thanks to my family and friends for their continued support, even if I wasn't deserving of it throughout the candidature. In particular my parents, who have fully supported me wholeheartedly throughout my life, I am forever indebted to you and hope I made you proud.

Publications

Peer-reviewed publications list:

- Pure Platinum Nanostructures Grown by Electron Beam Induced Deposition. C.
 Elbadawi, M. Toth, and C. Lobo. ACS applied materials and interfaces (2013), 5(19), 9372-9376.
- Electron beam directed etching of hexagonal boron nitride. C. Elbadawi, T. T. Trang, J. Scott, M. Kolibal, T. Šikola, Q. Cai, L. Li, T. Taniguchi, K Watanabe, M. Toth, I. Aharonovich and C. Lobo. Nanoscale (2016), 16182-16186.
- Ambient stabilization of few-layered black phosphorus by thermal cycling. C. Elbadawi, R. Tormo Queralt, X. Zaiquan, J. Bishop, T. Ahmed, S. Kuriakose, S. Walia, M. Toth, I. Aharonovich and C. Lobo. Submitted.
- Robust multicolor single photon emission from point defects in hexagonal boron nitride. T. T. Trang, C. Elbadawi, C. Lobo, D. Totonjian, G. Grosso, H. Moon, I. Aharonovich, and M. Toth. ACS Nano (2016), 7331-7338.
- Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. S. Walia, S. Balendhran, T. Ahmed, M. Singh, C. Elbadawi, M.D. Brennan, P. Weerathunge, M. Karim, F. Rahman, A. Rassell, J. Duckworth, A. Ramanathan, G.E. Collis, C.J. Lobo, M. Toth, J.C Kotsakidis, B. Weber, F. Michael, J.M. Dominguez-Vera, M.J.S. Spencer, I. Aharonovich, S. Sriram, M. Bhaskaran and V. Bansal. Advanced materials (2017) May 12.
- Localization of narrowband single photon emitters in nanodiamonds. K. Bray,
 R. Sandstrom, C. Elbadawi, M. Fischer, M. Schreck, O. Shimoni, C. Lobo, M.
 Toth, and I. Aharonovich. ACS applied materials and interfaces (2016), 8(11), 7590-7594.

- Engineering and localization of quantum emitters in large hexagonal boron nitride layers. S. Choi, T. T. Trang, C. Elbadawi, C. Lobo, W. Xuewen, S. Juodkazis, G. Seniutinas, M. Toth, and I. Aharonovich. ACS applied materials and interfaces (2016), 29642-29648.
- Growth of Three Dimensional Nanostructures by Electron Beam Induced Deposition. J. Bishop, C. Elbadawi, M. Kianinia, J. Pritchard, C. Lobo, and M. Toth. Submitted.
- Micro-Patterned Surfaces that Exploit Stigmergy to Inhibit Biofilm Expansion.
 E. Gloag, C. Elbadawi, C. Zachreson, I. Aharonovich, M. Toth, I. Charles, L. Turnbull and C. Whitchurch. Frontiers in Microbiology (2017), 7 (2016): 2157.
- Single Photon Emission from Plasma Treated 2D Hexagonal Boron Nitride. Z.
 Xu, C. Elbadawi, T. T. Trang, M. Kianinia, X. Li, D. Liu, T. B. Hoffman, M.
 Nguyen, S. Kim, J. H. Edgar, X. Wu, L. Song, S. Ali, M. Ford, M. Toth and I.
 Aharonovich. Submitted.
- Deterministic Nanopatterning of Diamond Using Electron Beams. J. Bishop, M. Fronzi, C. Elbadawi, V. Nikam, J. Pritchard, M. Ford, I. Aharonovich, C. J. Lobo and M. Toth. ACS Nano (2017), 10.1021/acsnano.8b00354 24 Jan 2018.
- Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling. C. Elbadawi, T. T. Trang, O. Shimoni, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D.R. Englund, M.J. Ford, I. Aharonovich and M. Toth. SPIE BioPhotonics Australasia. Vol. 10013. International Society for Optics and Photonics, 2016.

Conference Presentations

Conference presentation list:

- Nanotechnology Workshop for Early Career Researchers, Flinders University, July 2013. Oral presentation: Localized fabrication of pure platinum nanostructures – Awarded best presentation
- FEBIP 2016, TU Wien Austria, Vienna July 2016. Oral presentation: Electron beam restructuring of hexagonal Boron Nitride for applications in photonics and polaritonics
- SPIE BioPhotonics Australasia, Adelaide October 2016. Oral presentation: "Ultrabright emission from hexagonal boron nitride defects as a new platform for bioimaging and bio-labelling." SPIE BioPhotonics Australasia. Vol. 10013. International Society for Optics and Photonics, 2016.
- COMMAD 2016, UNSW, Sydney 2016 Oral Presentation: Electron beam driven defect creation in hexagonal Boron Nitride for photonic applications
- 253rd American Chemical Society National Meeting and Expo, San Francisco
 2017 Oral presentation: Directed deposition and etching using electron beam and plasma irradiation

List of Figures

1.1	A comparison of the number of publications for 2D materials during	
	the last decade	2
1.2	The specific applications that apply to 2D materials along the various	
	spectral ranges. A graphical representation of the atomic structures is	
	illustrated	3
2.1	A simple schematic of FEBIP, with the role of the electron beam, precur-	
	$sor\ molecules, precursor\ adsorbates\ and\ substrate\ highlighted.\ Schematic$	
	adapted from [44]	8
2.2	A schematic of the processes for EBIE and EBID	9
2.3	Surface-adsorbate interactions which also corresponds with the stan-	
	dard model	12
2.4	Example of an Interaction volume generated from a primary electron	
	beam and the outer layers	17
2.5	The crystal structure of phosphorene.	20
2.6	Variable bandgap through various changes in few-layer BP, including	
	variable thickness and surface termination	21
2.7	Optical images and PL intensity of a monolayer phosphorene samples	
	with various treatments over time	22
2.8	Layers of the hexagonal form of Boron nitride (analogous to graphene)	
	is depicted in this figure, with alternating Boron and Nitrogen atoms	23
2.9	This defect antisite nitrogen vacancy which is hypothesised to be the	
	source of the hBN single photon emission	24
2.10	The optical transitions between three states in an atom	26

2.11	A bloch sphere with co-ordinate representation of a qubit	27
2.12	Real-space imaging of surface phonon polaritons on hBN	29
3.1	A simple schematic of an SEM operation, with the anode, cathode, lens	
	and coils highlighted	34
3.2	The gas cascade process	35
3.3	A typical Gas injection system, highlighting the vacuum and air side	
	components	37
3.4	A custom built environmental reaction cell housing an insitu heating	
	substrate holder and gas inlets	38
3.5	A schematic of the gas network system	39
3.6	A simple schematic of an SEM operation with an in-situ plasma head	
	attachment	41
3.7	Schematic of the atom model is used to explain the characteristic X-ray	
	emission produced from external excitation and relaxation in the atomic	
	lattice. Adapted from [161] ©	43
3.8	An example of Bragg diffraction, where two beams with identical wave-	
	length and phase approach a crystalline solid and are scattered off two	
	different atoms within it	45
3.9	The auger effect process which highlights the energy change used in	
	auger electron spectroscopy	47
3.10	A schematic of an AFM using the deflections of a laser beam to map the	
	topography of a sample surface	49
3.11	A simple schematic of the confocal setup used. With excitation and	
	collection pathways highlighted as well as main components	50
3.12	An image of the ex-situ CVD chamber in operation	52
4.1	A collection of Pt nanowire arrays deposited using the scanning pattern	
	generator	56
4.2	An example of layered scanning pattern generation for bottom up nanofab-	
	rication	57

4.3	A series of 90 degree tilted SEM images of Pt spiral structures with volt-	
	age output model	59
4.4	A series of SEM images of Pt spirals fabricated directly over individual	
	Nanodiamonds	60
4.5	High resolution nanodots and tophat deposits of Pt using EBID. EDS vs	
	WDS spectra is also illustrated	64
4.6	Pt EBID deposit composition as a function of post-growth annealing	
	temperature in vacuum.	60
4.7	Composition of Pt(PF ₃) ₄ -EBID deposits plotted as a function of anneal-	
	ing time in H_2O vapor at 250 and $400^{\circ}C$	62
4.8	Etch pits in the substrate surface near Pt EBID deposits subjected to a	
	600°C anneal in H ₂ O	68
4.9	X-ray spectra obtained using electron beam energies of 10, 15 and 20 keV	
	of a $Pt(PF_3)_4$ -EBID deposit that had been purified using a 40 min, $400^{\circ}C$	
	anneal in H_2O (deposit height ${\sim}600$ nm). $\ \ldots \ \ldots \ \ldots \ \ldots$	6
5.1	Typical Atomic Force Microscopy (AFM) image of a few-layered black	
	phosphorus flake used for ESEM experiments	7
5.2	The schematical setup used for Black phosphorus experimentation	7
5.3	A FLBP flake in a sequence of screen captures during a 1 hour irradi-	
	ation in the presence of H ₂ O. A semi degraded FLBP flake with the	
	compositions of P and O respectively is illustrated	7
5.4	Typical Raman spectrum of three different FLBP flakes after exposure	
	to atmosphere	7
5.5	Flakes before and after 1 hour electron beam irradiation in a) O_2 , b) NF_3 ,	
	c) $\mathrm{NH_3}$, d) $\mathrm{H_2O}$ environments with the corresponding Raman spectra	79
5.6	hBN large flake in a series of screenshots during high vacuum e-beam	
	irradiation	8
5.7	hBN large flake before and after 1 hour electron beam irradiation in a	
	NH ₃ environments	8

5.8	Temperature dependent studies performed on FLBP. Degradation onset	
	time and product diffusion rate is also plotted	82
5.9	A series of SEM images highlighting how product diffusion measure-	
	ments are performed	83
5.10	Untreated FLBP flakes covered from light and left in atmospheric con-	
	ditions for 2 weeks irradiated in a H ₂ O environment over time at room	
	temperature and at $200^{\circ}C$	84
5.11	Degradation of FLBP raman modes monitored over time	85
5.12	EDS study performed on heat treated and variable gas e-beam irradi-	
	ated FLBP flakes	85
5.13	Compositional analysis of heat-treated and electron beam irradiated	
	(15 keV and 2.3×10^{19} electrons cm $^{-2}$ min $^{-1}$., 1 hr) FLBP	86
5.14	In-situ electrical characterisation of heat treated FLBP flakes is com-	
	pared at $150^{\circ}C$ and room temperature under the electron beam in a	
	H_2O environment	87
6.1	Optical image of hBN flakes, aswell as experimental details and monte	
	carlo SRIM modelling of ion projections	92
6.2	Hanbury Brown and Twiss confocal setup used in this study with a	
	typical fluorescence confocal map taken from a hBN multilayer sample.	94
6.3	Schematic illustration of two independent processes that yield emitters	
	- annealing and electron beam irradiation. Emitter creation as a func-	
	tion of temperature is also illustrated and two PL spectra from emitters	
	fabricated by electron beam irradiation	96
6.4	Difference in emitter formation in a H ₂ O and high vacuum environment.	98
6.5	Confocal and SEM images before and after e-beam irradiation of hBN	
	flakes in a H ₂ O environment	99
6.6	PL spectra after O ₂ plasma clean	100

6.7	Stability of the hBN emitters after sequential annealing in argon, hydro-
	gen, oxygen and ammonia and the corresponding antibunching mea-
	surements
6.8	Emitter creation and destruction upon sequential annealing at 500°C for
	30 min each in H_2 , O_2 and NH_3 environments
6.9	hBN emitter PL, and autocorrelation properties and statistics 105
6.10	hBN emitter PL, and autocorrelation properties and statistics 107
6.11	Confocal scans on B10-hBN large flakes along with photophysical char-
	acterisation of a SPE
6.12	A saturation curve of a very bright B10-hBN single photon emitter 110
6.13	Raman (E_{2g}) mode for a standard hBN flake and B10-hBN flake 111
6.14	Peak fitting for the ZPL and PSB positions of a B10-hBN and standard
	hBN large flake
6.15	Fabrication of emitters by electron beam irradiation on large hBN flakes,
	including a confocal map, PL spectra and antibunching measurements
	before and after irradiation
6.16	Confocal PL mapping on the hBN flake that was e-beam irradiated be-
	fore and after Ar plasma etching and the right hand side an SEM image
	of electron beam patterned hBN flake
7.1	Schematic and SEM images illustrating electron beam induced etching
	of hBN using H ₂ O vapor as the etch precursor
7.2	SEM image of a typical hBN flake before and plasma cleaning treatment. 120
7.3	Auger electron spectra on hBN exposed with 5 different electron doses 122
7.4	Raman spectra from hBN before and after EBIE processing
7.5	TEM and selected area diffraction patterns on pristine and EBIE etched
	regions of hBN
7.6	Monte-carlo simulation corresponding the BSE range with surface rough-
	ening of EBIE hBN

7.7	Correlation of radial extent of surface roughening as observed by SEM
	and expected BSE range at 10 and 5 kV primary beam energies 126
7.8	A series of etches are performed in suspended and non suspended hBN
	showing the absense and presense of surface roughness respectively 128
7.9	Contrast enhancement performed on a series of horizontal lines etched
	into a hBN flake suspended to emphasize the increased surface rough-
	ening
7.10	Etching of hBN showcased through use of membrane and suspension 130
7.11	An example of suspended hBN folding over in a series of screenshots 131
7.12	Examples of nanoribbons and nanobridge structures
7.13	Etch pit depth plotted as a function of etch time and temperature at
	room temperature
8.1	The electron beam induced etching system for hBN with highlights for
0.1	the localised etching of Ag directly under the etched hBN
8.2	SEM images of Ag nanowires in various environmental conditions after
0.2	electron beam irradiation
8.3	
0.3	SEM images before and after an electron beam exposure of Ag nanowires
	on AlN in a H_2O environment. EDS mapping was then performed in a H_2O environment highlighting the change in Al, N and O content after
	a 2 hour exposure
0 1	1
0.4	SEM images before and after an electron beam exposure of Ag nanowires
	on GaN in a H ₂ O environment. EDS mapping was then performed
	in high vacuum on a seperate GaN irradiated region, highlighting the
0.5	change in Ga, N and O content after irradiation
8.5	A schematic of the proposed chemical reaction pathway and complete
	volatilisation of hBN during electron beam induced etching in a H ₂ O
	environment

8.6	A graphic is used in to portray the electron beam induced etching of
	AgNO ₃ dropcast and crystalized on a Si substrate in both a H ₂ O en-
	vironment (8Pa) and accompayning SEM images and EDS mapping of
	the etched regions
8.7	A schematic of the directionality of the etchant products created via the
	electron beam induced etching of hBN which results in undercutting
	of Ag nanowires and particles. SEM images are also illustrated with
	varying degrees of undercut Ag beads and nanowires
A.1	The front panel interface created in LabVIEW for the scanning program
	created
A.2	Initialization and inputs back panel screenshot for the scanning program.158
A.3	Data rearrangement of the array screenshot for scanning order 159
A.4	Back panel data removal and multiplication screenshot
A.5	The backpanel of the voltage output and front panel information 161
A.6	Beam blanking backpanel screenshot for the scanning program 162
B.1	Deterministic EBIE of a CVD grown nanodiamond and the correspond-
	ing changes to the PL spectra
B.2	A PL spectrum and SEM image comparison from a single nanodiamond
	containing morphological defects and a nearly perfect nanodiamond
	crystal
B.3	Deterministic EBIE of a CVD grown nanodiamond on a silicon substrate 167
C.1	Autocorrelation measurements for single photon emitters in MoO_3 mono-
	layers and corresponding PL spectra
C.2	α -MoO $_3$ emitter stability and PL spectra in high vacuum 171
C.3	α -MoO $_3$ emitter stability in standard atmospheric condition 172
C.4	Comparison of the PL spectrum for $\alpha\text{-MoO}_3$ SPEs found in high vac-
	uum and standard atmospheric conditions

D.1 SEM	images and confocal scans of a large hBN flake irradiated in a NF ₃	
envir	ronment	176
D.2 Ar ar	nneal performed on NF_3 e-beam irradiated large hBN flake	177
D.3 SEM	image and confocal scan of a large hBN flake e-beam irradiated in	
a NF	G_3 environment as a function of increasing electron beam fluence	178
E.1 Awa	orkflow summary of the plasma enhanced electron beam induced	
etchi	ing process	184
E.2 SEM	images were taken before and after a 45 min electron beam irradi-	
ation	n on Ag NWs in a $O_2 + N_2$ and NH_3 delocalised plasma environment.	186
E.3 A sea	ries of SEM images of Ag NWs on a Si substrate after 20 mins of	
elect	ron beam irradiations in a $N_2 + H_2O$ delocalized plasma environ-	
ment	t as a function of increasing beam current	187

List of Abbreviations

2D Two-Dimensional

AFM Atomic Force Microscope

BP Black Phosphorus

BSE Backscattered Electron

CASINO Monte Carlo Simulation of Electron Trajectory in Solids

CCD Charge-Coupled Device

CNT Carbon Nanotubes

CVD Chemical Vapour Deposition

DFT Density Functional Theory

EBID Electron Beam Induced Deposition

EBIE Electron Beam Induced Etching

EBL Electron Beam Lithography

EDS Energy-Dispersive X-ray Spectroscopy

ESEM Environmental Scanning Electron Microscope

FEBIP Focused Electron Beam Induced Processing

FLBP Few Layer Black Phosphorus

FEG Field Emission Gun

FIB Focused Ion Beam

FWHM Full Width at Half-maximum

GIS Gas Injection System

hBN Hexagonal Boron Nitride

HBT Hanbury Brown and Twiss

MoS₂ Molybdenum Disulfide

MoO₃ Molybdenum trioxide

NIDAQ National Instruments Data Acquisition Device

RF Radio Frequency

RIE Reactive Ion Etching

ROS Reactive Oxygen Species

PSB Phonon Side Band

PL Photoluminescence

SAED Selected Area Electron Diffraction

SEM Scanning Electron Microscope

SDD Silicon Drift Detector

SPE Single Photon Emitter

TMD Transition Metal Dichalcogenides

TEM Transmission Electron Microscope

WDS Wavelength-Dispersive X-ray Spectroscopy

ZPL Zero Phonon Line

List of Symbols

FEBIP model

Adsorption

 N_d Concentration of precursor adsorbates

(molecules/ $Å^2$)

 s_d Precursor adsorbate sticking coefficient

 J_d Precursor molecular flux (Å²s⁻¹)

p Gas pressure (Pa)

m Molecular mass of the precursor (g)

 A_d Precursor molecule surface area (Å²)

t Time (s)

Desorption

 E_d Energy barrier for desorption (J/molecule)

 v_0 Vibrational frequency of the adsorbed molecule (Hz)

Diffusion

Radial distance from electron beam axis (Å)

D Diffusion coefficient ($Å^2 s^{-1}$)

 E_{diff} Energy barrier for diffusion (J/molecule)

T Temperature (K)

 k_b Boltzmann constant (J/K)

 D_0 Diffusion prefactor (Å² s⁻¹)

xxvi

Dissociation

 N_D Number of deposited molecules per unit area

 $(\text{molecules}/\mathring{A}^2)$

f Electron flux (e/Å²/s)

 σ_d Adsorbate dissociation cross-section (Å²)

 V_D Volume of the deposited material (Å³)

Interaction volume

A Atomic weight (g/mol)

EL Landing energy (keV)

p Density (g/cm³)

Z Atomic number

Typical Experimental parameters used

for studies completed in this thesis

ESEM conditions

Beam current 0.1 - 8 nA
Accelerating voltages 1 - 30 keV
gas pressures 8 - 20 Pa

Plasma Conditions

Frequency 131 MHz

Power 5 W

PL conditions

Laser frequencies 533 nm, 632 nm

Power $300 \mu W$

Raman Conditions

Laser frequencies 633 nm

Contents

D	eclara	ation of	Authorship	i
A	bstra	ct		v
A	cknov	wledge	ments i	x
Pι	ıblica	itions	,	αi
C	onfer	ence Pr	esentations xii	ii
Li	st of	Figures	x	V
Li	st of	Abbrev	riations xxii	ii
Li	st of	Symbo	ls xx	V
1	Prea	amble		1
	1.1	Introd	uction	1
		1.1.1	Nanofabrication	3
		1.1.2	FEBIP and 2D materials	4
	1.2	Aims	and objectives	5
2	Bac	kgroun	d	7
	2.1	Focus	ed electron beam induced processing	7
		2.1.1	How FEBIP works	7
		2.1.2	Electron beam induced deposition	8
		2.1.3	Electron beam induced etching	0
	2.2	FEBIP	processes and interactions	1

		2.2.1	Substrate-precursor molecule interaction	11
		2.2.2	Standard Model for FEBIP	12
		2.2.3	Electron-precursor interaction	15
		2.2.4	Electron-substrate interaction	16
	2.3	2D ma	iterials	18
		2.3.1	BP	19
		2.3.2	hBN	23
		2.3.3	hBN single photon emitters	24
		2.3.4	Naturally hyperbolic material	28
	2.4	Remai	ning chapter summary	30
3	Expe	riment	tal procedures	33
	3.1	SEM .		33
	3.2	Enviro	onmental SEM	34
	3.3	Gas de	elivery	36
			Gas injection system	37
			Reaction cell	37
			ESEM	38
	3.4	Gas/p	precursor network	39
	3.5	Cleani	ng and cleanliness	40
		3.5.1	High vacuum pumping and plasma cleaning	40
		3.5.2	Substrate cleaning and general cleanliness	41
	3.6	3.6 Monte Carlo simulations		42
	3.7			42
		3.7.1	EDS	43
		3.7.2	WDS	44
			Spectrometer mechanism	44
	3.8	Auger	electron spectroscopy	46
	3.9	Transr	mission electron microscopy and selected area electron diffraction	47
	3.10	AFM		48

	3.11	Confo	cal microscopy	49
	3.12	Ramai	n spectroscopy	50
	lithography	51		
	3.14	Metal	sputtering	51
	3.15	Therm	nal annealing	52
4	Prog	gramma	able patterning of three-dimensional Pt structures	53
	4.1	Abstra	act	53
	4.2	FEBIP	nanostructure patterning	54
		4.2.1	Introduction	54
		4.2.2	FEBIP scanning pattern/function generator	54
			Scanning pattern with varying dwell time	55
			Scanning pattern with constant dwell time	55
			Scanning pattern for arrays	56
			Function scanner	57
	4.3	Patter	ning and three dimensional structures	58
	4.4	EBID 1	method	61
	4.5	Pure p	platinum nanostructures grown by electron beam induced depo-	
		sition		62
		4.5.1	Introduction	62
		4.5.2	Methods and materials	63
		4.5.3	Results and discussion	63
			As-grown deposits	63
			Post-growth annealing	65
		4.5.4	Purification mechanism and generality of the purification tech-	
			nique	68
	4.6	Concl	usion	70
	4.7	Chapt	rer contributions	70
5	Med	hanisit	tic and stabilisation study of few-layer BP	71
	5.1	Abstra	act	71

	5.2 Introduction			. 71	
	5.3				
		5.3.1	In-situ VPSEM of few-layer BP degradation	. 76	
		5.3.2	Few-layer BP stabilization by high temperature cycling	. 81	
		5.3.3	Electrical characterisation	. 86	
	5.4	Concl	usion	. 88	
	5.5	Chapt	ter contributions	. 88	
6	Det	erminis	stic engineering and photo-physical characterization of single pho	0-	
	ton	emittei	rs in hBN	89	
	6.1	Abstra	act	. 89	
	6.2	Introd	luction	. 90	
	6.3	Metho	ods and materials	. 90	
		6.3.1	Liquid exfoliated hBN flakes and annealing treatments under		
			different gas environments	. 90	
		6.3.2	Mechanically exfoliated large flake hBN and ion implantation		
			procedures	. 91	
		6.3.3	Electron-beam irradiation	. 93	
		6.3.4	Optical characterization	. 93	
	6.4	Resul	ts and discussion	. 95	
		6.4.1	Emitter fabrication	. 95	
		6.4.2	Emitter stability	. 100	
		6.4.3	Emitter photo-physical characterisation	. 104	
		6.4.4	Emitters in isotopic B10-hBN and the PSB	. 108	
		6.4.5	Toward deterministic fabrication of emitters	. 111	
6.5 Conclusion		usion	. 115		
	6.6	Chapt	ter contributions	. 116	
7	Elec	tron be	eam directed etching of hBN	117	
	7.1	Abstra	act	. 117	
	7.2	Introd	luction	. 117	

	7.3	Methods and materials	. 119
	7.4	Results and discussion	. 121
		7.4.1 hBN etch process	. 132
	7.5	Conclusion	. 134
	7.6	Chapter contributions	. 134
8	Sub	strate assisted bottom-up etching using EBIE	135
•	8.1	Abstract	
	8.2	Introduction	
	8.3	Methods and materials	
	8.4	Results and discussion	
	0.1	8.4.1 Chemical reaction pathway	
		8.4.2 Etching via electron stimulated volatile solute AgNO ₃	
		8.4.3 Directional etching	
	8.5	Conclusion	
	8.6	Chapter contributions	
	0.0	Chapter contributions	. 11/
9	Con	clusions	151
	9.1	Summary	. 151
	9.2	Future Work	. 154
		9.2.1 Plasma and EBIE	. 154
		9.2.2 Undercutting	. 155
		9.2.3 hBN and few-layer BP	. 155
		Material restructuring/functionalization	. 155
		Few-layer BP applications	. 156
		hBN applications	. 156
A	Scar	nning program code	157
В	EBI	E of narrowband Single Photon emitters in Nanodiamonds	163
	B.1	Introduction	. 163
	В 2	Methods	164

	B.3	Results and discussion	165			
	B.4	Conclusion	168			
	B.5	Appendix contributions	168			
C	Inst	ability of Molybdenum trioxide monolayer emitters	169			
	C.1	Introduction	169			
	C.2	Methods	169			
	C.3	Results and discussion	170			
	C.4	Conclusion	174			
	C.5	Appendix contributions	174			
D	NF ₃	irradiation of hBN	175			
	D.1	Appendix contributions	179			
E	Plas	ma enhanced EBIE	181			
	E.1	Introduction	181			
	E.2	Methods and materials				
		E.2.1 Single crystal Ag nanowires preparation	182			
		E.2.2 Delocalised plasma parameters	182			
		E.2.3 Electron beam parameters	182			
	E.3	Results and discussion	183			
		E.3.1 Current dependent etching	186			
	E.4	Conclusion	187			
	E.5	Appendix contributions	188			
Ri1	hlina	raphy	189			