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Abstract

Major depressive disorder (MDD) is a brain disorder that is characterised by negative
thoughts, mood and behaviour. Transcranial direct current stimulation (tDCS) has
emerged recently as a promising brain-stimulation treatment for MDD. A standard tDCS
treatment involves numerous sessions that are run over a few weeks, however, not all
participants respond to this type of treatment. This delay could have negative impact
upon patients that do not respond, being an inefficient use of staff time and exposing
patients to ineffective treatment. The early identification of patients who respond to this
type of treatment is needed. Electroencephalography (EEG) signal is a significant tool
that can be used to study the modulatory effects of tDCS treatment. The significant part
of this research aims to predict the clinical outcomes of tDCS treatment by analysing

the patients’ EEG signals.

EEG signal is a complex signal that has high sensitivity to noise. EEG signal records
both neural and non-neural activities from a large number of electrodes, therefore, the
analysis and classification of EEG signals proved to be quite challenging. Machine
learning has attracted the attention of many researches as a powerful approach for
analysing various types of signals, including EEG. Algorithms for channel/feature
selection, classification, detection, prediction and fusion have been developed. Recently,
deep neural networks, particularly deep belief networks (DBNs), have emerged as a
new hierarchical technique for modelling high level abstractions of data, and have
been successfully applied to a number of classification problems. Similar to most
classification algorithms, the existing DBNs have been mainly designed to handle single
stream data, and there are hardly any attempts to generalize those to suit multi-channel

signals.



Abstract

Accordingly, the first part of this research investigates the utilisation of DBN to
differentiate between tDCS sessions based on classification EEG signals, particularly
the implementation of multi-channel DBNs. One of the important attributes that needs
to be carefully studied is considering the multi-channel nature of EEG in the design and

training of deep networks.

A second part of this research aims to predict which patients improve in mood
and cognitive in response to tDCS treatment based on EEG data that were collected at
the start of tDCS treatment. Classifying power spectral density (PSD) of resting-state
EEG is achieved using support vector machine (SVM), linear discriminate analysis
(LDA) and extreme learning machine (ELM). Participants were labelled as improved/not
improved based on the change in mood and cognitive scores. The obtained classification
results of all channel pair combinations are used to identify the most relevant brain
regions. The frontal area is found to be particularly informative for the prediction of
the clinical outcome of the tDCS treatment. Subject independent results reveal that our
proposed method enables the correct identification of the treatment outcome for seven
of the ten participants for mood improvement and nine of ten participants for cognitive
improvement. This represents an encouraging sign that EEG-based classification may

help to tailor the selection of patients for treatment with tDCS brain stimulation.

The second line treatment of depressive disorder is electroconvulsive therapy (ECT).
ECT is an effective and widely used treatment for major depressive disorder, in which a
brief electric current is passed through the brain to trigger a brief seizure. The second
main aim in this research is to identify seizure quality rating by utilising a set of seizure
parameters. Four seizure related parameters, (time to onset of slowing, regularity,
stereotypy and post-ictal suppression) are used as inputs to decision tree and fuzzy
rule-based classifiers to predict seizure quality ratings. The classification results show
that the four seizure parameters provide relevant information about the rating of seizure
quality. Automatic scoring of seizure quality could be beneficial to clinicians working

in electroconvulsive therapy.
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