Increased Task Perception for Adaptable Human-Robot Collaboration

by

James Poon

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
Centre for Autonomous Systems
Faculty of Engineering and Information Technology
University of Technology Sydney

August 2018
Declaration of Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Portions of the research presented in this thesis were undertaken within a series of research exchanges, as part of a collaboration between my primary supervisor and Assoc. Prof. Takamitsu Matsubara at the Intelligent Systems Control Laboratory, Nara Institute of Science and Technology, Japan. As a result, the components of this thesis which were undertaken collaboratively by myself and others within the scope of these exchanges are as follows:

- The work with Gaussian Processes in Section 2.3 was undertaken in collaboration with Daisuke Tanaka during a visit to UTS in October 2014, supported by the Global Initiative Program provided by the Japanese Ministry of Education, Culture, Sports, Science & Technology.

- The Dynamic Policy Programming path planner in Section 3.4 was built together with Yunduan Cui during a visit to UTS from October 2015 to January 2016, supported by the 2015-2017 Japanese Society for the Promotion of Science Bilateral Joint Research Projects (Open Partnership).

- Both Convolutional Neural Networks in Chapter 4 were built together with Yunduan Cui during a visit to UTS in March 2017, again supported by the 2015-2017 Japanese Society for the Promotion of Science Bilateral Joint Research Projects (Open Partnership).
• The work in Chapter 5 was undertaken in collaboration with Yunduan Cui during my visit to NAIST from January to May 2016, and in the immediate months following. My visit was supported by both the New Energy and Industrial Technology Development Organization, Japan, and the UTS Faculty of Engineering & IT Higher Degree by Research Students Research Collaboration Experience.

Signed: Production Note:
Signature removed prior to publication.
Increased Task Perception for Adaptable Human-Robot Collaboration

by

James Poon

Submitted to the Faculty of Engineering and Information Technology in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

This thesis presents investigation into enhancing the robustness and adaptability of robot action generation in human-interactive scenarios, by means of a heightened level of task or scene perception which in turn leads to a lessened reliance upon the observed behaviours of the robot’s human counterpart.

In human-robot interaction under the learning from demonstration paradigm, the demonstration is most often carried out by able experts who are capable of performing the task with a very high degree of proficiency while also considering the robot’s physical limitations (movement speed limits, joint singularities, etc.). As a result of this, the actions of the robot’s partner in the obtained training samples can be considered to be near-optimal. A disparity then naturally arises when working with end-users whose performance may be hindered by a range of factors such as disability, inexperience, or fatigue. The lack of task-specific goodness in these observed partner behaviours can then lead to unpredictable or unsafe robot actions in demonstration learning frameworks where an arguably excessive emphasis is placed upon the partner performing their share of the task at a skill level comparable to that of the demonstrators.

As gathering a sufficiently large quantity of training data samples to encompass such a broad scope of human aptitude is generally infeasible, it becomes arguable that a greater emphasis for robot
action modelling should instead be placed upon the task or the work scene that both agents are operating within. An example of this is in collaborative object handling between two humans; one would naturally generate suitable actions for the task by considering the movements of the leader alongside the object and the space they are moving through. The information derived from the latter two observations increases the chance that imperfections in leader behaviour can be adequately compensated for. This allows for an improved adaptability to novel task conditions, and also increased robustness when the observations of partner behaviour are insufficiently informative for safe action planning. These benefits can be primarily attributed to the trained models being more resilient against a lack of informativeness or task goodness in observed partner behaviour, by instead supplementing such missing fine details with information directly drawn from the immediate environment in which the interactive activity is taking place.

This concept of increased task and environmental perception is assessed across two significantly different human-robot interaction paradigms: intelligent wheelchair navigation, and physical humanoid collaboration. For wheelchair navigation, a framework for the generation of expert-stylized short-term paths that can be concatenated for traversal ‘anywhere’ is realized as a flexible adaptation upon the conventional approach of static long-term destinations within known occupancy maps. The reliance upon immediately available on-board sensor data, as opposed to the more conventionally restrictive features such as platform position within the map, allows proactively assisted traversal through settings novel to demonstration data without the need for retraining goal inference models. For physical humanoid collaboration, robust robot action generation is achieved when faced with novel task conditions and ambiguous partner observation, serving as an intuitive extension to action generation postulated solely upon briefly observed partner movements. This is evaluated in a collaborative object covering exercise by a human-humanoid team, where object parameters automatically drawn from visual scene data compensates for uninformative human partner observation.

Thesis Supervisors: Jaime Valls Miro and Gamini Dissanayake
Acknowledgements

First and foremost I would like to express my sincerest thanks to my primary supervisor Prof Jaime Valls Miro for providing me with the abundance of guidance and freedom in exploring a range of interesting research topics over the last several years. The significance of the many opportunities provided to me cannot be understated in what has been a frankly life-changing learning experience, starting from since I was an under-graduate intern and culminating in this body of work. Also from the UTS Centre for Autonomous Systems I would like to thank Dr Gavin Paul, Prof Sarath Kodagoda, and Dr Alen Alempijevic for the casual contracting and teaching opportunities over the course of my graduate study. I have genuinely enjoyed my involvement in your respective courses, and learned many things in doing so. This research was supported by the Australian Government Research Training Program.

My sincere gratitude goes to Prof Takamitsu Matsubara at the Nara Institute of Science and Technology’s Intelligent System Control lab, for our on-going collaboration since late 2014. Particular thanks must be expressed for ISC’s Dr Yunduan Cui, who has become one of my closest friends over the last few years. Thank you for the support and good (and occasionally, not so good) times in Japan; working alongside you at both ISC and CAS, and over the Internet in between, has simply been nothing short of fantastic. I would also like to express gratitude to Mrs Mioko Fukuda at the International Institute for Advanced Studies for providing accommodation during my 2016 exchange visit.

I would like to thank all my colleagues at CAS for your support and advice during my time here; particularly, but in no specific order: Jean Kyle Alvarez, Richardo Khonasty, Karthick Thiagarajan, Christian Reeks, Antony Tran, Julien Collart, Cedric le Gentil, Lei Shi, James Unicomb, David Hunt, Michael Behrens, Mohammad Norouzi, and Freek de Bruijn. Thanks also goes to the entirety of ISC, particularly Prof Kenji Sugimoto, Dr Daisuke Tanaka, Murase Masaki, Haifeng Han, and Juan Rodriguez; thank you all for making my visits to your lab so memorable.

Finally I wish to thank my mother for her support through everything, and my grandfather who never really understood what exactly I was doing but believed in me regardless. And old Kiki, who keeps the clouds away.
Contents

Declaration of Authorship iii
Abstract v
Acknowledgements vii
List of Figures xiii
List of Tables xv
List of Algorithms xvii
Acronyms xix

1 Introduction 1
1.1 Background and Motivation 1
1.2 Overview of Research Problem 3
1.2.1 Assumptions 6
1.3 Contributions 7
1.4 Outline of Thesis 8
1.5 Publications 10

2 Global Intention Estimation for Mobility Aids 13
2.1 Background 14
2.1.1 Passive PMD Assistance 14
2.1.2 Global Intention Estimation for Active PMD Assistance 16
2.2 Global Intention Estimation via Artificial Neural Networks 18
2.3 Global Intention Estimation via Gaussian Process Regression 21
2.3.1 Subset Selection to Accelerate Intention Estimation 23
2.3.2 Experimentation 24
2.3.2.1 Comparison with Sparse Model 27
2.4 Chapter Summary 28

3 Local Intention Estimation for Mobility Aids 29
3.1 Background 31
3.1.1 Local Intention Estimation 31
Contents

6.2 Future Research Directions ... 102
 6.2.1 Intelligent PMD Navigation 102
 6.2.2 Human-Humanoid Collaboration 103

Appendices

A UTS CAS Wheelchair .. 105
 A.1 Hardware Overview ... 105
 A.2 Comparison with Simulated PMD 106

B NAIST ISC Baxter Robot ... 109

C Supervised Learning Models ... 113
 C.1 Radial Basis Function Networks (Orr 1996) 113
 C.2 Artificial Neural Networks (Funahashi 1989) 114
 C.2.1 Convolutional Neural Networks (Lecun et al. 1998) ... 115
 C.3 Gaussian Process Regression (Rasmussen and Williams 2005) 116
 C.3.1 Common Kernels .. 117

D Reinforcement Learning Methodologies 119
 D.1 Q-learning (Sutton and Barto 1998) 119

E Miscellaneous Algorithms .. 123
 E.1 Pure Pursuit (Coulter 1990) 123
 E.2 Dynamic Window Approach (Fox et al. 1997) 123
 E.3 Steering Entropy (Nakayama et al. 1999) 124
 E.4 Dynamic Time Warping (Sakoe and Chiba 1978) 125

Bibliography .. 127
List of Figures

1.1 Examples of collaborative robots. ... 2
1.2 Broad schematic of a typical human-interactive robot learning framework. 3

2.1 The Navchair intelligent wheelchair. .. 15
2.2 Methodologies for reactive PMD assistance. 15
2.3 Examples of potential navigational intentions in a home setting. 16
2.4 Demonstrated trajectories to goals \{G1,...,G6\} on UTS campus. 18
2.5 Convergence of ANN destination likelihood estimates during a run to G1. 19
2.6 Examples of user intention estimation with the full GP model. 25
2.7 Convergence of GP estimates over time. 26
2.8 Recognition accuracy of estimated user intentions. 27

3.1 Overview schematic of the locally assistive framework. 30
3.2 A rough local intention for seeding global intention estimation. 31
3.3 Intentions bordering a local window, modelled via short demonstration paths.. 32
3.4 Examples of velocity primitives. .. 32
3.5 Examples of parameterized smooth path planners. 33
3.6 Capturing of user-stylized paths. ... 34
3.7 Conditions for extracting local paths from a contiguous expert trajectory. 35
3.8 Example of local intention estimation. .. 37
3.9 Path primitive from demonstrated paths sharing similar endpoint orientations. . 38
3.10 Example of path planning with DPP. .. 40
3.11 Compliance map for a forward-left user input. 41
3.12 Training data from an able expert in a simulated home setting. 42
3.13 Visual comparison with DWA, by the disabled volunteer. 44
3.14 Visual performance comparison of a volunteer with a simulated input disability. . 45
3.15 Assisted path with DWA, stuck in local minima. 46
3.16 Visualization of accuracy of the intention estimator and path generator. 47
3.17 Disabled volunteer on the CAS wheelchair. 48
3.18 Visual performance comparison of the disabled volunteer on the CAS wheelchair. . 49
3.19 Disabled volunteer undertaking simulated PMD experiments. 50

4.1 Overview schematic of the revised locally assistive framework. 56
4.2 Example segmentation of image scenes via CNN semantic mapping. 57
4.3 Estimated saliency map from CNN object detection. 57
4.4 Joystick remapping via Artificial Neural Networks. 58
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Training data from 8 able users in a pair of simulated mazes.</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>CNN generation of a traversal heatmap from a local occupancy map.</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Example of CNN training data.</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>Topology for the local heatmap CNN (top to bottom).</td>
<td>61</td>
</tr>
<tr>
<td>4.9</td>
<td>PMD movement template and distance filter.</td>
<td>62</td>
</tr>
<tr>
<td>4.10</td>
<td>Examples of user input heatmap generation.</td>
<td>64</td>
</tr>
<tr>
<td>4.11</td>
<td>Combining senso and GP heatmaps for an overall intention heatmap.</td>
<td>65</td>
</tr>
<tr>
<td>4.12</td>
<td>Q-learning path planning across the combined heatmap.</td>
<td>66</td>
</tr>
<tr>
<td>4.13</td>
<td>Visual performance comparison of a volunteer with a simulated input disability.</td>
<td>68</td>
</tr>
<tr>
<td>4.14</td>
<td>30 runs from 10 able users in a typical domestic environment approx. 20 × 20m.</td>
<td>70</td>
</tr>
<tr>
<td>4.15</td>
<td>Example of naive CNN training data.</td>
<td>70</td>
</tr>
<tr>
<td>4.16</td>
<td>Concatenated a-posteriori heatmaps for three runs.</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Schematic overview of the complete EaIP framework.</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>Kinesthetic programming of a Sawyer robot.</td>
<td>75</td>
</tr>
<tr>
<td>5.3</td>
<td>Dynamic Movement Primitives encoding a 1D trajectory.</td>
<td>76</td>
</tr>
<tr>
<td>5.4</td>
<td>Robot action generation solely based upon observations of human movement.</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>Training data for simulation experiment of passing over rectangular objects.</td>
<td>85</td>
</tr>
<tr>
<td>5.6</td>
<td>Testing of EaIPs in passing over simulated rectangular objects.</td>
<td>86</td>
</tr>
<tr>
<td>5.7</td>
<td>Dynamic Time Warping distances to training samples for the simulation task.</td>
<td>86</td>
</tr>
<tr>
<td>5.8</td>
<td>Training trajectories for three objects: a stool, chair, and cabinet.</td>
<td>88</td>
</tr>
<tr>
<td>5.9</td>
<td>Baxter left gripper trajectory from EaIP across various objects.</td>
<td>89</td>
</tr>
<tr>
<td>5.10</td>
<td>Results of EaIP trajectory generation with ground truth e.</td>
<td>89</td>
</tr>
<tr>
<td>5.11</td>
<td>Deep learning topology for object detection.</td>
<td>90</td>
</tr>
<tr>
<td>5.12</td>
<td>Training objects (left column) and testing objects (right column).</td>
<td>92</td>
</tr>
<tr>
<td>5.13</td>
<td>Mean training data of the Baxter’s left end-effector.</td>
<td>93</td>
</tr>
<tr>
<td>5.14</td>
<td>Baxter left end-effector paths from IP and EaIP.</td>
<td>93</td>
</tr>
<tr>
<td>5.15</td>
<td>Convergence of IP and EaIP paths for varying partner observation durations.</td>
<td>94</td>
</tr>
<tr>
<td>5.16</td>
<td>Behavior of IP and EaIP on the training set.</td>
<td>95</td>
</tr>
<tr>
<td>5.17</td>
<td>Behavior of IP and EaIP on the novel object set.</td>
<td>96</td>
</tr>
<tr>
<td>A.1</td>
<td>High-level schematic of the UTS CAS instrumented wheelchair.</td>
<td>105</td>
</tr>
<tr>
<td>A.2</td>
<td>Figure-8 driving in both simulation and the UTS Data Arena.</td>
<td>106</td>
</tr>
<tr>
<td>A.3</td>
<td>Resultant figure-8 paths from simulation and the UTS Data Arena.</td>
<td>107</td>
</tr>
<tr>
<td>B.1</td>
<td>Complete Baxter setup at NAIST ISC during extrinsic Kinect calibration.</td>
<td>110</td>
</tr>
<tr>
<td>B.2</td>
<td>A concatenated point cloud in the Baxter’s co-ordinate frame.</td>
<td>111</td>
</tr>
<tr>
<td>C.1</td>
<td>A small Artificial Neural Network.</td>
<td>114</td>
</tr>
<tr>
<td>C.2</td>
<td>Example schematic of a fully convolutional Neural Network.</td>
<td>115</td>
</tr>
<tr>
<td>E.1</td>
<td>Trajectory rollout of linear and angular velocity pairs.</td>
<td>124</td>
</tr>
<tr>
<td>E.2</td>
<td>Steering entropy binning.</td>
<td>125</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>90% likelihood times (s) under varying joystick input noise σ. Times in parentheses represent the mean travel duration from unhindered training samples.</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Average computation time (s) for a belief update.</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Driving metrics from simulation experiment.</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Driving metrics from real experiment.</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Framework metrics from both experiments.</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Driving metrics from on-line simulation experiment.</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>A-posteriori framework evaluation metrics, comparing the CNN/GP approach against Chapter 3 and a naive CNN.</td>
<td>71</td>
</tr>
<tr>
<td>A.1</td>
<td>Driving metrics from the figure-8 experiments.</td>
<td>107</td>
</tr>
</tbody>
</table>
List of Algorithms

1. A sparse greedy algorithm for multi-dimensional GP regression. 23

2. DPP path generator. ... 39

3. Path planning via Q-learning. 66

4. Local heatmap concatenation. .. 69

5. Building a Radial Basis Function Network. 113

6. Back-propagation for a n-layer Artificial Neural Network. 115

7. Pure Pursuit path tracking. .. 123

8. Dynamic Window Approach local motion controller. 124

9. Basic Dynamic Time Warping algorithm. 125
Acronyms

ANN Artificial Neural Network
CAS Centre for Autonomous Systems
CNN Convolutional Neural Network
DMP Dynamic Movement Primitive
DOF degree of freedom
DPP Dynamic Policy Programming
DTW Dynamic Time Warping
DWA Dynamic Window Approach
EaIP Environment-adaptive Interaction Primitive
GP Gaussian Process
IP Interaction Primitive
ISC Intelligent System Control Lab
LfD learning from demonstration
LIDAR laser scanner
MDP Markov Decision Process
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIST</td>
<td>Nara Institute of Science and Technology</td>
</tr>
<tr>
<td>PMD</td>
<td>powered mobility device</td>
</tr>
<tr>
<td>RBFN</td>
<td>Radial Basis Function Network</td>
</tr>
<tr>
<td>UTS</td>
<td>University of Technology Sydney</td>
</tr>
<tr>
<td>YOLO</td>
<td>You Only Look Once v2</td>
</tr>
</tbody>
</table>