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Abstract

This thesis presents investigation into enhancing the robustness and adaptability of robot action

generation in human-interactive scenarios, by means of a heightened level of task or scene percep-

tion which in turn leads to a lessened reliance upon the observed behaviours of the robot’s human

counterpart.

In human-robot interaction under the learning from demonstration paradigm, the demonstration is

most often carried out by able experts who are capable of performing the task with a very high de-

gree of proficiency while also considering the robot’s physical limitations (movement speed limits,

joint singularities, etc.). As a result of this, the actions of the robot’s partner in the obtained train-

ing samples can be considered to be near-optimal. A disparity then naturally arises when working

with end-users whose performance may be hindered by a range of factors such as disability, inex-

perience, or fatigue. The lack of task-specific goodness in these observed partner behaviours can

then lead to unpredictable or unsafe robot actions in demonstration learning frameworks where an

arguably excessive emphasis is placed upon the partner performing their share of the task at a skill

level comparable to that of the demonstrators.

As gathering a sufficiently large quantity of training data samples to encompass such a broad scope

of human aptitude is generally infeasible, it becomes arguable that a greater emphasis for robot



vi Abstract

action modelling should instead be placed upon the task or the work scene that both agents are

operating within. An example of this is in collaborative object handling between two humans; one

would naturally generate suitable actions for the task by considering the movements of the leader

alongside the object and the space they are moving through. The information derived from the lat-

ter two observations increases the chance that imperfections in leader behaviour can be adequately

compensated for. This allows for an improved adaptability to novel task conditions, and also in-

creased robustness when the observations of partner behaviour are insufficiently informative for

safe action planning. These benefits can be primarily attributed to the trained models being more

resilient against a lack of informativeness or task goodness in observed partner behaviour, by in-

stead supplementing such missing fine details with information directly drawn from the immediate

environment in which the interactive activity is taking place.

This concept of increased task and environmental perception is assessed across two significantly

different human-robot interaction paradigms: intelligent wheelchair navigation, and physical hu-

manoid collaboration. For wheelchair navigation, a framework for the generation of expert-

stylized short-term paths that can be concatenated for traversal ‘anywhere’ is realized as a flexible

adaptation upon the conventional approach of static long-term destinations within known occu-

pancy maps. The reliance upon immediately available on-board sensor data, as opposed to the

more conventionally restrictive features such as platform position within the map, allows pro-

actively assisted traversal through settings novel to demonstration data without the need for retrain-

ing goal inference models. For physical humanoid collaboration, robust robot action generation

is achieved when faced with novel task conditions and ambiguous partner observation, serving as

an intuitive extension to action generation postulated solely upon briefly observed partner move-

ments. This is evaluated in a collaborative object covering exercise by a human-humanoid team,

where object parameters automatically drawn from visual scene data compensates for uninforma-

tive human partner observation.

Thesis Supervisors: Jaime Valls Miro and Gamini Dissanayake
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