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Abstract 

 

This dissertation consists of three independent essays that explore different 

aspects of price discovery and volatility dynamics in the FX market. In the first 

essay, I estimate daily information shares of different trading sessions (namely, 

Asia, Europe, and U.S.) in the global foreign exchange market, and more 

importantly, I examine their determinants, i.e. when and how a market 

contributes more to the price discovery of the exchange rates. Specifically, I study 

the short- and long-run price discovery in the FX market on a global basis and their 

determinants by taking the AUD as an example. Interestingly, I find that more 

favourable market states contribute to price discovery in the short-run, while the 

capital market openness and financial liberalization, as measured by the Chinn-Ito 

Index, have a strong impact on the long-run variations in price discovery. The 

empirical results presented in this essay provide a better understanding of the 

global information distribution in the FX market and contribute to the literature 

on the determinants of price discovery. Furthermore, I provide important policy 

implications regarding international financial competitiveness and market 

development.  

In the second essay, I revisit the meteor showers and heat waves effects (namely, 

the inter- and intra-regional volatility spillovers) in the FX market, which have been 

extensively recorded and examined in the previous studies. The main 

methodological tools used in this essay are the heterogeneous autoregressive 

model (HAR) and the Shapley-Owen R2 decomposition techniques. By examining 

the dynamic patterns of volatility spillover for exchange rates of AUD/USD, 

GBP/USD, EUR/USD, and USD/JPY spanning the period of January 1999 (January 

2000 for EUR/USD) to December 2013, I confirm the presence of both meteor 

showers and heat waves effects, however, the meteor showers effect has been 

increasing steadily and predominated over heat waves effects with the trend 

toward global trading and correlated common shocks of the financial markets. 

Furthermore, I explicitly examine the role of changing market states in 

determining volatility spillover in the foreign exchange market. Unlike the 
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conventional information-based models, such as the mixture of distribution 

hypothesis (MDH) theory, the empirical results suggest that the volatility spillover 

is attributed to not only exogenous information shocks, but also endogenous 

information arrivals and price discovery process, which resolves uncertainty and 

therefore mitigates information propagation. In sum, this essay presents new 

evidence on the patterns and economic mechanisms of volatility spillover and 

contributes to the relevant literature on volatility modelling in the FX market by 

proposing the time-varying volatility spillovers in different regions and suggesting 

the segment-wise properties of FX volatility modelling.  

The last essay focuses on the statistical significance and economic value of the 

Conditional Volatility Persistence (CVP) model as proposed in Wang and Yang 

(2017). Namely, the CVP model calibrates future volatility persistence base on the 

observed market states as captured by return and volatility. Then, I compare the 

economic gains of a variety of RV-based HAR models by developing a volatility-

timing strategy based on the signal of predicted volatility. By applying the CVP 

model to the spot exchange rates of AUD/USD, GBP/USD, EUR/USD, and USD/JPY, 

I confirm both the statistical and economic significance of the CVP model in the FX 

market. Namely, the CVP model can improve the forecasting performance and 

generate moderate economic gains. For example, under empirically reasonable 

assumptions, the CVP model I use in this thesis can gain an estimated 1.26% of 

total wealth on an annual basis, or 0.51% of total wealth relative to a static model. 

Furthermore, it achieves higher Sharpe ratios, especially during the turmoil period. 

The gains in using CVP model remain positive and significant after controlling for 

the transaction costs and market microstructure noise.  
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Chapter 1: Introduction 

 

It would be hard to overemphasize how important the foreign exchange market is. 

The average daily trading volume of the foreign exchange market reached to 5.3 

trillion dollars in April 2013 (BIS, 2013). FX market plays a central role in the 

financial markets as it provides a way for corporates to fund foreign liabilities, for 

investors to hedge foreign exchange risks and construct global investment 

portfolios, and for policy makers to implement monetary policies. Over the last 

two decades, the importance of the FX market has drawn great interests of 

academics, policy makers, and the media (Rime and Schrimpf, 2013).  

Unlike the equity market or other securities markets, a unified empirical model for 

the foreign exchange rate is absent. Since the seminal work of Meese and Rogoff 

(1983) argues that the existing model of exchange rate based on macroeconomic 

fundamentals could not reliably outperform the random walk forecasts for yearly 

changes in major currency exchange rates, the predictability of the foreign 

exchange rate movements has been examined extensively. However, no one has 

yet been able to uncover macroeconomic fundamentals that could explain a 

modest fraction of the changes of the exchange rate in the real world (Evans and 

Lyons, 2002a). Frankel and Rose (1995) describe the traditional empirical research 

on exchange rate as “… the case for macroeconomic determinants of exchange 

rates is in a sorry state".  

Since the mid-1990s, with the availability of proprietary data from the large 

dealing banks, research on foreign exchange microstructure, or so-called “the new 

micro exchange rates economics”, has accelerated (See, for example, Evans 2005, 

2008; Evans and Lyons, 2002a, 2002b, 2003). Market microstructure refers to the 

study of “the process and outcomes of exchanging assets under explicit trading 

rules” (O’Hara, 1995), and the trading mechanisms used for financial securities 

(Hasbrouck, 2007). As it has been documented in the previous literature, price 

discovery is an essential function of the financial markets in the context of market 

microstructure. Price discovery has been described as “the incorporation of new 
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information into the security price” (Hasbrouck, 1995), as well as “consisting of 

the efficient and timely impounding of the information implicit in investor trading 

into market prices” (Lehmann, 2002). According to the efficient markets 

hypothesis (EMH) (see, for example, Fama 1965, 1970), prices reflect all available 

information in a quick and accurate manner. However, how this process occurs in 

practice remains unclear (Arto Thurlin, 2009).  

In this thesis, I study several aspects of price discovery and volatility dynamics in 

the Foreign Exchange (FX) market. Namely, to fully explore the price discovery and 

information distribution in the FX market, this thesis consists of three independent 

essays which examine information transmission and volatility dynamics in the FX 

market from different perspectives. The previous literature on price discovery has 

explored the issues such as the measure of information shares, the heterogeneous 

roles of informed and liquidity traders, and information contents of different types 

of orders, etc. This thesis mainly focuses on the information share and its 

determinants, as well as information propagation in the Foreign Exchange spot 

market where most of the trading and price discovery occurs (Evans, 2002). The 

main topics and contributions of the essays are summarized as following:  

This dissertation begins with the global price discovery in the foreign exchange 

market. Namely, in the second chapter, I estimate daily information shares of 

different trading sessions (namely, Asia, Europe, and U.S.) in the global foreign 

exchange market, and more importantly, I examine their determinants, i.e. when 

and how a market contributes more to the price discovery of the spot exchange 

rates. To correct the shortcomings of Hasbrouck (1995)’s measure of price 

discovery, which aims at calculating information share for parallel markets (i.e. 

markets overlapping in trading hours) and utilizing the cointegration relationship 

for the same asset traded on different markets, I use the Two-scale Realized 

Variance (TSRV) ratio as a proxy for information share, which is more suitable for 

the FX market where the trading continues around the clock, i.e., from Asia to 

Europe, and then to U.S, and therefore the fundamental prices of the exchange 
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rates will change over time.1 For example, in Wang and Yang (2011), it is advised 

to use the variance ratio as a robust measure of information share for sequential 

markets like the FX market. With regard to the determinants of price discovery, I 

find that more favourable market states (i.e. higher daily return, larger trading 

volume, and lower bid/ask spread) contribute to price discovery in the short-run, 

while the capital market openness and financial liberalization, as measured by the 

Chinn-Ito Index, have a strong impact on the long-run variations in price discovery. 

Overall, in this chapter I study the short- and long-run price discovery in the FX 

market on a global basis and their determinants, by taking the AUD as an example. 

The results presented in this chapter provide a better understanding of the global 

information distribution in the FX market and the determinants of price discovery. 

Furthermore, I draw implications of the empirical evidence for policy makers 

about the financial market competitiveness, especially for the emerging markets.  

In the third chapter, I revisit the meteor showers and heat waves effects (namely, 

the inter- and intra-regional volatility spillover) in the FX market, which have been 

extensively recorded and examined in the previous study. The main 

methodological tools used in this chapter are the heterogeneous autoregressive 

model (HAR) and Shapley-Owen R2 decomposition techniques. In this chapter, I 

attempt to identify the dynamic patterns and explore the economic mechanisms 

of volatility spillover by taking a much broader view on the drivers and factors 

causing volatility spillover. Namely, this empirical study explicitly examines the 

role of market states, as captured by return and volatility, in explaining volatility 

spillovers in the foreign exchange market. By quantifying the magnitudes of 

volatility spillovers within the local market and across markets for the exchange 

rates of AUD/USD, GBP/USD, EUR/USD, and USD/JPY, I confirm the presence of 

both meteor showers and heat waves effects, however, the meteor showers effect 

has been increasing steadily and predominated over heat waves with the trend 

toward global trading and autocorrelated common shocks of the financial markets. 

                                                            
1  The methods in measuring information share include Weighted Price Contribution (WPC), 
Information Share (IS), Component Share (CS), and Information Leadership Share (ILS). For a full 
description of the methods and their applications, please refer to a special issue of the Journal of 
Financial Markets (Journal of Financial Markets, Issue 3, 2002) and Talis Putnins (2015). 
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Furthermore, by expanding the conditional volatility persistence (CVP) model as 

proposed in Wang and Yang (2017) in a multi-market setting, I find that the 

conditional volatility persistence is the dominant channel linking each region’s 

market states to the future volatility. Namely, unlike the classic information-based 

models, such as the mixture of distribution hypothesis (MDH) theory, I find that 

the volatility spillover is attributed to not only exogenous information shocks, but 

also the endogenous information arrivals and price discovery process, which 

mitigates information propagation and reduces volatility spillover. Besides, using 

the Shapley-Owen R2 decomposition techniques, I find that the CVP is the 

dominant channel linking changing market states to the future volatility and its 

persistence. In summary, this chapter presents new evidence on the dynamic 

patterns and economic mechanisms of volatility spillovers and contributes to the 

relevant literature on volatility modelling and information propagation. The 

empirical results presented in this chapter also emphasize the importance of 

transnational intervention in the FX market, especially during the period of market 

stress.  

The fourth chapter comprehensively investigates the role of conditional volatility 

persistence in predicting future volatility from both statistical and economic 

perspectives. Namely, different from previous studies with similar focus, I not only 

conduct an extensive statistical evaluation of volatility forecasting using a variant 

of heterogeneous autoregressive (HAR) models, but also provide new economic 

evidence on whether a risk-averse investor can significantly benefit from volatility 

timing based on the signal of predictive volatility. By developing a simple yet useful 

mean-variance utility framework, I examine the economic significance of the 

volatility timing strategy which takes advantage of the accurate volatility forecasts 

and the negative relationship between return and volatility. The empirical results 

confirm the economic value of the conditional volatility persistence model (CVP) 

which calibrates future volatility persistence conditional on market state variables. 

Namely, the models which incorporate the feature of conditional volatility 

persistence significantly improve the forecasting performance and therefore 

generate moderate economic gains. For example, the CVP model I use in this thesis 
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can gain an estimated 0.51% of total wealth relative to a static model on an annual 

basis and achieve higher Sharpe ratios, especially during periods of turmoil. 

Furthermore, the results hold true across the major exchange rates, and are robust 

to market microstructure effects and transaction costs. 

Conclusions and further directions are summarized in the last chapter. In summary, 

the three essays deepen our understanding of price discovery and volatility 

dynamics in one of the largest financial markets – the Foreign Exchange (FX) 

market. The empirical findings presented in this dissertation also provide detailed 

explanations of the volatility persistence and information propagation in the FX 

market, and shed new light on the research regarding the microstructure of the 

foreign exchange market. 
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Chapter 2: Global Price Discovery in the Foreign Exchange Market 

and Its determinants: Evidence from the Australian Dollar 

 

2.1. Introduction 

In recent years, the Australian Dollar (AUD) has started to play an increasingly 

important role in the global foreign exchange (FX) market. According to the Bank 

for International Settlements (BIS, 2013), the market share of the AUD in the 

global foreign exchange (FX) trading has steadily increased. By 2013, the AUD has 

become the fifth most important currency in terms of turnover.2 The increase in 

the AUD trading could be attributed to a higher level of internationalization of the 

Australian economy (Edison, Cashin and Liang, 2003; Debelle, Gyntelberg and 

Plumb, 2006; Battellino and Plumb, 2011), as well as the growth in Australia’s 

international trade, especially the increasing demand for Australia’s natural 

resources from emerging economies, such as China. 

This chapter focuses on the determinants of dynamic information shares in AUD 

trading. More specifically, using the intraday price quotes of AUD against the US 

Dollar (USD) over the period of 1999 - 2013, I firstly estimate the magnitudes of 

information shares of the global FX market. Then I attempt to identify the 

determinants of estimated information shares at two different time horizons (i.e. 

daily and monthly information shares). 

The issue of price discovery in financial markets has been receiving more attention 

in recent decades due to rapid globalization of exchanges as well as the availability 

of high-quality trading data. For example, using data on Helsinki Stock Exchange, 

Booth et al. (2002) examine the roles of upstairs and downstairs markets in price 

discovery. Huang (2002) explores the impact of the Electronic Crossing Networks 

(ECNs) on price discovery of NASDAQ stocks. Hasbrouck (2003) analyses the 

importance of different trading venues for price discovery of the US equity indices. 

Wang and Yang (2011) propose a structural vector autoregressive (SVAR) model 

                                                            
2 The AUD ranks fifth in the daily average turnover of foreign exchange instruments since 2010 as 
documented in Appendix A. 
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and a non-parametric approach to measure the global information distribution in 

the FX market and conclude that (i) the information shares of the four exchange 

rates considered in their paper (i.e. AUD/USD, GBP/USD, EUR/USD, and USD/JPY) 

are dominated by Europe and the U.S. and (ii) Asia is losing information shares in 

AUD trading. Chai, Lee and Wang (2015) estimate the information distribution in 

the over-the-counter (OTC) gold market over the period of 1996-2012, which 

shares a number of characteristics with the foreign exchange market. They 

conclude that information on the gold price is concentrated in the London/ New 

York overlapping trading hours. 

Some existing studies have considered the determinants of information shares in 

different financial markets. Within the context of Euro bond futures market, Fricke 

and Menkhoff (2011) find that (i) order flow plays a dominant role in the price 

discovery process and (ii) order flow and information share of futures contracts 

are positively correlated. Mizrach and Neely (2008) show that a higher spread of 

the US bond futures contracts increases the price of incorporating non-common 

knowledge, which hinders the market’s role in price discovery relative to the spot 

market. However, Patel, Putniņs and Michayluk (2014) find that the US options 

market makes a fairly large portion (i.e. about one third) of contribution to price 

discovery. 

While a number of studies have considered the measures as well as the 

determinants of price discovery in FX market, some important issues are yet to be 

fully settled, especially in relation to AUD. This chapter aims to fill this gap in the 

existing literature. While focusing on the price discovery in the AUD market, this 

chapter makes some important contributions to the existing literature. First, I use 

a non-parametric approach to measure the global information distribution of the 

24-hour AUD market, which provides an appropriate setting in the framework of 

sequential markets. The widely-used methodology of Hasbrouck’s (1995) 

information share measure relies on the implicit assumption that price 

differentials among markets are bounded by arbitrage opportunities and hence 

the prices of the traded assets are cointegrated. Such price differentials can only 
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be observed in each market when these markets are open, and studies are 

typically conducted for short periods, during which trading hours overlap (e.g., 

Grammig, Melvin and Schlag, 2005; Pascual, Pascual-Fuster and Climent, 2006). 

For sequential markets, like the FX market, however, the prices in different 

markets are not necessarily cointegrated as the fundamental prices may change 

over time. In order to mitigate this drawback in Hasbrouck’s (1995) information 

share approach, I utilize a non-parametric Two-scale Realized Variance (TSRV) 

approach. This approach not only yields a relatively more accurate measure that 

can be easily applied to sequential markets but also mitigates the effect of 

contemporaneous correlations as documented in Hasbrouck (1995). Furthermore, 

the tick-by-tick data used in this study allows us to fully exploit the information 

and detect information-induced volatility jumps (Erdemlioglu, Laurent and Neely, 

2012). Using data from January 1996 to December 2003, Wang and Yang (2011) 

utilize the same non-parametric approach to measuring the price discovery of four 

currencies including AUD. However, the market share of the AUD in the global FX 

trading has increased significantly after 2000, which could be attributed to 

Australia’s closer economic ties with the emerging Asian economies, and hence a 

re-examination of the case of AUD, using a longer time series that includes the 

post-2000 period, is highly desirable.3 

Second, this chapter attempts to identify the determinants of information shares 

for the AUD trading both in the short- and long-run. The conventional 

macroeconomic models assume that information can be reflected by exchange 

rates directly. However recent empirical studies on FX microstructure (e.g., Love 

and Payne, 2008; Evans and Lyons, 2002a, 2002b, 2008) emphasize the role of 

order flows. In this chpater, I argue that order flow is a crucial channel through 

which heterogeneous information is transmitted into the price. While taking order 

flows into account, I link the information shares with macroeconomic news 

announcements. Furthermore, I decompose the order flows into expected and 

                                                            
3 The average daily transactions of the AUD in the main markets over the sample period are 
reported in Appendix B. 
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unexpected components and examine their impacts on price discovery process 

separately. I also contribute to the existing literature by proposing a model of long-

run determinants of information shares, which evaluates the lasting impacts of 

market development and integration of financial centres on their roles in price 

discovery and providing some policy implications accordingly. 

Third, in this chapter, I rely on a much broader set of macroeconomic news related 

to both the U.S. and Australia. In the previous studies, the most commonly used 

proxies of macroeconomic news are scheduled announcements on Gross 

Domestic Product (GDP), unemployment, interest rates, durable goods orders, 

and trade balance (Evans and Lyons, 2008). In this chapter, I make use of 

Bloomberg News, which includes both scheduled and unscheduled 

announcements. The dataset shows that scheduled announcements account for 

less than 5 percent of the total macroeconomic news. The existing studies on the 

AUD have mostly ignored unscheduled announcements that account for a very 

large proportion of macroeconomic news.4 Therefore, I aim to examine whether 

the unscheduled news affects the price discovery process differently. 

The remainder of this chapter is structured as follows. Section 2.2 estimates the 

information shares of four sequential markets (i.e. Asia, Europe, London/New York 

overlapping hours, and the U.S.) in the AUD trading. Section 2.3 proposes the 

hypotheses on the determinants of price discovery in the AUD market. Following 

the introduction to the dataset and the empirical specifications in Section 2.4, the 

empirical results and various robustness checks are reported in Section 2.5. Policy 

implications along with the conclusions are presented in Section 2.6. 

2.2. Global information shares for the AUD trading 

2.2.1. Two-scale Realized Variance 

In this thesis, the approach to measuring the information share in the FX market 

is based on the fast-expanding literature on realized variance, where changes in 

                                                            
4 The unscheduled news includes all the real-time, breaking news on the economic and financial 

markets of Australia and the U.S., as well as key international market-moving headlines.  
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the efficient price (i.e. the unobservable fundamental value) mirror the price 

setting behaviour of market participants, thereby reflecting the arrival of new 

information (Wang and Yang, 2011; Chai et al., 2015). Following Wang and Yang 

(2011), I divide a trading day into n sequential trading sessions. The existing studies 

suggested that the Two-scale Realized Variance (TSRV) is a consistent estimator of 

the integrated variance (Zhang, Mykland and Aït-Sahalia, 2005). Barndorff-Nielsen 

et al. (2008) show that TSRV can be expressed as a non-parametric estimator, 

which is based on subsampling as follows: 

                                                       𝑇𝑆𝑅𝑉𝑖,𝑡 =
1

𝑘
∑ 𝑅𝑉𝑖,𝑡,𝑗

𝑘
𝑗=1 −

[𝑚𝑖−𝑘+1]

𝑚𝑖𝑘
𝑅𝑉𝑖,𝑡                                         (2.1) 

where 𝑅𝑉𝑖,𝑡 = ∑ 𝑟𝑖,𝑡,𝑠
2𝑚

𝑠=1  is the realized variance (RV) for session i on day t, i.e., the 

sum of squared log-returns over the intervals s=1, 2, …, m. 𝑚𝑖 is the total number 

of sampling intervals for session i and k is the number of sub-grids on the 1-second 

interval. For example, if the 1-second data is sampled at 5-minute intervals, then 

k = 5 × 60 = 300. 

It is worth mentioning that TSRV estimator is, in fact, a linear combination of the 

standard RVs calculated at two different frequencies – a highest possible 

frequency and a low frequency. In this study, I take 1-second and 5-minute 

sampling intervals as high and low frequencies, respectively. Since the RV 

consistently estimates the noise variance as sampling frequency approaches 

infinity, the RV calculated at the highest frequency is a good approximation of the 

noise variance. At the low frequency, many feasible RVs may be computed (e.g., 

with 1-second return series,  various 5-minute RVs can be constructed based on 

sub-sampling). Thus the linear combination of the average of the RVs calculated 

at low-frequencies and RV calculated at high-frequencies, which serves to correct 

the impact of the noise term, generates a consistent estimator of the integrated 

variance. Using the Two-scale estimator as a proxy for information flow, the 

information share can then be measured as: 
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                                                                     𝐼𝑆𝑖,𝑡 =
𝑇𝑆𝑅𝑉𝑖,𝑡

∑ 𝑇𝑆𝑅𝑉𝑖,𝑡,𝑗
𝑛
𝑗=1

                                                                 (2.2) 

where 𝑇𝑆𝑅𝑉𝑖,𝑡  is the two-scale estimator for trading session i on day t, and 

∑ 𝑇𝑆𝑅𝑉𝑖,𝑡,𝑗
𝑛
𝑗=1  is the daily TSRV, calculated as the sum of TSRVs for n trading 

sessions on day t. 

Following Andersen, Bollerslev and Meddahi (2005) who argue that the 5-minute 

sampling interval strikes a good balance between calculation accuracy and 

efficiency and can obtain better results of realized variance estimation, I aggregate 

the tick-by-tick data into 5-minute interval data.5  The 5-minute aggregation is 

based on such considerations: first, the sampling frequency should be high enough 

to make use of the full information in estimating the realized variance; and second, 

the sampling frequency should be low enough to have sufficient transactions and 

avoid biasing the autocorrelations towards zero due to a large number of 

consecutive zero returns (Wang and Yang, 2011). 

2.2.2. Estimated information shares for AUD trading 

The intraday trading data of AUD is sourced from Thomson Reuters Tick History 

(TRTH) maintained by the Securities Industry Research Centre of Asia-Pacific 

(SIRCA). The data for the AUD/USD, spanning from 4 January 1999 to 31 December 

2013, includes the time when a new quote/trade is issued rounded to the nearest 

millisecond, the prices of bid and ask quotes, and the trade price. Besides, I collect 

indicative quotes with the identification of quoting banks’ names and locations 

from TRTH as well for further analysis6.  

In general, the trading hours span from 9 am to 4 pm local time. A 24-hour calendar 

day is divided into four sequential trading sessions according to trading periods 

and trading patterns: Asian market, European market, “London/New York” or 

                                                            
5 The 5-minute sampling frequency is determined using “volatility signature plots”, a practical 
method for determining the appropriate sampling frequency for the high frequency time series 
(Andersen et al., 1999). 
6 The indicative quotes collected from TRTH include the time of issuing quotes, the quoted prices, 
and names and locations of quoting banks, from which I can calculate the total number of quoting 
banks on a given day, the percentages of quotes from foreign dealers (i.e., banks headquartered 
elsewhere) and top dealers (i.e., top-5 most active banks) respectively. 
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“NYLON” market and North American market.7 Table 2.1 shows the details of each 

market and local trading times relative to Greenwich Mean Time (GMT) after 

adjusting for the Daylight Saving Time (DST).  

Table 2.1: Local Trading Time Relative to GMT 

The market hours are exclusive in this table, e.g., Asia starts at 23:00:00 GMT on day t - 1 and ends 

at 6:59:59 GMT on day t during normal period (Non-DST). Namely, a 24-hour calendar day is 

divided into four trading segments: the first segment is the Asian market when major financial 

centres in Asia-Pacific region operate (i.e. Hong Kong SAR, Sydney, Tokyo, and Singapore), the 

second segment is the European market which covers most of the trading hours in London, and other 

major financial centres in Europe (i.e. French and German, etc.). The third segment pertains to the 

overlapping two (three) hours of London afternoon trading and New York early morning trading 

(also known as the LNY market). The last one is labelled the US market which covers trading hours 

in the U.S. excluding the LNY period (i.e. New York, Chicago, and San Francisco). 

Time Zone Asia Europe London/New York  US 

Normal 

 (Non-DST) 

23:00 GMT to 7:00 

GMT (+1 day) 

7:00 GMT to 14:00 

GMT 

14:00 GMT to 

16:00 GMT 

16:00 GMT to 

23:00 GMT 

DST 

  

23:00 GMT to 7:00 

GMT (+1 day) 

7:00 GMT to 13:00 

GMT 

13:00 GMT to 

15:00 GMT 

15:00 GMT to 

22:00 GMT 

DST 

(In NYC 

only) 

23:00 GMT to 8:00 

GMT (+1 day) 

8:00 GMT to 13:00 

GMT 

13:00 GMT to 

16:00 GMT 

16:00 GMT to 

22:00 GMT 

I drop outlier observations by applying the filtering rules suggested by Barndorff-

Nielsen et al. (2009). 8  The summary statistics of open-to-close returns are 

reported in the top panel of Table 2.2. As shown in Panel A of Table 2.2, AUD/USD 

exchange rate has the highest volatility in the Asian market and the lowest 

volatility in “NYLON” market. The returns in the four trading sessions have the 

same direction of skewness, i.e. all the returns are left-skewed. The Ljung-Box 

statistics show that the returns have strong autocorrelations at 12 lags in the Asian 

and North American markets, while no autocorrelation in European market. 

Returns in the European market are positively correlated with returns in the Asian 

                                                            
7 To refer to the trading session i, I will use the words “market i” and “session i” interchangeably 
thereafter. 
8 The observations dropped include: the ones with a bid, ask or trade price equal to zero; the ones 
for which the quoted bid-ask spread (i.e. the bid-ask spread divided by midpoint of the bid and ask 
prices) is either in excess of 25% or negative; the ones for which the mid-quote (i.e. the average of 
the bid and ask prices) deviates by more than 10 times the mean absolute deviations from a rolling 
centered median of 50 observations (25 observations before and 25 after); and the ones with 
prices that are either above the “ask” plus the bid-ask or below the “bid” minus the bid-ask spread. 
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and North American markets and negatively correlated with returns in “NYLON” 

market. 

Intraday returns at high frequency (i.e., 1-second) and low frequency (i.e., 5-

minute) intervals are computed in order to calculate the TSRV as discussed in 

Section 2.1. I construct the mid-quote price as the average of bid and ask quotes 

at the end of each sampling interval or the last observation of bid and ask quotes 

prior to the end of an interval. The intraday return 𝑟𝑖,𝑡  is then calculated as 100 

times the log ratio of the mid-quotes at times t and t-1, that is, 𝑟𝑖,𝑡 = 100 ∗

𝑙𝑛(𝑝𝑖,𝑡/𝑝𝑖,𝑡−1) . Panel B of Table 2.2 reports the summary statistics of the daily 

information shares measured by the ratio of TSRV in market i to the daily TSRV on 

a specific day. In the four markets, Europe has the largest average information 

share, followed by North America, Asia, and “NYLON”. The information share in 

Asia has the largest standard deviation as well as the strongest autocorrelation at 

lag 12. Besides, all the information shares in four markets are negatively correlated. 

The yearly average information share of the four markets are reported in Table 

2.3. It is interesting to note that if the 24 hours are divided into three 8-hour time 

zones, then the European market, which includes the Europe and “NYLON” market, 

dominates price discovery in AUD market. The combined information shares of 

Europe and “NYLON” range from 44% to 54%, of which “NYLON” market (i.e. the 

two- to three-hour overlapping trading session) accounts for a significant 

proportion of price discovery in most years.  
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Table 2.2: Summary Statistics of Returns and Information Shares 

The definitions of the four sequential sessions, namely, “Asia”, “Europe”, “NYLON” (London/New 

York), and “North America”, are as given in Table 2.1. Returns are defined as 100 ∗

ln(𝑝𝑟𝑖𝑐𝑒𝑐𝑙𝑜𝑠𝑒/𝑝𝑟𝑖𝑐𝑒𝑜𝑝𝑒𝑛). Information shares are calculated as in Section 2.2. QLB (12) is the Ljung-

Box Q statistic at 12 lags. The asterisk * indicates significance at the 5% level. 

 Asia Europe 
London/New 

York 
US 

Panel A: Return 

Mean 0.001 0.006 -0.006 0.008 

Std. Dev. 0.457 0.450 0.319 0.424 

Skewness -0.349 -0.329 -1.310 -0.078 

Kurtosis 9.252 6.173 14.667 17.597 

QLB(12) 50.163* 20.827 31.383* 57.645* 

Correlation 1.000    

Europe 0.043* 1.000   

NYLON -0.028 -0.046* 1.000  

US 0.049* 0.036* -0.007 1.000 

Panel B: Information Share 

Mean 0.269 0.332 0.141 0.259 

Std. Dev. 0.136 0.111 0.074 0.119 

Skewness 1.184 0.334 1.271 1.416 

Kurtosis 1.857 0.605 2.967 3.353 

QLB(12) 446.24* 315.92* 211.54* 113.25* 

Correlation 1.000    

Europe -0.447* 1.000   

NYLON -0.415* -0.012 1.000  

US -0.467* -0.413* -0.136* 1.000 
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Table 2.3: Sub-period Information Share 

This table reports the estimates of annual average information shares using the Two-scale Realized 

Variance (TSRV) approach. 

 Asia Europe 
London/ 

New York 

North 

America 

1999 0.296 0.300 0.111 0.292 

2000 0.216 0.377 0.122 0.286 

2001 0.259 0.349 0.130 0.261 

2002 0.268 0.343 0.125 0.264 

2003 0.210 0.355 0.163 0.271 

Average1999-2003 0.250 0.345 0.130 0.275 

2004 0.207 0.369 0.173 0.251 

2005 0.238 0.358 0.159 0.245 

2006 0.240 0.360 0.162 0.238 

2007 0.286 0.349 0.129 0.235 

2008 0.261 0.328 0.139 0.273 

Average2004-2008 0.247 0.353 0.152 0.248 

2009 0.249 0.323 0.153 0.275 

2010 0.275 0.317 0.144 0.264 

2011 0.282 0.323 0.143 0.252 

2012 0.303 0.315 0.135 0.246 

2013 0.336 0.306 0.121 0.238 

Average2009-2013 0.289 0.317 0.139 0.255 

Average1999-2013 0.262 0.332 0.141 0.259 

The estimation results show that although European market has a high and 

dominating share, the information share of Asia has been increasing since 2003, 

even with its declining share of daily transactions (see Appendix A). Table 2.3 

shows that a market’s information share may not be monotonically associated 

with its market share. For example, Europe accounted for 51.2% of the global 

trading for AUD in 2013, but only contributed to a 30.6% share of information flow. 

The determinants of information share, i.e., the percentage contribution to price 

discovery, will be investigated in the following sections. 
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2.3. Determinants of price discovery: hypothesis formulation  

Following the estimation of the information shares in different markets for AUD 

trading, I turn to examining the determinants of price discovery in AUD market. In 

this section, the hypotheses on the determinants of price discovery in AUD market 

are discussed. 

2.3.1. Market state-related variables 

The existing studies have shown that information shares vary considerably across 

different markets and the shares are also subject to instabilities arising from 

different market states. The market states variables include bid-ask spread, 

trading volume, and volatility (see, Brandt, Kavajecz and Underwood, 2007; 

Mizrach and Neely, 2008), as well as the exchange rate return. Analysis of the 

market state variables can also help us to identify the unconditional information 

shares. Mizrach and Neely (2008), who are the first ones to systemically explore 

the roles of market state variables, show that the bid-ask spread, traded contracts, 

and volatility can explain the price discovery shifts between the US Treasury spot 

and futures markets. Fricke and Menkhoff (2011) use market state variables to 

examine the level of competition in price discovery among Euro bond futures with 

different maturities. In this chapter I use three market state variables: (i) spread, 

(ii) volume, and (iii) volatility. Moreover, I also consider the impact of exchange 

rate return on the price discovery (i.e., whether the information share of a specific 

market is higher on days with larger returns and vice versa). 

Based on Mizrach and Neely (2008), I expect that a high bid-ask spread increases 

the price of incorporating the private information, which in turn impedes the price 

discovery process. However, Patel et al. (2014) find that higher information shares 

of options are associated with wider options spreads, which can be explained by 

the adverse selection risks faced by inter-bank market dealers (Kyle, 1985).9 In 

contrast, a higher share of trading volume indicates more informed trading– or at 

                                                            
9 For example, with the presence of informed traders, the dealer would widen the bid-ask spread 
to reduce the adverse selection costs. 
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least, facilitates information processing – and thus increases the information share. 

Besides, higher returns may help attract more trading activity, especially the 

speculative trading, and thereby facilitate the information flows. Finally, the 

impact of volatility is ambiguous: high volatility may be seen as an indicator of the 

presence of the noise traders in the market and hence volatility decreases the 

information share. However, volatility can also be a sign of heterogeneously 

distributed information processing, which is expected to have a positive 

relationship with market information share (Fricke and Menkhoff, 2011). In overall 

terms, the evidence suggests that market state variables are important but their 

expected effect on information shares is less obvious ex ante (see, for example, 

Fricke and Menkhoff, 2011). Based on the above discussions, the following 

hypothesis can be formulated: 

Hypothesis 1: Market state-related variables have significant impacts on the 

information shares for trading of AUD. 

2.3.2. Macroeconomic news announcements 

Among all the factors that influence price discovery, the impact of macroeconomic 

news announcements has received special attention. Moshirian, Nguyen and 

Pham (2012) argue that public information is crucial for the efficient functioning 

of the capital market. The earliest studies of announcement effects on the foreign 

exchange market constrained their consideration to the level changes of exchange 

rates. However, since 1990s researchers have paid more attention to the 

announcement effects on volatility. For example, Engle, Ito and Lin (1990) 

introduce the concepts of the heat waves and meteor showers effects to explore 

the links between intraday volatility pattern and macroeconomic news 

announcements in the foreign exchange market.10 Andersen and Bollerslev (1998) 

conjecture that the intraday volatility patterns alter daily trading patterns and the 

US announcements are helpful in explaining volatility movements in Deutsche 

                                                            
10Heat waves refer to the idea that most important news that affects volatility and price discovery 
occurs during a particular session’s trading hours and there is little price discovery when that 
market is closed. In contrast, meteor showers pertain to the idea that information flow spills over 
across sessions, i.e., from Asia to Europe, then to the U.S. (Engle, et al., 1990). 
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Mark (DEM)/USD spot rate. Upper and Werner (2002) show that more information 

is incorporated in the German bonds futures market during the announcement 

periods and the contribution of the spot market to the common efficient price 

varies in the range of 19-33%. Mizrach and Neely (2008) find that the release of 

macroeconomic news weakens the importance of the German bond spot prices 

compared to the futures prices. Andersen, Bollerslev, and Diebold (2007) detect 

strong but short-lived news-effects on the 5-year bond futures contracts in an 

international context. In the FX microstructure study, it is widely accepted that 

information arrival typically does increase volatility (Melvin and Yin, 2000) and 

news might create order flows that transmit private information to the FX market 

(Dominguez and Panthaki, 2006). Recently, Gau and Wu (2017) utilize the same 

method of TSRV ratio to study macroeconomic news announcements and price 

discovery in the FX markets. The empirical results suggest that the dominant role 

of the overlapping trading hours of LNY market in the price discovery of the EUR 

and JPY markets only applies on days with U.S. announcements. 

In this chapter, I use a wider set of macroeconomic news types compared to the 

previous studies and examine whether this set of macroeconomic news affects the 

price discovery process differently from the previous studies. For example, Evans 

(2002) decompose macro news into common knowledge and non-common 

knowledge shocks and find that non-common knowledge shocks are of greater 

importance in price discovery. In the Bloomberg news dataset, most Australian 

macroeconomic announcements arrive during the Asian trading hours (i.e. from 

23:00 GMT on day t-1 to 1:00 GMT on day t), while most of the US macroeconomic 

announcements occur during the “NYLON” and North American markets (i.e., from 

12:00 GMT to 19:00 GMT). In order to investigate whether macroeconomics news 

releases during the trading hours affect the specific trading session’s price 

discovery process, I compare the average information shares of the trading 

sessions on announcement days versus non-announcement days. As shown in 

Table 2.4, on the Australian macroeconomic news announcement days, the 

information share of Asia increases significantly, whereas those of the European 

and North American markets decline. In contrast, on the US-related 
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macroeconomic news announcement days, the information share shifts from Asia 

to “NYLON” and North America. Accordingly, the trading session becomes 

relatively more efficient in reflecting information when more macro news 

announcements are released during its trading hours. The gain in information 

share when public information is released is consistent with the findings of Jiang, 

Lo and Valente (2014). 

Table 2.4: Information Shares on Days with and without Macroeconomic News 

This table compares the average information shares for each session on the days with and without 

macroeconomic news. The values in the parentheses and square brackets are standard deviations and 

p-values respectively. The asterisks ***, **, and * indicate significance at the 1%, 5%, and 10% 

level, respectively. 

Category 

Average Information Share 

Asia Europe 
London/ 

NYC 

North 

America 

Days with US news 

(1) 

0.265 

(0.120) 

0.211 

(0.086) 

0.224 

(0.110) 

0.307 

(0.137) 

Days with Australian 

news (2) 

0.313 

(0.135) 

0.204 

(0.083) 

0.170 

(0.101) 

0.274 

(0.123) 

Days without news 

(3) 

0.272 

(0.121) 

0.201 

(0.098) 

0.183 

(0.084) 

0.270 

(0.120) 

(1) - (3) 
-0.007 

[0.145] 

0.010* 

[0.000] 

0.041*** 

[0.000] 

0.038*** 

[0.000] 

(2) - (3) 
0.042*** 

[0.000] 

-0.004 

[0.135] 

-0.013* 

[0.050] 

0.004 

[0.097] 

There is no doubt that the announcement of macroeconomic news is among the 

most significant elements of price discovery process in financial markets and 

hence its impact on information shares in the FX market needs to be thoroughly 

examined. Besides, macroeconomic news can also be considered as a control 

variable that affects the unconditional information shares for AUD trading. Thus I 

propose the following hypothesis: 

Hypothesis 2: The announcement of macroeconomic news has a positive 

impact on the information shares for trading of AUD. 
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2.3.3. Order flows 

Order flow is a measure of the signed trades and calculated as the difference 

between buy- and sell-initiated trades over a particular market (assuming that 

buys are coded positive). It is well documented that order flow is positively related 

to contemporaneous returns in many financial markets.11 This is often interpreted 

as an indication of order flow being the medium for incorporating information into 

prices. In microstructure studies, it has been argued that private information is 

embedded in the prices via order flows. For example, Evans and Lyons (1999) 

argue that order flow is a crucial determinant of the price in microstructure models 

that aim to explain exchange rate fluctuations. Using a microstructure model, 

Killeen, Lyons and Moore (2006) show that shocks to order flow induce more 

volatility under flexible exchange rates. Evans and Lyons (2008) confirm that up to 

two thirds of the level changes and volatilities in exchange rate movements are 

associated with order flows. 

However, it has been suggested that order flow may contain elements that are not 

related to information. For example, in practice, the momentum trading strategy 

may generate a large amount of order flows that are unrelated to information. 

Pasquariello and Vega (2007) suggest a new approach that allows one to extract 

the truly informative part of order flow. They highlight a linkage between 

unexpected order flow and information processing in the bond market. In addition, 

Chai et al. (2015) examine the information distribution in the global gold market 

and adopt the unexpected order flow as a proxy for private information. 

Furthermore, Green (2004) emphasize the processing of public news via order 

flows. Namely, the order flow can impact price discovery and its information effect 

varies across the days with and without news. Based on the existing studies, the 

hypotheses 3.1 and 3.2 can be specified as follows:  

                                                            
11 In this study, the Pearson correlations among the market state variables and order flow also 
suggest that order flow is significantly and positively correlated with contemporaneous returns. 
The results are not presented here due to space constraints, but available upon request. 
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Hypothesis 3.1: Order flow has a positive impact on the information shares for 

trading of AUD. 

Hypothesis 3.2: On macroeconomic news release days, order flow has a more 

significantly positive impact on the information shares for trading of AUD. 

2.3.4. Cross-market information flow and dynamic structure 

Some relevant studies, such as Evans and Lyons (2002), suggested the possibility 

of the cross-market information flows, that is, the information flow of a currency 

could be correlated to those of other currencies. Unlike Evans and Lyons (2002) 

focusing on different currencies, I conjecture that the cross-market effect exists 

among different trading sessions of the same currency. In order to test the 

existence of cross-market information spillover effect, I utilize the technique of 

Shapley-Owen R2 decomposition, which can explicitly examine the relative 

importance of each variable (i.e. the percentage contribution) in explaining the 

dependent variable.12 Su and Wang (2017) measure the magnitudes of meteor 

shower and heat waves effects (i.e. inter-regional and intra-regional volatility 

spillovers respectively) in the FX market and find that the cross-market 

information propagation has been increasing recently. Similarly, I conduct the 

Shapley-Owen R2 decomposition for the HAR-IS model and find that the cross-

market effect on information spillover is significant and contributes to 58% of the 

total variations in daily information share, while the local-market effect 

constitutes the remaining portion. 13  Specifically, I extend the classic 

heterogeneous autoregressive model (HAR) and regress the daily information 

share of session i on the lagged daily, weekly, and monthly information shares of 

its own-market and other markets respectively. The sum of incremental increase 

in the model R2 resulting from the addition of a predictor, or set of predictors of 

lagged own-market and other markets are local-market and cross-market effects 

                                                            
12 For a detailed introduction to the Shapley-Owen R2 decomposition and its applications, please 
refer to Lahaye and Neely (2016). 
13 The HAR-class model which examines the short-run dependence of variable of interest while 
controlling for the longer-run dependence (i.e. weekly and monthly dependence) was firstly 
proposed by Corsi (2009) and has been widely used in the relevant literature (see, for example, 
Bollerslev et al., 2017; Su, 2017; among many others). 
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respectively. The results of the Shapley-Owen R2 decomposition are shown in 

Table 2.5 as below:  

Table 2.5: Shapley-Owen Values for the Local- and Cross-market Spillover Effect 

This table shows the Shapley-Owen proportion of the total R2s in four trading sessions, for groups 

of coefficients in the HAR model in which Information Share (IS) is predicted by lagged IS. There 

are 2 groups of coefficients: The own-market contribution, which includes one day lagged IS, lagged 

weekly and monthly information shares of its own market; as well as and the cross-market 

contribution, which includes counterparts of lagged IS of other markets. The groups have no 

intersection and include all non-deterministic regressors, so the proportions for each intraday period 

sum to 100. 

Furthermore, in order to test the possibility of self-dynamics, I plot the 

autocorrelation functions (ACF) of the daily and monthly information shares for 

each trading session respectively. As shown in Figure 2.1, there are weak 

autocorrelations in daily information shares, which confirms the strong daily 

variations of the information share as suggested in the previous section.14 

 

Figure 2.1: Autocorrelation Function (ACF) of Daily Information Share  

 

                                                            
14 The Augmented Dicky-Fuller (ADF) test rejects the null hypothesis of a unit root and suggests 
that all the log transformations of information shares are stationary.  
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Slightly different results have been found for the ACF of the monthly average 

information share of each trading session. For example, it suggests a slow-

decaying process for the monthly information share as shown in the figure below:  

 

Figure 2.2: Autocorrelation Function (ACF) of Monthly Average Information Share  

Based on the results of Shapley-Owen R2 decomposition and ACF analysis, the 

hypotheses 4.1 and 4.2 can be proposed as follows:  

Hypothesis 4.1: Cross-market information flow has an impact on the 

information shares for trading of AUD. 

Hypothesis 4.2: Self-dependence of information flow also has an impact on 

the information shares for trading of AUD. 

2.3.5. Long-run determinants of the information shares 

The existing literature on market risks suggests that aggregate volatility is subject 

to shocks at different frequencies (Adrian and Rosenberg, 2008). Following this 

line of reasoning, I examine the determinants of information shares over a longer 

time horizon (i.e. on a monthly basis). Specifically, following Sassen (1999) who 

claim that the two most important factors in transforming a city into a global 

financial centre are international consolidation of financial activities (i.e., 

concentration of financial institutions and transactions in one location) and 

financial market liberalization (i.e., financial services openness and free capital 

flows), I make an attempt to identify the key factors in determining the 

“information hierarchy” in FX trading and conjecture that the financial market 
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development and integration of a financial centre affects its price discovery 

capability. Specifically, in this study, I utilize pricing efficiency as an indicator of the 

financial market development. I also use the number of quoting banks (both local 

and foreign banks) and concentration of transactions (i.e., the total market share 

of top-5 most active quoting banks) as indicators of market consolidation, as well 

as the Chinn-Ito index as a proxy for the degree of capital market openness and 

financial market liberalization (Chinn and Ito, 2006). The last hypothesis is 

organized as follows: 

Hypothesis 5: Financial market development and integration of financial 

centres also have positive impacts on the information shares for the AUD 

trading in the long-run. 

2.4. Estimation strategy and the data 

Consistent with the hypotheses formulated, the empirical specifications in this 

chapter include market state-related variables, the announcements of 

macroeconomic news, order flow, as well as the financial development and 

market integration indicators in the AUD market. I utilize a simple Ordinary Least 

Square (OLS) approach to estimate the coefficients and use the Newey-West 

heteroscedasticity-autocorrelation-consistent (HAC) standard errors to correct 

the problems of heteroscedasticity and autocorrelation. Following Fricke and 

Menkhoff (2011), Hypothesis 1 will be tested by the following model specification: 

ln (
𝐼𝑆𝑖.𝑡

1−𝐼𝑆𝑖.𝑡
) = 𝛼 + 𝛽1 ln(𝑆𝑝𝑟𝑒𝑎𝑑𝑖.𝑡) + 𝛽2 ln(𝑉𝑜𝑙𝑖.𝑡) + 𝛽3 ln(𝑅𝑒𝑡𝑖.𝑡) + 𝛽4 ln(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖.𝑡) + 𝜖𝑖,𝑡   

(2.3) 

where  𝑖 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈 , representing the four trading sessions and 𝐼𝑆𝑖.𝑡 

represents the information share of market i on day t. 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, 𝑉𝑜𝑙𝑖,𝑡, 𝑅𝑒𝑡𝑖.𝑡, and 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖.𝑡 are the daily shares of time-weighted average quoted spread, trading 

volume, daily return, and standard deviation of log returns over 5-minute intervals.  

Market state variables are constructed using the data from Thomson Reuters Tick 

History (TRTH). The summary statistics of the market state variables for the four 

trading sessions (i.e. Asia, Europe, London/New York, and North America) are 
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provided in Panel A of Appendix B. The Ljung-Box Q statistics show that the 

volatility has strong autocorrelations in Asian, European, and North American 

markets, while it shows no autocorrelation for “NYLON” market. The Augmented 

Dicky-Fuller (ADF) tests suggest that the daily shares of all market state variables 

are stationary, i.e. all the series expressed as percentage shares are I(0) processes 

and hence simple regression can be used for hypothesis testing. 

In order to test Hypothesis 2 regarding the impact of macroeconomic news on 

market information share, I regress the information shares on the news dummy 

variables as well as the control variables as specified in Eq. (2.3): 

ln (
𝐼𝑆𝑖.𝑡

1−𝐼𝑆𝑖.𝑡
) = 𝛼 + 𝛽1 ln(𝑆𝑝𝑟𝑒𝑎𝑑𝑖.𝑡) + 𝛽2 ln(𝑉𝑜𝑙𝑖,𝑡) +  𝛽3 ln(𝑅𝑒𝑡𝑖.𝑡) + 𝛽4 ln(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖.𝑡)    

                 + ∑ 𝛽𝑗𝑁𝑒𝑤𝑠𝑖,𝑡
𝑗𝑈

𝑗=𝐴 + ∑ 𝛽𝑗𝑊𝐷𝑗𝑇ℎ𝑢
𝑗=𝑀𝑜𝑛 + 𝜖𝑖,𝑡                              (2.4) 

where the dummy variable 𝑁𝑒𝑤𝑠𝑖,𝑡
𝑗

, 𝑗 = 𝐴, 𝑈, takes the value of 1 if there were 

news arrivals related to Australia (A) or the U.S. (U) during market i’s trading hours 

and 0 otherwise. Besides, the weekday dummy variables 𝑊𝐷𝑗  (𝑗 =

𝑀𝑜𝑛𝑑𝑎𝑦, 𝑇𝑢𝑒𝑠𝑑𝑎𝑦, 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦, 𝑎𝑛𝑑 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦) captures the day-of-the-week 

effect, which equals 1 if it is Monday, Tuesday, Wednesday, or Thursday and 0 

otherwise. I also use logarithmic transformations of the information shares to 

overcome any distributional problems related to limited dependent variables 

(Mizrach and Neely, 2008). 

The US and Australian macroeconomic news announcements are sourced from 

the Bloomberg News service. The news dataset includes the date and time of news 

release, news ticker, and a short description.15 As indicated earlier, I use a much 

wider set of macro news types compared to the previous studies, namely, 

scheduled announcement as well as the unscheduled announcements. The 

unscheduled news includes all the real-time news on the economic and financial 

                                                            
15 The volatility and volume responses of AUD to news are mostly driven by the Australian and US 
related announcements, whereas the scheduled news from the Eurozone and Japan were not 
found to be important (Daniel, Kim and McKenzie, 2014). 
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markets of Australia and the U.S. as well as key international market-moving 

headlines.  

In order to test Hypothesis 3 about the implications of order flow, I firstly regress 

the information shares of the four markets on their percentage share of order 

flows. Moreover, to distinguish the net trading effect on days with and without 

news, I add the news dummies and interaction terms between news dummy 

variables and order flow measures. The resulting empirical model is as follows:  

ln (
𝐼𝑆𝑖.𝑡

1−𝐼𝑆𝑖.𝑡
) = 𝛼 + 𝛽1 ln(𝑆𝑝𝑟𝑒𝑎𝑑𝑖.𝑡) + 𝛽2 ln(𝑉𝑜𝑙𝑖,𝑡) +  𝛽3 ln(𝑅𝑒𝑡𝑖.𝑡) + 𝛽4 ln(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖.𝑡)    

                    +𝛽5 ln(𝑂𝐹𝑖,𝑡) + ∑ 𝛽6𝑗𝑁𝑒𝑤𝑠𝑖,𝑡
𝑗𝑈

𝑗=𝐴 + ∑ 𝛽7𝑗𝑙𝑛 (𝑂𝐹𝑖,𝑡) ∙ 𝑁𝑒𝑤𝑠𝑖,𝑡
𝑗𝑈

𝑗=𝐴 + 𝜖𝑖,𝑡  (2.5)    

where 𝑂𝐹𝑖,𝑡  represents the daily shares of order flows in market i on day t, 

𝑁𝑒𝑤𝑠𝑗  (𝑗 = 𝐴, 𝑈) is the news dummy variable as defined earlier.  

Furthermore, in order to extract the informative element from the order flow, 

following Chai et al. (2015), I run a regression of the current order flow on the 

lagged returns and order flows, that is:  

                          𝑂𝐹𝑖,𝑡 = 𝛼 + 𝐵1(𝐿)𝑂𝐹𝑖,𝑡 + 𝐵2(𝐿)𝑅𝑒𝑡𝑖,𝑡 + 𝑣(𝑂𝐹𝑖,𝑡)                            (2.6) 

where 𝑂𝐹𝑖,𝑡 and 𝑅𝑒𝑡𝑖,𝑡 refer to the order flow and log return aggregated within 5-

minute intervals in market i on day t respectively. 𝐵1(𝐿)  and 𝐵2(𝐿)  are 

polynomials in the lag operator. The residuals 𝑣(𝑂𝐹𝑖,𝑡)  reveal the amount of 

unexpected order flow in 5-minute intervals and are then summed up per market 

to calculate the daily unexpected order flows, which gives us a measure of private 

information, possibly nurtured by customer order flows (Menkveld, Sarkar and van 

der Wel, 2012).  

In the next stage, I estimate the impacts of the expected and unexpected order 

flows separately by using the following model specification, where the unexpected 

order flow is utilized as a proxy for private information: 
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ln (
𝐼𝑆𝑖.𝑡

1−𝐼𝑆𝑖.𝑡
) = 𝛼 + 𝛽1 ln(𝑆𝑝𝑟𝑒𝑎𝑑𝑖.𝑡) + 𝛽2 ln(𝑉𝑜𝑙𝑖,𝑡) +  𝛽3 ln(𝑅𝑒𝑡𝑖.𝑡) + 𝛽4 ln(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖.𝑡)    

+ ∑ 𝛽5𝑗 ln(𝑂𝐹𝑖,𝑡
𝑗

)𝑈
𝑗=𝐸 + ∑ 𝛽6𝑗𝑁𝑒𝑤𝑠𝑖,𝑡

𝑗𝑈
𝑗=𝐴 + ∑ ∑ 𝛽7𝑗 ln(𝑂𝐹𝑖,𝑡

𝑗
) ∙ 𝑁𝑒𝑤𝑠𝑖,𝑡

𝑘𝑈
𝑘=𝐴

𝑈
𝑗=𝐸 + 𝜖𝑖,𝑡      

(2.7) 

where 𝑂𝐹𝑖,𝑡
𝑗

 (𝑗 = 𝐸, 𝑈)  represents the daily shares of expected (E) and 

unexpected (U) order flows in market i on day t respectively. I also include the 

interaction terms between news dummies and expected (unexpected) order flow 

variables to examine whether the expected (unexpected) order flow is the channel 

through which the information (i.e. the release of macroeconomic news) is 

incorporated into the exchange rates as documented in Evans and Lyons (2008).  

In order to test Hypothesis 4 while controlling for the cross-market information 

spillover effect and dynamic self-dependence, I introduce the lagged dependent 

variables and adopt the model specification as follows: 

ln (
𝐼𝑆𝑖,𝑡

1−𝐼𝑆𝑖,𝑡
) = 𝛼 + ∑ 𝛽1,𝑗 ln (

𝐼𝑆𝑗,𝑡−1

1−𝐼𝑆𝑗,𝑡−1
)𝑈

𝑗=𝐴 + ∑ 𝛽2𝑗 ln(𝑂𝐹𝑖,𝑡
𝑗

)𝑈
𝑗=𝐸 + ∑ 𝛽3𝑗𝑁𝑒𝑤𝑠𝑖,𝑡

𝑗𝑈
𝑗=𝐴 +

∑ ∑ 𝛽4𝑗 ln(𝑂𝐹𝑖,𝑡
𝑗

) ∙ 𝑁𝑒𝑤𝑠𝑖,𝑡
𝑘 + ∑ 𝛽𝑖𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,𝑡 + 𝛽𝐺𝐹𝐶𝐺𝐹𝐶 + ϵi,t

𝑈
𝑘=𝐴

𝑈
𝑗=𝐸           (2.8) 

where ControlVariablei,t stands for the market state variables, including spread, 

volume, exchange rate return, and volatility. GFC is a dummy variable for the 2008 

Global Financial Crisis which equals 1 during the key financial crisis period of 

2008:09–2009:11, and otherwise zero, with the purpose of examining the 

determinants of price discovery under extreme market conditions. In this equation, 

the information spillover is typically represented by the coefficients of one-day 

lagged 𝐼𝑆𝑗,𝑡−1 (𝑗 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈) . Namely, the own-market spillover effect is 

represented here by the coefficient of its own lagged IS 𝛽1,𝑗  (𝑗 = 𝑖), while the 

coefficients 𝛽1,𝑗  (𝑗 ≠ 𝑖) , which measure the short-run information spillover from 

session j to session i, serve as a proxy for cross-market effects. Note that, here, the 

subscript t-1 represents the session immediately before session i, which may be 

on the same day as session i. For example, when i = Asia, 𝐼𝑆𝑖,𝑡−1 (𝑖 =

𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈) are IS from the previous day t – 1. However, when i = U.S., which 

is the last trading session on day t, 𝐼𝑆𝑖,𝑡−1 (𝑖 = 𝐴, 𝐸, 𝐿) are from the same day t as 
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US market with only the lagged U.S. information share 𝐼𝑆𝑖,𝑡−1 (𝑖 = 𝑈) from the 

previous day.  

While the definition of Two-scale estimator pertains to the daily variance measure, 

the volatility over longer horizons, say, weekly or monthly, may similarly be 

estimated by summing the intraday squared changes of efficient price over a week 

or a month. Thus, from a practical perspective, the approach of realized variance 

parsimoniously captures the shocks at different horizons (Bollerslev et al., 2017). 

To estimate the long-run determinants of information shares in the FX markets, I 

calculate the monthly volatility as the sum of squared intraday returns over a 

month. Specifically, in order to test Hypothesis 5, I model the monthly information 

shares of the four sessions utilizing the following specification: 

ln (
𝐼𝑆𝑖.𝑚

1−𝐼𝑆𝑖.𝑚
) = 𝛼 + 𝛽1 ln(𝐸𝑓𝑓𝑖.𝑚) + 𝛽2 ln(𝑁𝑢𝑚𝐵𝑎𝑛𝑘𝑖.𝑚) + 𝛽3 ln(𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐵𝑎𝑛𝑘𝑖.𝑚)         

                                            +𝛽4 ln(𝑀𝑘𝑡𝐶𝑜𝑛𝑖.𝑚) + 𝛽5 ln(𝐶ℎ𝑖𝑛𝑛𝐼𝑛𝑑𝑒𝑥𝑖.𝑚) + 𝜖𝑖,𝑡                (2.9) 

where 𝐼𝑆𝑖,𝑚 is the monthly information share of market i in month m. 𝐸𝑓𝑓𝑖,𝑚 is the 

monthly average pricing efficiency. 𝑁𝑢𝑚𝐵𝑎𝑛𝑘𝑖,𝑚 , 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐵𝑎𝑛𝑘𝑖,𝑚 , and 

𝑀𝑘𝑡𝐶𝑜𝑛𝑖,𝑚 are the average number of quoting banks during market i’s trading 

hours, percentage of foreign banks identified based on their headquarters location, 

and degree of market concentration (i.e. the percentage of quotes issued by the 

top-5 most active banks). I also include the Chinn-Ito index to proxy for the degree 

of financial market openness, which is sourced from Chinn and Ito (2006).16  

To further test Hypothesis 4 while controlling for the lead-lag effects, namely, the 

self-dependences at lag 1 and lag 12 as shown in Figure 2.2 in Section 2.3.4, I 

introduce the lagged terms of dependent variable as follows:  

 

                                                            
16 The Chinn-Ito index is a comprehensive index measuring a country's degree of capital account 
openness. In this study, I construct the overall Market Openness Index (MOI) by using the GDP-
weighted average Chinn-Ito index for the four trading sessions. For a detailed introduction to the 
Index, please refer to http://web.pdx.edu/~ito/Chinn-Ito_website.htm. 

http://web.pdx.edu/~ito/Chinn-Ito_website.htm
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ln (
𝐼𝑆𝑖,𝑚

1−𝐼𝑆𝑖,𝑚
) = 𝛼 + 𝛽1 ln (

𝐼𝑆𝑖,𝑚−1

1−𝐼𝑆𝑖,𝑚−1
) + 𝛽2 ln (

𝐼𝑆𝑖,𝑚−12

1−𝐼𝑆𝑖,𝑚−12
) + 𝛽3 ln(𝐸𝑓𝑓𝑖.𝑚)     

+𝛽4 ln(𝑁𝑢𝑚𝐵𝑎𝑛𝑘𝑖.𝑚) + 𝛽5 ln(𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐵𝑎𝑛𝑘𝑖.𝑚)  

                                    +𝛽6 ln(𝑀𝑘𝑡𝐶𝑜𝑛𝑖.𝑚) + 𝛽7 ln(𝐶ℎ𝑖𝑛𝑛𝐼𝑛𝑑𝑒𝑥𝑖.𝑚) + 𝜖𝑖,𝑡                     (2.10) 

with 𝐼𝑆𝑖.𝑚−1 and 𝐼𝑆𝑖.𝑚−12 representing the monthly information share for session 

i on month m-1 and month m-12 respectively. 

In Eq. (2.9) and (2.10), 𝐸𝑓𝑓𝑖,𝑚 strands for the monthly average pricing efficiency. 

As 𝑇𝑆𝑅𝑉 can serve as a proxy for the information flow (i.e. the variance of the 

efficient price changes) and 𝑅𝑉  contains both the information and noise 

components, the ratio 𝑇𝑆𝑅𝑉/𝑅𝑉 provides a measure of market-specific pricing 

efficiency and Table 2.6 reports the estimated yearly average pricing efficiency for 

the four sessions. The table shows that, for all trading sessions, the ratio 

𝑇𝑆𝑅𝑉/𝑅𝑉  is less than one, suggesting that 𝑅𝑉  contains considerable noise, 

ranging from 14% to 30%. Furthermore, it is interesting to note that the pricing 

efficiencies in all markets have been increasing steadily after 2003, which is 

consistent with Chaboud et al. (2014) who find that, with the rise of algorithmic 

trading, the price discovery in the FX market has been constantly improving. 
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Table 2.6: Sub-period Pricing Efficiency 

This table reports the estimates of annual average pricing efficiency in the four trading sessions as 

defined in Table 2.1.  

 Asia Europe 
London/New 

York 
North America 

1999 0.697 0.778 0.807 0.727 

2000 0.722 0.806 0.811 0.737 

2001 0.727 0.779 0.827 0.750 

2002 0.766 0.786 0.820 0.777 

2003 0.775 0.802 0.818 0.763 

Average1999-2003 0.737 0.791 0.816 0.751 

2004 0.777 0.820 0.841 0.797 

2005 0.777 0.803 0.817 0.786 

2006 0.792 0.821 0.828 0.802 

2007 0.807 0.819 0.847 0.803 

2008 0.807 0.805 0.817 0.820 

Average2004-2008 0.792 0.813 0.830 0.802 

2009 0.804 0.818 0.833 0.831 

2010 0.792 0.806 0.842 0.809 

2011 0.804 0.819 0.860 0.819 

2012 0.801 0.819 0.829 0.796 

2013 0.786 0.807 0.841 0.787 

Average2009-2013 0.797 0.814 0.841 0.808 

Average1999-2013 0.775 0.806 0.829 0.797 

2.5. Estimation results 

The empirical results are reported and discussed in this section. As indicated in 

Section 2.3, market state variables (including bid-ask spread, trading volume, 

volatility, and return), macroeconomic news announcements, and order flows can 

explain a fairly large portion of the daily variations in information shares for AUD 

trading, while pricing efficiency, FX market development and the integration of 

financial centres are the main long-run determinants of the dynamic price 

discovery in AUD market. Furthermore, the dynamic natures of self-dependence 

and cross-market information spillover help in explaining the variations of 
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information shares both in the short- and long-run. The results of robustness 

testing are also presented in this section. 

2.5.1. Market state variables 

The estimation results regarding the market state variables are presented in Table 

2.7. These results confirm that market state variables explain a significant 

proportion of the fluctuations in the information shares in AUD market. In overall 

terms, the market state-related variables perform better in explaining the shifts in 

the information shares of the Asian market compared to the other markets, i.e., 

the adjusted R-squared for Asian market is as high as 0.8. A positive change in the 

trading volume increases the information content of all markets. Interestingly, in 

general, increases in spreads alone do not indicate less information processing. 

The reason could be that, larger spreads are generally associated with more 

informed trading, which is consistent with the findings of Glosten and Milgrom 

(1985) who argue that the presence of informed traders leads to larger bid-ask 

spreads. However, it is worth noting that after controlling for volatility (i.e., the 

standard deviation of exchange rate returns over 5-minute intervals), the sign of 

spread changes from positive to negative except for the US market as shown in 

column (2) of Table 4.7. This result could be attributed to the fact that the bid/ask 

spread consists of three components, namely, the asymmetric information 

component (AIC), order processing component (OPC), and inventory holding 

component (IHC) (Lin, Sanger and Booth 1995). While the asymmetric information 

component is positively related to the information share, the order processing and 

inventory holding components are significantly negatively related to the 

information share. Thus, after controlling for the asymmetric information as 

proxied by the volatility, an inverse relationship between spread and information 

share has been documented. In addition, the estimation results confirm that 

higher returns have a positive effect on price discovery in the foreign exchange 

market. 
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Table 2.7:  Responses of Information Shares to Market State Variables 

This table mirrors the regression results of market-state variables and weekdays’ dummies on daily information shares of the Asian, European, London/New York 

(“NYLON”), and U.S. trading session, which takes the following form:  

ln (
𝐼𝑆𝑖.𝑡

1 − 𝐼𝑆𝑖.𝑡
) = 𝛼 + 𝛽1 ln(𝑆𝑝𝑟𝑖.𝑡) + 𝛽2 ln(𝑉𝑜𝑙𝑖.𝑡) + 𝛽3 ln(𝑅𝑒𝑡𝑖.𝑡) + 𝛽4 ln(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖.𝑡) + 𝜖𝑖,𝑡 

with i representing the session, 𝛼 the intercept term, Spr, Vol, Ret, and Volatility standing for individual shares of the time-weighted average quoted spread, the 

number of trades, return, and the standard deviation of mid-quote returns respectively on the given day. The values in the parentheses are the Newey-West standard 

errors. The asterisks ***, **, and * indicate significance at 1%, 5%, and 10% level, respectively. 

Variable Asia Europe London/New York North America 

 (1) (2) (1) (2) (1) (2) (1) (2) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
0.038 

(00027) 

0.529*** 

(0.040) 

0.050* 

(0.027) 

1.226*** 

(0.041) 

0.340*** 

(0.042) 

1.222*** 

(0.059) 

0.184*** 

(0.023) 

1.434*** 

(0.031) 

𝑆𝑝𝑟𝑒𝑎𝑑 
0.012 

(0.021) 

-0.122*** 

(0.033) 

-0.011 

(0.021) 

-0.298*** 

(0.037) 

0.119*** 

(0.028) 

-0.140*** 

(0.045) 

0.531*** 

(0.020) 

0.127*** 

(0.018) 

𝑉𝑜𝑙𝑢𝑚𝑒 
0.251*** 

(0.020) 

0.106*** 

(0.013) 

0.419*** 

(0.024) 

0.213*** 

(0.015) 

0.444*** 

(0.027) 

0.281*** 

(0.018) 

0.226*** 

(0.014) 

0.007*** 

(0.002) 

𝑅𝑒𝑡𝑢𝑟𝑛 
0.006*** 

(0.002) 

0.014*** 

(0.002) 

0.002* 

(0.001) 

0.004** 

(0.002) 

0.003*** 

(0.001) 

0.010*** 

(0.002) 

0.003*** 

(0.001) 

0.028*** 

(0.001) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 
 0.684*** 

(0.019) 

 0.581*** 

(0.024) 

 0.427*** 

(0.028) 

 0.517*** 

(0.025) 

𝑛 3825 3825 3824 3824 3804 3804 3816 3816 

𝐴𝑑𝑗_𝑅2 0.7902 0.8102 0.7142 0.7253 0.7001 0.7114 0.7025 0.7357 
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In overall terms, there is strong evidence supporting the view that market state 

variables are important determinants of the information shares in AUD market. 

More favourable market states, i.e. larger trading volume, narrower spread, and 

higher return, tentatively increase the information share of a certain market. 

However, it is not possible to make a general statement concerning the directions 

of the relationship (i.e., the expected signs of coefficients). For example, in some 

cases, an increase in the spread may hinder the market’s role in price discovery, 

while in other cases, a relatively high spread may indicate more efficient price 

discovery process, thereby increasing the information share. The results in Table 

2.7 suggest that a higher spread in the North American market increases the 

information share, but its effect is consistently negative in the Asian and European 

markets.  

2.5.2. Macroeconomic news announcement 

Table 2.8 highlights the importance of the US news on price discovery in the FX 

market, which is consistent with Andersen et al. (2007) and Daniel et al. (2014). 

The relevance of US news stems from the economic importance of the US economy 

as well as the fact that the price quotes used in this study are expressed as the 

values of the AUD against the USD. In contrast, the coefficient on the Australian 

news dummy does not show any clear pattern across the European and “NYLON” 

markets. However, we do observe a significant impact of the Australian 

macroeconomic news announcements on the information share of the Asian 

market.17 A possible explanation for the high information share when there are 

macroeconomic news announcements may be that relatively more informed 

traders react quickly around the time of macroeconomic news releases (Evans and 

Lyons, 2008). Unfortunately, the signs of the estimated coefficients do not show a 

                                                            
17 As indicated earlier, most Australian macroeconomic announcements arrive during the Asian 
trading hours (i.e. from 23:00 GMT on day t-1 to 1:00 GMT on day t), while most of the US 
macroeconomic announcements occur during the “NYLON” and North American markets (i.e., 
from 12:00 GMT to 19:00 GMT). The empirical results here support the asymmetric information 
hypothesis that information may be asymmetrically distributed between different regions and 
local traders may be better informed at the release of local macroeconomic announcements (Gau 
and Wu, 2017). 
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consistent pattern across the four markets. Furthermore, the empirical results 

confirm the findings of Pasquariello and Vega (2007) who argue that the 

importance of order flow depends on the existence of information signals.  

I also consider the day-of-the-week effect by including the weekdays’ dummies in 

the regressions. I find that the information share of Asian market tends to be 

higher on Mondays and that of the U.S. is higher on Thursdays and Fridays as 

shown in Table 2.8. A possible explanation of these results is that the information 

is accumulated during the weekend and incorporated into the exchange rates 

when the Asian market opens on Monday. While for the US market, the higher 

information shares on Thursdays and Fridays is consistent with the findings of 

Harvey and Huang (1991) who confirm that in the foreign exchange futures market, 

returns on Thursdays and Fridays are more volatile as many news releases related 

to the U.S. take place on these days.     
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Table 2.8: Responses of Information Shares to Macroeconomic News Announcements  

This table mirrors the regression results of market-state variables and macroeconomic news 

announcements on daily information shares of the Asian, European, London/New York (“NYLON”), 

and U.S. session, which takes the following form:  

ln (
𝐼𝑆𝑖.𝑡

1 − 𝐼𝑆𝑖.𝑡
) = 𝛼 + 𝛽1 ln(𝑆𝑝𝑟𝑖.𝑡) + 𝛽2 ln(𝑉𝑜𝑙𝑖.𝑡) + 𝛽3 ln(𝑅𝑒𝑡𝑖.𝑡)

+ 𝛽4 ln(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖.𝑡) + ∑ 𝛽5𝑗𝑁𝑒𝑤𝑠𝑖,𝑡
𝑗

𝑈

𝑗=𝐴
+ ∑ 𝛽6𝑗𝑊𝐷𝑗

Thu

j=Mon
+ 𝜖𝑖,𝑡 

The dummy variables 𝑁𝑒𝑤𝑠𝑗  (𝑗 = 𝐴, 𝑈) take the value of one if the news announcement related to 

Australia (“A”) or the U.S. (“U”) occurs during session i’s trading hours and zero otherwise. The 

dummy variable 𝑊𝐷𝑗 (𝑗 = 𝑀𝑜𝑛𝑑𝑎𝑦, 𝑇𝑢𝑒𝑠𝑑𝑎𝑦, 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦, 𝑎𝑛𝑑 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦)  takes the value of 

one if the day is Monday, Tuesday, Wednesday, or Thursday and zero otherwise. The values in the 

parentheses are the Newey-West standard errors. The asterisks ***, **, and * indicate significance 

at 1%, 5%, and 10% level, respectively. 

 Asia Europe LNY US 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
1.222*** 

(0.059) 

1.283*** 

(0.061) 

1.434*** 

(0.031) 

1.417*** 

(0.032) 

𝑆𝑝𝑟𝑒𝑎𝑑 
-0.140*** 

(0.045) 

-0.138*** 

(0.045) 

-0.127*** 

(0.018) 

0.163*** 

(0.029) 

𝑉𝑜𝑙𝑢𝑚𝑒 
0.281*** 

(0.018) 

0.250*** 

(0.027) 

0.007*** 

(0.002) 

0.027*** 

(0.006) 

𝑅𝑒𝑡𝑢𝑟𝑛 
0.010*** 

(0.002) 

0.010*** 

(0.002) 

0.028*** 

(0.001) 

0.007*** 

(0.002) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 
0.427*** 

(0.028) 

0.434*** 

(0.028) 

0.517*** 

(0.025) 

0.513*** 

(0.025) 

𝑁𝑒𝑤𝑠𝐴 
0.064*** 

(0.016) 

0.028 

(0.029) 

0.010 

(0.167) 

0.024 

(0.043) 

𝑁𝑒𝑤𝑠𝑈 
0.017 

(0.056) 

-0.015 

(0.012) 

0.059*** 

(0.020) 

0.048** 

(0.019) 

𝑀𝑜𝑛𝑑𝑎𝑦 
0.054*** 

(0.019) 

-0.058*** 

(0.016) 

-0.038** 

(0.019) 

-0.009 

(0.018) 

𝑇𝑢𝑒eday 
-0.042* 

(0.027) 

-0.008 

(0.015) 

-0.005 

(0.019) 

-0.067*** 

(0.018) 

𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 
-0.071 

(0.070) 

-0.032** 

(0.015) 

0.001 

(0.018) 

-0.047*** 

(0.018) 

𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 
-0.070*** 

(0.017) 

-0.041*** 

(0.015) 

0.007 

(0.018) 

0.044** 

(0.018) 

𝑛 3825 3824 3804 3816 

𝐴𝑑𝑗_𝑅2 0.7102 0.6252 0.6114 0.6358 
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2.5.3. Order flow 

The results presented in column (1) of Table 2.9 show the relative importance of 

order flows in Asian and U.S. markets, i.e. the coefficients on order flows are 

positively and statistically significant. Column (2) of Table 2.9 reports the 

responses of the information shares to expected and unexpected order flows. 

Comparing the results shown in Table 2.9, a decomposition of order flows shows 

a remarkable increase in the explanatory power (i.e. the adjusted R2 is relatively 

larger in column (2)). The Wald test suggests that the unexpected order flow plays 

a more important role in explaining the information shares. 18  The previously 

observed positive impact of order flow on information share vanishes after 

including the unexpected order flow, which confirms the elements of order flow 

that are unrelated to information. It is interesting to note the significances of 

unexpected order flow and the interactions of order flows and the news dummies, 

which significantly improve our understanding of information transmission in the 

FX market. Overall, I can argue that order flow, particularly the unexpected order 

flow, is a crucial determinant of the information shares. The evidence also 

supports the view that order flow is a medium for incorporating heterogeneous 

information in the FX market (Evans and Lyons, 2008). For robustness check, I also 

divide the sample into three sub-periods (i.e. 1999/2000 – 2006, 2007 – 2009, and 

2010 – 2013). Generally, the results are consistent in all sub-periods for AUD.19

                                                            
18 The results of Wald statistics are not presented here due to space constraints, but available upon 
request. 
19 To conserve space, the results are not reported here for brevity, however, the empirical results 
are available upon request. 
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Table 2.9: Responses of Information Shares to Expected and Unexpected Order Flows 

This table mirrors the regression results of market-state variables, macroeconomic news announcements, and order flows on daily information shares of the Asian, 

European, London/New York (“NYLON”), and U.S. session, which takes the following form:  

ln (
𝐼𝑆𝑖.𝑡

1 − 𝐼𝑆𝑖.𝑡
) = 𝛼 + ∑ 𝛽1𝑗 ln(𝑂𝐹𝑖,𝑡

𝑗
)

𝑈

𝑗=𝐸
+ ∑ 𝛽2𝑗𝑁𝑒𝑤𝑠𝑖,𝑡

𝑗
𝑈

𝑗=𝐴
+ ∑ ∑ 𝛽3𝑗 ln(𝑂𝐹𝑖,𝑡

𝑗
) ∙ 𝑁𝑒𝑤𝑠𝑖,𝑡

𝑘
𝑈

𝑘=𝐴

𝑈

𝑗=𝐸
+ ∑ β4𝑗𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,𝑡 + 𝜖𝑖,𝑡 

where 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,𝑡  stands for the market state variables, including spread, volume, open-to-close return, and volatility. Moreover, 𝑂𝐹𝑖,𝑡
𝐽  (𝐽 = 𝐸, 𝑈) 

represents the daily shares of expected (“E”) and unexpected (“U”) components of order flows in session i on day t respectively as defined in Section 4. The 

dummy variables 𝑁𝑒𝑤𝑠𝑗  (𝑗 = 𝐴, 𝑈) is defined as in Table 2.8. The values in the parentheses are the Newey-West standard errors. The asterisks ***, **, and * 

indicate significance at 1%, 5%, and 10% level, respectively 

Variable Asia Europe London/New York North America 

 (1) (2) (1) (2) (1) (2) (1) (2) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
0.508*** 

(0.040) 

0.494*** 

(0.041) 

1.243*** 

(0.042) 

1.242*** 

(0.043) 

1.286*** 

(0.062) 

1.300*** 

(0.064) 

1.430*** 

(0.031) 

1.426 

(0.032) 

𝑆𝑝𝑟𝑒𝑎𝑑 
-0.119*** 

(0.033) 

-0.120*** 

(0.033) 

-0.304*** 

(0.037) 

-0.303*** 

(0.037) 

-0.136*** 

(0.045) 

-0.135*** 

(0.045) 

0.159*** 

(0.029) 

0.160*** 

(0.029) 

𝑉𝑜𝑙𝑢𝑚𝑒 
0.252*** 

(0.019) 

0.253*** 

(0.020) 

0.427*** 

(0.025) 

0.427*** 

(0.025) 

0.461*** 

(0.028) 

0.460*** 

(0.028) 

0.533*** 

(0.020) 

0.533*** 

(0.020) 

𝑅𝑒𝑡𝑢𝑟𝑛 
0.014*** 

(0.002) 

0.014*** 

(0.002) 

0.004** 

(0.002) 

0.004** 

(0.002) 

0.010*** 

(0.002) 

0.010*** 

(0.002) 

0.007*** 

(0.002) 

0.007*** 

(0.002) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 
0.680*** 

(0.019) 

0.680*** 

(0.019) 

0.588*** 

(0.025) 

0.588*** 

(0.025) 

0.432*** 

(0.028) 

0.431*** 

(0.028) 

0.514*** 

(0.025) 

0.513*** 

(0.025) 
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Table 2.9 (Continued) 

Variable Asia Europe London/New York North America 

 (1) (2) (1) (2) (1) (2) (1) (2) 

𝑁𝑒𝑤𝑠𝐴 
0.056*** 

(0.011) 

0.079*** 

(0.018) 

0.062* 

(0.043) 

-0.050 

(0.034) 

-0.090 

(0.097) 

0.132 

(0.193) 

0.020* 

(0.012) 

0.028** 

(0.011) 

𝑁𝑒𝑤𝑠𝑈 
0.070* 

(0.040) 

-0.061 

(0.070) 

-0.016 

(0.010) 

-0.014 

(0.014) 

0.039* 

(0.022) 

0.069** 

(0.029) 

0.039 

(0.025) 

0.046*** 

(0.015) 

𝑂𝐹 
0.014*** 

(0.005) 
 

0.005 

(0.004) 
 

0.004 

(0.005) 
 

0.010** 

(0.004) 
 

𝑂𝐹𝐸  
0.005 

(0.007) 
 

0.004 

(0.007) 
 

0.007 

(0.008) 
 

0.011* 

(0.006) 

𝑂𝐹𝑈  
0.015** 

(0.006) 
 

0.008* 

(0.005) 
 

0.037*** 

(0.007) 
 

0.013** 

(0.005) 

𝑂𝐹𝐸 ∗ 𝑁𝑒𝑤𝑠𝐴  
0.010* 

(0.006) 
 

-0.007 

(0.018) 
 

0.072 

(0.088) 
 

-0.011 

(0.021) 

𝑂𝐹𝐸 ∗ 𝑁𝑒𝑤𝑠𝑈  
0.039 

(0.029) 
 

0.001 

(0.008) 
 

-0.013 

(0.010) 
 

0.017* 

(0.009) 

𝑂𝐹𝑈 ∗ 𝑁𝑒𝑤𝑠𝐴  
0.008*** 

(0.001) 
 

0.005 

(0.019) 
 

0.025 

(0.085) 
 

0.004 

(0.022) 

𝑂𝐹𝑈 ∗ 𝑁𝑒𝑤𝑠𝑈  
0.033 

(0.029) 
 

0.002 

(0.008) 
 

0.011* 

(0.006) 
 

0.009** 

(0.005) 

𝑛 3819 3819 3818 3818 3798 3798 3809 3809 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 0.8109 0.8310 0.7250 0.7353 0.7121 0.7520 0.7352 0.7854 
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2.5.4. Cross-market information flow and dynamic structure 

The local- and cross-market information spillover are examined, and the results 

are reported in Table 2.10. Reassuringly, I find that the main results in Table 2.9 

remain intact. Namely, the conclusion regarding the importance of market state 

variables remains unchanged, besides, the unexpected order flow and its 

interaction with the news arrivals are most helpful in explaining the information 

share of each trading session. As shown in Table 2.10, the coefficients of local-

market spillover effects as highlighted suggest the presence of first-order 

autocorrelation of the dependent variable. The cross-market effects are 

represented by the coefficients of lagged IS of other trading sessions, which 

suggests negative relationships between information shares of each session and a 

high information share of one trading session is associated with decreased share 

of other trading sessions. Similar results have been reported in Gau and Wu (2017). 

After controlling for the local- and cross-market information spillover effects, the 

coefficients of unexpected order flow and its interaction with news arrivals remain 

positive and significant.  

In Table 2.10, I also include the dummy variable GFC in the regression which takes 

the value of 1 during the period of Global Financial Crisis (2008:09–2009:11), and 

0 otherwise. Interestingly, the empirical results suggest that the US played more 

important role during the GFC period, while Europe markets became less 

important. Therefore, with larger information share, the U.S. became more 

efficient at incorporating the information into the fundamental prices related to 

the exchange rates during the GFC period. The results here are generally 

consistent with the findings in Section 2.2. For example, the US market contributes 

more to the price discovery during the GFC period (i.e., 2008 - 2009) as shown in 

Table 2.3 of the yearly average information shares.  
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Table 2.10:  Responses of Information Shares to Order Flows and Macroeconomic News with Information Spillover 

This table mirrors the regression results of own- and cross-market information spillover, market-state variables and macroeconomic news on daily information 

shares of the Asian, European, London/New York (“NYLON”), and U.S. market, which takes the following form:  

ln (
𝐼𝑆𝑖,𝑡

1 − 𝐼𝑆𝑖,𝑡
) = 𝛼 + ∑ 𝛽1,𝑗 ln (

𝐼𝑆𝑗,𝑡−1

1 − 𝐼𝑆𝑗,𝑡−1
)

𝑈

𝑗=𝐴
+ ∑ 𝛽2𝑗 ln(𝑂𝐹𝑖,𝑡

𝑗
)

𝑈

𝑗=𝐸
+ ∑ 𝛽3𝑗𝑁𝑒𝑤𝑠𝑖,𝑡

𝑗
𝑈

𝑗=𝐴
+ ∑ ∑ 𝛽4𝑗 ln(𝑂𝐹𝑖,𝑡

𝑗
) ∙ 𝑁𝑒𝑤𝑠𝑖,𝑡

𝑘
𝑈

𝑘=𝐴

𝑈

𝑗=𝐸
+ ∑ 𝛽𝑖𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,𝑡 + 𝛽𝐺𝐹𝐶𝐺𝐹𝐶

+ ϵi,t 

where 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 includes all the market state variables as defined in Table 2.7, such as spread, volume, open-to-close return, and volatility. GFC is a 

dummy variable for the 2008 Global Financial Crisis which equals 1 for the key financial crisis months of 2008:09–2009:11, and otherwise zero. In this equation, 

the information spillover is typically represented by the coefficients of one-day lagged 𝐼𝑆𝑗,𝑡−1 (𝑗 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈). Namely, the own-market spillover effect is 

represented here by the coefficient of its own lagged IS 𝛽1,𝑗  (𝑗 = 𝑖), while the coefficients 𝛽1,𝑗  (𝑗 ≠ 𝑖) , which measure the short-run information spillover from 

session j to session i, serve as a proxy for cross-market effects. Note that the subscript t-1 represents the session immediately before session i, which may be on 

the same day as session i. For example, when i = Asia, 𝐼𝑆𝑖,𝑡−1 (𝑖 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈) are IS from the previous day t – 1. However, when i = U.S., which is the last 

trading session on day t, 𝐼𝑆𝑖,𝑡−1 (𝑖 = 𝐴, 𝐸, 𝐿) are from the same day t as US market with only the lagged U.S. information share 𝐼𝑆𝑖,𝑡−1 (𝑖 = 𝑈) from the previous 

day. The values in the parentheses are the t-statistics based on Newey-West standard errors. The values highlighted in the table represents for the own-market 

spillover effects. The asterisks ***, **, and * indicate significance at 1%, 5%, and 10% level, respectively 

Variable Asia Europe London/New York North America 

𝐼𝑆_𝐴𝑠𝑖𝑎_𝑙𝑎𝑔 
0.0408*** 

(2.31) 

-0.2216*** 

(-14.93) 

-0.3381*** 

(-15.61) 

-0.8465*** 

(-13.60) 

𝐼𝑆_𝐸𝑢𝑟𝑜_lag 
-0.0218 

(-0.92) 

0.0171* 

(1.64) 

-0.0548* 

(-2.22) 

-0.4386*** 

(-19.89) 

𝐼𝑆_𝐿𝑁𝑌_lag 
-0.0160* 

(-1.64) 

0.0005 

(0.06) 

0.0181** 

(2.09) 

-.5557*** 

(-16.04) 

𝐼𝑆_𝑈𝑆_lag 
-0.1247*** 

(-3.12) 

-0.0273*** 

(-2.78) 

0.0013 

(0.13) 

0.0117* 

(1.61) 
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Table 2.10 (Continued) 

Variable Asia Europe London/New York North America 

𝑂𝐹𝐸 
0.0062 

(0.07) 

0.0038 

(0.07) 

0.0066 

(0.08) 

0.0108* 

(1.64) 

𝑂𝐹𝑈 
0.0157** 

(1.82) 

0.0126* 

(2.22) 

0.0112** 

(1.98) 

0.0067* 

(1.62) 

𝑂𝐹𝐸 ∗ 𝑁𝑒𝑤𝑠𝐴 
0.0102* 

(1.68) 

-0.0072 

(0.33) 

0.0722 

(0.88) 

-0.0111 

(-0.21) 

𝑂𝐹𝐸 ∗ 𝑁𝑒𝑤𝑠𝑈 
0.0393 

(1.02) 

0.0014 

(0.22) 

-0.0134 

(-0.11) 

0.0172* 

(1.77) 

𝑂𝐹𝑈 ∗ 𝑁𝑒𝑤𝑠𝐴 
0.0337*** 

(3.11) 

0.0053 

(1.54) 

0.0251 

(0.85) 

0.0041 

(0.12) 

𝑂𝐹𝑈 ∗ 𝑁𝑒𝑤𝑠𝑈 
0.0094 

(0.92) 

0.0021 

(1.33) 

0.0115* 

(1.74) 

0.0093** 

(2.08) 

GFC  
0.0194 

(0.74) 

-0.1059*** 

(-5.91) 

-0.0804*** 

(-4.21) 

0.1766*** 

(6.77) 

𝑛 3818 3817 3797 3808 

𝐴𝑑𝑗_𝑅2 0.8455 0.7387 0.7688 0.8101 
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2.5.5. Market development and financial integration indicators 

The estimation results of long-run determinants are reported in Table 2.11.20 First 

of all, the pricing efficiency, which can be seen as an indicator of FX market 

development, has a positive and significant impact on price discovery. Second, 

with more active quoting banks in Asian trading hours, particularly with the 

increasing participation of foreign banks headquartered overseas, the information 

share of Asia increases substantially. These findings suggest that, with an 

increasing degree of market integration and consolidation (i.e. with more active 

dealing banks in the Asian market), Asia is playing an increasingly important role 

in the price discovery of global FX trading. Besides, the number of quoting banks 

has a significantly and positively effect on information shares for all markets. 

However, the percentage of foreign banks is not useful in explaining the 

information shares except for that in the Asian market, which is probably due to 

the fact that a larger proportion of FX trading has been conducted between 

counterparties located in the same place, but their headquarters could be 

elsewhere (BIS, 2013). 

Furthermore, I consider the impact of market concentration on price discovery. 

There is a long-standing debate about the influences of market concentration. For 

example, on the one hand, the market concentration enables the top-tier banks 

to process greater order flow and internalize customer order flow, which helps 

them aggregate the dispersed information among the customers and contribute 

more to the price discovery (Evans, 2002; Evans and Lyons, 2002a; Rime and 

Schrimpf, 2013). On the other hand, the market concentration may cause erratic 

swings amid liquidity drought, especially during times of market stress (Yin, 2005; 

Hendershott and Jones, 2005). The empirical results suggest that the increasing 

market concentration does not have a consistent effect on the price discovery, 

which confirms the ambiguous effect of market concentration as documented in 

previous studies.  

                                                            
20 Following the suggestions of the thesis examiner, I report the summary statistics of long-run 
determinants in Appendix C. 
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Finally, considering the importance of financial market infrastructure in facilitating 

the price discovery process, I include the GDP-weighted average Chinn-Ito Index 

in the regression to proxy for the degree of capital market openness and financial 

liberalization. The empirical results presented in Table 2.11 confirm that the 

overall Chinn-Ito Index have a positive effect on the information shares in all 

sessions. This effect is particularly high in the Asian market. In overall terms, a 

higher degree of FX market development and financial integration is highly 

desirable, particularly for Asian market. 

The estimations of long-run determinants with lead-lag effects are shown in Table 

2.12. The lagged term of IS has significantly positive effects on the monthly 

information share of each trading session. Furthermore, to control for seasonality 

as shown in Figure 2.2, I add the 12-month lagged IS in the regression. The results 

suggest the presence of seasonality and re-confirm the conclusions about the 

fundamental effects of the proxy variables for the degree of financial market 

development and integration. 
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Table 2.11: Responses of Information Shares to Long-run Determinant Variables 

This table mirrors the regression results of market development and financial integration indicators on the monthly information shares of the Asian, European, 

London/New York (“NYLON”), and U.S. trading session, which takes the following form:  

ln (
𝐼𝑆𝑖.𝑚

1 − 𝐼𝑆𝑖.𝑚
) = 𝛼 + 𝛽1 ln(𝐸𝑓𝑓𝑖.𝑚) + 𝛽2 ln(𝑁𝑢𝑚𝐵𝑎𝑛𝑘𝑖.𝑚) + 𝛽3 ln(𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐵𝑎𝑛𝑘𝑖.𝑚) + 𝛽4 ln(𝑀𝑘𝑡𝐶𝑜𝑛𝑖.𝑚) + 𝛽5 ln(𝐶ℎ𝑖𝑛𝑛𝐼𝑛𝑑𝑒𝑥𝑖.𝑚) + 𝜖𝑖,𝑡 

with 𝐼𝑆𝑖.𝑚 representing the monthly information share for session i on month m, 𝛼 the intercept term, Eff, NumBank, ForeignBank, and MktCon are monthly 

average pricing efficiency as defined in Section 2.2, the number of quoting banks during session i’s trading hours, percentage of quotes posted by foreign banks 

identified based on their locations, and the percentage of quotes issued by the top-5 most active banks. ChinnIndex is the capital-weighted average Chinn-Ito 

index, which is sourced from Chinn and Ito (2006) and used to proxy for the degree of financial market openness. The values in the parentheses are the Newey-

West standard errors. The asterisks ***, **, and * indicate significance at 1%, 5%, and 10% level, respectively. 

Variable Asia Europe London/New York North America 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
-1.8559*** 

(0.0793) 

-1.2400*** 

(0.0745) 

-1.4828*** 

(0.0595) 

-1.4506*** 

(0.0634) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 
0.4835*** 

(0.0840) 

0.6792*** 

(0.0838) 

0.4942*** 

(0.0617) 

0.5665*** 

(0.0758) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑛𝑘𝑠 
0.0138*** 

(0.0028) 

0.0187*** 

(0.0067) 

0.0074*** 

(0.0030) 

0.0065** 

(0.0026) 

𝑃𝑐𝑡 𝑜𝑓 𝐹𝑜𝑟𝑒𝑖𝑔𝑛 𝐵𝑎𝑛𝑘𝑠 
0.0383*** 

(0.0178) 

-0.0006 

(0.0019) 

0.0089 

(0.0242) 

0.0102 

(0.0182) 

𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
0.0702* 

(0.040) 

-0.0612 

(0.070) 

-0.0161 

(0.010) 

-0.0137 

(0.014) 

𝐶ℎ𝑖𝑛𝑛 − 𝐼𝑡𝑜 𝐼𝑛𝑑𝑒𝑥 
0.0814*** 

(0.0050) 

0.0456*** 

(0.0071) 

0.0224*** 

(0.0048) 

0.0280** 

(0.0161) 

𝑛 168 168 168 168 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 0.2964 0.3110 0.4551 0.4102 



45 
 

Table 2.12: Responses of Information Shares to Long-run Determinants with Lead-lag Effects 

This table mirrors the regression results of market development and financial integration indicators on the information shares of the Asian, European, London/New 

York (“NYLON”), and U.S. market in the long run, while taking into account lead-lag effects, which takes the following form:  

ln (
𝐼𝑆𝑖,𝑚

1 − 𝐼𝑆𝑖,𝑚
) = 𝛼 + 𝛽1 ln (

𝐼𝑆𝑖,𝑚−1

1 − 𝐼𝑆𝑖,𝑚−1
) + 𝛽2 ln (

𝐼𝑆𝑖,𝑚−12

1 − 𝐼𝑆𝑖,𝑚−12
) + 𝛽3 ln(𝐸𝑓𝑓𝑖.𝑚) + 𝛽4 ln(𝑁𝑢𝑚𝐵𝑎𝑛𝑘𝑖.𝑚) + 𝛽5 ln(𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐵𝑎𝑛𝑘𝑖.𝑚) + 𝛽6 ln(𝑀𝑘𝑡𝐶𝑜𝑛𝑖.𝑚)

+ 𝛽7 ln(𝐶ℎ𝑖𝑛𝑛𝐼𝑛𝑑𝑒𝑥𝑖.𝑚) + 𝜖𝑖,𝑡 

with 𝐼𝑆𝑖.𝑚  and 𝐼𝑆𝑖.𝑚−𝑘  representing the monthly information share for session i on month m and m-k respectively, 𝛼  the intercept term, Eff, NumBank, 

ForeignBank, and MktCon are monthly average pricing efficiency as defined in Section 2.2, the average number of quoting banks during session i’s trading hours, 

percentage of quotes posted by foreign banks identified based on their locations, and the percentage of quotes issued by the top-5 most active banks. ChinnIndex 

is the capital-weighted average Chinn-Ito index, which is sourced from Chinn and Ito (2006) and used to proxy for the degree of financial market openness. The 

values in the parentheses are the t-statistics based on Newey-West standard errors. The asterisks ***, **, and * indicate significance at 1%, 5%, and 10% level, 

respectively. 

Variable Asia Europe London/New York North America 

𝐼𝑆_𝑚𝑜𝑛𝑡ℎ𝑙𝑦_𝑙𝑎𝑔 
0.5745*** 

(9.07) 

0.4648*** 

(6.74) 

0.5589*** 

(9.86) 

0.4114*** 

(6.12) 

𝐼𝑆_𝑚𝑜𝑛𝑡ℎ𝑙𝑦_𝑙𝑎𝑔12 
0.1166* 

(1.79) 

0.1230* 

(1.87) 

0.2218*** 

(3.75) 

0.3018*** 

（4.47） 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 
0.2752*** 

(13.14) 

0.2973*** 

(18.38) 

0.3122*** 

(19.21) 

0.3321*** 

(27.58) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑛𝑘𝑠 
0.0233* 

(1.83) 

0.0321*** 

(5.67) 

0.0754*** 

(7.88) 

0.0665*** 

(6.12) 

𝑃𝑐𝑡 𝑜𝑓 𝐹𝑜𝑟𝑒𝑖𝑛𝑔 𝐵𝑎𝑛𝑘𝑠 
0.0145* 

(1.78) 

-0.0006 

(0.88) 

0.0077 

(0.42) 

0.0003 

(0.12) 

𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
-0.0022 

(-1.40) 

0.0611** 

(2.32) 

-0.0126* 

(-2.11) 

0.0032 

(0.42) 

𝐶ℎ𝑖𝑛𝑛 − 𝐼𝑡𝑜 𝐼𝑛𝑑𝑒𝑥 
0.0202* 

(1.77) 

0.0356** 

(2.11) 

0.0114 

(1.48) 

0.0280* 

(1.65) 

𝑛 156 156 156 156 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 0.3645 0.4232 0.4858 0.4380 
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2.5.6. Robustness test 

To examine the causal relation between price discovery and market state variables, 

I follow Wintoki et al. (2012) by employing the GMM estimator. The GMM 

estimator can provide consistent and unbiased estimates when there is 

endogeneity and a dynamic relation between the dependent and independent 

variable (Frijns et al., 2015). In this case, there is an endogeneity problem induced 

by potential reverse causality. For example, on the one hand, I expect the various 

market state variables have a causal effect on price discovery and relative 

improvements in market quality may positively affect the contribution to price 

discovery of a particular region. Concurrently, the degree of price discovery may 

affect measures of market state or market quality. At the same time, it is expected 

that there is persistence in the measures of market states and price discovery. As 

demonstrated by Wintoki et al. (2012), the presence of simultaneity and 

persistence means that OLS would produce biased estimates of the causal relation 

between market states and price discovery, while the GMM estimator can capture 

the causal relation between market quality and price discovery more accurately.  

Thus, I estimate the equation in Table 2.9 using the GMM techniques.21 Namely, 

in Table 2.13, I report the results for the equation where I estimate the causal 

relation between the measures of market states and price discovery using a two-

step procedure of GMM estimation as in Frijns et al. (2015). The results presented 

in Table 2.13 generally reconfirm the earlier findings concerning the impacts of 

market state variables, order flow, and macroeconomic news announcements on 

information shares in different trading sessions. However, the coefficients of 

Volatility become insignificant in the GMM estimation.  

                                                            
21 Although the equation in Table 2.13 can be estimated directly using the GMM estimator, there 
are several steps to confirm the accuracy of the model specification. For example, I confirm the 
dynamic completeness of the model, by obtaining the correct lag structure as shown in Panel A of 
Appendix D where the results confirm the persistence captured by the coefficients of first three 
lags of dependent variable. This is desirable if lagged values of the dependent variable are to be a 
useful instrument in the GMM estimation (Frijns, et al., 2015). Furthermore, I test for the possible 
endogeneity issue in Panel B and Panel C, which suggests the simultaneity problem. 
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Table 2.13 Robust Regression (GMM) 

This table mirrors the regression results of market-state variables, macroeconomic news 

announcements, and order flows on daily information shares of the Asian, European, London/New 

York (“NYLON”), and U.S. market, which takes the following form:  

ln (
𝐼𝑆𝑖.𝑡

1 − 𝐼𝑆𝑖.𝑡
) = 𝛼 + 𝛽1 ln (

𝐼𝑆𝑖.𝑡−1

1 − 𝐼𝑆𝑖.𝑡−1
) + 𝛽2 ln(𝑆𝑝𝑟𝑖.𝑡) + 𝛽3 ln(𝑉𝑜𝑙𝑖.𝑡) + 𝛽4 ln(𝑅𝑒𝑡𝑖.𝑡)

+ 𝛽5 ln(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖.𝑡) + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡 + 𝜖𝑖,𝑡 

with i representing the market, 𝛼  the intercept term, Spr, Vol, Ret, and Volatility standing for 

individual shares of the time-weighted average quoted spread, the number of trades, exchange rate 

return, the standard deviation of mid-quote returns sampled at 5-minute interval. This Table reports 

results for the model that assesses the causal relation between various measures of market states and 

price discovery (i.e., Logit transformation of the information share). The model is estimated by a 

two-step GMM estimation procedure, where the measures for market states are treated as 

endogenous and the control variables as exogenous. It uses lags two and three as the internal 

instruments and employs the Windmeijer (2005) correction in the calculation of standard errors and 

reports t-statistics in parentheses. The asterisks ***, **, and * indicate significance at 1%, 5%, and 

10% level, respectively. 
 

 Asia Europe LNY US  

ln (
𝐼𝑆𝑖.𝑡−1

1 − 𝐼𝑆𝑖.𝑡−1
) 

0.0924*** 

(3.91) 

.0365 

(0.82) 

0.0907*** 

(2.67) 

0.1018*** 

(2.45) 

 

𝑆𝑝𝑟𝑒𝑎𝑑 -1.0785** 

（-2.13） 

-1.2929** 

(-2.08) 

-1.3647** 

(-1.90) 

0.5924 

(0.30) 

 

𝑉𝑜𝑙𝑢𝑚𝑒 0.7874*** 

（2.68） 

0.8673*** 

(2.28) 

0.5002*** 

(2.42) 

0.5995** 

(2.28) 

 

𝑅𝑒𝑡𝑢𝑟𝑛 
0.1823*** 

（2.26） 

-0.1600 

(-0.25) 

-0.1043 

(-0.29) 

-0.8575 

(-0.24) 

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 
-0.685 

(-0.83) 

-0.9152 

(-0.67) 

-0.4052 

(-0.66) 

-1.058 

(-0.93) 

 

𝑂𝐹𝐸 0.073 

(0.77) 

0.082 

(0.99) 

0.077 

(0.12) 

0.001 

(0.18) 

 

𝑂𝐹𝑈 0.021** 

(1.98) 

0.002 

(1.02) 

0.034*** 

(2.22) 

-0.088* 

(-1.67) 

 

𝑁𝑒𝑤𝑠𝐴 
0.078*** 

(3.55) 

-0.050 

(0.98) 

0.132 

(0.11) 

0.027** 

(2.12) 

 

𝑁𝑒𝑤𝑠𝑈 
-0.062 

(0.01) 

-0.024 

(0.01) 

0.072*** 

(2.50) 

0.049*** 

(3.88) 

 

𝑂𝐹𝐸 ∗ 𝑁𝑒𝑤𝑠𝐴 
0.022** 

(1.98) 

0.001 

(0.33) 

-0.001 

(-0.28) 

-0.000 

(-0.31) 

 

𝑂𝐹𝐸 ∗ 𝑁𝑒𝑤𝑠𝑈 
0.012 

(1.01) 

0.001 

(0.12) 

0.004 

(0.21) 

0.113*** 

(2.32) 

 

𝑂𝐹𝑈 ∗ 𝑁𝑒𝑤𝑠𝐴 
0.066*** 

(5.13) 

0.010* 

(1.65) 

0.005 

(0.98) 

-0.001 

(-0.01) 

 

𝑂𝐹𝑈 ∗ 𝑁𝑒𝑤𝑠𝑈 
0.019 

(1.20) 

0.000 

(0.03) 

0.112*** 

(5.77) 

0.010 

(1.10) 

 

𝑛 3818 3817 3797 3808  

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 0.4507 0.2984 0.3616 0.3970  
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Furthermore, I also categorize the macroeconomic news announcements into 

scheduled and unscheduled news and re-estimate the model of information share 

determination using only scheduled macroeconomic news. The estimated results, 

as presented in Table 2.14, shows that the coefficients of unscheduled news and 

its interactions with order flows are largely insignificant, suggesting that the 

unscheduled news has a stronger positive impact on information shares and hence 

should be included in relevant announcement effect analysis. 

Finally, I examine the effects of market state variables using the intraday data on 

AUD/GBP and AUD/EUR from Jan 2000 to Dec 2013. The results of AUD/GBP are 

summarized in Table 2.15. 22  As we can see, the coefficients of market state 

variables are slightly different, for example, for AUD/GBP the variable spread has 

a positive effect instead of negative effect in most trading sessions. Besides, during 

the GFC period, both the LNY market and the U.S. market become more important 

in the information transmission. However, the major findings remain unchanged, 

which means that using different denomination currency doesn’t change the main 

conclusions about the importance of order flow in incorporating new information 

into exchange rates. 

                                                            
22 I omit the results of AUD/EUR for simplicity, however, the empirical findings are similar to those 
of AUD/GBP. 
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Table 2.14: Responses of Information Shares to Scheduled Macro News 

This table reports the estimation results of market state variables, scheduled macroeconomic news, and order flows on daily information shares of different sessions 

(i.e. Asia, Europe, London/New York (“NYLON”), and the U.S.). The model specification is as follows: 

ln (
𝐼𝑆𝑖.𝑡

1 − 𝐼𝑆𝑖.𝑡
) = 𝛼 + ∑ 𝛽1𝑗 ln(𝑂𝐹𝑖,𝑡

𝑗
)

𝑈

𝑗=𝐸
+ 𝛽2𝑗𝑆𝑐ℎ_𝑁𝑒𝑤𝑠𝑖,𝑡 + ∑ 𝛽3𝑗 ln(𝑂𝐹𝑖,𝑡

𝑗
) ∙ 𝑆𝑐ℎ_𝑁𝑒𝑤𝑠𝑖,𝑡

𝑈

𝑗=𝐸
+ ∑ 𝛽4𝑗𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,𝑡 + 𝜖𝑖,𝑡 

where C𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 includes the market state variables as defined in Table 2.7, such as spread, volume, open-to-close return, and volatility. The dummy 

variable Scheduled News takes the value of one if the scheduled news announcement related to the U.S. or Australia (including employment, Gross Domestic 

Product (GDP), trade balance, and durable goods orders for the US and the equivalent news variables for Australia) occurs during session i’s trading hours and 

zero otherwise. The values in the parentheses are the Newey-West standard errors. The asterisks ***, **, and * indicate significance at the 1%, 5%, and 10% level, 

respectively. 

Variable Asia Europe London/New York North America 

 (1) (2) (1) (2) (1) (2) (1) (2) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
0.513*** 

(0.040) 

0.822*** 

(0.041) 

1.225*** 

(0.042) 

1.406*** 

(0.041) 

1.221*** 

(0.016) 

1.325*** 

(0.054) 

1.432*** 

(0.031) 

1.551*** 

(0.030) 

𝑆𝑝𝑟𝑒𝑎𝑑 
-0.124*** 

(0.033) 

-0.098*** 

(0.034) 

-0.304*** 

(0.037) 

-0.015*** 

(0.038) 

-0.137*** 

(0.045) 

-0.132*** 

(0.045) 

0.152*** 

(0.028) 

0.309*** 

(0.028) 

𝑉𝑜𝑙𝑢𝑚𝑒 
0.248*** 

(0.020) 

0.366*** 

(0.016) 

0.418*** 

(0.024) 

0.509*** 

(0.019) 

0.443*** 

(0.027) 

0.550*** 

(0.021) 

0.530*** 

(0.020) 

0.531*** 

(0.016) 

𝑅𝑒𝑡𝑢𝑟𝑛 
0.014*** 

(0.002) 

0.010*** 

(0.003) 

0.004** 

(0.002) 

0.003** 

(0.001) 

0.010*** 

(0.002) 

0.008*** 

(0.002) 

0.007*** 

(0.002) 

0.005*** 

(0.002) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 
0.681*** 

(0.019) 

0.581*** 

(0.018) 

0.584*** 

(0.024) 

0.473*** 

(0.023) 

0.426*** 

(0.028) 

0.267*** 

(0.026) 

0.518*** 

(0.025) 

0.441*** 

(0.024) 
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Table 2.14 (Continued) 

Variable Asia Europe London/New York North America 

 (1) (2) (1) (2) (1) (2) (1) (2) 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑁𝑒𝑤𝑠 
0.039* 

(0.021) 

0.025 

(0.020) 

0.013 

(0.008) 

0.004 

(0.012) 

0.041 

(0.043) 

-0.002 

(0.038) 

0.072** 

(0.038) 

0.017 

(0.363) 

𝑂𝐹𝐸  
0.006 

(0.004) 
 

0.006 

(0.004) 
 

-0.006 

(0.005) 
 

-0.002 

(0.004) 

𝑂𝐹𝑈  
0.006 

(0.004) 
 

0.006 

(0.004) 
 

0.013*** 

(0.005) 
 

0.004 

(0.004) 

𝑂𝐹𝐸 ∗ 𝑆𝑐ℎ_𝑁𝑒𝑤𝑠  
0.004 

(0.012) 
 

0.010 

(0.008) 
 

-0.003 

(0.021) 
 

-0.077 

(0.197) 

𝑂𝐹𝑈 ∗ 𝑆𝑐ℎ_𝑁𝑒𝑤𝑠  
0.012 

(0.014) 
 

0.004 

(0.022) 
 

0.004 

(0.022) 
 

0.017** 

(0.010) 

𝑛 3825 3819 3824 3818 3804 3798 3809 3807 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 0.8091 0.8254 0.7048 0.7205 0.7107 0.7391 0.7258 0.7558 
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Table 2.15:  Responses of Information Shares to Market State Variables for AUD/GBP 

This table mirrors the regression results of market-state variables and macroeconomic news announcements on daily information shares of the Asian, European, 

London/New York (“NYLON”), and U.S. market for AUD/GBP, which takes the following form:  

ln (
𝐼𝑆𝑖,𝑡−1

1−𝐼𝑆𝑖,𝑡−1
) = α + ∑ 𝛽1,𝑗 ln (

𝐼𝑆𝑗,𝑡−1

1−𝐼𝑆𝑗,𝑡−1
)𝑈

𝑗=𝐴 + ∑ 𝛽2𝑗 ln(𝑂𝐹𝑖,𝑡
𝑗

)𝑈
𝑗=𝐸 + ∑ 𝛽3𝑗𝑁𝑒𝑤𝑠𝑖,𝑡

𝑗𝑈
𝑗=𝐴 + ∑ ∑ 𝛽4𝑗 ln(𝑂𝐹𝑖,𝑡

𝑗
) ∙ 𝑁𝑒𝑤𝑠𝑖,𝑡

𝑘𝑈
𝑘=𝐴

𝑈
𝑗=𝐸 + ∑ 𝛽5𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑙𝑏𝑒𝑖,𝑡 + 𝛽𝐺𝐹𝐶𝐺𝐹𝐶 + ϵi,t  , 

with i representing the market, 𝛼 the intercept term. 𝑂𝐹𝑖,𝑡
𝐽  (𝐽 = 𝐸, 𝑈) represents the daily shares of expected (E) and unexpected (U) order flows in session i on 

day t respectively. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖,𝑡 includes all the market state variables as defined in Table 2.7, such as spread, volume, and open-to-close return. GFC is a 

dummy variable for the 2008 Global Financial Crisis which equals to 1 for the key financial crisis months 2008:09–2009:11, and otherwise zero. The values 

highlighted in the table represents for the own-market spillover effects and the values in the parentheses are the t-statistics calculated based on Newey-West 

standard errors. The asterisks ***, **, and * indicate significance at 1%, 5%, and 10% level, respectively. 

Variable Asia Europe London/New York North America 

𝐼𝑆_𝐴𝑠𝑖𝑎_𝑙𝑎𝑔 
-0.0361 

(-1.38) 

-0.1444*** 

(-8.72) 

-0.2648*** 

(-14.71) 

-0.4856*** 

(-14.70) 

𝐼𝑆_𝐸𝑢𝑟𝑜_lag 
-0.0703*** 

(-2.25) 

-0.0099 

(-0.82) 

-0.1847*** 

(-7.55) 

-0.4423*** 

(-10.54) 

𝐼𝑆_𝐿𝑁𝑌_lag 
-0.0951*** 

(-3.34) 

-0.0096 

(-0.92) 

0.0186** 

(2.18) 

-0.4683*** 

(-16.64) 

𝐼𝑆_𝑈𝑆_lag 
-0.0083 

(-0.38) 

-0.0109 

(-1.22) 

-0.0154 

(-1.54) 

0.0004 

(1.04) 
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Table 2.15 (Continued) 

Variable Asia Europe London/New York North America 

𝑆𝑝𝑟𝑒𝑎𝑑 
0.2894*** 

(10.48) 

0.3931*** 

(14.15) 

0.1538*** 

(13.11) 

-0.1202*** 

(-11.75) 

𝑉𝑜𝑙𝑢𝑚𝑒 
0.1489*** 

(10.18) 

0.3099*** 

(12.88) 

0.1709*** 

(16.27) 

0.3493*** 

(10.37) 

𝑅𝑒𝑡𝑢𝑟𝑛 
0.0118*** 

(3.29) 

0.0055*** 

(2.89) 

0.0033 

(1.25) 

0.0048** 

(2.06) 

𝑂𝐹𝐸 
0.0121 

(1.22) 

0.0211* 

(1.64) 

0.0011 

(0.08) 

0.0072 

(1.04) 

𝑂𝐹𝑈 
0.0157** 

(1.82) 

0.0022 

(1.02) 

0.0428*** 

(2.02) 

0.0677* 

(1.62) 

𝑂𝐹𝐸 ∗ 𝑁𝑒𝑤𝑠𝐴 
0.0221** 

(1.99) 

0.0008 

(0.58) 

-0.0072 

(-0.18) 

-0.0001 

(-0.21) 

𝑂𝐹𝐸 ∗ 𝑁𝑒𝑤𝑠𝑈 
0.0118 

(1.33) 

0.0001 

(0.22) 

0.0033 

(0.11) 

0.1832** 

(2.01) 

𝑂𝐹𝑈 ∗ 𝑁𝑒𝑤𝑠𝐴 
0.0662*** 

(5.11) 

0.0098* 

(1.64) 

0.0052 

(0.58) 

-0.0009 

(-0.02) 

𝑂𝐹𝑈 ∗ 𝑁𝑒𝑤𝑠𝑈 
0.0189 

(1.21) 

0.0002 

(0.33) 

0.1112*** 

(11.74) 

0.0101 

(1.08) 

GFC  
-0.0116 

(-0.43) 

-0.0212 

(-1.31) 

0.0555*** 

(3.42) 

0.1444*** 

(7.33) 

n 3824 3824 3804 3816 

𝐴𝑑𝑗_𝑅2 0.7911 0.6677 0.7156 0.7484 
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2.6. Conclusions and policy implications 

With rapid growth in emerging economies, such as China and India, the demand 

for Australia’s natural resources has increased substantially. As a result, the role 

of the Australian dollar (AUD) in the global financial markets has become more 

important (McCauley, 2006). Using firm quotes and trading data from January 

1999 to December 2013, this chapter estimates the global information distribution 

of AUD trading in the Asian, European, and North American markets. Specifically, 

using the price quotes of AUD against the US dollar over a relatively long period 

(i.e. 15 years in total), I employ a non-parametric price discovery methodology, i.e., 

Two-scale Realized Variance (TSRV) ratio, to estimate the information shares of 

global AUD trading. I find that the European market and U.S. market, particularly 

the overlapping trading session of London and New York, dominate in price 

discovery process in AUD market, but Asia is rapidly gaining information shares 

even with its declining market share of daily transactions.  

After estimating the information share, I focus on its short- and long-run 

determinants in each market. Namely, I consider the effects of macroeconomic 

news, order flow measures, market state variables while taking into account cross-

market effects and dynamic completeness of information shares in each trading 

session. The empirical analysis shows that more favourable market states and 

more unexpected order flows, particularly on macroeconomic announcement 

days, make a significantly positive contribution to price discovery in all trading 

sessions for AUD trading. Meanwhile, there are strong information spillover 

effects in the FX market, and high information share of one trading session is 

associated with increased information share in the future, while decreased 

information share of other trading sessions.  The empirical results also confirm 

that a higher degree of market integration and international consolidation 

contributes to price discovery in the long-run.  

The distinguishing feature of this chapter is that I consider the impact of a broader 

set of news announcements on information shares, which includes both scheduled 

and unscheduled news announcements. Besides, I show that the decomposition 
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of order flows into an expectation-related and an innovation term can significantly 

improve our understanding of the dealer behaviour responding to different types 

of information arrival. This chapter also contribute to the literature on price 

discovery by considering the long-run determinants of information shares. 

Specifically, I attempt to explore the relationship between the price discovery, 

market integration, and the development of financial markets. The empircal 

results are generally consistent with Sassen (1999) who claims that the two most 

important factors in transforming a city into a global financial centre are 

international consolidation of financial activities and financial market 

liberalization.  

This study on price discovery in AUD market has some important policy 

implications, especially for financial centres in the Asia-Pacific region. For example, 

the empirical results suggest that the financial market openness and liberalization 

have a strong impact on the long-run trends in price discovery. To better compete 

with the leading financial centres in North America and Europe, the Asian financial 

centres need to be more open to international investors and adopt global 

principles of financial market regulations. Furthermore, the findings of inter- and 

intra-regional information spillover effects suggest that price discovery is sticky 

and persistent. Hence the improvement of price discovery in Asia can gain a 

competitive edge over other regions in the long-run. 

The research presented in this chapter can also be extended in several directions. 

For example, how to accurately measure the information shares in the financial 

markets is one question that is yet to be fully answered. Furthermore, additional 

research is required to consider the generalizability of these results. This will 

involve considering price discovery of other major currencies and emerging 

currencies. Last but not least, the issue of how to identify volatility jumps 

associated with macroeconomic news announcements deserves further study, 

which will definitely improve the measure of information shares and extend our 

understanding in economic intuition of price discovery in the foreign exchange 

market.  
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Chapter 3: Meteor Showers and Heat Waves Effects in the Foreign 

Exchange Market: Some New Evidence 

 

3.1. Introduction  

The development of estimators of volatility based on high-frequency information 

has led to large improvements in measuring financial market volatility. The 

investigation into volatility spillovers across geographical regions is an import topic, 

which contributes to our knowledge about global financial interconnectedness. 

The phenomenon of volatility spillover occurs when volatility in one market 

triggers volatility in other markets. This effect can be particularly visible during 

periods of turmoil which diminishes the benefits of international portfolio 

diversification for investors. It is further amplified by the recent technological 

advances, such as the rise of electronic trading and algorithm trading, which have 

undoubtedly facilitated information flows. Besides, with the dominance of cross-

market effects in a wide range of financial markets, the financial instruments 

become more temporally correlated across markets, which raises concerns from 

regulators about global financial instability and contagion effects. The 

international information transmission across markets through volatility have a 

wide range of practical implications as well. For example, models incorporating 

these features significantly improve volatility and these statistical improvements 

can be translated into significant economic gains (Su, 2018).  

In this paper, I mainly focus on the Foreign Exchange (FX) market which is the 

largest financial market in the world, with a daily trading volume of about five 

trillion U.S. dollars (Bank for International Settlements, 2013). Also, the FX market 

is fairly opaque and decentralized because of its two-tier market structure when 

compared to, for example, the major equity markets.23 Besides, unlike the equity 

markets, the Foreign Exchange markets operate continuously from Asia to Europe, 

then to America throughout the day. In sum, the size, sophistication, global 

                                                            
23 For a thorough introduction to the market structure and its evolution in the Foreign Exchange 
market, please refer to King, Osler, and Rime (2011). 
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perspective, and relative continuity of trading in the FX market make it an ideal 

candidate for the study of volatility spillover and information propagation effects. 

With the decentralised market structure, the question naturally arises: what drives 

volatility spillovers in the FX market? This paper addresses several related 

questions that arise in this market setting. First, I provide new evidence to the 

debate on the patterns of volatility spillovers as documented in the previous study 

and find evidence of both meteor shower (i.e. intra-regional volatility spillover) 

and heat waves effects (i.e. inter-regional volatility spillover) in the FX market, 

while the meteor shower effect has been increasing and predominated over heat 

waves effect with the trend toward global trading in the financial markets. Second, 

I take a broad view on the economic mechanism of volatility spillover and identify 

the key factors contributing to the time-varying volatility spillover, which sheds 

light on the economic explanations of volatility persistence and improves our 

understanding of contagion risk in the financial markets. Third, I explicitly quantify 

the contributions of market state variables (i.e. return and volatility) to the 

volatility spillover, which sheds light on studies about microstructure of the FX 

market and contributes to the existing literature on volatility modelling. Namely, I 

empirically examine the magnitudes and determinants of volatility persistence in 

local market (i.e., heat waves effect) and volatility spillovers to other regions (i.e., 

meteor showers effect) for AUD, GBP, EUR, and JPY, all against USD, spanning from 

January 1999 (January 2000 for EUR) to December 2013.24   

In this chapter, I use the Heterogeneous Autoregressive (HAR) model proposed in 

Corsi (2009) and utilize the technique of the Shapley-Owen decomposition of the 

R-squared, which proves to be more efficient in measuring the relative importance 

of the meteor shower and heat waves effects (Lahaye and Neely, 2016). 

Unsurprisingly, I confirm the presence of both effects. However, unlike Lahaye and 

Neely (2016), I find that the importance of meteor shower effect has been 

increasing rapidly. By now, the volatility spillover has been dominated by the 

                                                            
24 For EUR, the tick-by-tick data has not been available until January 2000. All the intraday data 
used in this paper is sourced from Thomson Reuters Tick History (TRTH) maintained by SIRCA. 
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meteor showers effect, which is probably attributed to the increasingly 

interconnected and interdependent financial markets with the rise of information 

technology and algorithmic trading. Specifically, Lahaye and Neely (2016) quantify 

the relative importance of meteor showers and heat waves effects in the FX 

market by utilizing the Shapley-Owen R2 measures, which shows that meteor 

showers account for around 60% of the volatility spillover effects in the EUR/USD 

and USD/JPY markets, while the heat waves constitutes the remaining 40%. In this 

chapter, I use the same method to quantify the explanatory power of the meteor 

showers and heat waves in predicting future volatility for the AUD/USD, GBP/USD, 

EUR/USD, and USD/JPY markets. The empirical results suggest that the meteor 

showers effects (i.e. inter-regional spillover effects) have been increasing rapidly 

and accounted for around 70% of total volatility spillover effects during the whole 

period, while the heat waves effects contribute to the remaining portion. In fact, 

it seems unsurprising that meteor showers should predominate over heat waves 

with the trend toward global trading and correlated common shocks across 

countries (Erdemlioglu, Laurent, and Neely, 2012). 

The economic explanations in this chapter of volatility persistence is closely 

related to earlier theories on information propagation, such as the theory of 

Mixture of Distribution Hypothesis (MDH) developed by Clark (1973) and Tauchen 

and Pitts (1983) and extended by Andersen (1996). The key prediction of the MDH 

is that daily returns and trading volume are jointly determined by a latent 

information variable that measures the daily rate of information flow to the 

market. If the daily number of information arrivals is positively correlated across 

days, then the model predicts positive serial correlation in the squared daily 

returns. In other words, the MDH implies that the persistence in the variance 

forecasts mimics the persistence in the information flow. However, while 

conceptually appealing, the number of information arrivals are often 

unobservable, meaning empirical tests of these mechanisms are “inherently 

difficult” (Wang and Yang, 2017). Besides, the MDH as an empirical explanation 

for volatility persistence finds mixed support (See Andersen, 1996; Liesenfeld, 

2001; Fleming and Kirby, 2011; He and Velu, 2014; among others). In this study, 
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different from the classic MDH, I find that volatility spillover is not solely 

determined by exogenous information arrivals, but also by the price discovery 

process of absorbing shocks and resolving uncertainty. Namely, a faster process of 

price discovery within a period reduces information persistence to future periods 

and therefore mitigates volatility spillover. The explanation here is generally 

consistent with the findings of Wang and Yang (2017) which suggest that, for a 

given information shock, a high daily realized variance implies more information 

being priced today, and less spillovers of unpriced information to other markets in 

the future. The explanation is also closely related to Berger et al. (2009) who claim 

the volatility persistence varies with investors’ sensitivity to information as 

proxied by the price impact of orders. However, in this study, I utilize several 

market state variables (i.e. return, volatility, and information share) and focus on 

the lead-lag relationship rather than the contemporaneous effects. 

To sum up, this empirical study contributes to the existing literature on volatility 

modelling by utilizing the technique of realized volatility to examine the 

magnitudes and economic mechanisms of volatility spillover effects in the global 

FX market. It also contributes to the literature on information propagation by 

providing information-based explanations of volatility spillovers and bridging the 

gap in the literature between news-related and trading-based explanations.  The 

remainder of this chapter proceeds as follows: Section 3.2 reviews the literature. 

Section 3.3 describes the data and introduces relevant variables. An empirical 

investigation into the patterns of meteor showers and heat waves effects is 

presented in Section 3.4, while Section 3.5 proposes the model of conditional 

volatility persistence and presents the main findings on the determinants of 

volatility spillover. Section 3.6 conducts the robustness analysis and compares the 

forecasting performances with other volatility models. Summaries and directions 

for future research are provided in Section 3.7.  

3.2. Literature Review 

A vast amount of literature has focused on how the volatility is transmitted in the 

foreign exchange market since Engle, Ito and Lin (1990) propose the concepts of 
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“meteor showers” and “heat waves”. Heat waves refer to the idea that geography 

determines volatility. Namely, volatility has only location-specific autocorrelation 

such that a heat wave might raise volatility in New York trading on consecutive 

days, i.e., from Monday to Tuesday, but not in Tokyo on Tuesday. In contrast, 

meteor showers refer to temporally correlated volatility that spills over from one 

trading centre to another so that high volatility in New York trading on Monday is 

likely to be followed by a volatile day in Tokyo on Tuesday morning. In Engle et al. 

(1990), the authors examine the short- and long-run volatility spillover effects for 

daily volatility using GARCH models and find that meteor showers predominated, 

while Melvin and Peiers Melvin (2003) reinvestigate the question with a VAR 

model for realized volatility and argue that heat waves were more important. 

Furthermore, Baillie and Bollerslev (1991) find evidence of both the meteor 

shower and heat wave patterns. To explicitly calculate the portion of each effect, 

Ito, Engle and Lin (1992) propose a Forecast Error Variance Decomposition (FEVD) 

method and confirm that the magnitude of meteor shower effect is relatively 

larger. Lahaye and Neely (2016) re-examine the meteor showers and heat waves 

effects by decomposing the daily realized variance into the continuous and jump 

components. They find evidence of both meteor shower and heat waves effects in 

the integrated volatility, while the meteor shower effects are more influential than 

heat waves. Thus, different approaches to volatility measurement lead to different 

conclusions.  

In examining the local- and cross-market volatility spillovers, I show a time-varying 

pattern of meteor showers and heat waves effects in each regional market, which 

highlights the complex geographical nature of the FX market. Namely, these 

results argue in favour of modelling FX volatility dynamics segment-wise, rather 

than in the more traditional approach of assuming a homogeneous process 

(Dacorogna et al., 1993). For example, Dacorogna, et al. (1993) identify the 

intraday periodicity in the FX market using geographical models, and Andersen 

and Bollerslev (1997) demonstrate that intraday seasonality in FX volatility 

contains a geographic component reflecting the timing of business activity in the 

major geographical trading zones. In this study, I confirm the “information 
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dominance” that the FX microstructure literature has highlighted (Su and Zhang, 

2018). Namely, some regions are more important sources of volatility shocks than 

others. Besides, the increasing magnitude of meteor showers effect reflects the 

fact that the global financial market becomes increasingly interdependent and 

interconnected with the rise of advanced information technology which facilitates 

electronic trading and information processing. Whether the relative importance 

of meteor showers and heat waves can be utilized to measure the degree of 

currency internationalization deserves further study. For example, Wang (2014) 

quantify the degree of the internationalization of Korean won by checking the 

relative importance of overnight market in price discovery and find a strong 

uptrend in overnight price discovery in recent years associated with greater 

internationalization of Korean won. Similarly, we would expect the meteor shower 

effect to be increasingly dominant in the process of currency internationalization 

with the incremental impacts from other regions. 

Regarding the mechanism of volatility spillover in the FX market, one strand of 

relevant studies attempts to explain the meteor showers and heat waves effects 

by focusing on the news arrivals. Specifically, since most news of relevance to 

financial markets occurs during each region’s business hours, a regular global 

pattern of intra-daily seasonality in the news arrival process in each region would 

seem to give rise to the “heat waves” effect of regionally-specific autocorrelation 

in volatility. For example, the results of Melvin and Peiers Melvin (2003) support 

the sources of FX volatility being primarily local: a volatility spike in one region 

today is generally related to higher-than-normal volatility in the same region 

tomorrow. In the same vein, Lahaye and Neely (2016) argue that heat waves are 

more likely to occur if most important news that affects volatility occurs during a 

particular country’s business day, while meteor showers will tend to predominate 

if autocorrelated international news is more important. Furthermore, Hogan and 

Melvin (1994) provide empirical explanations to meteor showers effect. Namely, 

the authors examine the role of institutional investors’ heterogeneous 

expectations in the volatility spillover of exchange rates. By measuring different 

opinions of money managers on U.S. leading macroeconomic indicators, which are 
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shown to have a significant and persisting effect on the exchange rate and its 

conditional variance, the authors find that the degree to which U.S. news affects 

other geographical markets is functionally related to heterogeneous priors. 

Furthermore, a vast amount of trading-related explanations has been proposed in 

the literature, including but not limited to: (1) models of optimal trading strategy 

that generates a positive relationship between heterogeneity of expectations, 

trading volume, and the time required for price to fully reflect information (Kyle, 

1985; Admati and Pfleiderer, 1988); (2) models of different trading horizons of 

institution investors (Müller et al., 1997); For instance, FX dealers are usually 

concerned with extremely short trading horizons while corporate treasurers or 

central bankers generally consider longer horizons. Müller et al. (1997) then utilize 

the different trading horizons of heterogeneous institution investors to explain 

their empirical findings that volatility calculated at lower sampling frequencies 

predicts those calculated at higher sampling frequencies significantly better than 

the converse. (3) models of incorporating private information via order flow (Ito, 

Lyons and Melvin, 1998); For example, position-taking that is based on 

informational advantages may result in a rippling of trades and generate 

autocorrelated volatility across regions. In the context of information-based 

explanations, Berger et al. (2009) propose empirical specifications of volatility that 

links volatility to the information flow, as well as the price sensitivity to that 

information. Their empirical analysis suggests that the time variation in the 

market’s sensitivity to information plays a similar role in explaining the persistence 

of volatility as the rate of information arrival itself.  

However, how to empirically explore the sources of volatility spillover in the FX 

market remains unclear. As pointed out by Goodhart and O’Hara (1997), “the 

underlying question of why such volatility persistence endures remains 

unanswered.” The literature on the economic origins of volatility persistence 

remains relatively small and diverse. For example, with the high-frequency and 

short-periodicity of the foreign exchange market, one might expect that the 

market reaction to new information would tend to be contained within the region 

with the news release (Hogan and Melvin, 1994). Besides, the scenario in Melvin 
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and Peiers Melvin (2003) does not explain why volatility would persist within the 

markets for a relatively long period (i.e., over a week). In this chapter, I offer a new 

explanation for volatility persistence based on the main findings of Wang and Yang 

(2017) who attribute the time-varying volatility persistence to the changing overall 

state of the market, as captured by daily return and volatility.25 Specifically, unlike 

the previous literature which focuses mainly on the exogenous information 

arrivals (i.e. the release of macroeconomic announcements) which result in a 

rippling of trading activity and autocorrelated volatility, I explore the volatility 

persistence based on information flows and provide new explanations of the 

economic mechanisms of volatility spillover. For example, on the one hand, large 

information shocks can draw investors’ attention, invoke information searching, 

and trigger strategic trading, which is consistent with the previous trading-related 

explanations of volatility spillover. On the other hand, I take a much broader view 

on the volatility spillovers, namely, a large information shock may take a few days 

to be priced in, leading to spillover effects across markets even in the absence of 

new information, while a market with more efficient price discovery absorbs the 

information shocks quickly and generates less information spillover to other 

regions, resulting in low volatility spillover. In this chapter, I extend the conditional 

volatility persistence (CVP) model as proposed in Wang and Yang (2017) in a multi-

market setting. Then I explore the role of market state variables in explaining the 

meteor shower and heat waves effects by utilizing the concept of conditional 

volatility persistence which is also closely related to the GARCH-family models 

(Engle, 1982; Bollerslev, 1986), and therefore provide a deeper understanding of 

the mechanisms underlying volatility persistence. Interestingly, I find that the CVP 

is the dominant channel linking each region’s market conditions to the future 

volatility. 

In sum, I tackle the question whether the volatility spillover in the FX market is 

better described as “meteor showers” or “heat waves” effect using intraday data 

                                                            
25 For example, Wang and Yang (2017) propose three potential mechanisms that would probably 
lead to volatility persistence, including the endogenous/exogeneous information flow, the 
persistence of information processing, and uninformed trading, such as portfolio adjustments in 
response to information shocks.  
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for AUD, GBP, EUR and JPY, all against USD, covering a relatively long period of 

January 1999 (January 2000 for EUR) to December 2013. Compared with earlier 

studies, this chapter extends their analyses by reconsidering the economic 

mechanism of volatility spillovers in the foreign exchange market (i.e. meteor 

showers and heat waves effects). To my best knowledge, this is the first 

comprehensive study on the mechanisms of volatility spillover effects, which 

sheds light on the volatility forecasting based on time-varying volatility persistence. 

I also fill the gap between the literature on news-related and trading-based 

explanations of volatility spillover by emphasizing the role of conditional volatility 

persistence in relating each region’s market states to future volatility persistence. 

Interestingly, I find that volatility persistence varies daily with market state 

variables and higher return is generally associated with greater volatility 

persistence, while higher volatility leads to less volatility persistence. Furthermore, 

considering the fact that daily volatility often has an information flow 

interpretation (Andersen, 1996), I utilize the variance ratio as a measure of price 

discovery (Su and Zhang, 2018; Gau and Wu, 2017), and find that the price 

discovery plays a key role in determining future volatility persistence. The model 

has practical implications as well. For example, models incorporating these 

features significantly improve volatility forecasts and generate moderate 

economic gains accordingly (Su, 2017). The major findings can be summarized as 

following:  

(i) I confirm the presence of meteor showers and heat waves effects, while the 

magnitude of meteor showers effects has been increasing rapidly. By now, the 

relative importance of meteor showers effect has predominated over that of heat 

waves (for example, 70% and 30% on average for meteor shower and heat waves 

effects respectively).  

(ii) I find that volatility spillover (i.e. meteor showers and heat waves effects) 

increases with information shocks as proxied by positive and negative returns, 

while decreases with daily information flows measured by realized variance 

and/or the variance ratio. 
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(iii) By utilizing the Shapley-Owen R2 decomposition approach in the HAR-based 

CVP model, I find that estimated CVP explains large portions of the variations in 

future volatility. Namely, the Shapley value of the group of market state variables 

accounts for around 60% of the total R2 on average for the exchange rates of 

AUD/USD, GBP/USD, EUR/USD, and USD/JPY. Therefore, the CVP is the dominant 

channel linking changing market states of each region to future volatility, to which 

similar results have been obtained in Wang and Yang (2017). Furthermore, the CVP 

model which calibrates future volatility persistence conditionally on changing 

market states achieves better forecasting performance with regards to loss values.  

3.3. Data description and variable construction 

3.3.1. Data Description 

The primary data source is Thomson Reuters Tick History (TRTH) maintained by 

the Securities Industry Research Centre of Asia-Pacific (SIRCA), a leading financial 

services research hub in Australia. The intraday data for AUD/USD, GBP/USD and 

USD/JPY spans from 1 January 1999 to 31 December 2013, while the data for EUR/ 

USD isn’t available until 1 January 2000.26 The four currencies I use in this chapter 

are among the most actively traded currencies and account for more than 50% of 

the globe FX trading (Bank for International Settlements, 2013). The dataset 

includes firm quotes (i.e. bid and ask prices), rather than the indicative quotes as 

used in the previous studies (i.e. Melvin and Peiers Melvin, 2003), the time when 

a new quote is posted, trading prices, and the time of trading rounded to the 

millisecond. Following other studies such as Bollerslev and Domowitz (1993), I 

exclude weekends, because of thin and inconsistent trading. I define weekends as 

extending from 22:00 GMT Friday evening (the end of day trading in New York) 

until 22:00 GMT Sunday evening (the commencement of morning trading session 

in Sydney). In consistent with Wang and Yang (2011), I remove days with large 

time gaps (i.e. over four hours) in quote arrival, which could be the result of 

technical issues or public holidays. To mitigate the impact of extremely high 

                                                            
26  To remove erroneous data, I use the dataset for EUR starting from January 2001 in our 
robustness analysis.  
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volatility on volatility dependence, I also winsorize the data and replace the 

highest 1% of the realized variances with their nearest observations.   

To examine the cross-region volatility spillovers, I divide a 24-hour trading day into 

4 non-overlapping trading sessions in the same way as in Table 2.1 of Chapter 2. 

Namely, a 24-hour calendar day is divided into four trading segments: the first 

segment is the Asian market when major financial centres in Asia-Pacific operate 

(i.e. Sydney, Tokyo, Hong Kong SAR, and Singapore), the second segment is the 

European market which covers most of the trading hours in London, and other 

major financial cities in Europe (i.e. Frankfurt, Amsterdam, Oslo, and Zurich, etc.). 

The third segment pertains to the overlapping two to three hours of London 

afternoon trading and New York early morning trading (also known as the LNY 

market). The last one is labelled the US market which covers trading hours in the 

U.S. excluding the LNY period. In general, the trading hours span from 9 am to 4 

pm local time, while the opening and closing times of the local market will be 

shifted by one hour ahead immediately following the implementation of DST. 

3.3.2. Integrated variance  

The main approach to measuring volatility in this thesis is based on the fast-

expanding literature on integrated variance as introduced in Chapter 2. Namely, 

the search for an adequate framework for the estimation and prediction of the 

conditional variance of financial asset returns has led to the analysis of high 

frequency intraday data. For example, Merton (1980) note that the variance over 

a fixed interval can be estimated arbitrarily, although accurately, as the sum of 

squared realizations, provided that the data are available at a sufficiently high 

sampling frequency. More recently, Andersen and Bollerslev (1998) show that ex 

post daily exchange rate volatility is best measured by aggregating 288 squared 

five-minute returns (see McAleer and Medeiros (2008) for a very useful survey on 

this issue). Following the work of Andersen and Bolleslev (1998), Andersen et al. 

(2001) introduce the concept of realised volatility which is the technique that uses 

the intra-day high frequency asset price data to construct the model-free 
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estimates of daily asset price volatility. Namely, I propose the observed price 𝑃𝑖,𝑡 

of market i on day t as follows: 

                                                                     𝑃𝑖,𝑡 =  𝑋𝑖,𝑡 + 𝜀𝑖,𝑡                                                           (3.1) 

where 𝑋𝑖,𝑡 is a latent (unobservable) true price process, and 𝜀𝑖,𝑡 are independent 

noise around the true price process. 

Note that the realised volatility is approximately free of measurement error only 

under certain conditions and a vast amount of empirical studies suggests that the 

realized volatility estimator is not robust when the sampling interval is too small.27 

The main explanation for this phenomenon is a vast array of issues collectively 

known as market microstructure, including the existence of the bid–ask bounce, 

non-synchronous trading, price discreteness, etc. (Zhang et al., 2015). Since the 

efficient price and the noise term components in the integrated variance are not 

observable, the existing studies have proposed alternative approaches to reducing 

the impact of the noise term on the estimation of the integrated variance (see, for 

example, Ait-Sahalia, Mykland and Zhang, 2005; Bandi and Russell, 2008; 

Barndorff-Nielsen et al., 2008). Among the alternative measures, the Two-scale 

Realized Variance (TSRV) estimator as introduced in Section 2.2 of Chapter 2 

proves to be the first consistent estimator of the integrated variance (Zhang et al., 

2005; Barndorff-Nielsen et al., 2008).  

Specifically, a trading session i is divided into n sampling intervals. For each interval, 

I assume a Brownian semi-martingale process for the log-price 𝑃𝑖,𝑡 of market i on 

day t: 

                                                         𝑑𝑃𝑖,𝑡 = 𝜇𝑖,𝑡𝑑𝑡 + 𝜎𝑖,𝑡𝑑𝐵𝑡                                                               (3.2) 

where 𝐵𝑡  is a standard Brownian motion process, 𝜎𝑖,𝑡  is the spot stochastic 

volatility, and 𝜇𝑖,𝑡 is the drift coefficient.  

                                                            
27 Several issues such as large bias in the estimate and non-robustness to changes in the sampling 
interval have been reported in a series of studies (see, e.g., Brown 1990; Hansen and Lunde, 2004; 
Zhang et al., 2005; Bandi and Russell, 2004).  
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Here, I am interested in estimating the sum of diffusion variation (i.e., integrated 

variance). The realized variance RVi,t = ∑ ri,t,s
2m

s=1   is calculated as the sum of 

squared log returns sampled over high-frequency intervals s = 1, 2, …, m. Following 

Andersen et al. (2005), I aggregate tick-by-tick data to 5-minute intervals which 

strikes a trade-off between sampling at a high enough frequency to exploit the full 

information, but low enough to have sufficiently many transactions to avoid 

biasing the autocorrelations towards zero due to a large number of consecutive 

zero returns (Wang and Yang, 2011).  

To reduce or remove the impact of the bias induced by microstructure noise (i.e. 

bid/ask bounce, non-synchronous trading, price discreteness, etc.) on the 

estimation of integrated variance, Zhang et al. (2005) show that the TSRV appears 

to be an efficient estimator of the integrated variance. Furthermore, Barndorff-

Nielsen et al. (2008) show that TSRV estimator can be expressed as a non-

parametric estimator based on averaging and subsampling as follows: 

                                                  TSRVi,t =
1

k
∑ RVi,t,j

k
j=1 −

[mi−k+1]

mik
RVi,t                                      (3.3) 

where RVi,t is the realized variance for market i on day t calculated from intraday 

data sampled at high frequency (i.e. 1-second interval). 𝑚𝑖 is the total number of 

sampling intervals during the trading hours of market i and k is the number of sub-

grids at 1-second intervals. For example, k equals 300 if the 1-second time series 

are sampled at 5-minute intervals.  

Following Hasbrouck (1995) who claims that the information flow can be 

measured by the variation in the efficient price, Wang and Yang (2011) modify that 

the information share of a particular region can be calculated as its share of the 

total variance of the efficient price in a trading day. That is,  

𝐼𝑆 𝑖,𝑡 =
𝑉𝑎𝑟(∆𝑚𝑖,𝑡)

𝑉𝑎𝑟(∆𝑚𝑡)
=

𝑉𝑎𝑟(∆𝑚𝑖,𝑡)

∑ 𝑉𝑎𝑟(∆𝑚𝑖,𝑡)4
𝑖=1

 

 (3.4) 

where ∆𝑚𝑖,𝑡 = 𝑚𝑖,𝑡 − 𝑚𝑖−1,𝑡 is the change in the efficient price in market i (for i = 

Asia, Europe, LNY, and US). Andersen and Benzoni (2008) show that the 

conditional variance of the efficient price over a period can be measured by the 
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integrated variance when the efficient price is treated as a continuous time 

process, that is, when the sampling interval 𝑀𝑖 → ∞, the sum of squared ∆𝑚𝑖,𝑡 

converges to the integrated variance in market i on day t. However, if we use the 

usual formula of realized variance 𝑅𝑉𝑖,𝑡 = ∑ 𝑟𝑖,𝑡,𝑠
2𝑀𝑖

𝑠=1  to estimate the variance of 

∆𝑚𝑖,𝑡 , we will obtain a biased and inconsistent estimator for the integrated 

variance in the presence of noise term, better known as the microstructure noise. 

To remove the impact of noise term on the estimation of the integrated variance, 

many alternative realized variance measures have been proposed. Among these 

approaches, the two-scale realized variance (TSRV) of Zhang et al. (2005) is the 

first consistent estimator of the integrated variance (Gau and Wu, 2017). With its 

popularity and simplicity, I also adopt the TSRV estimator to proxy for information 

flow as in Wang and Yang (2011), Chai, Lee, and Wang (2015), and Gau and Wu 

(2017). 

In fact, there is a large number of variants of RVs, for example, the threshold 

bipower variance (BPV) as proposed by Corsi et al. (2010) which corrects for 

volatility jumps, among many others.28 For the robustness checks, I calculate the 

BPVs for the exchange rates of AUD, GBP, EUR, and JPY. The empirical results 

suggest that these measures of variance (i.e. RV, TSRV, and BPV) are highly 

correlated, the correlation coefficient centres around 0.93 – 0.97. The table below 

presents the correlation coefficients of RVs using different realized variance 

measures. Based on the TSRV and BPV, I re-estimate the benchmark HAR model. 

The empirical results are omitted here for the sake of brevity. However, it suggests 

that these changes do not affect the main conclusions of long-memory in volatility 

                                                            

28 More specifically, the realized Bipower Variation (BPV) was originally proposed by Andersen, et 
al. (2007) which approximates the continuous component of realized variance as following: 

BPV𝑖,𝑡 = 𝜇1
−2 ∑ |𝑟𝑖,𝑡,𝑗||𝑟𝑖,𝑡,𝑗−1|

𝑚𝑖

𝑗=2
 

where m𝑖 is the total number of intraday sampling intervals in market i, |𝑟𝑖,𝑡,𝑗| and |𝑟𝑖,𝑡,𝑗−1| are the 

absolute values of intraday returns over the adjacent sampling intervals j and j-1. 𝜇1
−2 ≡ √2/𝜋 ≈

0.79788 , which denotes the mean of the absolute value of the standard normally distributed 
random variable Z. Barndorff-Nielsen and Shephard (2004) show that when sampled at high 
frequency, i.e. 𝑚 → ∞ , the realized Bipower Variation (BPV) converges to the continuous 
component of the continuous-time jump-diffusion process. 
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and the dominant role of market state variables in determining volatility 

persistence.  

Table 3.1: Correlations among Different RV Measures 

RV, BPV, and TSRV refer to realized variance, bipower variation, and two-scale realized variance 

respectively. Corr is the correlation coefficient between corresponding variables. The asterisk 

***indicates significance at the 1% level. 

 Corr(RV, BPV) Corr(RV, TSRV) Corr(BPV, TSRV) 

Realized Variance 0.968*** 0.961*** 0.927*** 

3.3.3. Summary statistics of relevant variables 

The daily RV for AUD, GBP, EUR, and JPY are plotted in Figure 3.1. As shown in the 

figure below, there is strong evidence of commonality in volatility among the four 

currencies. The volatility spikes during the period of global financial crisis of 2008 

– 2009. Besides, the volatility of GBP and EUR surges during the European 

sovereign debt crisis around late 2010. The results here are generally consistent 

with Bollerslev et al. (2017) who calculate the daily volatility for nine currencies 

spanning from January 2000 to September 2014 and confirm that the AUD has the 

highest daily RV on average (11.8%), while GBP has the smallest (8.3%).  

 

 

Figure 3.1: Daily RV of AUD, GBP, EUR, and JPY 
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Table 3.2 reports the summary statistics of the realized variance and return. The 

annualized RV is 11.8% for AUD, 8.8% for GBP, 9.8% for EUR, and 10.6% for JPY, 

among which the GBP has the lowest volatility, while the AUD and JPY have higher 

volatilities and weaker autocorrelations than the other currencies. For the JPY and 

EUR which are mostly traded on another electronic trading platform – EBS (the 

Electronic Broking Services), they exhibit more frequent volatility jumps on the 

TRTH platform where the data is sourced, particularly during periods of turmoil, 

and therefore leads to reduced autocorrelations. The medians of RV are much 

lower than means due to a small number of high RV days. Compared to returns, 

the realized variance has much stronger autocorrelations, which is consistent with 

the previous literature on long-memory in volatility (Engle, 1982; Andersen and 

Bollerslev, 1998; Fleming and Kirby, 2011; among many others). In the last column, 

it reports the daily correlations across relevant variables which suggest that RV is 

negatively correlated with contemporaneous return. 

Table 3.2:  Summary Statistics  

QLB (5) is the Ljung-Box Q statistic at 5 lags. Corr is the correlation coefficient between Return and 

RV. The asterisk * indicates significance at the 5% level. 

  Mean Median  St Dev  Skew  Kurt  Min  Max  QLB(5)  Corr 

AUD          

Return  .0002 .0003 .0082 -.3572 7.213 -.0733 .0737 2.399 -.0667* 

RV  .7076 .4648 .8265 4.001 19.48 .1063 5.946 9,800*  

GBP          

Return  .0002 .0002 .0057 -.2158 2.190 -.0350 .0299 2.461 -.0419* 

RV  .3683 .2658 .3635 3.535 14.51 .0666 2.428 9,364*  

EUR          

Return  .0002 .0002 .0065 .4678 5.938 -.0305 .0693 2.214 -.0442* 

RV  .9537 .4900 1.486 4.493 24.41 .0793 11.23 5,029*  

JPY          

Return  -.0001 .0000 .0066 -.3655 4.132 -.0488 .0365 3.888 -.0621* 

RV  1.346 .5892 2.486 4.561 23.84 .0522 17.85 2,259*  
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3.4. Volatility spillover in the FX market 

3.4.1. Meteor showers and heat waves effects 

To capture the volatility impacts from heterogeneous investors with different 

trading horizons, Corsi (2009) argues that investors can be broadly classified as 

trading at daily, weekly, and monthly frequencies and proposes a heterogeneous 

autoregressive (HAR) model that examines differential role of three volatility 

components: the daily volatility RV𝑡,𝐷 , weekly volatility RV𝑡,𝑊 , and monthly 

volatility RV𝑡,𝑀  respectively. The HAR model has been applied extensively to 

different financial markets, such as equity market (Andersen, Bollerslev, and 

Diebold, 2007; Forsberg and Ghysels, 2007; Bollerslev et al., 2017), gold market 

(Chai et al., 2015), and foreign exchange market (Wang and Yang, 2009; Wang and 

Yang, 2017). In fact, Bollerslev et al. (2017) comments that the HAR model has 

become “somewhat of a benchmark in the financial econometrics literature for 

judging other RV–based forecasting procedures.” In this chapter, I utilize a 

modified heterogeneous autoregressive (HAR) model to capture the dynamic 

patterns of volatility spillovers in four trading segments as I defined earlier.  

To simplify the notations, I denote 𝑅𝑉i,t  by 𝑉i,t  for 𝑖  = A (Asia), E (Europe), L 

(London/New York) and U (US). Because volatilities are persistent, lagged 

volatilities beyond one day are represented by weekly heat waves effect, that is, 

the average volatility of market i over lagged 2 to 5 days, HW𝑊,𝑡−1 =
1

4
∑ Vi,t−k

5
k=2  

and monthly heat waves effect, i.e. average volatility of market i over lagged 6 to 

22 days, HW𝑀,𝑡−1 =
1

17
∑ Vi,t−k

22
k=6 . The weekly and monthly meteor showers 

effects can be defined similarly, which are average volatility of market j (𝑗 ≠ 𝑖) 

over lagged 2 to 5 days, MS𝑊,𝑡−1 =
1

4
∑ Vj,t−k

5
k=2  , and over lagged 6 to 22 days, 

MS𝑀,𝑡−1 =
1

17
∑ Vj,t−k

22
k=6 , respectively. Thus, the dynamic volatility spillover 

model can be written as follows: 
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V𝑖,𝑡  =  𝛼𝑖,𝑡 + βi,D
HW𝑉𝑖,𝑡−1  +  ∑ βi,j,D

MS Vj,t−1

U

j≠i,j=A
 

+ βi,W
HWHW𝑖,𝑡−1,𝑊  +  ∑ βi,j,W

MS MS𝑖,𝑡−1,𝑊

U

j≠i,j=A
 

+ βi,M
HWHW𝑖,𝑡−1,𝑀  +  ∑ βi,j,M

MS MS𝑖,𝑡−1,𝑀

U

j≠i,j=A
+ 𝜀𝑖,𝑡 

(3.5) 

where 𝑉𝑖,𝑡  is a proxy for the integrated variance for market i on day t. The 

coefficients 𝛽𝑖,𝑊
𝐻𝑊 , 𝛽𝑖,𝑀

𝐻𝑊 , 𝛽𝑖,𝑊
𝑀𝑆 , and 𝛽𝑖,𝑀

𝑀𝑆  capture the long-run dependence (i.e. 

weekly and monthly) of volatility on its own lags and lagged RVs of other regions 

respectively, while the short-run dependence is typically represented by the 

coefficients of one-day lagged volatility 𝑉𝑖,𝑡−1 (𝑖 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈) . The heat 

waves effect is represented here by the coefficient of its own lagged daily volatility 

βi,D
HW, while the coefficients βi,j,D

MS  , which measure the short-run volatility spillover 

from market j to market i, serving as a proxy for meteor shower effects. Note that 

the subscript t − 1 represents the markets immediately before market i, which 

may be on the same day as market i. For example, when i = Asia, 

𝑉𝑖,𝑡−1 (𝑖 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈) are volatilities from the previous day. However, when i 

= U.S., which is the last trading session on day t,  𝑉𝑖,𝑡−1 (𝑖 = 𝐴, 𝐸, 𝐿) are from the 

same day t as US market with only the lagged U.S. volatility 𝑉𝑖,𝑡−1 (𝑖 = 𝑈) from 

the previous day. This model is useful for modelling the short-run volatility 

spillover effects while taking account of long memory in volatility. The error term 

is assumed to be normally distributed and the model is estimated by OLS with the 

Newey-West robust standard errors (Chai et al., 2015).  

Since I define the four trading sessions such that they open and close sequentially, 

the information set available at the open of one trading session contains all the 

trading information revealed during the previous sessions. Therefore, some 

markets may possess more information simply because of its long trading hours. 

To control for the different trading hours, the realized variances are normalized by 

dividing them by the squared root of the number of 5-minute intervals in each 

session. All the results are robust to the time intervals I use, and the volatility 

measures I utilize. Figure 3.2 plots the sample autocorrelation function (ACF) of 
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daily realized variances by trading sessions for AUD/USD, GBP/USD, EUR/USD, and 

USD/JPY. It suggests that the realized volatilities in all markets are highly persistent 

except for JPY which exhibits frequent volatility jumps and reduces 

autocorrelations of realized variance. 

 

Figure 3.2: Autocorrelation of RVs by Trading Sessions  

Table 3.3 reports coefficients and accompanying heteroskedasticity- and 

autocorrelation- consistent (HAC) standard errors. Namely, for each session, the 

coefficient of spillover effects from lagged own market (i.e., the heat waves effects, 

HW) come first, followed by the sum of coefficients representing spillover effects 

from other segments (i.e., the meteor showers effects, MS). The null hypothesis 

for the heat wave effect is that each regional proxy for information (i.e. realized 

variance) depends on its own past proxy for information, while the null hypothesis 

for the meteor showers effect is that each regional proxy for information depends 

on other regions’ past proxies (Cai, Howorka and Wongswan, 2008). All of the 

coefficients are significantly different from zero, suggesting the presence of both 

heat waves and meteor showers effects. However, because the regressors are 

highly correlated, individual coefficients are often estimated imprecisely, so it 

should be interpreted with caution (Lahaye and Neely, 2016). 
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Interestingly, as shown in Appendix E of sub-period analysis, the adjusted R2 

increases for the regressions over the GFC period, to what a similar pattern has 

been found in Wang and Yang (2017). Besides, the magnitudes of the meteor 

shower and heat waves effects become larger during the global financial crisis 

period (2007 - 2009). For example, the coefficients of meteor showers and heat 

waves effects are significantly larger than those estimated in other periods.  

The findings of increased volatility spillovers during the GFC period is consistent 

with the Conditional Volatility Persistence (CVP) model where the future volatility 

and its spillover varies with the market states. For example, a potential channel of 

risk contagion is through the more fundamental parameters among market 

participants, including changes in risk aversion and herding behaviour (Dungey et 

al., 2006; W. Xiong, 2012), and the findings of increased volatility spillover during 

GFC period could be attributed to the deteriorating market state (i.e. extremely 

high volatility and negative returns) as a result of large exogenous information 

shocks, increased risk aversion, and the herding behaviour of investors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

Table 3.3: Heat Waves and Meteor Showers: Full Sample 

This table reports the daily persistence coefficients of the following model: 

V𝑖,𝑡  =  𝛼𝑖,𝑡 + βi,D
HW𝑉𝑖,𝑡−1  +  ∑ βi,j,D

MS Vj,t−1

U

j≠i,j=A
+ βi,W

HWHW𝑖,𝑡−1,𝑊  +  ∑ βi,j,W
MS MS𝑖,𝑡−1,𝑊

U

j≠i,j=A

+ βi,M
HWHW𝑖,𝑡−1,𝑀  +  ∑ βi,j,M

MS MS𝑖,𝑡−1,𝑀

U

j≠i,j=A
 

where i = Asia (A), Europe (E), London/NYC (L), and US (U). HW stands for daily heat waves 

effect as proxied by βi,D
HW, while MS stands for meteor shower effect ∑ βi,j,D

MSU
j≠i,j=A  (i.e., the sum of 

volatility spillover effects from all other trading sessions). βi,W
HW, βi,M

HW are weekly and monthly heat 

waves effects, while βi,j,W
MS , βi,j,M

MS  are the weekly and monthly meteor shower effects respectively. 

The t-statistics are calculated based on the Newey–West robust covariance with automatic lag 

selection using Bartlett kernel. The asterisks ***, **, * indicate significance at 1%, 5%, and 10% 

respectively.   

 Asia Europe London/NYC US 

 Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

AUD 

𝐻𝑊 0.1544*** 6.14 0.1116*** 4.64 0.0783*** 3.57 0.1733*** 5.73 

𝑀𝑆 0.4920*** 9.44 0.3687*** 12.47 0.5206*** 13.39 0.5338*** 9.13 

𝑅̅2 .5625 .6678 .6089 .6782 

GBP 

𝐻𝑊 0.2220*** 6.18 0.1326*** 5.72 0.0865*** 4.41 0.1517*** 4.51 

𝑀𝑆 0.4777*** 8.98 0.4506*** 10.02 0.3471*** 11.14  0.3354*** 10.25 

𝑅̅2 .6447 .6327 .5490 .6697 

EUR 

𝐻𝑊 0.0983*** 2.74 0.1628*** 3.61 0.1136*** 3.82 0.0806** 2.40 

𝑀𝑆 0.7856*** 4.27 0.1642*** 4.14 0.3365*** 8.34  0.8066*** 8.06 

𝑅̅2 .3823 .6090 .4911 .4579 

JPY 

𝐻𝑊 0.1179*** 2.63 0.0876** 2.52 0.0705** 2.09 0.0614* 1.74 

𝑀𝑆 0.4533*** 3.33 0.0913*** 3.08 0.3014*** 8.88 0.5623*** 6.93 

𝑅̅2 .2360 .2518 .2568 .2983 

3.4.2. Shapley – Owen R2 decomposition techniques 

The magnitudes of the coefficients of meteor shower and heat waves effects as 

shown in Table 3.3 don't explicitly suggest the relative importance of the 

corresponding effects (Lahaye and Neely, 2016). For example, the individual 

coefficient estimates will be conditionally marginal effects that depend on the 

effects of correlated regressors, not unconditional effects. Therefore, I seek to 

evaluate the importance of heat waves and meteor showers effects by adopting 

other methods. In this chapter, I use the Shapley-Owen R2 measure which has its 

roots in game theory, Lindeman, Merenda and Gold (1980) then apply the same 
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concepts to decompose goodness-of-fit among regressors and coalitions of 

regressors in econometrics. In Lahaye and Neely (2016), the authors investigate 

on the meteor shower and heat waves effects in the EUR and JPY spot rates by 

utilizing the same method. Namely, the Shapley-Owen R2 measure of a group of 

regressors is the average incremental improvement in R2s for each regressor (or 

coalition) over all possible permutations of regressors or coalitions of regressors.29  

The results of Shapley-Owen R2 values as shown in Table 3.4 suggest that the 

meteor showers effect contributes more to the total variations in future volatility 

compared to heat waves over daily, weekly, and monthly horizons respectively, 

which is consistent with Lahaye and Neely (2014) who investigate on the EUR and 

JPY spot rates and find that the meteor shower contributes 60% to the total 

variations in volatility persistence, while heat waves account for the remaining 

portion. Besides, the heat waves effects are relatively weaker in the LNY market 

compared to other segments, which is probably due to the fact that the LNY 

market is more efficient at information incorporation and contributes more to the 

price discovery with large trading volume and the presence of informed traders, 

resulting in low volatility spillovers to the future in the local market (Su and Zhang, 

2018). 

Furthermore, I conduct a subperiod analysis to examine the presence of meteor 

showers and heat waves effects in different sub-periods using the same 

techniques of Shapley-Owen R2 values as before. The adjusted R2 increases for the 

regressions over the GFC period, to what a similar pattern has been found in Wang 

and Yang (2017). Interestingly, I find that the relative importance of meteor 

showers effect has been increasing rapidly and has surpassed that of heat waves 

effect as shown in Table 3.5. For example, during the period of 2007 - 2009, the 

meteor showers effect dominates the volatility spillovers and contributes to 

around 70% of the total R2 for AUD, GBP, and EUR respectively. One possible 

explanation for the dominant meteor showers effect is that the financial markets 

                                                            
29 For an in-detail demonstration of the Shapley-Owen R2 method, please refer to Appendix A-2 of 
Lahaye and Neely (2016). 
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are becoming increasingly interdependent and interconnected with financial 

liberalization and market openness. On the other hand, the increasing meteor 

showers effect can be seen as an indicator of the speeded-up information flow in 

the FX market and the internationalization of currencies. For example, Evans and 

Lyons (2002) find strong evidence of a high degree of informational integration in 

international money markets. 

The potential adverse effects of volatility spillover on financial stability, 

particularly during periods of high uncertainty, is a subject of great importance in 

the current context of increasing financial integration (Boucher et al., 2016). 

Interestingly, the results in Table 3.5 suggest that the meteor shower effects 

become particularly strong on high volatility days (i.e. during the GFC period). High 

volatility reflects high uncertainty which takes longer to be resolved, while high 

volatility is generally associated with greater volatility spillovers across regions, an 

interesting question that is worth exploring in the future. 
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Table 3.4: Shapley-Owen R2 Values: Full Sample 

This table shows the Shapley-Owen proportion of the total R2s in four trading sessions (Asia, Europe, 

LNY, and US). The calculation is based on Eq. (3.5). Namely, there are 2 groups of coefficients: the 

heat wave (HW) contribution, which includes the daily, weekly, and monthly own lags of RV, and 

the meteor shower (MS) counterparts. Normal and High stands for the days with normal and extreme 

volatilities respectively as defined in Section 3.4.2. The groups have no intersection and include all 

non-deterministic regressors, so the proportions for each intraday period sum to one.  

  Asia Europe LNY US Average 

AUD       

Daily 
HW 0.10 0.09 0.08 0.10 0.09 

MS 0.26 0.25 0.27 0.24 0.26 

Weekly 
HW 0.14 0.13 0.16 0.10 0.13 

MS 0.23 0.22 0.22 0.23 0.22 

Monthly 
HW 0.09 0.10 0.09 0.10 0.09 

MS 0.19 0.21 0.19 0.22 0.20 

Total 
HW 0.32 0.32 0.22 0.31 0.32 

MS 0.68 0.68 0.78 0.69 0.68 

GBP       

Daily 
HW 0.12 0.08 0.07 0.10 0.09 

MS 0.25 0.23 0.25 0.25 0.24 

Weekly 
HW 0.12 0.11 0.10 0.09 0.11 

MS 0.24 0.24 0.25 0.25 0.25 

Monthly 
HW 0.07 0.09 0.09 0.08 0.08 

MS 0.21 0.24 0.24 0.23 0.23 

Total 
HW 0.30 0.29 0.26 0.27 0.28 

MS 0.70 0.71 0.74 0.73 0.72 

EUR       

Daily 
HW 0.08 0.11 0.09 0.07 0.09 

MS 0.24 0.26 0.25 0.25 0.25 

Weekly 
HW 0.16 0.06 0.17 0.10 0.12 

MS 0.22 0.29 0.21 0.24 0.24 

Monthly 
HW 0.04 0.04 0.06 0.10 0.06 

MS 0.25 0.25 0.22 0.24 0.24 

Total 
HW 0.28 0.21 0.22 0.27 0.27 

MS 0.72 0.79 0.78 0.73 0.73 

JPY       

Daily 
HW 0.13 0.07 0.04 0.03 0.07 

MS 0.24 0.19 0.12 0.30 0.21 

Weekly 
HW 0.12 0.34 0.51 0.20 0.30 

MS 0.26 0.20 0.12 0.23 0.20 

Monthly 
HW 0.02 0.04 0.11 0.06 0.06 

MS 0.24 0.15 0.10 0.18 0.17 

Total 
HW 0.26 0.46 0.33 0.29 0.42 

MS 0.74 0.54 0.67 0.71 0.58 

 
 

 

 

 

 

 



79 
 

Table 3.5: Shapley-Owen R2 Values: Sub-periods 

This table shows the Shapley-Owen proportion of the total R2s in four trading sessions (i.e., Asia, 

Europe, LNY, and US), for groups of coefficients in the HAR model where RV is predicted by 

lagged RVs, in different sub-periods. There are 2 groups of coefficients: the heat waves (HW) 

contribution, which includes the daily, weekly, and monthly components of own lags of RV, and the 

meteor shower (MS) counterparts. The groups have no intersection and include all non-deterministic 

regressors, so the proportions of HW and MS effects for each trading session sum to one.  

 Asia Europe London/NYC US Average 

AUD      

1999 – 2006 

𝐻𝑊 0.49 0.47 0.40 0.54 0.48 

𝑀𝑆 0.51 0.53 0.60 0.46 0.52 

2007 – 2009 

𝐻𝑊 0.34 0.34 0.33 0.30 0.33 

𝑀𝑆 0.66 0.66 0.67 0.70 0.67 

2010 – 2013 

𝐻𝑊 0.31 0.25 0.38 0.50 0.36 

𝑀𝑆 0.69 0.75 0.62 0.50 0.64 

GBP      

1999 – 2006 

𝐻𝑊 0.35 0.42 0.27 0.47 0.38 

𝑀𝑆 0.65 0.58 0.73 0.53 0.62 

2007 – 2009 

𝐻𝑊 0.35 0.29 0.27 0.27 0.30 

𝑀𝑆 0.65 0.71 0.73 0.73 0.70 

2010 – 2013 

𝐻𝑊 0.37 0.39 0.34 0.36 0.37 

𝑀𝑆 0.63 0.61 0.66 0.64 0.63 

EUR      

2000 - 2006 

𝐻𝑊 0.42 0.37 0.49 0.42 0.43 

𝑀𝑆 0.58 0.63 0.51 0.58 0.57 

2007 – 2009 

𝐻𝑊 0.29 0.22 0.30 0.26 0.27 

𝑀𝑆 0.71 0.78 0.70 0.74 0.73 

2010 - 2013 

𝐻𝑊 0.30 0.25 0.40 0.39 0.34 

𝑀𝑆 0.70 0.75 0.60 0.61 0.66 

JPY      

1999 - 2006 

𝐻𝑊 0.72 0.57 0.68 0.34 0.58 

𝑀𝑆 0.28 0.43 0.32 0.66 0.42 

2007 – 2009 

𝐻𝑊 0.17 0.63 0.71 0.61 0.53 

𝑀𝑆 0.83 0.37 0.29 0.39 0.47 

2010 - 2013 

𝐻𝑊 0.22 0.53 0.69 0.18 0.40 

𝑀𝑆 0.78 0.47 0.31 0.82 0.60 
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3.5. Determinants of Volatility Spillover 

3.5.1. Conditional Volatility Persistence Model (CVP) 

As stated earlier, I propose that volatility persistence is driven by the nature, 

precision, and volume of both exogenous and endogenous information arrivals. It 

is also driven by uninformed trading such as portfolio adjustments to lagged 

information shocks. Collectively these mechanisms determine the state of the 

market, and in turn, volatility persistence. Through the above-mentioned channels, 

I introduce the Conditional Volatility Persistence (CVP) model as proposed in Wang 

and Yang (2017), which captures the long memory in volatility while controlling 

for conditional variables (i.e., return, volatility, and other proxies for trading 

activities).  

Namely, to examine the determinants of volatility spillover, I incorporate time-

varying volatility persistence into the HAR model, i.e., the HAR-CVP model. Here, 

considering that the negative returns are generally associated with greater 

volatility than positive returns in the equity market (Patton and Sheppard, 2006), 

and in the FX market (Wang and Yang, 2009), I decompose exchange rate returns 

into positive and negative returns, and examine their volatility impacts separately. 

Specifically, I extend the HAR model in a multi-market setting and examine the 

heterogeneous effects of market state variables in different FX trading sessions as 

follows: 

𝑅𝑉𝑖,𝑡 = 𝛼𝑖,𝑡 + 𝛽𝐴,𝑡
𝑒 𝑅𝑉𝐴,𝑡−1 + 𝛽𝐸,𝑡

𝑒 𝑅𝑉𝐸,𝑡−1 + 𝛽𝐿,𝑡
𝑒 𝑅𝑉𝐿,𝑡−1 + 𝛽𝑈,𝑡

𝑒 𝑅𝑉𝑈,𝑡−1 + βi,W
HWRV̅̅ ̅̅

i,t−1,W +

                 ∑ βi,j,W
MS RV̅̅ ̅̅

j,t−1,W
U
j≠i,j=A + βi,M

HWRV̅̅ ̅̅
i,t−1,M + ∑ βi,j,M

MS RV̅̅ ̅̅
j,t−1,M

U
j≠i,j=A + 𝜀𝑖,𝑡                   (3.6) 

where 𝑅𝑉𝑖,𝑡  stands for the realized variance (RV) for market i on day t. The 

coefficients of 𝛽𝑖,𝑊
𝐻𝑊, 𝛽𝑖,𝑀

𝐻𝑊, 𝛽𝑖,𝑗,𝑊
𝑀𝑆 , and 𝛽𝑖,𝑗,𝑀

𝑀𝑆  capture the long-run dependence of 

volatility on its own lagged market and other markets respectively. Here, the 

short-run dependence is represented by the time-varying coefficients of one-day 

lagged volatility 𝛽𝑗,𝑡
𝑒 (𝑖 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈) , namely, 𝛽𝑗,𝑡

𝑒 = 𝛽 + 𝛽−𝑟𝑗,𝑡−1
− + 𝛽+𝑟𝑗,𝑡−1

+ +

𝛽𝑅𝑉𝑅𝑉𝑗,𝑡−1 (𝑗 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈)  is the conditional volatility spillover from market j 

to market i , which depends on the lagged market state variables as defined earlier. 

The meteor shower effects are defined as the volatility spillovers from other 
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segments 𝛽𝑗,𝑡
𝑒  (𝑗 ≠ 𝑖), while heat waves effects are represented by the volatility 

persistence within the local segment 𝛽𝑗,𝑡
𝑒  (𝑗 = 𝑖) . The use of return and volatility 

as the state variables is in the same spirit as Campbell and Hentschel (1992) and 

Wu (2001) who use dividend shock and dividend volatility as the state variables to 

explain the asymmetric return impact on volatility.  I also test the impacts of other 

market state variables on volatility persistence, e.g. liquidity, trading volume, etc., 

in the robustness section.  

Furthermore, to relate the volatility spillovers model to the information-based 

explanations, I explore the impacts of price discovery on the volatility spillover. 

Namely, considering the fact that daily volatility often has an information flow 

interpretation (Andersen, 1996) and a popular measure for price discovery is the 

variance of the random-walk return component (Hasbrouck, 1995), I utilize the 

information share (i.e. realized variance ratio) as a measure of price discovery (Gau 

and Wu, 2017; Su and Zhang, 2018).30 The empirical results in Wang and Yang 

(2017) suggest that the price discovery plays a key role in determining the time-

varying volatility persistence, and more price discovery increases the information 

content of quoted price and reduces the spillovers of uncertainty over time. Thus, 

I utilize the information share as a proxy for price discovery process and explicitly 

explore its role in volatility spillovers in different trading sessions. In fact, the 

information interpretation of daily volatility is supported by the MDH theory, e.g. 

Andersen (1996), and the microstructure literature where price discovery is 

measured as the variance of the random walk component of return, e.g. 

Hasbrouck (1995). The summary statistics of information share as shown in 

Appendix G suggest that the European market contributes the most to the price 

discovery, while the LNY market dominates the price discovery process on a per 

hour basis.31 

                                                            
30 Using volatility to proxy for information has some advantages over using returns (Cai, et al., 
2008). Firstly, the volatility is more persistent and therefore inherently easier to forecast. 
Furthermore, volatility is more closely related to information. For example, Wang and Yang (2017) 
argue that even though the absolute return has been used in many studies as a proxy for return 
standard deviation, the absolute return is not a robust measure of return uncertainty. 
31 The high information share of the LNY market is also possibly attributed to the timing of release 
of macroeconomic news announcements on the U.S. economy as the market becomes relatively 
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To conserve space, I don’t report all the coefficient estimates from the four-

market equations. Instead I present the Wald statistics and the corresponding p-

values. As reported in Column (1) of Panel A of Table 3.6, the null hypotheses that 

𝛽− = 𝛽+ = 𝛽𝑅𝑉 = 0 are resoundingly rejected at the 5% significance level, which 

confirm the explanatory power of market state variable in explaining volatility 

spillovers. Furthermore, the null hypotheses that 𝛽− = 𝛽+ = 𝛽𝑅𝑉 = 𝛽𝐼𝑆 = 0 are 

examined by adding the information share as one of market state variables in the 

conditional volatility persistence 𝛽𝑗,𝑡
𝑒  as documented in Eq. (3.6). The empirical 

results in Panel A of Table 3.6 can be interpreted as following: Firstly, comparing 

the overall explanatory power of models as shown in Table 3.3 and Table 3.6, the 

adjusted R-squared are in favour of the extended HAR model specification over 

the regular one which ignores the role of changing market states in explaining 

volatility persistence. Secondly, the inclusion of variance ratio increases the model 

performance and deepens our understanding of the economic mechanisms of 

volatility spillovers in the FX market (i.e. either the adjusted R-squared or the 

Wald-statistics suggests the superior performance when including the information 

share). Furthermore, I report a summary of the sign and significance of CVP 

variables.  Namely, Panel B of Table 3.6 reports the number of significantly positive 

(negative) coefficients of market state variables (i.e., including the constant, 

positive\negative return, volatility, and information share) which presents 

evidence on individual coefficients without reporting all coefficients. The result 

suggests that most of the coefficients of negative (positive) return are negatively 

(positively) significant, which is consistent with the previous findings on 

asymmetric effect, while the coefficients of RV are generally negatively significant, 

suggesting a reduction in volatility spillover on days of high volatility. Furthermore, 

most of the coefficients of information share are negatively significant, suggesting 

that the price discovery has a dampening effect on the volatility spillover. With 

high information shares, the market contributes more to the price discovery 

process, which helps in reducing the uncertainty and mitigating the propagation 

                                                            
more efficient in reflecting information when more macro news announcements are released 
during its trading hours (Su and Zhang, 2018). The gain in information share when public 
information is released is also consistent with the findings of Jiang, et al. (2014). 
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of volatility. Besides, including information share as the market state variable 

slightly weakens the statistical significance of other market state variable and 

decreases the volatility persistence as measured by the coefficient β𝑗
0. Overall, the 

inclusion of information share significantly improves the model performance and 

provides information-based explanations by relating the time-varying volatility 

spillovers in the FX market to the price discovery process. 

Furthermore, I explore the differential role of market state variables in predicting 

the future volatility by utilizing the Shapley-Owen R2 Decomposition techniques. 

Namely, I assess the importance of conditional volatility persistence (CVP) by 

computing the Shapley-Owen values in the HAR-CVP models. Panel C of Table 3.6 

reports the Shapley-Owen values of each market state variable in explaining the 

inter- and intra-regional volatility spillover (i.e. meteor showers and heat waves 

effects) which confirms the relatively important role of market state variable in 

predicting the future volatility in different regions. For example, the ratio of 

Shapley-Owen value of 𝛽0 to the CVP ranges from 39% to 44%, indicating that the 

conventional measure of volatility persistence in each region, as proxied by 𝛽0, 

decreases substantially after controlling for the market state variables, while the 

groups of market state variables contribute to more than half of the explanatory 

powers in conditional volatility spillover. Overall, the CVP variable has the highest 

Shapley-Owen R2 values across all explanatory variables. The Shapley-Owen R2 

values of market state variables sum to around 0.6, suggesting that roughly 60% 

of the explanatory power of RV𝑡  in the traditional HAR model comes from the 

omitted CVP variables. Furthermore, the negative return, positive return, volatility, 

and information share explains around 8%, 7%, 23%, and 20% of the total 

variations in conditional volatility persistence respectively, among which the 

volatility and variance ratio explains most of the total variations in time-varying 

volatility spillover. Besides, negative return plays a slightly more important role 

than positive return, confirming the weak asymmetric effects as documented 

earlier. However, for each market state variable, I don’t find their differential roles 

in explaining the meteor showers and heat waves effects. Overall, the 

consideration of market state variables significantly depends our understanding 
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of the economic mechanisms of volatility spillover and shed new lights on 

mathematical techniques for volatility modelling and forecasting. 

For robustness check, I also divide the sample into three sub-periods (i.e. 

1999/2000 – 2006, 2007 – 2009, and 2010 – 2013). Generally, the coefficients of 

negative returns are comparable to or slightly larger than those of positive returns 

in all sub-periods for AUD, GBP, and JPY, while for EUR, the coefficients of negative 

returns are significantly smaller than the coefficients of positive returns. The 

coefficients of RV and IS are mostly negative and significant in the sub-periods, 

suggesting a reduction in volatility persistence on days of extreme volatility and/or 

high price discovery. 32  Furthermore, the negative return has played a more 

important role in determining volatility spillover during the GFC period as most of 

the coefficients of negative return become significant in the sub-period of 2007 – 

2009, which confirms the conjecture of Patton and Sheppard (2015) that 

persistence comes mostly from the “bad volatility” associated with negative 

returns. Overall, the empirical results presented suggest the possibility of 

informational linkages across regions through more fundamental channels such as 

the endogenous information arrivals and price discovery as the exchange rates 

incorporating the new information sequentially. For example, Andersen et al. 

(2003) show that exchange rates incorporate news within 5 minutes, while the 

exchange rate volatilities increase for a much longer period. In this chapter, I find 

that the volatility can persist for a relatively long period. However, after controlling 

for the market state variables including information share, the persistence of 

volatility within most markets decreases substantially as shown in Panel C of Table 

3.6. 

 

 

 

                                                            
32 For the sake of brevity, I only report a brief summary of the coefficient estimates for the sub-
period analysis in Appendix F, however, more detailed results are available from the author upon 
request. 
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Table 3.6: Determinants of Conditional Volatility Spillover 

This table reports the Wald statistics of the joint significance test for the daily conditioning variables 

(i.e., negative return, positive return, volatility, and variance ratio) of the following model: 

𝑅𝑉𝑖,𝑡 = 𝛼𝑖,𝑡 + 𝛽𝐴,𝑡
𝑒 𝑅𝑉𝐴,𝑡−1 + 𝛽𝐸,𝑡

𝑒 𝑅𝑉𝐸,𝑡−1 + 𝛽𝐿,𝑡
𝑒 𝑅𝑉𝐿,𝑡−1 + 𝛽𝑈,𝑡

𝑒 𝑅𝑉𝑈,𝑡−1 + βi,W
HWRV̅̅ ̅̅

i,t−1,W

+ ∑ βi,j,W
MS RV̅̅ ̅̅

j,t−1,W

U

j≠i,j=A
+ βi,M

HWRV̅̅ ̅̅
i,t−1,M + ∑ βi,j,M

MS RV̅̅ ̅̅
j,t−1,M

U

j≠i,j=A
+ 𝜀𝑖,𝑡 

where i = Asia (A), Europe (E), London/New York (L), and US (U) and 𝛽𝑗,𝑡
𝑒 = 𝛽𝑗

0 + 𝛽𝑗
−𝑟𝑗,𝑡−1

− +

𝛽𝑗
+𝑟𝑗,𝑡−1

+ + 𝛽𝑗
RV𝑅𝑉𝑗,𝑡−1 + 𝛽𝑗

IS𝐼𝑆𝑗,𝑡−1. The null hypothesis in Column (1) of Panel A is 𝐻0,𝑗: 𝛽𝑗
− =

𝛽𝑗
+ = 𝛽𝑗

𝑅𝑉 = 0, against the alternative hypothesis 𝐻1,𝑗: 𝛽𝑗
− ≠ 0, 𝛽𝑗

+ ≠ 0, 𝛽𝑗
𝑅𝑉 ≠ 0. While the null 

hypothesis in Column (2) is 𝐻0,𝑗: 𝛽𝑗
− = 𝛽𝑗

+ = 𝛽𝑗
𝑅𝑉 = 𝛽𝑗

𝐼𝑆 = 0, against the alternative hypothesis 

𝐻1,𝑗: 𝛽𝑗
− ≠ 0, 𝛽𝑗

+ ≠ 0, 𝛽𝑗
𝑅𝑉 ≠ 0, 𝛽𝑗

𝐼𝑆 ≠ 0. The asterisks ***, **, * indicate significance at 1%, 5%, 

and 10% level respectively. The t-statistics are based on the Newey–West robust covariance with 

automatic lag selection using Bartlett kernel. In Panel B, Sig+ and Sig- present the total number of 

positively and negatively significant coefficients of each market state variables at 5% significance 

level respectively. For example, if all the coefficients of positive return 𝑟𝑡−1
+  are positively 

significant in 𝛽𝐴,𝑡
𝑒 , then sig+ equals 4 for 𝛽𝑟

+ in Asia. In Panel C, it reports the Shapley-Owen values 

of each market state variable in explaining the inter-regional volatility spillover (i.e. meteor showers 

effects) and intra-regional volatility spillover (i.e. heat waves effects). In the last column, it reports 

the ratios of Shapley-Owen values of each market state variables to the total CVP of 𝛽𝑗,𝑡
𝑒  (j =

A, E, L, U). 

Panel A 

 Asia Europe London/New York US 

Wald-

test 
(1) (2) (1) (2) (1) (2) (1) (2) 

AUD 

H𝐴 4.26*** 3.85*** 3.56** 7.30*** 2.47* 7.32*** 2.57* 1.30 

H𝐸 2.39*** 6.66*** 15.11*** 225.0*** 7.32*** 53.64*** 1.19 50.83*** 

H𝐿 5.40*** 7.48*** 4.83*** 3.16** 5.56*** 100.1*** 16.48*** 59.95*** 

H𝑈 3.66** 4.17*** 11.99*** 11.21*** 9.27*** 5.52*** 6.54*** 86.06*** 

R2_Adj .5661 .5769 .6832 .7440 .6138 .6915 .6933 .7524 

GBP 

H𝐴 11.69*** 7.09*** 3.20** 4.38*** 7.13*** 8.07*** 1.67 2.19* 

H𝐸 12.56*** 8.84*** 15.63*** 129.1*** 1.56 86.15*** 8.01*** 21.45*** 

H𝐿 6.62*** 10.32*** 9.68*** 11.98*** 9.39*** 66.91*** 0.83 60.83*** 

H𝑈 7.91*** 7.06*** 3.98*** 4.84*** 5.63*** 6.83*** 7.12*** 48.04*** 

R2_Adj .6577 .6614 .6409 .7050 5543 .6494 .6758 .7195 

EUR 

H𝐴 1.55 1.45 18.23*** 32.62*** 0.89 4.39*** 6.82*** 10.12*** 

H𝐸 13.10*** 8.17*** 0.92 141.2*** 2.95** 27.95*** 13.42*** 47.17*** 

H𝐿 2.43* 1.72 1.16 2.56** 3.56** 44.30*** 29.08*** 76.50*** 

H𝑈 3.67** 3.03** 7.80*** 7.44*** 0.74 1.90* 11.45*** 146.3*** 

R2_Adj .3930 .3933 .6155 .6759 .4885 .5300 .4809 .6070 

JPY 

H𝐴 10.93*** 9.05*** 5.00*** 8.02*** 3.74** 2.68** 5.13*** 3.66*** 

H𝐸 15.76*** 17.73*** 17.65*** 114.9*** 1.16 31.17*** 6.53*** 27.23*** 

H𝐿 7.85*** 4.49*** 3.52** 0.76 14.33*** 65.28*** 1.86 16.33*** 

H𝑈 5.43*** 4.64*** 1.63 1.46 5.35*** 4.38*** 6.80*** 208.6*** 

R2_Adj .2682 .2758 .2721 .3619 2669 .3564 .3055 .4794 
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Panel B 

 Asia Europe London/New York US 

 (1) (2) (1) (2) (1) (2) (1) (2) 

 Sig+ Sig- Sig+ Sig- Sig+ Sig- Sig+ Sig- Sig+ Sig- Sig+ Sig- Sig+ Sig- Sig+ Sig- 

AUD                 

𝛽0 3 0 3 0 3 0 3 0 3 0 3 0 4 0 4 0 

𝛽𝑟
+ 1 0 1 0 2 0 2 0 1 0 1 0 3 0 0 2 

𝛽𝑟
− 0 3 0 1 0 3 0 3 0 3 0 3 0 3 0 2 

𝛽𝑅𝑉 0 1 0 1 0 2 0 2 0 1 0 2 0 2 2 1 

𝛽𝐼𝑆   0 3   0 3   0 3   0 4 

GBP                 

𝛽0 4 0 3 0 3 0 3 0 4 0 3 0 3 0 3 0 

𝛽𝑟
+ 2 0 1 0 3 0 2 0 2 0 0 0 2 0 1 1 

𝛽𝑟
− 0 3 0 3 0 3 0 3 0 3 1 2 1 1 0 1 

𝛽𝑅𝑉 1 2 1 1 0 2 0 2 1 2 0 1 0 1 0 1 

𝛽𝐼𝑆   0 3   0 3   0 4   0 4 

EUR                 

𝛽0 3 0 2 0 3 0 3 0 3 0 3 0 3 0 3 0 

𝛽𝑟
+ 1 0 0 0 0 1 0 2 1 0 0 1 0 1 2 0 

𝛽𝑟
− 0 1 0 1 0 1 0 1 0 1 0 1 1 0 3 0 

𝛽𝑅𝑉 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 1 

𝛽𝐼𝑆   0 1   0 3   0 4   0 3 

JPY                 

𝛽0 4 0 2 0 2 0 2 0 4 0 2 0 2 0 2 0 

𝛽𝑟
+ 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 

𝛽𝑟
− 0 2 0 2 0 1 1 1 0 2 0 2 0 0 0 1 

𝛽𝑅𝑉 0 2 0 3 0 2 0 2 0 2 0 0 0 2 0 1 

𝛽𝐼𝑆   0 1   0 1   0 4   0 3 
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Panel C 

  Asia Europe LNY US 𝛽𝑖/𝐶𝑉𝑃 

AUD       

𝛽𝑟
− 

HW 0.02 0.01 0.02 0.02 
9.34% 

𝑀𝑆 0.06 0.07 0.06 0.05 

𝛽𝑟
+ 

HW 0.02 0.01 0.01 0.01 
6.33% 

𝑀𝑆 0.04 0.03 0.05 0.04 

𝛽𝑅𝑉 
HW 0.05 0.05 0.04 0.06 

26.20% 
𝑀𝑆 0.18 0.15 0.16 0.18 

𝛽𝐼𝑆 
HW 0.04 0.02 0.02 0.03 

17.47% 
𝑀𝑆 0.09 0.12 0.14 0.12 

𝛽0 
HW 0.07 0.08 0.06 0.08 

40.66% 
𝑀𝑆 0.26 0.27 0.29 0.24 

GBP       

𝛽𝑟
− 

HW 0.02 0.02 0.01 0.01 
8.72% 

𝑀𝑆 0.06 0.06 0.05 0.05 

𝛽𝑟
+ 

HW 0.02 0.01 0.01 0.02 
7.48% 

𝑀𝑆 0.04 0.05 0.05 0.04 

𝛽𝑅𝑉 
HW 0.06 0.05 0.04 0.06 

27.41% 
𝑀𝑆 0.17 0.16 0.16 0.18 

𝛽𝐼𝑆 
HW 0.05 0.03 0.02 0.03 

17.76% 
𝑀𝑆 0.08 0.11 0.14 0.11 

𝛽0 
HW 0.09 0.08 0.06 0.07 

38.63% 
𝑀𝑆 0.21 0.24 0.27 0.22 

EUR       

𝛽𝑟
− 

HW 0.01 0.02 0.01 0.01 
6.25% 

𝑀𝑆 0.03 0.04 0.04 0.03 

𝛽𝑟
+ 

HW 0.02 0.01 0.01 0.01 
8.55% 

𝑀𝑆 0.06 0.04 0.04 0.07 

𝛽𝑅𝑉 
HW 0.04 0.06 0.05 0.03 

23.03% 
𝑀𝑆 0.12 0.12 0.14 0.14 

𝛽𝐼𝑆 
HW 0.04 0.04 0.02 0.02 

20.07% 
𝑀𝑆 0.10 0.09 0.12 0.18 

𝛽0 
HW 0.08 0.10 0.08 0.05 

42.11% 
𝑀𝑆 0.24 0.19 0.27 0.27 

JPY       

𝛽𝑟
− 

HW 0.04 0.01 0.01 0.01 
7.59% 

𝑀𝑆 0.08 0.02 0.04 0.03 

𝛽𝑟
+ 

HW 0.01 0.01 0.01 0.01 
5.70% 

𝑀𝑆 0.03 0.03 0.04 0.04 

𝛽𝑅𝑉 
HW 0.05 0.02 0.01 0.01 

16.77% 
𝑀𝑆 0.07 0.09 0.16 0.12 

𝛽𝐼𝑆 
HW 0.06 0.02 0.01 0.01 

25.95% 
𝑀𝑆 0.08 0.19 0.20 0.25 

𝛽0 
HW 0.08 0.05 0.02 0.02 

43.99% 
𝑀𝑆 0.13 0.35 0.41 0.33 
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To sum up, the empirical results suggest the dominant role of conditional volatility 

persistence in linking changing market states to future volatility and its spillover. 

Importantly, this study makes several contributions to the literature on volatility 

spillover and information propagation. For example, I confirm that it is not only 

the exogeneous information arrival (i.e. release of macroeconomic news) that can 

cause the volatility spillover, but also the endogenous information arrival and 

information propagation, which probably involves information searching, price 

discovery, and strategic trading. For a big information shock, it may take a few 

days, even a few weeks to be fully incorporated into the price, which is capable to 

induce volatility spillovers even without new incoming information, that is, a 

significant departure from the previous literature which essentially ignore the role 

of endogenous information arrival and price discovery in volatility spillover.  Last 

but not least, this study has important practical implications as well. For example, 

volatility model which explicitly takes into account the characteristics of 

conditional volatility persistence can achieve superior forecasting performance 

and therefore generate moderate economic gains (Su, 2017).  

3.5.2. Intraday pattern of volatility spillover 

In this section, I calculate the magnitudes of daily conditional volatility spillovers 

as follows: 𝐶𝑉𝑃̂𝑖,𝑡 = 𝛽̂0 + 𝛽̂−𝑟𝑡
− + 𝛽̂+𝑟𝑡

+ + 𝛽̂𝑅𝑉𝑅𝑉𝑡 + 𝛽̂𝐼𝑆𝐼𝑆𝑡 (i =

𝐴𝑠𝑖𝑎, 𝐸𝑢𝑟𝑜𝑝𝑒, 𝐿𝑁𝑌, 𝑎𝑛𝑑 𝑈𝑆) for different trading sessions. 𝐶𝑉𝑃̂ are very high in 

all markets, particularly during the financial crisis in the second half of 2008. There 

are a few 𝐶𝑉𝑃̂, either larger than one or smaller than 0. The mean and standard 

deviation of the estimated 𝐶𝑉𝑃̂ for each trading session of AUD, GBP, EUR, and 

JPY are reported in Table 3.7. The values on the diagonal in each panel reports the 

summary statistics of local-market effect (i.e., heat waves effect), while the off-

diagonal elements of each panel represent the cross-market effects (i.e., meteor 

showers effect). Overall, there is considerable support for the presence of meteor 

showers and heat waves effects since most of the values are statistically different 

from zero. The findings of Table 3.7 also confirm the “information dominance” 

that the FX microstructure literature has highlighted: information shocks from 
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some regions are more important than others (Evans and Lyons, 2001). The 

evidence indicates that volatility from Europe is an important source of volatility 

shocks for LNY market, while the volatility from LNY spills over to all other markets. 

Besides, volatility emanating from Asia is more relevant for JPY than for AUD.  

I also report the correlations of 𝐶𝑉𝑃̂ with other variables in Table 4.6 of Chapter 

4. 𝐶𝑉𝑃̂ is significantly and negatively correlated with return, which is consistent 

with the large impacts from negative returns. Besides, the unconditional 

correlation between 𝐶𝑉𝑃̂  and RV is positive. Furthermore, 𝐶𝑉𝑃̂  is highly 

persistent (i.e. the Ljung-Box statistics are all statistically significant at the 5% 

significance level) but is less persistent than RV as indicated by the Ljung-Box 

statistics. 

Besides, under the model specification of HAR-CVP model, to measure the relative 

importance of volatility spillover effects from different trading sessions in 

predicting future volatility, I utilize the techniques of Shapley-Owen R2 values, 

which proves to be a more efficient estimator as stated earlier. Interestingly, the 

results as shown in Table 3.8 suggest that the meteor shower effect, especially the 

volatility spillover effect from the preceding market, contributes most to the total 

variations in future volatility, which is in accordance with the results of Table 3.7. 

However, the volatility from Asia contributes a significant proportion of the total 

variations in the time-varying volatility persistence for AUD, which is consistent 

with the findings of Su and Zhang (2018) which suggest that the Asia contributes 

more to the price discovery for AUD trading even with its declining market shares 

compared to Europe and U.S. 
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Table 3.7: Characteristics of Time-varying Volatility Spillover  

This table reports the means and standard deviations of estimated CVP. Specifically, I estimate the 

equation as shown in Table 3.6. Then I calculate the estimated CVP in different sessions as 𝐶𝑉𝑃̂𝑖,𝑡 =

𝛽 + 𝛽−𝑟𝑖,𝑡
− + 𝛽+𝑟𝑖,𝑡

+ + 𝛽𝑅𝑉𝑅𝑉𝑖,𝑡 + 𝛽𝐼𝑆𝐼𝑆𝑖,𝑡 (𝑖 = 𝐴, 𝐸, 𝐿, 𝑎𝑛𝑑 𝑈), The bold numbers on the diagonal 

for each panel stand for one-day lagged heat waves effect, while the italic numbers stand for the 

highest values in each row, suggesting the sources of largest volatility impacts. The values in the 

parentheses are standard deviations of estimated CVP. The asterisks ***, **, * indicate that the 

values are statistically different from zero at 1%, 5%, and 10% respectively.  

 Asia Europe London/NYC US 

AUD     

Asian Market 
0.037 0.248*** 0.371*** 0.280*** 

(0.035) (0.041) (0.050) (0.057) 

European 

Market 

0.279*** 0.200*** 0.053 0.088*** 

(0.072) (0.035) (0.041) (0.011) 

LNY Market 
0.133* 0.748*** 0.053 0.025* 

(0.071) (0.103) (0.075) (0.014) 

US Market 
0.064 0.424*** 0.542*** -0.072 

(0.090) (0.125) (0.137) (0.057) 

GBP     

Asian Market 
0.078*** 0.189*** 0.279*** 0.156*** 

(0.018) (0.050) (0.062) (0.024) 

European 

Market 

0.398*** 0.104** 0.224*** 0.101*** 

(0.044) (0.055) (0.060) (0.026) 

LNY Market 
0.111** 0.647*** 0.099 0.001 

(0.050) (0.109) (0.077) (0.031) 

US Market 
0.086 0.355*** 0.295*** -0.117 

(0.063) (0.108) (0.056) (0.061) 

EUR     

Asian Market 
0.150*** 0.452*** 0.280** 0.668*** 

(0.016) (0.118) (0.140) (0.094) 

European 

Market 

0.119*** 0.315*** 0.084* -0.037 

(0.038) (0.051) (0.047) (0.030) 

LNY Market 
0.059*** 0.513*** -0.007 0.187*** 

(0.021) (0.054) (0.018) (0.069) 

US Market 
0.280*** 0.661*** 0.641** -0.015 

(0.115) (0.269) (0.317) (0.022) 

JPY     

Asian Market 
0.129*** 0.437*** 0.575*** 0.439*** 

(0.025) (0.048) (0.144) (0.176) 

European 

Market 

0.212*** 0.170*** 0.072*** 0.006 

(0.063) (0.032) (0.029) (0.009) 

LNY Market 
0.113*** 0.533*** 0.005 0.017 

(0.050) (0.098) (0.010) (0.044) 

US Market 
0.308* 0.396*** 0.418** 0.019 

0.169 (0.130) (0.207) (0.022) 
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Table 3.8: Shapley-Owen Values of Volatility Spillover  

This table shows the Shapley-Owen proportion of the total R2s for groups of CVP coefficients in the 

HAR-CVP model where RVt is predicted by lagged RVs: 

𝑅𝑉𝑖,𝑡 = 𝛼𝑖,𝑡 + 𝛽𝐴,𝑡
𝑒 𝑅𝑉𝐴,𝑡−1 + 𝛽𝐸,𝑡

𝑒 𝑅𝑉𝐸,𝑡−1 + 𝛽𝐿,𝑡
𝑒 𝑅𝑉𝐿,𝑡−1 + 𝛽𝑈,𝑡

𝑒 𝑅𝑉𝑈,𝑡−1 + βi,W
HWRV̅̅ ̅̅

i,t−1,W

+ ∑ βi,j,W
MS RV̅̅ ̅̅

j,t−1,W

U

j≠i,j=A
+ βi,M

HWRV̅̅ ̅̅
i,t−1,M + ∑ βi,j,M

MS RV̅̅ ̅̅
j,t−1,M

U

j≠i,j=A
+ 𝜀𝑖,𝑡 

where i = Asia (A), Europe (E), London/New York (L), and US (U) and 𝛽𝑗,𝑡
𝑒 = 𝛽𝑗

0 + 𝛽𝑗
−𝑟𝑗,𝑡−1

− +

𝛽𝑗
+𝑟𝑗,𝑡−1

+ + 𝛽𝑗
RV𝑅𝑉𝑗,𝑡−1 + 𝛽𝑗

IS𝐼𝑆𝑗,𝑡−1. There are 4 components:𝛽𝑗,𝑡
𝑒  (𝑗 = 𝐴, 𝐸, 𝐿, 𝑈) , which proxy for 

daily volatility spillover effects from lagged local market (i.e. heat waves effect when j =  i) and 

from other regional markets (i.e. meteor showers effect when j ≠  i). The bold numbers on the 

diagonal for each panel stand for the proportion of Shapley-Owen value of one-day lagged heat 

waves effect, while the italic numbers suggest the largest proportion of Shapley-Owen values in 

predicting the future volatility for each trading session.  

 Asia Europe London/NYC US 

AUD     

Asian Market 0.196 0.199 0.203 0.218 

European Market 0.309 0.171 0.175 0.170 

LNY Market 0.264 0.244 0.167 0.166 

US Market 0.224 0.218 0.215 0.169 

GBP     

Asian Market 0.206 0.196 0.195 0.190 

European Market 0.280 0.182 0.175 0.166 

LNY Market 0.237 0.260 0.169 0.153 

US Market 0.202 0.223 0.204 0.164 

EUR     

Asian Market 0.183 0.154 0.159 0.239 

European Market 0.252 0.195 0.177 0.108 

LNY Market 0.231 0.268 0.177 0.112 

US Market 0.286 0.204 0.229 0.110 

JPY     

Asian Market 0.220 0.109 0.080 0.217 

European Market 0.588 0.100 0.064 0.054 

LNY Market 0.380 0.424 0.053 0.040 

US Market 0.268 0.133 0.391 0.055 

3.6. Robustness Analysis 

3.6.1. Additional Conditioning Variables 

Existing studies have shown that information share varies considerably over time 

and is subject to the market conditions. For example, the market contributes more 

to the price discovery with more favourable market states (i.e. large trading 

volume, low volatility, and narrow bid/ask spread). In this chapter, I propose that 
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volatility persistence is driven by the characteristics of both exogenous and 

endogenous information arrivals and strategic trading such as portfolio 

adjustments to lagged information shocks. Collectively these mechanisms 

determine the state of the market, and in turn, impact volatility persistence. The 

use of market state variables (i.e., number of trades, illiquidity, and order 

imbalance) as the additional conditioning variables is in the same spirit as Wang 

and Yang (2017) who examine whether daily volatility persistence is affected by 

volatility jumps (VJ), number of trades (NT), illiquidity (IL), and the imbalance of 

buyer- and seller-initiated trades (TI) in the stock market. Namely, the market 

state variables include return, trading volume, illiquidity, order imbalance, and 

volatility (see, Brandt et al., 2007; Mizrach and Neely, 2008; Frijns, Lehnert and 

Zwinkels, 2010; Su and Zhang, 2018). 

The market state variables for each segment are constructed as follows: trading 

volume is defined as the number of trades aggregated over 5-minute intervals; 

daily illiquidity is measured by the Amihud (2002)’s illiquidity measure, which is 

defined as  𝐼𝐿𝑡 = |𝑟𝑡|/𝑁𝑇𝑡  where 𝑁𝑇𝑡  is the number of trades and |𝑟𝑡|  is the 

absolute value of return over 5-minute intervals. For the order imbalance, 

following Wang and Yang (2017), I use the method of “bulk volume” classification 

(BVC) of Easley, de Prado and O’Hara (2012) to partition the number of trades into 

buyer- and seller-initiated portions sampled at 5-minute intervals. Then the 

difference between these two portions is termed the order imbalance ( 𝑂𝐼𝑡 ). 

Recently, Chakrabarty, Pascual, and Shkilko (2015) prove that BVC is better linked 

to proxies of information-based trading, compared to Lee and Ready (1991)’s 

trade classification algorithm.  

The summary statistics of market state variables (including return, volatility, 

information share, number of trade, illiquidity, and order imbalance) by trading 

sessions are reported in Appendix G. As shown in Panel A of Appendix G, AUD/USD 

has the highest volatility during the Asian market, while the lowest volatility in LNY 

market. The returns in the four markets have the same direction of skewness, i.e. 

the distributions of returns are left skewed, or negatively skewed. The Ljung-Box 
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statistics show that the returns have weak autocorrelations at 5 lags in the Asian 

and North American markets, while there is little or no autocorrelation in 

European market. The transactions concentrate in the Europe and LNY markets, 

particularly for GBP and EUR. Besides, the order imbalances are not statistically 

different from zero in all trading sessions, which confirms earlier works on FX 

microstructure suggesting that dealers generally tend to “hold positions for very 

short time horizons, typically under a day, and have zero inventory overnight” 

(King et al., 2011).  Appendix G also presents the summary statistics of the daily 

information shares measured as the TSRV ratio in four trading sessions, among 

which Europe has the largest estimated information share, followed by the U.S., 

Asia, and “LNY” market. The information share of Asia has the largest standard 

deviation, while the strongest autocorrelations at lag 12. Besides, the information 

shares in four markets are negatively correlated, suggesting increased information 

shares of one trading session is associated with decreased information shares for 

other sessions.  

This section presents a robustness analysis where volatility spillovers (namely, 

meteor showers and heat waves effects) are regressed on exchange rate returns, 

volatility, and other additional variables. Namely, in addition to daily return and 

RV, I examine whether daily volatility spillovers are affected by other conditioning 

variables, including Amihud’s illiquidity measure (IL), number of trades (NT), and 

order imbalance (OI). Let Yt-1 be one of these variables on day t-1. To assess the 

impacts of these variables on volatility persistence, I extend the model in Eq. (5.1) 

to include Yt-1 and its interaction with RVt. However, I don’t find any consistent 

effects of the additional market state variables in explaining the conditional 

volatility persistence.33 Besides, I also attempt to examine the impacts of investors’ 

sensitivity to information on volatility persistence as documented in Berger et al. 

(2009), however, these effects are insignificant under most circumstances. One of 

the possible reasons is that I focus on the lead-lag effects rather than the 

contemporaneous relationships as documented in the earlier literature. Overall, 

                                                            
33 The results of additional conditioning variables are not presented here for the sake of brevity, 
however, which are available upon request. 
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these empirical findings are consistent with those of Wang and Yang (2017) who 

examine the volatility persistence in the equity markets and find no effects of the 

additional market state variables. The results are also consistent with those of 

Gillemot, Farmer, and Lillo (2006), who conclude that “the long-memory of 

volatility is dominated by factors other than transaction frequency or total trading 

volume”.  

3.6.2. Out-of-sample forecasting performance 

In this robustness analysis sub-section, I compare the ex-post out-of-sample 

forecasting performances of various volatility models. Namely, if the daily volatility 

persistence varies as a function of the observed market condition, the model 

which calibrates RV dynamics conditional on market state variables should provide 

superior forecast performance. To examine the forecasting performances, I first 

estimate the model parameters using the first 5 years of observations as the in-

sample period, and then use the rest of the sample as the out-of-sample period. 

All forecasts are generated using rolling WLS regressions and parameter estimates 

are updated daily. Forecasting performance is evaluated based on two loss 

functions: the negative quasi-likelihood function QLIKE(RV𝑡 , RV̂𝑡) =
RV𝑡

RV̂𝑡
−

ln (
RV𝑡

RV̂𝑡
) − 1  and the logarithmic mean-squared errors LMSE(RV𝑡 , RV̂𝑡) =

(ln(RV𝑡) − ln (RV̂𝑡))2 , where RV̂𝑡  is the forecasted value of RV𝑡 . Patton (2012) 

shows that QLIKE is robust to the noise in the empirical volatility measures. Patton 

and Sheppard (2009) show that QLIKE has the best size-adjusted power among 

robust loss functions. The usual mean-squared error (MSE) is often affected by a 

few extreme observations. Therefore, I use the logarithmic MSE to mitigate this 

problem. Furthermore, forecast performance is examined by the Diebold-Mariano 

(1995)’s test (i.e., DM statistics). Specifically, taking the HAR model as the 

benchmark, a negative DM statistic indicates a reduction in loss value by other 

volatility models relative to HAR. While HAR is nested in CVP model, Giacomini and 

White (2006) show that the DM test remains asymptotically valid when the 

estimation period is finite. 



95 
 

In this section, I compare the pseudo out-of-sample volatility forecasts based on 

the benchmark HAR model (HAR) against the extended Conditional Volatility 

Persistence model (CVP). If the dynamic volatility persistence indeed varies with 

return and volatility as suggested in the preceding analysis, the CVP model should 

achieve superior out-of-sample forecasting performance and therefore lead to 

significant economic gains. Table 3.9 provides a summary of QLIKE and LMSE 

values. For both loss functions, CVP has the lowest mean and median loss values, 

and the reduction in loss value of CVP is substantial for all currencies as suggested 

by the DM tests.  

Table 3.9: Out-of-sample Forecasting Performance 

This table reports the average, median, and standard deviation of the loss functions QLIKE and 

LMSE for the HAR model and the conditional HAR model (CVP) using the exchange rates of AUD, 

GBP, EUR, and JPY, all against USD. DM stat is the Diebold-Mariano (1995)’s test for the equality 

of forecast accuracy of two forecasts. Here, taking the HAR model as the benchmark, a negative 

DM statistic indicates a reduction in loss value relative to HAR.  

 HAR CVP 

 QLIKE LMSE QLIKE LMSE 

AUD     

Average 0.2129 0.1243 0.2083 0.1222 

Median 0.0779 0.0395 0.0752 0.0382 

St Dev 0.4127 0.3302 0.4040 0.3188 

DM Stat  - - -8.26*** -4.13*** 

GBP     

Average 0.1478 0.0801 0.1429 0.0800 

Median 0.0597 0.0159 0.0525 0.0128 

St Dev 0.2147 0.2302 0.2040 0.2266 

DM Stat - - -1.82* -1.72* 

EUR     

Average 0.5206 0.3345 0.4920 0.3210 

Median 0.2385 0.1265 0.2179 0.1140 

St Dev 0.7937 0.7310 0.8088 0.7562 

DM Stat - - -2.78** -1.76* 

JPY     

Average 1.0115 0.8968 0.9633 0.8359 

Median 0.4907 0.2671 0.4561 0.2449 

St Dev 1.4504 2.2453 1.4449 2.2282 

DM Stat - - -1.54 -1.66* 
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3.7. Conclusions and Implications 

In this chapter, I revisit the meteor shower and heat wave effects for AUD/USD, 

GBP/USD, EUR/USD, and USD/JPY spanning from January 1999 (January 2000 for 

EUR) to December 2013. Utilizing the volatility measures based on high-frequency 

data, I find evidence of both meteor showers and heat waves effects in the four 

trading segments of global FX market, which is consistent with Lahaye and Neely 

(2016) who divide a calendar day into five segments and confirm the presence of 

meteor shower and heat waves effect in each segment. However, unlike Lahaye 

and Neely (2016), I find that the relative importance of meteor shower effect has 

been increasing rapidly and has predominated over heat waves effects in the intra-

daily volatility spillovers, which emphasizes the increasing interdependence and 

interconnectedness in the global FX market, and highlights the potential contagion 

risks posed by financial liberalization and market openness. 

By investigating the pattern and economic mechanism of meteor showers and 

heat waves effects, I contribute to the literature regarding volatility spillover in the 

financial markets. Specifically, I identify the key factors contributing to volatility 

spillovers in different trading sessions of the FX market. The empirical results also 

highlight the complex geographical nature of the FX market. That is, the spillover 

effect of volatility depends on where the information shocks arise. This study has 

modelling implications for the FX market as well. For example, these results argue 

in favour of modelling FX volatility dynamics segment-wise, rather than in the 

more traditional approach of assuming a homogeneous process.  

In this study, I also contribute to the growing literature on information 

propagation in the foreign exchange market. By exploring the economic 

mechanism of volatility spillover in the exchange rates, the findings presented in 

this study highlight the impacts of changing market states on the volatility 

spillovers, which could be the results of exogeneous and endogenous information 

arrivals, the persistence of characteristics of information propagation process, and 

uninformed trading in response to lagged information shocks, etc. The analysis in 

this chapter builds upon ideas contained in the literature on mixture of 



97 
 

distributions hypothesis (MDH) (Liesenfeld, 2001). However, this particular 

volatility model is based on relationships introduced in the market microstructure 

literature, and the estimation relies on the availability of a long time-series of 

trading data at very high frequency. Besides, different from the conventional MDH, 

I find that volatility spillover is not solely determined by exogenous information 

arrivals, but also by the process of absorbing information shocks and resolving 

uncertainty. Namely, a faster process of price discovery within a period reduces 

information persistence to future periods and mitigates volatility spillover to other 

markets.   

However, additional research is required to consider how generalizable the results 

presented in this chapter are to other major currencies and emerging market 

currencies. Besides, how to identify the institutional sources of long-memory in 

volatility (i.e. institution- and market-wide characteristics) deserves further study, 

which will definitely improve the understanding of volatility spillover and extend 

our economic intuition of risk contagion in the financial markets. Also, if there is a 

common component in conditional volatility, should provide more evidence on 

the factors driving the variations in exchange rate returns. Another possible 

direction is to assess the usefulness and economic values of conditional volatility 

persistence in concrete financial applications such as portfolio management and 

volatility timing strategy as in Fleming et al. (2003). 
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Chapter 4: Conditional Volatility Persistence and Volatility Timing in 

the Foreign Exchange Market 

 

4.1. Introduction  

The phenomenon of volatility, i.e., up-and-down movements of the market, plays 

a central role in derivatives pricing, risk management, and optimal portfolio. It 

draws great attention to academics, practitioners, and regulators, and motivates 

a vast amount of literature on volatility modelling. Starting from Engle (1982), a 

variety of autoregressive conditional heteroskedasticity (ARCH), generalized ARCH 

(GARCH), and stochastic volatility (SV) models have been fit to asset returns. 

However, starting with Andersen and Bollerslev (1998) and Andersen et al. (2003), 

the literature has been increasingly focused on so-called realized volatility (RV) 

models with the availability of quality high-frequency data (see, for example, 

Bollerslev, Chou and Kroner, 1992; Bollerslev, Engle and Nelson, 1994; Diebold and 

Lopez, 1995; and recently, Bollerslev et al., 2017). The empirical evidence on 

volatility is generally consistent across a wide range of assets and econometric 

specifications, which overwhelmingly suggests that volatility is predictable to a 

great extent. These literature, however, has been exclusively focused on 

evaluating the statistical performance of volatility models rather than the 

economic significance of predictive volatility. Following Fleming, Kirby, and 

Ostdiek (2001, 2003) and Bollerslev et al. (2017), I focus on the latter. Namely, I 

not only conduct an extensive statistical evaluation of volatility forecasting using 

a variant of heterogeneous autoregressive (HAR) models, but also provide new 

economic evidence on whether a risk-averse investor can significantly benefit 

from volatility-timing based on mean-variance analysis. Furthermore, I explore the 

economic mechanisms of the conditional volatility persistence, which help in 

achieving superior forecasting performance and potential economic gains. 

Volatility persistence is a well-documented phenomenon across a broad range of 

financial markets, including the Foreign Exchange market. This suggests that 

standard volatility models deliver reasonably accurate forecasts, but the question 



99 
 

of whether volatility timing has economic value still remains unanswered, 

particularly when forecasting using the model which incorporates the features of 

volatility asymmetry and persistence. In short, the economic value of volatility 

timing is the utility gain compared with a static strategy. For an investor with a 

mean-variance utility, the major concern is to estimate the fee she is willing to pay 

for a new volatility model rather than a static one. In this chapter, I apply the 

conditional volatility persistence model as proposed in Wang and Yang (2017) to 

the FX market, and examine the presence of volatility persistence in the exchange 

rates and its determinants by taking a much broader view on the economic 

mechanisms of the volatility persistence. In addition, I adopt an optimal 

rebalancing strategy in volatility targeting solutions and utilize the technique of 

backtesting to examine the ex-post performance of optimal portfolio holdings.  

This approach has several advantages over existing studies. First, instead of 

measuring the benefits of predictability via ex-ante calibration (Balduzzi and Lynch, 

1999; Campbell and Viceira, 1999; and Campbell, Chan and Viceira, 2002), I 

measure economic benefits through the ex-post performance of the optimal 

portfolio with predictable volatility. More importantly, considering that there is 

little evidence for any out-of-sample expected return predictability (Bossaerts and 

Hillion, 1999), I focus exclusively on the prediction of realized variance, which 

eliminates the noise form random return realizations and provides a practical 

evaluation of the economic benefits. Second, ignoring estimation risk or 

parameter learning (i.e., the dynamic counterpart of estimation risk) that arises 

when estimating parameters would typically lead to misleading allocations 

(Brennan, 1998; Stambaugh, 1999; Barberis, 2000). By utilizing a non-parametric 

“realized utility” technique as proposed in Bollerslev et al. (2017), I solve the 

single-period asset allocation problem while accounting for estimation risk and 

parameter learning, since “the multi-period portfolio problem with time-varying 

expected returns or volatility in the presence of estimation risk or parameter 

learning is computationally intractable” (Johannes et al. 2002). The main 

difference between the single- and multi-period asset allocation problems is 

intertemporal hedging demands. However, recent evidence suggests that ignoring 
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hedging demands would not be a major concern, since they are typically only a 

small component of asset demands (see Brandt, 1999; Ait-Sahalia and Brandt, 

2001). 

This chapter contributes to the extant literature on the economic value of volatility 

timing in several different ways. Firstly, previous studies demonstrate that 

volatility timing strategy can be enhanced by using high frequency data, optimal 

sampling, optimal rebalancing frequencies, and noise- and jump-robust volatility 

measures (See, for example, Fleming et al., 2001, 2003; Bandi and Russell, 2006; 

Bandi, Russell, and Zhu, 2008; Nolte and Xu, 2015). I extend the previous studies 

by considering the economic value of conditional volatility persistence model, 

which explicitly links the changing overall market conditions to the future volatility 

and far surpasses the benchmark models with regard to the forecasting 

performance. Besides, although more sophisticated utility functions can be 

utilized, I stick to a simple mean-variance utility because the major concern is to 

examine whether statistical improvements in volatility forecasting by taking the 

time-varying volatility persistence into consideration can be translated into 

economic gains. Furthermore, to concentrate on the impacts of volatility timing, I 

assume only one risky asset in each portfolio to avoid covariance matrix 

forecasting in a multivariate setting and control for information spillover across 

different assets. I also assume that the investor is myopic, and she does not 

consider the hedging demand when constructing the optimal portfolio. I make this 

assumption for both simplicity and consistency. Namely, without loss of generality, 

the volatility forecasting results generated can be easily translated into certainty 

equivalent performance fees and directly compared with those documented in the 

existing literature on the economic value of volatility timing. In summary, I 

conclude the main findings as follows:  

(1) Utilizing the conditional volatility persistence (CVP) model as proposed in 

Wang and Yang (2017), I find that the conditional volatility persistence increases 

with information shocks as proxied by negative and positive returns, while 

decreases with information flows as proxied by realized variance. Taking into 
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account conditional volatility persistence improves volatility forecasting 

performance both in-sample and out-of-sample. For example, by utilizing the 

Shapley decomposition techniques, I find that the conditional volatility persistence 

explains large portions of the variations in future volatility and is the dominant 

channel linking changing market conditions to future volatility. However, I provide 

mixed evidence on asymmetric effects in the FX market, to which similar results 

have been found in Wang and Yang (2009). 

(2) Under conservative assumptions about the Sharpe ratio and the investor’s 

risk aversion, having a Heterogeneous Autoregressive (HAR) - based model which 

takes the conditional volatility persistence into consideration is worth about 0.51% 

of total wealth per year relative to the static risk model (i.e., using in-sample 

average volatility). And the utility gains are even larger during the crisis period or 

under the assumption of higher Sharpe ratio and/or lower risk aversion. Besides, 

the gains in using the conditional volatility persistence model remain positive and 

significant after accounting for transaction costs and market microstructure noise.  

(3) The volatility targeting approach which utilizes dynamic asset allocation 

based on accurate volatility forecasting can take advantage of the negative 

relationship between volatility and return and the properties of volatility 

persistence, and achieves a stable level of volatility in all market environments. 

The economic gains of volatility targeting are significant (i.e., the Sharpe ratio of 

volatility timing strategy using CVP model is as high as 1.23, compared to 0.83 for 

that without volatility timing).  

The rest of this chapter is structured as follows. Section 4.2 introduces the data 

and construction of relevant variables. Section 4.3 presents the model 

specifications including the classic Heterogeneous Autoregressive model (HAR), 

the semi-variance Heterogeneous Autoregressive model (SHAR), and the 

Conditional Volatility Persistence model (CVP). A simple utility-based framework 

for quantifying the economic gains of the new risk models is given in this section 

as well. Section 4.4 compares the forecasting performances of various risk models 

and discusses the utility benefits under different scenarios. Section 4.5 performs a 

robustness check, while Section 4.6 concludes with further research directions. 
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4.2. Variable Construction and Summary Statistics 

4.2.1. Data Description 

The data source is Thomson Reuters Tick History (TRTH) supplied by the Securities 

Industry Research Centre of Asia-Pacific (SIRCA). The intraday data for AUD/USD, 

GBP/USD and USD/JPY spans from 1 January 1999 to 31 December 2013, while the 

data for EUR/USD isn’t available until 1 January 2000. The four currencies I am 

using in this chapter are among top-5 most actively traded currencies and account 

for more than 50% of the globe FX trading (Bank for International Settlements, 

2013). The dataset includes the time rounded to the nearest millisecond whenever 

a new quote is posted, prices of firm bid/ask quotes, trading time, and trading 

prices. Following other studies such as Bollerslev and Domowitz (1993), I exclude 

weekends, because of thin and inconsistent trading. I define weekends as 

extending from 22:00 GMT Friday evening (i.e., the end of day trading session in 

New York) until 22:00 GMT Sunday evening (i.e., the commencement of morning 

trading session in Sydney). In consistent with Wang and Yang (2011), I remove days 

with large time gaps (i.e. over four hours) in quote arrivals, which could be the 

result of holidays in major financial centres, system halts, or other technical issues. 

I also exclude observations which deviate by more than 10 times standard 

deviations from a rolling sample of 50 observations. Last but not least, to mitigate 

the potential impacts of extremely large values, I winsorize the daily realized 

variance at the 99th percentile.  

4.2.2. Integrated Variance 

In recent years, there has been a renewed interest in obtaining improved daily 

volatility estimates by constructing daily “realized” or “integrated” volatility with 

the availability of quality high-frequency data (Thomakos and Wang, 2010). The 

most popular estimator is realized volatility, see Andersen et al. (2003) for a review. 

Namely, daily realized volatility can be obtained as the sum of intraday squared 

returns. Using the theory of quadratic variation, Andersen and Bollerslev (1998) 

and Barndorff-Nielsen and Shephard (2002) show that the realized volatility 

estimator is a model-free estimator of the true but latent volatility. 



103 
 

In this chapter, I utilize the Realized Variance (RV) as a proxy for the integrated 

variance. Specifically, I am interested in estimating the sum of diffusion variation 

(i.e., integrated variance) and the realized variance RVt = ∑ rs,t
2m

s=1  , i.e. the sum 

of squared log returns over appropriate sampling intervals s = 1, 2, …, m, proves 

to be a consistent estimator under certain conditions.34 Following Andersen et al. 

(2005), I construct the “volatility signature plots” as presented in Figure 4.1 which 

suggest the usage of 5-minute interval when estimating the realized variance. In 

fact, Liu, Patton, and Sheppard (2015) compare several hundred different RV 

estimators across multiple assets and conclude that “it is difficult to significantly 

beat 5-minute RV”). Therefore, I aggregate the tick-by-tick data into 5-minute 

intervals and calculate the 5-minute realized variance accordingly. 

 

Figure 4.1: Signature Plots for AUD, GBP, EUR, and JPY 

In the robustness section, I also report the relevant empirical results using a noise-

robust volatility estimator to control for market microstructure noise, namely, the 

two-scale realized variance estimator of Zhang et al., (2005). This estimator can be 

constructed easily using sub-sampling and averaging (Wang and Yang, 2011; Su 

and Zhang, 2018). Namely, the two-scale estimator is a linear combination of RVs 

calculated at two different frequencies, i.e. the highest possible frequency and a 

lower frequency, which serves to eliminate the noise variance. Barndorff-Nielsen 

                                                            
34 A vast amount of literature suggests that the realized volatility estimator is not robust when the 
sampling interval is too small due to microstructure effects (see, e.g., Brown 1990; Hansen and 
Lunde, 2004; Zhang, Mykland, and Ait-Sahalia, 2005; Bandi and Russell, 2004).  
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et al. (2008) find that the two-scale RV is the first consistent estimator for 

integrated variance.  

4.2.3. Summary statistics of relevant variables 

Intraday returns are sampled at various frequencies (i.e., 1-second to 30-minute) 

to calculate the realized variance of different sampling intervals and construct the 

volatility “signature plots” as discussed above. Table 4.1 reports the summary 

statistics of the realized variance and market state variables. Namely, the market 

state variables include trading volume, illiquidity, order imbalance, and volatility 

(see Brandt et al., 2007; Mizrach and Neely, 2008; Frijns et al., 2010). Trading 

volume 𝑁𝑇𝑡 is defined as the number of trades aggregated over 5-minute intervals; 

daily illiquidity is measured by the Amihud (2002)’s illiquidity measure, which is 

defined as  𝐼𝐿𝑡 = |𝑟𝑡|/𝑁𝑇𝑡  where 𝑁𝑇𝑡  is the number of trades and |𝑟𝑡|  is the 

absolute value of return over 5-minute intervals. Then the number of trades is 

partitioned into buyer- and seller-initiated portions using the method of bulk 

volume classification (BVC) of Easley et al. (2012) and the difference between 

these two portions is termed the order imbalance 𝑂𝐼𝑡.  

As shown in Panel A of Table 4.1, the annualized average RV is 11.8% for AUD, 8.8% 

for GBP, 9.8% for EUR, and 10.6% for JPY, among which the GBP has the lowest 

volatility. The AUD and JPY have higher volatilities, while weaker autocorrelations 

than the other two currencies. For the JPY and EUR which are mostly traded on 

another electronic trading platform – EBS (Electronic Broking Services), they 

display more frequent volatility jumps, particularly during periods of turmoil, 

which leads to reduced autocorrelations. The medians of RV are much lower than 

means due to a small number of high RV days. Overall, the AUD has the highest 

volatility, which is consistent with Bollerslev et al. (2017) who calculate the daily 

volatility for 9 major currency pairs spanning from January 2000 to September 

2014 and confirm that the AUD has the highest average daily RV (11.8%), while 

GBP has the smallest volatility (8.3%). Besides, the AUD and GBP have larger daily 

trading volumes than the EUR and JPY since the “commodity currencies” (i.e., AUD, 

GBP, and CAD) are mostly traded on Reuters where the data is sourced, while EBS 
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dominates interbank trading for the EUR and JPY.35 With regard to liquidity, GBP 

has the highest liquidity, followed by AUD, EUR, and JPY. Interestingly, the order 

imbalance of all currencies is not significantly different from zero, which is 

generally consistent with earlier works on FX microstructure which highlights that 

dealers generally tend to “hold positions for very short time horizons, typically 

under a day”, and prefer to have zero inventory overnight (King, Osler, and Rime, 

2011).   

The daily correlations across market state variables are reported in Panel B of 

Table 4.1. Most correlations are consistent with those documented in the 

literature. For example, RV is negatively correlated with contemporaneous return, 

while positively correlated with number of trades and illiquidity. Besides, there is 

a significant positive correlation between return and order imbalance, which is 

consistent with the literature on FX microstructure which emphasize the role of 

order imbalance in determining the exchange rates (Evans and Lyons, 2002a, 

2002b, 2005). 

 

 

 

 

 

 

 

 

 

                                                            
35 The interdealer trading is largely carried out through electronic brokerages nowadays. However, 
due to network externalities, liquidity is naturally concentrated on one platform for each currency 
(King, Osler, and Rime, 2011). 
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Table 4.1:  Summary Statistics  

This table reports the summary statistics of market state variables. IL, NT, and OI stand for illiquidity, 

number of trades, and order imbalance respectively. QLB(5) is the Ljung-Box test statistic at 5 lags. 

The numbers in the square brackets are the corresponding P-values. The asterisks ***, **, * indicate 

that the values are statistically different from zero at 1%, 5%, and 10% respectively. 

Panel A: Summary statistics of market state variables 

  Mean Median  St Dev  Skew  Kurt  Min  Max  QLB(5) 

AUD         

Return  .0002 .0003 .0082 -.3572 7.213 -.0733 .0737 24.39* 

RV .7076 .4648 .8265 4.001 19.48 .1063 5.946 9,800* 

IL 2.995 2.534 .1.279 1.016 .7014 1.191 9.767 16,216* 

NT 8.441 5.994 6.746 1.183 1.509 .0540 48.86 9,358* 

OI -.0330 -.0077 .3782 -.5142 5.483 -2.334 2.091 53.49* 

GBP         

Return  .0002 .0002 .0057 -.2158 2.190 -.0350 .0299 2.461 

RV .3683 .2658 .3635 3.535 14.51 .0666 2.428 11,364* 

IL 1.936 1.820 .6356 2.031 7.235 .8892 6.887 13,404* 

NT 7.120 6.693 3.405 .5934 .1704 .0330 26.82 9,155* 

OI -.0200 -.0100 .3516 -.2010 2.462 -2.217 1.785 10.05 

EUR         

Return  .0002 .0002 .0065 .4678 5.938 -.0305 .0693 2.214 

RV .9537 .4900 1.486 4.493 24.41 .0793 11.23 5,029* 

IL 4.247 3.307 2.651 1.794 4.018 1.255 18.22 11,505* 

NT 1.703 1.583 .9124 .6024 .0886 .0010 5.864 4,067* 

OI .0090 .0010 .1334 .2987 1.505 -.5160 .8520 21.11* 

JPY         

Return  -.0001 .0000 .0066 -.3655 4.132 -.0488 .0365 3.888 

RV 1.346 .5892 2.486 4.561 23.84 .0522 17.85 2,259* 

IL 8.108 7.681 3.500 .4655 -.4295 1.899 23.19 8,870* 

NT .1720 .1410 .1291 2.104 9.002 .0000 1.657 1,833* 

OI -.0020 -.0010 .0013 -2.102 9.018 -.6570 .7770 6.44 
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Panel B: Correlations 

4.3. Model Specification 

4.3.1. HAR Model 

In this chapter, I employ variants of the heterogeneous autoregressive (HAR) 

models, which takes into account the heterogeneous impacts of investors at 

different trading horizons (i.e., daily, weekly, and monthly horizon respectively), 

while capturing the property of long-memory in volatility. The HAR model was 

firstly proposed in Corsi (2009), which is based on the concept of the 

Heterogeneous Market Hypothesis of Muller et al. (1997), and has been employed 

in several applications, such as for equity markets (Andersen, Bollerslev, and 

 Return  RV NT OI IL 

AUD      

 RV 
-.0667*** 

[.0000] 
1.000    

NT 
-.0671*** 

[.0000] 

.2838*** 

[.0000] 
1.000   

OI 
.7083*** 

[.0000] 

-.0703*** 

[.0000] 

-.1643*** 

[.0000] 
1.000  

IL 
-.0522*** 

[.0013] 

.4703*** 

[.0000] 

-.3453*** 

[.0000] 

.0088 

[.5894] 
1.000 

GBP      

 RV 
-.0442*** 

[.0061] 
1.000    

NT 
-.0180 

[.2674] 

.4105*** 

[.0000] 
1.000   

OI 
.8071*** 

[.0000] 

-.0354** 

[.0285] 

-.0419*** 

[.0094] 
1.000  

IL 
-.0212 

[.1887] 

.5306*** 

[.0000] 

-.1773*** 

[.0000] 

-.0077 

[.6358] 
1.000 

EUR      

 RV 
-.0419* 

[.1004] 
1.000    

NT 
.0184 

[.2871] 

.0914*** 

[.0000] 
1.000   

OI 
.5733*** 

[.0000] 

.0046 

[.5861] 

.0546*** 

[.0014] 
1.000  

IL 
-.0230 

[.1459] 

.6144*** 

[.0000] 

-.1737*** 

[.0000] 

.0006 

[.9743] 
1.000 

JPY      

 RV 
-.0621*** 

[.0009] 
1.000    

NT 
-.0119 

[.5219] 

.1465*** 

[.0000] 
1.000   

OI 
.7719 

[.0000] 

.0012 

[.9122] 

-.0012 

[.1221] 
1.000  

IL 
-.0432** 

[.0204] 

.5598*** 

[.0000] 

-.1064* 

[.0716] 

.0002 

[.9879] 
1.000 
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Diebold, 2007; Forsberg and Ghysels, 2007; Bollerslev et al., 2017; Wang and Yang, 

2017), gold market (Chai, Lee, and Wang, 2015), and foreign exchange market 

(Wang and Yang, 2009). 

With its popularity, Bollerslev et al. (2017) comment that the HAR model has 

become “somewhat of a benchmark in the financial econometrics literature for 

judging other RV–based forecasting procedures”. For further analysis, I firstly 

calculate daily realized variance as 𝑅𝑉i,t for 𝑖 = AUD, GBP, EUR, and JPY. Because 

variances are persistent, lagged variances beyond one day are represented by 

non-overlapping long-run variances, such as weekly variance, that is, average 

volatility over lagged 2 to 5 days, RVi,t,W =
1

4
∑ RVi,t−k

5
k=2  and monthly variance, 

i.e. average volatility over lagged 6 to 22 days, RVi,t,M =
1

17
∑ RVi,t−k

22
k=6 . Thus, the 

HAR model is specified as follows: 

                                    𝑅𝑉𝑖,𝑡+1 = 𝛼𝑖,𝑡+1 + 𝛽𝑖,𝐷𝑅𝑉𝑖,𝑡 + 𝛽𝑖,𝑊𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀𝑅𝑉𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+1              (4.1) 

where 𝑅𝑉𝑖,𝑡  is the realized variation for currency i on day t ( 𝑖 =

𝐴𝑈𝐷, 𝐺𝐵𝑃, 𝐸𝑈𝑅, 𝑎𝑛𝑑 𝐽𝑃𝑌). The coefficients 𝛽𝑖,𝑊 and 𝛽𝑖,𝑀 capture the long-run (i.e. 

weekly and monthly) dependence of volatility, while the short-run dependence is 

represented by the coefficient of one-day lagged volatility 𝛽𝑖,𝐷 . This model is 

useful for modelling the short-run volatility persistence effect while taking account 

of the long memory in volatility and has been widely used in the relevant literature 

(See, for example, Bollerslev et al. (2017) and references therein). The error term 

is assumed to be normally distributed and the model is estimated via OLS with 

Newey-West covariance correction for heteroscedasticity and autocorrelation as 

documented in previous studies (Chai et al., 2015; Wang and Yang, 2017). Besides, 

although the model is written with one-day lag, nothing precludes more lags. In 

the robustness analysis, I re-estimate the model using more lags (i.e. 1- to 4-day 

lagged realized variance), and the alternative specifications do not change the 

conclusions about the presence of volatility persistence. 

Another feature of the HAR model is that the original HAR model can be directly 

geared to forecasting longer-run volatility, say, over weekly or monthly horizons, 
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by simply replacing the daily variance RV𝑖,𝑡+1 on the left-hand-side in Eq. (4.1) with 

the realized variance RV𝑖,𝑡+ℎ over the forecast horizon h of interest. For example, 

with a 22-day forecast horizon, I estimate the following predictive model 

specification with h = 22: 

                             𝑅𝑉𝑖,𝑡+ℎ
ℎ = 𝛼𝑖,𝑡+ℎ + 𝛽𝑖,𝐷

ℎ 𝑅𝑉𝑖,𝑡 + 𝛽𝑖,𝑊
ℎ 𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀

ℎ 𝑅𝑉𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+ℎ                        (4.2) 

Again, this “monthly” model is straightforward to estimate by standard OLS with 

the Newey-West robust standard errors. The beta coefficients, which dictate the 

importance of the different factors, will obviously depend on the forecast horizon, 

as explicitly indicated by the superscripts “h” for the coefficients in Eq. (4.2). 

The estimation results in Table 4.2 are generally consistent with findings 

documented in the previous literature. For example, when h = 1 (i.e., the one-

day-ahead forecast of RV), it shows that there is substantial evidence of volatility 

persistence in the FX market, with the sum of 𝛽𝑖,𝐷 , 𝛽𝑖,𝑊, and 𝛽𝑖,𝑀  close to one. 

While the predictive power of recent information captured by 𝛽𝑖,𝐷 dominates the 

weekly and monthly dependence (i.e., 𝛽𝑖,𝑊  and 𝛽𝑖,𝑀 ), it diminishes as the 

forecasting horizon increases, which reflects the gradual information diffusion of 

the fundamental prices of exchange rates. Interestingly, the impact of daily 

volatility decreases with the forecasting horizon of future volatility, while the 

impact of weekly volatility increases, and achieves the largest magnitude of 

coefficient when h =  5.  
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Table 4.2: Heterogeneous Autoregressive (HAR) Model 

This table reports the coefficients of the following regression:  

𝑅𝑉𝑖,𝑡+ℎ
ℎ = 𝛼𝑖,𝑡+ℎ + 𝛽𝑖,𝐷

ℎ 𝑅𝑉𝑖,𝑡 + 𝛽𝑖,𝑊
ℎ 𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀

ℎ 𝑅𝑉𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+ℎ 

where RVt are the realized variances of exchange rates for AUD, GBP, EUR, and JPY, all against 

USD. h stands for the forecasting horizon. The t-statistics are based on the Newey–West robust 

covariance with automatic lag selection using Bartlett kernel. The asterisks ***, **, * indicate 

significance at 1%, 5%, and 10% respectively.  

  𝛽 𝛽𝑊 𝛽𝑀 𝑅̅2 

AUD 

ℎ = 1 
.4068*** .3044*** .2445*** 

.6865 
(8.43) (6.01) (5.45) 

ℎ = 5 
.1891*** .3697*** .3393*** 

.5749 
(4.64) (5.35) (4.22) 

ℎ = 22 
.2155*** .3697*** .1561** 

.4084 
(3.85) (3.54) (2.35) 

ℎ = 44 
.1644*** .3011*** .1007 

.2398 
(3.26) (2.98) (0.89) 

GBP 

ℎ = 1 
.3772*** .3271*** .2660*** 

.7344 
(12.16) (7.65) (6.10) 

ℎ = 5 
.2010*** .4496*** .2876*** 

.7021 
(4.58) (7.24) (4.31) 

ℎ = 22 
.1578*** .4445*** .2447** 

.5725 
(3.35) (4.74) (2.49) 

ℎ = 44 
.1691*** .3803*** .1741 

.4202 
(3.42) (3.65) (1.53) 

EUR 

ℎ = 1 
.4966*** .2670*** .2567*** 

.5207 
(6.39) (4.43) (5.98) 

ℎ = 5 
.4186*** .3561*** .0506 

.4665 
(6.23) (5.47) (1.30) 

ℎ = 22 
.3780*** .3185*** .1111*** 

.3854 
(4.47) (3.68) (2.87) 

ℎ = 44 
.2801*** .2754*** .1046** 

.2630 
(2.91) (3.50) (2.56) 

JPY 

ℎ = 1 
.2244*** .1701*** .4800*** 

.2847 
(5.56) (3.22) (7.53) 

ℎ = 5 
.1008*** .2320*** .4803*** 

.2323 
(2.72) (3.89) (6.09) 

ℎ = 22 
.0356 .1931*** .4582*** 

.1658 
(1.02) (3.13) (6.00) 

ℎ = 44 
.0141 .1884*** .3710*** 

.1166 
(0.59) (3.53) (4.68) 
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4.3.2. Semi-variance HAR 

It is a well-established empirical regularity in the finance literature that negative 

returns generally lead to higher future volatility than positive returns. While the 

facts on the asymmetric effects are well-known in the equity markets (see, for 

example, Andersen et al., 2007; Patton and Sheppard, 2015; Lahaye and Neely, 

2016; Wang and Yang, 2017), the relevant studies present mixed results in the 

foreign exchange market. For example, in contrast to equity markets, foreign 

exchange market usually exhibits symmetric volatility, that is, the volatility impacts 

of past positive and negative shocks are of similar magnitudes (Diebold and 

Nerlove, 1989; Andersen et al., 2001; Hansen and Lunde, 2005; and Laurent et al., 

2011). However, in Wang and Yang (2009), the authors confirm the presence of 

asymmetric volatility in the exchange rates, while the realized volatility of EUR 

appears to be symmetric. 

A key contribution of the recent econometric advances in modelling RV dynamics 

is the improved volatility forecast performance. Corsi (2009) shows that the HAR 

model generates more accurate forecasts than a true long-memory model with 

fractional cointegration, while Patton and Sheppard (2015) show that the semi-

variance HAR model has better RV forecasts than the standard HAR and a RV-

based GJR-GARCH model. 36  Therefore, I utilize the same concepts of “good 

volatility” and “bad volatility” as in Patton and Sheppard (2015), to explicitly test 

for the presence of asymmetric effects in the FX market. Specifically, Barndorff-

Nielsen, Kinnebrock and Shephard (2010) introduce estimators that can capture 

the variations only due to negative or positive returns using the realized semi-

variance (RS) estimator, which is defined as 𝑅𝑆𝑡
+ = ∑ 𝑟𝑠,𝑡

2 𝐼{𝑟𝑠,𝑡 > 0}𝑚
𝑠=1  and 𝑅𝑆𝑡

− =

∑ 𝑟𝑠,𝑡
2 𝐼{𝑟𝑠,𝑡 < 0}𝑚

𝑠=1  and 𝐼  is the indicator function. These estimators provide a 

complete decomposition of RV𝑡, in that RV𝑡 = 𝑅𝑆𝑡
+ + 𝑅𝑆𝑡

−, which holds exactly for 

any sampling interval m, as well as in the limit (Patton and Sheppard, 2015). I adopt 

this technique of volatility decomposition for the following empirical analysis and 

                                                            
36 However, Bollerslev, Patton, and Quaedvlieg (2016) show that the HAR model with realized 
quarticity outperforms a range of models including the semi-variance HAR. 
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propose the semi-variance Heterogeneous Autoregressive model (SHAR) as 

follows: 

                       𝑅𝑉𝑖,𝑡+1 = 𝛼𝑖,𝑡+1 + 𝛽𝑖,𝐷
+ 𝑅𝑆𝑖,𝑡

+ + 𝛽𝑖,𝐷
− 𝑅𝑆𝑖,𝑡

− + 𝛽𝑖,𝑊𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀𝑅𝑉𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+1          (4.3) 

where 𝑅𝑆𝑖,𝑡
+  and 𝑅𝑆𝑖,𝑡

−  are the realized semi-variances of market i on day t due to 

positive and negative returns respectively. Note that if the decomposition of RV 

into 𝑅𝑆+ and 𝑅𝑆− added no information, we would expect to find 𝛽𝐷
+ = 𝛽𝐷

− = 𝛽𝐷. 

Interestingly, as shown in Table 4.3, I find that the coefficients of semi-variances 

are positively significant, and the semi-variance model explains more variations of 

future volatility than the regular one with realized variance. Furthermore, for the 

effect of lagged daily RV which can be inferred as (𝛽𝐷
+ + 𝛽𝐷

−)/2 in this model 

specification, it is similar in magnitude to the coefficient found in the benchmark 

HAR model. Thus, the models which include only lagged RV, are essentially 

averaging the different effects of positive and negative returns. However, in 

striking contrast to other currencies, there is no evidence of asymmetric volatility 

in EUR market where the positive return has a larger effect on future volatility than 

negative return. 

Table 4.3: Semi-variance Heterogeneous Autoregressive (SHAR) Model 

This table reports the coefficients of the following regression:  

𝑅𝑉𝑖,𝑡+1 = 𝛼𝑖,𝑡+1 + 𝛽𝑖,𝐷
+ 𝑅𝑆𝑖,𝑡

+ + 𝛽𝑖,𝐷
− 𝑅𝑆𝑖,𝑡

− + 𝛽𝑖,𝑊𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀𝑅𝑉𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+1 

where RVi,t, RS𝑖,𝑡
+ , and RS𝑖,𝑡

−  are the realized variance, the realized semi-variances due to positive and 

negative returns respectively for currency i (i = AUD, GBP, EUR, and JPY). The t-statistics are 

based on the Newey–West robust covariance with automatic lag selection using Bartlett kernel. The 

asterisks ***, **, * indicate significance at 1%, 5%, and 10% respectively.   

 𝛽+ 𝛽− 𝛽𝑊 𝛽𝑀 𝑅̅2 

AUD 
.2621*** .5983*** .2721*** .2466*** 

.6941 
(4.15) (6.65) (5.64) (5.70) 

GBP 
.2961*** .4801*** .3105*** .2679*** 

.7694 
(4.96) (6.86) (7.47) (6.34) 

EUR 
.4177*** .0810 .3212*** .2672*** 

.5216 
(2.64) (0.47) (6.47) (4.48) 

JPY 
.0549 .3959*** .1719*** .4786*** 

.2871 
(0.37) (2.83) (3.27) (7.53) 

Figure 4.2 presents the point estimates of βD, βD
−, and βD

+ from Eq. (4.2) and Eq. 

(4.3) respectively for forecast horizons ranging between 1 and 66 days. For all 
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currencies, the effects of negative and positive semi-variance are significant and 

positive for one-day-ahead forecasting, while the coefficients decline and the 

magnitudes diminish rapidly as the forecasting horizon increases. Besides, the 

magnitudes of the coefficients of positive semi-variance are vastly different from 

those of negative semi-variance which suggest the presence of asymmetric effect 

in the FX market and confirm the suitability of using the semi-variance HAR (SHAR) 

model in modelling FX volatility. However, the positive return of EUR leads to 

larger future volatility than negative returns, an interesting phenomenon that 

warrants further investigation. For example, Wang and Yang (2009) also document 

a stronger response of volatility to positive shocks than to negative shocks for EUR.

  

 

Figure 4.2: Estimated Coefficients of Short-run Volatility Dependence  

4.3.3. Conditional Volatility Persistence (CVP) Model 

The question of the economic origins of volatility persistence remains unanswered 

to a large extent (Goodhart and O’Hara, 1997). Potential explanations include the 

clustering of release of macroeconomic news (Melvin and Peiers Melvin, 2003; 

Lahaye and Neely, 2016), institutional investors’ heterogeneous expectation on 
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macroeconomic indicators (Hogan and Melvin, 1994) and heterogeneous trading 

horizons (Müller et al., 1997), the incorporation of private information via trading 

(Kyle, 1985; Admati and Pfleiderer, 1988; Ito et al., 1998), information flow and 

market’s sensitivity to that information (Berger et al., 2009), the theory of Mixture 

of Distribution Hypothesis (MDH) (Clark, 1973; Tauchen and Pitts, 1983; Andersen, 

1996), and the conditional volatility persistence model which attributes the time-

varying volatility persistence into the changing market conditions, as captured by 

daily return and volatility (Wang and Yang, 2017).37  

In this section, I introduce the Conditional Volatility Persistence (CVP) model as 

proposed in Wang and Yang (2017), which captures the long memory in volatility 

while controlling for conditional variables. Specifically, I estimate a new empirical 

model of the expected volatility persistence conditional on a set of observed 

variables (i.e., return, volatility, and other proxy measures of trading activity), then 

I calibrate and examine the volatility forecasting performance based on 

conditional volatility persistence.  

Namely, following Wang and Yang (2017) who attribute the time-varying volatility 

persistence to the changing states of the market as captured by daily return and 

volatility, I incorporate conditional volatility persistence into the HAR model 

similarly. Here, considering that the negative returns are generally associated with 

greater volatility than positive returns within a wide range of finance markets 

(Patton and Sheppard, 2015; Wang and Yang, 2017), I decompose the exchange 

rate returns into positive and negative returns, and examine their volatility 

impacts separately. Then the modified HAR model which incorporates the 

conditional volatility persistence can be written as follows: 

 

 

 

                                                            
37 Wang and Yang (2017) propose several dynamical mechanisms of volatility persistence, such as 
exogenous and endogenous information arrivals, the persistence of characteristics of price 
discovery, and uninformed trading, such as portfolio adjustments to lagged information shocks. 
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𝑅𝑉𝑖,𝑡+1 = 𝛼𝑖,𝑡+1 + 𝛽𝑖,𝑡
𝑒 𝑅𝑉𝑖,𝑡 + 𝛽𝑖,W𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀𝑅𝑉𝑖,𝑡,𝑀 

                                                             +𝜃𝑖,𝑡𝑟𝑖,𝑡 + 𝜃𝑖,𝑊𝑟𝑖,𝑡,𝑊 + 𝜃𝑖,𝑀𝑟𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+1                                  (4.4) 

where 𝛽𝑖,𝑡
𝑒 = 𝛽𝑖

0 + 𝛽𝑖
−𝑟𝑖,𝑡

− + 𝛽𝑖
+𝑟𝑖,𝑡

+ + 𝛽𝑖
𝑅𝑉𝑅𝑉𝑖,𝑡  is called the conditional volatility 

persistence (CVP) as defined earlier. The weekly and monthly realized variance are 

calculated as RVi,t,W =
1

4
∑ RVi,t−k

5
k=2 and RVi,t,M =

1

17
∑ RVi,t−k

22
k=6  respectively. 

ri,t,W  and ri,t,M  are weekly and monthly return, which are defined similarly and 

utilized to capture the heterogeneous return impacts. 

By incorporating time-varying conditional volatility persistence into the HAR 

model, I can examine the dynamic “leverage effect” while capturing long memory 

in volatility (Wang and Yang, 2017). In Table 4.4, I find that the proposed CVP 

model reduces the sizes of all coefficients in HAR model, therefore, reducing the 

estimated long-run dependence of volatility as documented earlier. While not 

reported here, the Wald-statistics resoundingly reject the null hypothesis of 𝛽− =

𝛽+ = 𝛽𝑅𝑉 = 0; both the adjusted R-squared and information criteria (i.e., AIC and 

BIC) are in favour of the conditional HAR model, namely, the CVP model, over the 

regular one. While the stylized facts on the asymmetric effects are well-

documented in the equity market, the relevant studies present mixed results in 

the foreign exchange market. The results presented in Table 4.4 suggest that there 

is mixed evidence on asymmetric effects in the FX market, i.e. the volatility impact 

of negative return is stronger than that of positive return for AUD, GBP, and JPY, 

while for EUR, it responds more strongly to past positive shocks.38   

 

 

                                                            
38 As stated earlier in Section 4.3.2, similar results have been documented in Wang and Yang (2009). 
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Table 4.4: Conditional Volatility Persistence (CVP) Model 

This table reports the daily persistence coefficients of the following model: 

𝑅𝑉𝑖,𝑡+1 = 𝛼𝑖,𝑡+1 + (𝛽𝑖
0 + 𝛽𝑖

−𝑟𝑖,𝑡
− + 𝛽𝑖

+𝑟𝑖,𝑡
+ + 𝛽𝑖

𝑅𝑉𝑅𝑉𝑖,𝑡)𝑅𝑉𝑖,𝑡 + 𝛽𝑖,W𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀𝑅𝑉𝑖,𝑡,𝑀 + 𝜃𝑖,𝑡𝑟𝑖,𝑡 + 𝜃𝑖,𝑊𝑟𝑖,𝑡,𝑊 + 𝜃𝑖,𝑀𝑟𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+1 

The t-statistics are based on the Newey–West robust covariance with automatic lag selection using Bartlett kernel. The asterisks ***, **, * indicate significance 

at 1%, 5%, and 10% respectively.   

 β0 β− β+ βRV βRV,W βRV,M θr θr,W θr,M R̅2 

AUD 
.3162*** -.0676*** .0248* -.0183** .3014*** .2546*** -.0795*** -.0900*** -.0781 

.7606 
(6.83) (-4.53) (1.65) (-2.36) (5.16) (6.43) (-5.59) (-2.68) (-1.38) 

GBP 
.3137*** -.0603*** .0237 -.0205 .3223*** .2770*** -.0142 -.0324** -.0451 

.7851 
(5.92) (-2.91) (1.13) (-1.49) (7.49) (6.31) (-1.39) (-1.95) (-1.46) 

EUR 
.3208*** -.0574 .1329*** -.0220** .3134*** .3565*** -.0987** -.0376 -.0833** 

.5890 
(4.13) (-1.60) (3.23) (-2.35) (4.70) (5.22) (-2.52) (-0.54) (-2.54) 

JPY 
.2114*** -.0837* .0405 -.0173*** .1971*** .3257*** -.2788*** -.2642* .0477 

.2998 
(5.29) (-1.94) (0.73) (-2.80) (3.14) (4.60) (-3.05) (-1.80) (-0.16) 
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For robustness check, I divide the sample into three sub-periods (i.e. 1999/2000 – 

2006, 2007 – 2009, and 2010 – 2013) and report the relevant results in Appendix 

H. Interestingly, the CVP model achieves the highest adjusted-R2 during the 

financial crisis period (i.e., 2007 to 2009) which is probably because negative 

returns would be most helpful for explaining the conditional volatility persistence 

during volatile periods and the model which incorporates this feature will 

significantly improve estimation performance. Generally, the coefficients of 

negative returns are comparable to or larger than those of positive returns in all 

sub-periods for AUD, GBP, and JPY, while for EUR, the coefficients of the positive 

returns appear significantly larger than those of negative returns. Besides, the 

coefficients of RV are negatively significant in most sub-periods, suggesting a 

reduction in volatility persistence on days of extreme volatility. 

4.3.3.1. Characteristics of the estimated CVP 

In this section, I calculate the daily CVP of market i as 𝐶𝑉𝑃̂𝑖,𝑡 = 𝛽𝑖
0̂ + 𝛽𝑖

−̂𝑟𝑖,𝑡
− +

𝛽𝑖
+̂𝑟𝑖,𝑡

+ + 𝛽𝑖
𝑅𝑉̂𝑅𝑉𝑖,𝑡. Figure 4.2 depicts the time series of the estimated daily CVP.  As 

we can see, the CVP ranges from 0.1 to 0.8, suggesting large variations in volatility 

persistence. It is particularly high during the height of the financial crisis in October 

2008 due to large and mostly negative daily returns. Table 4.5 reports the 

summary statistics of the estimated daily CVP.  The mean values are statistically 

significantly different from zero at 1% level. Medians are below the means, 

indicating some large CVP values. The distribution of CVP is skewed to the right as 

the skewness is positive, except for JPY. Although the coefficient of RV is negative 

(i.e., β𝑅𝑉 < 0), the correlations between CVP and RV measures are significantly 

positive which is consistent with the findings of Ning, Xu and Wirjanto (2015). This 

is due to negative correlations between CVP and the return and negative 

correlations between the return and RV. Besides, Ljung-Box statistics indicate that 

CVP is autocorrelated to some extent.  
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Figure 4.2: Estimated Daily CVP for AUD, GBP, EUR, and JPY 

Table 4.5: Characteristics of the Estimated CVP 

This table reports summary statistics of the estimated CVP and its correlations with Return and RV. 

Specifically, I estimate the equation as shown in Table 4.4. Then I calculate the estimated CVP as 

𝐶𝑉𝑃̂𝑡 = 𝛽0 + 𝛽−𝑟𝑡
− + 𝛽+𝑟𝑡

+ + 𝛽𝑅𝑉𝑅𝑉𝑡, The asterisks ***, **, * indicate significance at 1%, 5%, 

and 10% level respectively.  

 Summary Statistics Correlations 

 Mean Median Std. Dev. Skew Kurt Min Max QLB(5) Return 𝑅𝑉 

AUD .4068 .4002 .0281 2.588 18.34 .3004 .7862 16.60* -.071* .127*** 

GBP .3825 .3780 .0173 1.877 7.140 .3249 .5332 10.83* -.079* .272*** 

EUR .3512 .3342 .0510 .8322 3.839 .1444 .6866 87.81*** -.053* .122*** 

JPY .4375 .4411 .0459 -3.24 18.29 .1099 .6303 169.9*** -.012 .223*** 
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To further examine return impacts on future volatility, I utilize the Shapley-Owen 

R2 decomposition technique. Namely, the Shapley-Owen R2 measure of regressors 

is the average incremental improvement in R-squared for each regressor (or 

coalition) over all possible permutations of regressors or coalitions of regressors 

(Lahaye and Neely, 2016). Table 4.6 shows that the Shapley-Owen R2 of RV𝑡 in the 

CVP model is lower by around 30% on average than that in the HAR model.39 In 

other words, roughly 30% of the explanatory power of RV𝑡  in the HAR model 

comes from the omitted CVP variables.  Furthermore, the Shapley value in the last 

column of Table 4.6 suggests that the CVP explains 20% - 30% of the total 

variations in future volatility. Overall, Table 4.6 shows that the CVP is the dominant 

channel linking market conditions to future volatility. Unsurprisingly, Wang and 

Yang (2017) apply the CVP model to the US stock markets and obtain similar results. 

Table 4.6: Shapley-Owen Values of Explanatory Variables in HAR and CVP Models 

This table reports the Shapley-Owen decomposition of regression R2. CVP𝑡 includes r𝑡
−RV𝑡, r𝑡

+RV𝑡 ,  

and RV𝑡
2. Δ% is the percentage change of the contribution in the HAR-CVP model in Table 4.4 

relative to the contribution in the baseline HAR model in Table 4.2.    

 RV𝑡 CVP𝑡 
RV𝑡,𝑊

+ 𝑅𝑉𝑡,𝑀 
𝑟𝑡,𝑊 + 𝑟𝑡,𝑀 R2 CVP𝑡/R2 

AUD       

HAR 0.238  0.422 0.027 0.697  

CVP 0.156 0.205 0.313 0.018 0.761 29.21% 

∆% -34.35%      

GBP       

HAR 0.258  0.494 0.012 0.754  

CVP 0.170 0.230 0.355 0.008 0.785 30.08% 

∆% -34.24%      

EUR       

HAR 0.157  0.361 0.004 0.524  

CVP 0.109 0.132 0.291 0.004 0.589 24.61% 

∆% -30.85%      

JPY       

HAR 0.087  0.193 0.005 0.292  

CVP 0.065 0.059 0.168 0.004 0.301 19.43% 

∆% -25.35%      

 

 

                                                            
39 Corsi and Reno (2012) demonstrate that the return impact on future volatility is also highly 
persistent and propose a HAR structure for returns to capture their heterogeneous effects. 
Accordingly, in Table 4.7, the lagged weekly (r𝑖,𝑡,𝑊) and monthly (r𝑖,𝑡,𝑀) returns are added to the 

benchmark HAR model, which are similarly defined as RV𝑖,𝑡,𝑊 and RV𝑖,𝑡,𝑀 in Section 4.3.1. 
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4.3.3.2. Additional conditioning variables 

Furthermore, I attempt to test if adding trading activities as proxies for private 

information to the empirical volatility specification reduces the persistence of past 

volatility, then it may be reasonable to assume that the volatility clustering 

phenomena are related to trading activities. This section presents a simple 

empirical investigation where volatility persistence is regressed on exchange rate 

returns, volatility, and other additional variables. Namely, in addition to return and 

RV, I examine whether daily volatility persistence is affected by other conditioning 

variables, including Amihud’s illiquidity measure (IL), number of trades (NT), and 

order imbalance (OI). The constructions and statistical descriptions of these 

variables are given in Section 3.6.1. of Chapter 3 and Table 4.1 respectively. Let Yt 

be one of these variables on day t. To assess the impacts of these variables on 

volatility persistence, I extend the model in Eq. (4.4) to include Yt and its 

interaction with RVt.40  

Table 4.7 reports the impacts of the additional conditioning variables. Even though 

I find that the realized volatility is highly contemporaneously correlated with the 

number of trades, illiquidity, and the order imbalance as shown in Panel B of Table 

4.1, which is consistent with the Mixture of Distribution Hypothesis (MDH) theory 

suggesting that a latent information variable causes variabilities in trading 

activities and volatility simultaneously, none of the additional conditioning 

variable has a consistently significant impact on volatility persistence after the 

seasonal adjustments. For example, volume, illiquidity, and order flow have no 

consistently positive and significant effect on volatility persistence in the CVP 

model, and the significant effects of return and RV as shown in Table 4.7 remain 

intact.  

 

 

 

                                                            
40 To adjust for seasonality, I regress the market state variables on their own lagged values, time 
dummies (i.e., weekdays and months), linear and quadratic time trends, and then use the residuals 
as the seasonally-adjusted series in the following regressions. 
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Table 4.7: CVP Model with Additional Conditioning Variables 

This table reports the daily persistence coefficients of the following model: 

𝑅𝑉𝑖,𝑡+1 = 𝛼𝑖,𝑡+1 + (𝛽𝑖
0 + 𝛽𝑖

−𝑟𝑖,𝑡
− + 𝛽𝑖

+𝑟𝑖,𝑡
+ + 𝛽𝑖

𝑅𝑉𝑅𝑉𝑖,𝑡 + 𝛽𝑖
𝑌𝑌𝑖,𝑡)𝑅𝑉𝑖,𝑡 + 𝛽𝑖,W𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀𝑅𝑉𝑖,𝑡,𝑀

+ 𝜃𝑖,𝑡𝑟𝑖,𝑡 + 𝜃𝑖,𝑊𝑟𝑖,𝑡,𝑊 + 𝜃𝑖,𝑀𝑟𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+1 

where 𝑌𝑖,𝑡 denotes additional conditioning variables, including Amihud (2002)’s illiquidity measure 

(IL), the number of trades (NT), and order imbalance (OI). All the market state variables are 

detrended, namely, I regress the time series of market state variables on their own lagged values, 

weekday and month dummies, linear and quadratic time trends, and then define the residuals as the 

corresponding detrended data. The t-statistics are based on the Newey–West robust covariance with 

automatic lag selection using Bartlett kernel. The asterisks ***, **, * indicate significance at 1%, 

5%, and 10% respectively.  

 𝛽0 𝛽− 𝛽+ 𝛽𝑅𝑉 𝛽𝑂𝐼 𝛽𝑁𝑇 𝛽𝐼𝐿 𝑅̅2 

AUD 

        

.3780*** -.0466* .0797** -.0153 -.1514   
.7594 

(6.50) (-1.74) (2.02) (-1.60) (-1.56)   

.2106*** -.0595** .0551 -.0186**  .0142*  
.7594 

(3.05) (-2.02) (1.56) (-2.06)  (1.70)  

.3476*** -.0352*** .0472*** -.0229*   .0063 
.7640 

(7.01) (-2.25) (3.13) (-1.65)   (0.41) 

GBP 

        

.3355*** -.0327 .0752 -.0024 -.1363*   
.7600 

(5.58) (-0.70) (1.41) (-0.24) (-1.75)   

.2115** -.0519 .0375 -.0032  .0192**  
.7645 

(2.26) (-1.33) (0.85) (-0.29)  (2.49)  

.2730*** -.0652*** .0602** -.0076   .0203 
.7853 

(5.49) (-2.87) (2.50) (-0.34)   (0.56) 

EUR 

        

.3780*** -.0466* .0797** -.0153 -.2514***   
.4212 

(6.50) (-1.74) (2.02) (-1.60) (-3.56)   

.2106*** -.0595** .0551 -.0186**  .0142*  
.4987 

(3.05) (-2.02) (1.56) (-2.06)  (1.70)  

.3065*** -.0661* .1706*** -.0301***   .0114 
.5915 

(4.06) (-1.69) (6.24) (-2.62)   (1.40) 

JPY 

        

.3355*** -.0327 .0752 -.0024 -.1363*   
.1898 

(5.58) (-0.70) (1.41) (-0.24) (-1.75)   

.2115** -.0519 .0375 -.0032  .0018  
.2133 

(2.26) (-1.33) (0.85) (-0.29)  (0.49)  

.2730*** -.0652*** .0602** -.0076   .0203 
.2034 

(5.49) (-2.87) (2.50) (-0.34)   (0.56) 
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4.3.4. Economic Value of Volatility Timing  

In this section, I estimate the economic benefits of volatility forecasting models 

using a number of evaluation metrics. First, in terms of economic gains, I compute 

the realized utility that a given volatility model generates over that from the static 

one. Namely, the main purpose is to estimate the fee that an investor would be 

willing to pay for switching from a static risk model. Second, I examine the ex-post 

performance of optimal portfolio with predictive volatility (i.e. average portfolio 

returns, volatility, and the Sharpe ratio). If the dynamic volatility models generate 

more accurate volatility forecasts, then the investor would gain from dynamically 

rebalancing the optimal portfolio based on the signal of the predicted volatility. 

To compare the realized utility across risk models, I consider the simplest possible 

utility-based framework, namely, an investor with mean-variance preferences 

investing in an asset with time-varying volatility and a constant Sharpe ratio.41 

The major advantages of this “realized utility” approach lie in the fact that by 

assuming a constant Sharpe ratio, I don’t have to predict future exchange rate 

movements, which is difficult if possible at all, given the fact that exchange rates 

generally follow a random walk process (Meese and Rogoff, 1983). Furthermore, 

the “realized utility” approach is based on the daily estimates of volatility and is 

very easy to implement. Last but not least, this non-parametric approach also 

mitigates the impact of estimation risk or parameter learning which would 

probably lead to misleading allocations. 

To empirically conduct the economic evaluations of volatility forecasting models, 

I consider a risk-averse investor with mean-variance preferences, who allocates 

her wealth into one risky asset (i.e., a single currency pair) and one risk-free asset 

(i.e. the US treasury bond). The specification of one risk asset in the portfolio is 

similar to Nolte and Xu (2005) and Bollerslev et al. (2017), which avoids covariance 

forecasting in multivariate settings and controls for information spillovers across 

                                                            
41 However, as explained in Bollerslev et al. (2017), the same setup readily extends to allow for 
time-varying Sharpe ratios as long as the temporal variation of Sharpe ratio is independent of the 
conditional risk. 
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different assets. The economic explanation behind this strategy is intuitive: given 

the expected return, when the volatility level is high (low), the investor allocates 

less (more) wealth into the risky asset and yields higher risk-adjusted return. If 

taking account of the conditional volatility persistence leads to more accurate 

volatility forecasting, then the investor would improve her portfolio performance 

by dynamically rebalancing the portfolio based on the signal of the predicted 

volatility. Different from existing studies which compare dynamic and static 

strategies (Fleming et al., 2001), dynamic strategies based on returns sampled at 

high frequency and daily frequency (Fleming et al., 2003), dynamic strategies 

utilizing the conventional realized variance and jump-robust realized variance 

measures (Nolte and Xu, 2015), the analysis in this chapter compares the 

performances of variants of HAR models all of which use high frequency 

information and build upon dynamic structure. Generally, this study is closely 

related to Bollerslev et al. (2017) which compares multiple RV-based HAR models. 

However, I confirm that the CVP model, which explicitly links market conditions to 

future volatility persistence, beats other RV-based HAR models in terms of 

statistical significance and economic value.  

Namely, I consider an investor with mean-variance preferences that trades a risky 

asset with a constant Sharpe ratio, so the investor’s optimal portfolio naturally 

adjusts the position size to keep a constant volatility (which will also depend on 

the investor’s risk aversion). For concreteness and simplicity, I take the Sharpe 

ratio to be SR = 0.3 and the risk aversion to be γ = 3, which results in a specified 

target volatility of 0.1 or 10%.42 Hence, risk models that help the investor achieve 

more accurate forecasts of future volatilities are associated with higher levels of 

utility. Here, I empirically evaluate the average realized utility per unit of wealth 

(UoW) for each risk model by summing the corresponding realized expressions 

                                                            
42 In fact, the number of 10% volatility level is in the right ballpark for many target volatility funds, 
according to Bollerslev et al. (2017). 
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over the same rolling out-of-sample forecasts (For short, we can simply call this 

the “realized utility” as in Bollerslev et al. (2017).): 43  

                                          𝑈𝑜𝑊𝜃 =
1

𝑇
∑ (3%

√𝑅𝑉𝑡+1

√𝐸𝑡
𝜃(𝑅𝑉𝑡+1)

− 1.5%
𝑅𝑉𝑡+1

𝐸𝑡
𝜃(𝑅𝑉𝑡+1)

)𝑇
𝑡=1                                     (4.5) 

where 𝑅𝑉𝑡+1 and 𝐸𝑡(𝑅𝑉𝑡+1) are the observed and predicted realized variance on 

day t+1 respectively. Mathematically, a perfect risk prediction model would lead 

to 1.50% utility according to Eq. (4.5). The realized utility obviously depends on 

the specific risk model 𝜃, since each risk model gives rise to different predictions 

𝐸𝑡
𝜃(𝑅𝑉𝑡+1), therefore leading to different position sizes. Since the expected return 

has been substituted, this measure of realized utility only depends on each risk 

model’s ability to correctly target volatility. Importantly, this approach eliminates 

the noise from random return realizations, allowing us to meaningfully compare 

different risk models based only on the actual realized volatilities for different 

assets (Bollerslev et al., 2017). 

4.4. Empirical Results 

4.4.1. Out-of-sample Forecasting Performance 

I firstly estimate the model parameters using the first 5 years of observations as 

the in-sample period, and then use the rest of the sample as the out-of-sample 

period. All of the forecasts are generated using rolling WLS regressions and 

parameter estimates are updated daily. Namely, forecasts are based on 5-year 

rolling windows, starting from January 1999 for AUD, GBP, and JPY, while from 

January 2000 for EUR, resulting in more than 2,000 daily observations as the 

forecasting subsample. No restrictions on the parameters are imposed and 

therefore forecasts are occasionally negative. 44  Forecasting performance is 

evaluated based on two loss functions: the quasi-likelihood function 

QLIKE(RV𝑡 , RV̂𝑡) =
RV𝑡

RV̂𝑡
− ln (

RV𝑡

RV̂𝑡
) − 1 and the logarithmic mean-squared errors 

                                                            
43 For a more detailed introduction to the derivation of the expression of average realized utility 
per unit of wealth (UoW), please refer to Section 6 of quantifying the utility benefit of risk models 
in Bollerslev et al. (2017).  
44 Following Wang and Yang (2017), an “insanity filter” is used to replace a negative RV forecast 
with the lowest RV in the rolling window. 
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LMSE(RV𝑡 , RV̂𝑡) = (ln(RV𝑡) − ln (RV̂𝑡))2 , where RV̂𝑡  is the forecasted value of 

RV𝑡 . Patton (2012) shows that QLIKE is robust to the noise in the empirical 

volatility measures, and Patton and Sheppard (2009) suggest that QLIKE has the 

best size-adjusted power among robust loss functions. The usual mean-squared 

error (MSE) is often affected by a few extreme observations. Therefore, I use the 

logarithmic MSE to mitigate this problem. Furthermore, forecast performance is 

examined by the Diebold-Mariano (1995)’s test of equal forecast accuracy. 

Specifically, taking the HAR model as the benchmark, a negative DM statistic 

indicates a reduction in loss value by other volatility models relative to HAR. While 

HAR is nested in CVP model, Giacomini and White (2006) show that the DM test 

remains asymptotically valid when the estimation period is finite. 

To compare the performance of volatility models and provide further evidence on 

the importance of the conditional volatility persistence, I compare the pseudo out-

of-sample volatility forecasts based on the benchmark HAR model (HAR) against 

those based on the semi-variance HAR (SHAR) and conditional HAR model (CVP). 

In volatility forecasts, model parameters are estimated using a rolling window. 

Therefore, even in models with constant volatility persistence, the coefficient of 

persistence is re-estimated every day. If the dynamic volatility persistence indeed 

varies with return and volatility as suggested in the preceding analysis, the CVP 

model should achieve superior out-of-sample forecasting performance and 

therefore lead to significant economic gains. Table 4.8 provides a summary of 

QLIKE and LMSE values. For both loss functions, CVP has the lowest mean and 

median loss values, and the reduction in loss value of CVP is substantial for most 

currencies as suggested by the DM tests. Besides, SHAR has relatively lower values 

of loss functions compared to benchmark HAR model, which justify the usage of 

asymmetric volatility models in the FX market.  
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Table 4.8: Forecasting Performance Evaluation  

This table reports the average, median, and standard deviation of the loss functions QLIKE and 

LMSE for the HAR model, the semi-variance HAR model (SHAR), and the conditional HAR model 

(CVP) using the exchange rates of AUD, GBP, EUR, and JPY, all against USD. DM stat is the 

Diebold-Mariano (1995)’s test for the equality of forecast accuracy of two forecasts. Here, taking 

the HAR model as the benchmark, a negative DM statistic indicates a reduction in loss value relative 

to HAR.  

 HAR SHAR CVP 

 QLIKE LMSE QLIKE LMSE QLIKE LMSE 

AUD       

Average 0.2129 0.1243 0.2111 0.1234 0.2083 0.1222 

Median 0.0779 0.0395 0.0768 0.0390 0.0752 0.0382 

St Dev 0.4127 0.3302 0.4092 0.3256 0.4040 0.3188 

DM Stat  0 0 -4.33*** -3.18*** -8.26*** -4.13*** 

GBP       

Average 0.1478 0.0804 0.1458 0.0801 0.1429 0.0800 

Median 0.0597 0.0159 0.0568 0.0147 0.0525 0.0128 

St Dev 0.2147 0.2302 0.2104 0.2288 0.2040 0.2266 

DM Stat 0 0 -1.77* -1.72* -1.82* -1.83* 

EUR       

Average 0.5392 0.3491 0.5206 0.3345 0.4920 0.3210 

Median 0.2402 0.1415 0.2385 0.1265 0.2179 0.1140 

St Dev 0.7997 0.7411 0.7937 0.7310 0.8088 0.7562 

DM Stat 0 0 -1.78* -1.56 -2.78** -1.76* 

JPY       

Average 1.0115 0.8968 0.9633 0.8724 0.9922 0.8359 

Median 0.4907 0.2671 0.4561 0.2582 0.4769 0.2449 

St Dev 1.4504 2.2453 1.4449 2.2385 1.4482 2.2282 

DM Stat 0 0 -1.62* -1.48 -1.54 -1.66* 
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4.4.2. Realized Utility of Volatility Timing  

Firstly, I investigate the utility benefits of the different risk models in the absence 

of transaction costs by calculating the realized utilities as given directly by Eq. (3.5). 

I then incorporate reasonable transaction cost estimates into the analysis, along 

with noise-robust realized variance measures in the robustness analysis section. 

The results rely on the same rolling estimates for the different risk models 

underlying the daily predictive out-of-sample forecasts. For comparison purposes, 

I also include the results for additional simple benchmark models. 

Specifically, the first column on the top of Table 4.9 (i.e., the full sample) reports 

the realized utilities from using static risk models, namely, the in-sample mean of 

volatility. Doing so achieves a realized utility of 0.75% on average across all 

currencies, half the 1.50% maximum utility for the perfectly targeted daily 

positions. Meanwhile, as the second column shows, even a simple dynamic risk 

targeting strategy based on the 21-day rolling average of realized variance 

generates quite substantial gains vis-à-vis the static position reported in the first 

column. The third to fifth columns report the realized utilities obtained from using 

the predicted realized variances based on classic HAR model, semi-variance HAR 

(SHAR) model, and conditional HAR (CVP) model respectively. As previously noted, 

perfectly targeting the daily volatility would result in a realized utility of 1.50%. By 

comparison, a risk model that takes the conditional volatility persistence into 

account would result in an average realized utility of 1.26%. This latter number, of 

course, is quite close to the utilities obtained from each of the practically feasible 

RV-based risk models. 
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Table 4.9: Realized Utility for Volatility Targeted Positions 

This table reports average utilities of holding a volatility-targeted asset, where dynamics positions 

are based on volatility predictions from various risk models. Simple Average, Moving Average, 

HAR, SHAR, and CVP stands for in-sample average volatility, expanding mean volatility (i.e., 

simple moving average with a rolling 21-day window), heterogeneous autoregressive model, semi-

variance heterogeneous autoregressive model, and conditional volatility persistence model 

respectively. GFC stands for the global financial crisis period of July 1, 2008 to June 30, 2009. Here 

I assume zero transactions costs for all utility calculations, and all assets trade completely to their 

target positions at the end of each trading day. 

 Simple 

Average 

Moving 

Average 
HAR SHAR CVP 

Full Sample      

AUD 0.7593% 1.1052% 1.2278% 1.2292% 1.2307% 

GBP 0.7965% 1.1590% 1.2473% 1.2477% 1.2483% 

EUR 0.7554% 1.0994% 1.2761% 1.2763% 1.3337% 

JPY 0.6890% 1.0028% 1.2122% 1.2234% 1.2241% 

Average 0.7521% 1.0916% 1.2409% 1.2442% 1.2592% 

GFC      

AUD 0.2024% 0.4145% 1.2310% 1.2368% 1.4398% 

GBP 0.2313% 0.4736% 1.2521% 1.2563% 1.4578% 

EUR 0.2439% 0.4994% 1.1649% 1.1667% 1.1720% 

JPY 0.2024% 0.4144% 1.4368% 1.4377% 1.4398% 

Average 0.2212% 0.4505% 1.2712% 1.2744% 1.3774% 

To put these numbers further in perspective, consider the 1.26% utility of the 

conditional volatility persistence (CVP) model relative to the 0.75% utility of the 

static risk model. These two numbers imply that the risk-targeting investor would 

give up 0.51% of wealth annually to use the CVP model rather than a static risk 

model. This shows the non-trivial importance of risk modelling more generally. It 

also illustrates that the value of a good risk model can account for a substantial 

fraction of typical asset management fees. 

Furthermore, I conduct a subperiod analysis to examine whether the CVP 

performs better during the high volatile periods (i.e. the GFC period). Namely, I 

investigate whether the relative performance of the CVP model improves or 

deteriorates under extreme market conditions. Then I calculate the values of 

realized utility for the GFC period and compare economic performances under 

different market conditions. The bottom panel of Table 4.9 reports the realized 
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utility during the global financial crisis period of July 1, 2008 to June 30, 2009. 

Consistent with the results as shown in the top panel of Table 4.9, the CVP model 

leads to the largest realized utility for all currencies during the GFC period. 

However, the static risk models (i.e., in-sample average and simple moving 

average of historical volatility) generate significantly smaller utility during the GFC 

period, while the dynamic volatility models, particularly the CVP model, perform 

better under stressed market environments. The average increase in the realized 

utility for the CVP model is around 0.12% (i.e., from 1.26% to 1.38%), which is quite 

large relatively to the benchmark HAR model (e.g., from 1.24% to 1.27%), 

suggesting that the CVP achieves significantly better performance under extreme 

market conditions. Besides, the CVP still outperforms the HAR and SHAR models 

during the GFC period and the improved performance of the CVP model highlights 

the benefits of using market conditions to calibrate volatility prediction during 

high volatile periods. 

The 0.51% utility gain for the CVP model is obtained under the assumption of a 

Sharpe ratio of 0.3 and a risk aversion coefficient of 3, or equivalently an optimal 

risk target of 10% together with a Sharpe ratio of 0.3. Furthermore, Table 4.10 

reports the utility gains of the CVP model that would result in under alternative 

assumptions. Clearly, the utility benefits of the CVP model are substantially larger 

if the SR and/or risk target are bigger. For instance, if the SR is 0.4 and the 

annualized risk target is 15% (corresponding to a risk aversion of 2.7), then the 

utility benefits increase to 1.01% per year. 
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Table 4.10: Utility Benefits of CVP Model Relative to Static Risk Model 

This table shows the average utility benefit of positions based on fitted values from the CVP model 

relative to a static volatility model (i.e., in-sample average volatility) as the assumed Sharpe ratio 

and optimal risk target vary. I assume zero transactions costs for all utility calculations, and all assets 

trade completely to their target positions at the close of each business day. 

  Risk Target 

  5% 10% 15% 20% 25% 

Annualized 

Sharpe  

Ratio 

0.1 0.08% 0.17% 0.25% 0.34% 0.42% 

0.2 0.17% 0.34% 0.51% 0.68% 0.85% 

0.3 0.25% 0.51% 0.76% 1.01% 1.27% 

0.4 0.34% 0.68% 1.01% 1.35% 1.69% 

0.5 0.42% 0.85% 1.27% 1.69% 2.11% 

0.6 0.51% 1.01% 1.52% 2.03% 2.54% 

0.7 0.59% 1.18% 1.77% 2.37% 2.96% 

0.8 0.68% 1.35% 2.03% 2.70% 3.38% 

However, the previous comparisons ignore the trading cost of implementing the 

strategy based on predictions from the different risk models. In practice, of course, 

trading is costly. Since the realized utility in Eq. (4.5) is effectively expressed in 

units of returns, it is easy to incorporate the effect of transaction costs by simply 

subtracting the simulated costs of implementing the different risk models. For 

simplicity, I will assume that the costs of trading are linear in the absolute 

magnitude of the change in the positions, |𝑥𝑡
𝜃 − 𝑥𝑡−1

𝜃 |. I use the median spread for 

each of the currencies over the last six months of the forecasting period as the 

benchmark estimate for the cost of trading. However, I also consider both lower 

(one-half times the typical spreads) and higher (two-and-a-half times the typical 

spreads) transaction costs. The resulting realized utilities net of costs are reported 

in Table 4.11. All of the utilities (aside from the utilities for the constant positions 

based on the static risk model in the first column) are obviously lower than the 

corresponding numbers reported under the previous zero-cost assumption. 

Explicitly incorporating transaction costs also tends to slightly magnify the utility 

differences among the different risk models, and more so the higher the 

transaction costs. 

Interestingly, the conditional volatility persistence (CVP) volatility model reported 

in the last column is now quite inferior and far from the 1.50% maximum utility, 



131 
 

particularly when the transaction cost is 5 times half-spread, as the costs of (too 

much) trading far outstrip the benefits. At a more general level, this highlights the 

trade-off that exists between a more accurate risk model and the cost associated 

with the implementation of such a model. It also indirectly suggests that faced 

with high(er) transaction costs it may be better to not trade all the way to the 

target, but instead only adjust the positions partially.  

Table 4.11: Realized Utility for Volatility Targeted Positions with Transaction Costs 

This table reports average utilities of holding a volatility-targeted asset, where dynamics positions 

are based on volatility predictions from various risk models. Simple Average, HAR, SHAR, and 

CVP stands for in-sample average volatility, heterogeneous autoregressive model, semi-variance 

heterogeneous autoregressive model, and conditional volatility persistence model respectively. 

Transactions costs are 1, 2, or 5 times the median of half-spread over the last six months of the 

forecasting period for each currency. 

  Simple Average HAR SHAR CVP 

AUD 

1*Half-Spread 0.7593% 1.1783% 1.1785% 1.1873% 

2*Half-Spread 0.7593% 1.1157% 1.1128% 1.1154% 

5*Half-Spread 0.7593% 0.9279% 0.9157% 0.8997% 

GBP 

1*Half-Spread 0.7965% 1.1939% 1.1925% 1.2033% 

2*Half-Spread 0.7965% 1.1405% 1.1373% 1.1482% 

5*Half-Spread 0.7965% 0.9803% 0.9717% 0.9831% 

EUR 

1*Half-Spread 0.7554% 1.2065% 1.2036% 1.2045% 

2*Half-Spread 0.7554% 1.1370% 1.1311% 1.1353% 

5*Half-Spread 0.7554% 0.9285% 0.9138% 0.9178% 

JPY 

1*Half-Spread 0.6890% 1.1311% 1.1300% 1.1312% 

2*Half-Spread 0.6890% 1.0528% 1.0533% 1.0687% 

5*Half-Spread 0.6890% 0.8133% 0.8078% 0.8983% 

Average 

1*Half-Spread 0.7501% 1.1775% 1.1762% 1.1816% 

2*Half-Spread 0.7501% 1.1115% 1.1086% 1.1169% 

5*Half-Spread 0.7501% 0.9125% 0.9023% 0.9247% 

4.4.3. Alternative Measure of Economic Gains of Volatility Timing 

Around 0.51% annualized average performance fee looks small in magnitude, and 

I therefore assess the statistical significance of the economic value generated. In 

this section, I utilize the volatility targeting strategy, which dynamically rebalances 

the portfolio daily based on the one-day ahead prediction of realized variance, to 
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construct a portfolio with a target annualized volatility of 10%.45 This increasingly 

popular strategy simply utilizes dynamic asset allocation by selling (buying) assets 

when their risk-adjusted expected return is falling (rising), while their volatility is 

rising (falling), and thereby investors can increase risk-adjusted returns and 

smooth the overall volatility profile of the allocation by maintaining a targeted 

level of risk. Then I perform a simple backtesting analysis and report the portfolio 

return, volatility, and the Sharpe ratio to examine the ex-post portfolio 

performances of volatility targeting strategies based on various risk models. 46 

Namely, for each currency, I calculate the annualized mean realized return μ, the 

annualized standard deviation σ, and the realized Sharpe ratio SR in Table 4.12. 

The sample period is January 3, 2008 through December 31, 2013. Averaging 

across the currencies, the static strategy (i.e., the strategy without volatility timing) 

produces a mean Sharpe ratio of 0.83, compared to 1.13, 1.12, and 1.23 for the 

dynamic volatility targeting strategies using HAR, SHAR, and CVP model 

respectively. Although these differences do not seem large, they can translate into 

sizable performance fees (Fleming et al., 2001). Overall, the CVP model can 

achieve superior performance relative to other dynamic volatility models in terms 

of forecasting performance and economic value. Besides, during the GFC period, 

the CVP model achieves a Sharpe ratio as high as 1.55, which significantly 

outperforms its counterparts and proves to be an essential risk management tool 

to deliver sizable profits.  

 

 

 

                                                            
45 I also calculate the Sharpe ratio under the assumption of the target annualized volatility ranging 
from 5% to 30%. The empirical results suggest that the CVP model achieves the highest Sharpe 
ratio, followed by SHAR and HAR model, under all possible scenarios.  
46 The Sharpe ratio, a measure of the expected return per unit of risk, was originally proposed to 
measure the performance of mutual funds by William Sharpe (Sharpe, 1966). Since then, it has 
been extensively applied in financial practices to evaluate the investment performance due to its 
simplicity and popularity. 
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Table 4.12: Sharpe Ratios of Volatility Timing Strategy 

This table reports the mean realized return μ, standard deviation σ, and Sharpe ratio SR of various 

volatility models. Simple Average stands for the static portfolio without volatility timing, while 

HAR, SHAR, and CVP stands for dynamic portfolio rebalancing based on the one-day-ahead 

volatility forecasting using heterogeneous autoregressive model, semi-variance heterogeneous 

autoregressive model, and conditional volatility persistence model respectively. Here I assume zero 

transactions costs for all calculations, and all assets trade completely to their target positions at the 

end of each trading day.  

 No Volatility Timing Volatility Timing Strategy 

 

Simple Average HAR SHAR CVP 

μ σ SR μ σ SR μ σ SR μ σ SR 

AUD 1.166 0.935 1.247 1.271 0.849 1.497 1.271 0.851 1.494 1.290 0.825 1.564 

GBP 1.192 0.770 1.548 1.197 0.652 1.836 1.196 0.650 1.840 1.206 0.637 1.893 

EUR 1.613 2.705 0.596 1.615 1.902 0.849 1.613 1.903 0.848 1.632 1.945 0.839 

JPY 1.160 1.814 0.639 1.267 1.321 0.959 1.249 1.335 0.936 1.424 1.116 1.276 

Average 1.283 1.556 0.825 1.338 1.181 1.133 1.332 1.185 1.124 1.388 1.131 1.227 

The most important result in this section is that the volatility targeting strategy, 

based on conditional volatility persistence model, uniformly dominates the static 

strategy as well as dynamic strategies based on other volatility models. This is 

measured by the realized utility and out-of-sample returns to optimal portfolios 

and holds for a range of plausible risk aversions and are robust to market 

microstructure noise and transaction costs. 47  I am aware that a portfolio 

consisting of only one currency pair is unlikely to be a realistic portfolio managed 

by a currency manager, however, a larger portfolio would expand the opportunity 

set and likely perform much better (King, Sarno and Sojli, 2010). Hence, I can 

achieve the objective of measuring the economic value of the predictive content 

of conditional volatility persistence in the context of a single currency pair, which 

provides a plausible test of the volatility-timing ability of Conditional Volatility 

Persistence model. Furthermore, considering commonality in foreign exchange 

                                                            
47 Furthermore, I calculate the Information Ratio (IR) of optimal portfolios based on different risk 
models. The optimal portfolio based on the CVP model achieves the highest IR as well, particularly 
during the GFC period (i.e. July 2008 to June 2009). These results are not reported here for brevity, 
which are however available upon request. 



134 
 

volatility and liquidity, the generality of these empirical results can be grounded 

to a large extent.  

4.5. Robustness Analysis 

In this section, I conduct a robustness analysis to examine the relative 

performance of the CVP model by using noise-robust realized variance measures 

as suggested in Section 4.2.2. Namely, I re-estimate the variant HAR models and 

compare their performances by using the Two-scale Realized Variance (TSRV) 

estimator which proves to be an efficient and robust-sound realized variance 

measure. Interestingly, the results of the forecasting comparisons (i.e., the values 

of loss functions of QLIKE and LMSE) suggest that the CVP model can still generates 

better forecasting performance when using noise-robust variance measures.48 

Instead I report the realized utilities calculated when forecasting using TSRV as 

shown in Table 4.13. Interestingly, the results of economic gains are comparable 

to those calculated by using RV. Overall, I can conclude that the conditional 

volatility persistence which links market state variables to future volatility is 

helpful in explaining the asymmetry and long memory in volatility even after 

controlling for market microstructure noise. The model which incorporates the 

feature of conditional volatility persistence can outperform other dynamic 

volatility models with regard to forecasting performance and economic value.  

 

 

 

 

 

 

 

                                                            
48 For the sake of brevity, I do not present those results, which are available upon request. 
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Table 4.13: Realized Utility for Volatility Targeted Positions using TSRV 

This table reports average utilities of holding a volatility-targeted asset, where dynamics positions 

are based on volatility predictions from various risk models. Simple Average, Moving Average, 

HAR, SHAR, and CVP stands for in-sample average volatility, expanding mean volatility (i.e., 

simple moving average with a rolling 21-day window), heterogeneous autoregressive model, semi-

variance heterogeneous autoregressive model, and conditional volatility persistence model 

respectively. RV and TSRV stands for using the realized variance and two-scale realized variance 

respectively when estimating the RV-based HAR models. Here, I assume zero transactions costs for 

all utility calculations, and all assets trade completely to their target positions at the end of each 

trading day. 

 
Simple 

Average 

Moving 

Average 
HAR SHAR CVP 

RV      

AUD 0.7593% 1.1052% 1.2278% 1.2292% 1.2307% 

GBP 0.7965% 1.1590% 1.2473% 1.2477% 1.2483% 

EUR 0.7554% 1.0994% 1.2761% 1.2763% 1.3337% 

JPY 0.6890% 1.0028% 1.2122% 1.2234% 1.2241% 

Average 0.7521% 1.0916% 1.2409% 1.2442% 1.2592% 

TSRV      

AUD 0.7605% 1.1040% 1.2290% 1.2280% 1.2319% 

GBP 0.7953% 1.1578% 1.2485% 1.2465% 1.2495% 

EUR 0.7566% 1.0982% 1.2773% 1.2751% 1.3349% 

JPY 0.6878% 1.0040% 1.2110% 1.2246% 1.2229% 

Average 0.7501% 1.0910% 1.2415% 1.2435% 1.2598% 

4.6. Concluding Remarks 

In this chapter, I extend the conditional volatility persistence (CVP) model to the 

FX market and present a simple utility-based approach to evaluating the economic 

gains of volatility timing strategy which has been widely implemented into 

financial practices (i.e. the ever-growing market share of target volatility funds). A 

convenient feature of this timing strategy is that it requires only daily estimates of 

the second moment of exchange rate returns. For example, I utilize the forecasting 

techniques of the realized variance estimators in the empirical analysis above and 

prove the significant economic value of the CVP model which incorporates the 

feature of time-varying volatility persistence and explicitly links the changing 

market conditions to the future volatility.   

Considering the profitability of accurate volatility forecasts and volatility timing in 

optimal portfolio construction, there are several possible directions for further 
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study. Firstly, it would be interesting to investigate whether more sophisticated 

estimation techniques can lead to significant benefits, such as increased economic 

gains of volatility forecasting; secondly, all of the forecasting models implemented 

in this chapter are univariate. However, most practical questions related to risk 

measurement and management are intrinsically multivariate in nature, requiring 

the forecasts of both asset return variances and covariances. Whether the CVP 

model can be applied to the portfolio construction in the multivariate context 

deserves further study.  
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Chapter 5: Conclusions 

 

This dissertation consists of three independent essays that explore different 

aspects of price discovery and volatility dynamics in the FX market. The main 

findings of each chapter can be summarised as follows:  

I estimate the magnitudes and determinants of global information distribution of 

AUD trading in the Asian, European, and North American markets in the second 

chapter. Specifically, using the firm quotes of AUD against the US dollar from 

January 1999 to December 2013, and employing a non-parametric methodology 

of price discovery measures, i.e., the Two-scale Realized Variance (TSRV) ratio, I 

estimate the information shares of global AUD trading. I find that the European 

market and US market, particularly the overlapping trading session of London and 

New York, dominate the price discovery process in AUD market, but Asia is rapidly 

gaining information shares even with its declining market share of daily 

transactions. After estimating the information shares, I focus on the short- and 

long-run determinants in each market. The empirical analysis shows that after 

controlling for spillover effects and dynamic natures of information shares, more 

favourable market states and more unexpected order flows on macroeconomic 

announcement days make a significantly positive contribution to price discovery 

for AUD trading in the short-run, while a higher degree of market integration and 

capital market openness, as proxied by the Chinn-Ito Index, contributes to price 

discovery in the long-run. 

In the third chapter, I revisit the meteor showers and heat waves effects for 

AUD/USD, GBP/USD, EUR/USD, and USD/JPY spanning from January 1999 (January 

2000 for EUR) to December 2013. Utilizing the volatility measures based on high-

frequency data, I find evidence of both meteor showers and heat waves effects in 

the four trading segments of global FX market, which is consistent with Lahaye and 

Neely (2016) who divide a calendar day into five segments and confirm the 

presence of meteor shower and heat waves effect in each segment. However, 

unlike Lahaye and Neely (2016), I find that the relative importance of meteor 
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shower effect has been increasing rapidly and has predominated over heat waves 

effects in the intra-daily volatility spillovers, which emphasizes the increasing 

interdependence and interconnectedness in the global FX market. By investigating 

the patterns and economic mechanisms of meteor showers and heat waves 

effects, I contribute to the literature regarding volatility spillover in the financial 

markets. Specifically, I identify the key factors causing volatility spillovers in 

different trading sessions, which highlight the complex geographical nature of the 

FX market. Namely, the conditional volatility persistence is the fundamental 

channel linking each region’s market states to the future volatility. These empirical 

results argue in favour of modelling FX volatility dynamics segment-wise, rather 

than in the more traditional approach of assuming a homogeneous process.  

In the fourth chapter, I comprehensively investigate the role of conditional 

volatility persistence in predicting future volatility from both statistical and 

economic perspectives. I show that taking into account conditional volatility 

persistence improves volatility forecasts both in-sample and out-of-sample. For 

example, by utilizing the Shapley decomposition techniques, I find that the 

conditional volatility persistence explains large portions of the variations in future 

volatility and is the dominant channel linking market states to future volatility. 

Moreover, I show that these statistical improvements can be translated into 

economic values. By developing a simple yet accurate utility framework based on 

mean-variance analysis, I show that under empirically realistic assumptions, the 

CVP model is worth at least 0.51% of wealth per year relative to a static risk model, 

and can achieve higher Sharpe ratios, particularly during the turmoil period. The 

results hold true across the major exchange rates and are robust to market 

microstructure effects and transaction costs. 

In sum, the empirical findings presented in this dissertation provide a thorough 

analysis of the information distribution and propagation in one of the largest 

financial markets – the Foreign Exchange (FX) market. The empirical studies 

discussed in this thesis also deepen our understanding of the microstructure of 

the FX market. Besides, the evidence presented in this thesis could be of great 

interest to academics, practitioners, and regulators, and can potentially aid policy 
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development of the FX market which remains opaque to a great extent (Rime and 

Schrimpf, 2013). The empirical evidences presented in this dissertation will 

provide important policy implications, especially for emerging markets, which are 

still in the process of currency internationalization. For example, with the 

increasing interdependence and interconnectedness in the global FX market, the 

authorities in emerging markets have to strike a balance between maintaining 

exchange rate stability and internationalizing their currency in the face of growing 

international capital flows.  

There are several possible directions for further study. For example, how to 

accurately measure the price discovery in the financial markets is one question 

that is yet to be fully answered and better understood. Furthermore, additional 

research is required to consider the generalizability of these results. This will 

involve considering price discovery and volatility dynamics in other major 

currencies, as well as in emerging market currencies. Besides, how to identify the 

institutional sources of long-memory in volatility and its spillovers deserves further 

study, which will definitely improve our understanding of volatility transmission 

and extend our economic intuition of risk contagion in the financial markets. 

Another possible direction is to assess the economic values of volatility timing in 

more concrete financial applications such as multi-period portfolio management 

in the multivariate context as in Fleming et al. (2001, 2003). Lastly, the intraday 

relationship between markets can be affected by microstructure differences such 

as institutional features, heterogeneous investors, or different trading rules. 

Therefore, more investigation on the effects of microstructure over volatility 

dynamics mechanisms would be highly desirable. 
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Appendices  

Appendix A: Turnover of foreign exchange instruments, by currency 

This table reports the average daily turnover of top-5 most traded currencies from April 2010 to 

April 2016. It is based on the triennial central bank surveys conducted by the Bank for International 

Settlements (BIS, 2010, 2013, and 2016). Amount includes spot, outright forward, and swap 

transactions which is measured in billions of USD and percentage share. The percentage shares sum 

to 200% because two currencies are involved in each transaction. 

 2010 2013 2016 

 Amount Percent Amount Percent Amount Percent 

USD 3,371 84.91 4,662 87.02 4,438 87.26 

EUR 1,551 39.02 1,790 33.43 1,591 31.43 

JPY 754 19.01 1,235 23.06 1,096 21.65 

GBP 512 12.94 633 11.86 649 12.86 

AUD 301 7.63 463 8.62 348 6.92 

Global 

Total 
3,973 200.00 5,357 200.00 5,067 200.00 

 

 

Appendix B: Average daily transactions of AUD 

This table reports the average daily transactions for AUD against USD from April 2007 to April 

2013 in the top-10 foreign exchange markets. It is based on a series of triennial central bank surveys 

conducted by the Bank for International Settlements (BIS, 2007, 2010, and 2013). Volumes include 

spot, outright forward, and swap transactions and are measured in billion USD. 

AUD 
2007 2010 2013 

Value Precent Value Precent Value Precent 

Australia 76.70 33.41 75.50 23.09 80.50 17.30 

Denmark 0.46 0.20 1.40 0.43 2.31 0.50 

France 5.89 2.57 6.25 1.91 9.00 1.93 

Germany 1.25 0.54 2.11 0.65 3.08 0.66 

Hong Kong 14.00 6.10 24.64 7.54 20.81 4.47 

Japan 10.60 4.62 8.16 2.50 18.11 3.89 

Singapore 15.70 6.84 27.57 8.43 37.19 7.99 

Switzerland 6.12 2.67 10.08 3.08 8.12 1.75 

United Kingdom 55.90 24.35 102.00 31.19 181.80 39.08 

United States 30.90 13.46 56.06 17.14 82.39 17.71 

Asia in Top 10 117.00 50.96 135.87 41.55 156.61 33.67 

Europe in Top 10 69.60 30.31 121.84 37.26 204.31 43.92 

America in Top 10 30.90 13.46 56.06 17.14 82.39 17.71 

Top 10 217.50 94.73 313.77 95.95 443.31 95.29 

Global Total 229.60 100.00 327.00 100.00 465.20 100.00 
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Appendix C: Summary statistics of long-run determinants 

The definitions of the four sequential sessions, namely, “Asia”, “Europe”, “NYLON” (London/New 

York), and “North America”, are as given in Table 2.1. QLB (12) is the Ljung-Box Q statistic at 12 

lags. The asterisk * indicates significance at the 5% level. 

 Asia Europe 
London/New 

York 
US 

Number of Banks 

Mean 40.00 34.00 30.00 33.00 

Std. Dev. 15.73 15.52 16.04 14.44 

Skewness 0.521 0.067 -0.077 -0.192 

Kurtosis 0.201 -0.334 -0.441 -0.170 

QLB(5) 454.9* 403.7* 476.1* 354.5* 

Pct. of Foreign Banks 

Mean 21.42 26.65 40.18 47.63 

Std. Dev. 12.31 15.95 17.32 13.60 

Skewness -0.283 0.147 0.406 1.054 

Kurtosis -0.805 -1.340 -1.217 0.995 

QLB(5) 568.0* 701.3* 687.7* 795.2* 

Market Concentration 

Mean 63.40 60.49 58.40 62.93 

Std. Dev. 11.76 15.83 15.49 14.76 

Skewness 0.544 0.508 0.726 0.573 

Kurtosis -0.582 -1.037 -0.682 -1.019 

QLB(5) 684.6* 727.5* 734.1* 558.2* 
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Appendix D: Dynamic structure and endogeneity test 

This Table reports various tests for the endogenous relation between price discovery and various 

measures of market states. Panel A tests for the dynamic completeness of dependent variable. Panel 

B examines the relation between current measures of market states and lagged information share. 

Panel C presents a test for strict exogeneity by regressing current values of information share on 

future values of market state variables. All models are estimated by OLS and the values in the 

parentheses are the t-statistics calculated based on Newey-West standard errors. 

 Asia Europe LNY US 

Panel A: Dynamic structure of dependent variable 

Dependent Variable ln (
𝐼𝑆𝑖.𝑡

1 − 𝐼𝑆𝑖.𝑡
) 

ln (
𝐼𝑆𝑖.𝑡−1

1 − 𝐼𝑆𝑖.𝑡−1
) 

0.085*** 
(4.90) 

0.042*** 

（2.50） 

0.080*** 
(4.62) 

0.117*** 

（6.80） 

ln (
𝐼𝑆𝑖.𝑡−2

1 − 𝐼𝑆𝑖.𝑡−2
) 

0.083*** 
(4.82) 

0.040** 
(2.36) 

0.063*** 
(3.73) 

0.095*** 
(5.58) 

ln (
𝐼𝑆𝑖.𝑡−3

1 − 𝐼𝑆𝑖.𝑡−3
) 

0.037** 
(2.08) 

0.009 
(0.60) 

0.041** 
(2.54) 

0.0432** 
(2.43) 

R2 0.1592 0.0706 0.1191 0.2708 

Panel B: Relation between market state variables and lagged Information Share 

Dependent Variable Spread𝑖,𝑡 

ln (
𝐼𝑆𝑖.𝑡−1

1 − 𝐼𝑆𝑖.𝑡−1
) 

0.042*** 

(6.15) 

0.022* 

(1.70) 

0.011* 

(1.73) 

0.064*** 

（5.60） 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 
-0.001 

(-1.01) 

-0.043*** 

(-3.20) 

-0.037*** 

(-3.10) 

-0.136*** 

(-11.32) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−1 
-0.077*** 

(-6.33) 

-0.030** 

(-1.97) 

-0.054*** 

(-3.91) 

-0.143*** 

（-9.90） 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡−1 
-0.002* 

(-1.76) 

-0.001 

(-0.15) 

0.003* 

(1.65) 

-0.003 

（-1.24） 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡−1 
0.074*** 

(4.06) 

0.112*** 

(5.19) 

0.101*** 

(4.93) 

0.072*** 

（3.21） 

R2 0.2007 0.1809 0.1006 0.1094 

Dependent Variable  𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 

ln (
𝐼𝑆𝑖.𝑡−1

1 − 𝐼𝑆𝑖.𝑡−1
) 

-0.045*** 

(-4.18) 

-0.018** 

(-1.85) 

-0.028*** 

(-2.36) 

-0.141*** 

（9.50） 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 
-0.033 

(-1.01) 

-0.084*** 

(-2.87) 

-0.050* 

(-1.68) 

-0.053** 

（-1.94） 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−1 
0.295*** 

(12.20) 

0.133*** 

(5.52) 

0.256*** 

(9.68) 

0.327*** 

(11.05) 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡−1 
-0.006*** 

(-2.56) 

-0.001 

(-0.62) 

0.001 

(0.16) 

-0.002 

（-0.46） 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡−1 
-0.152*** 

(-3.41) 

-0.047* 

(-1.71) 

0.122*** 

(2.89) 

-0.083** 

（-2.18） 

R2 0.2012 0.1502 0.1604 0.2442 
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Appendix D (Continued) 

 Asia Europe LNY US 

Panel B: Relation between market state variables and lagged Information Share 

Dependent Variable 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡 

ln (
𝐼𝑆𝑖.𝑡−1

1 − 𝐼𝑆𝑖.𝑡−1
) 

-0.002 

(-0.03) 

-0.046 

(-0.38) 

-0.133 

(-1.17) 

0.004 

（0.06） 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 
-0.692*** 

(-3.24) 

0.287 

(1.05) 

-0.071 

(-0.37) 

-0.004 

（-0.04） 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−1 
-0.192 

(-1.41) 

-0.220 

(-1.06) 

0.078 

(0.37) 

-0.066 

（-0.62） 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡−1 
0.016 

(0.51) 

-0.019** 

(-2.39) 

0.006 

(0.83) 

0.021 

(0.73) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡−1 
0.262 

(1.40) 

0.004 

(1.01) 

0.383 

(1.26) 

0.222 

（1.40） 

R2 0.0032 0.0005 0.0005 0.0003 

Dependent Variable  𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 

ln (
𝐼𝑆𝑖.𝑡−1

1 − 𝐼𝑆𝑖.𝑡−1
) 

0.053*** 

(7.48) 

-0.028*** 

(-3.86) 

-0.032*** 

(-4.47) 

0.043*** 

（4.86） 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 
-0.143*** 

(-5.90) 

0.143*** 

(8.51) 

0.180*** 

(10.34) 

-0.066*** 

（-5.19） 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡−1 
-0.076*** 

(-5.61) 

0.010 

(0.69) 

0.044*** 

(3.43) 

-0.098*** 

（-7.31） 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡−1 
-0.001 

(-0.77) 

0.001 

(0.28) 

-0.002 

(-1.13) 

-0.002 

（-1.11） 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡−1 
0.110*** 

(4.31) 

0.295*** 

(11.35) 

0.281*** 

(11.02) 

0.195*** 

(7.34) 

R2 0.2089 0.2027 0.2454 0.2085 

Panel C: Strict Exogeneity Test 

Dependent Variable ln (
𝐼𝑆𝑖.𝑡

1 − 𝐼𝑆𝑖.𝑡
) 

𝑆𝑝𝑟𝑒𝑎𝑑
𝑖,𝑡

 
0.155*** 

(3.08) 

0.052 

(1.42) 

0.024 

(0.62) 

0.138*** 

(4.40) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 
0.588*** 

(20.42) 

0.622*** 

(21.57) 

0.701** 

(25.40) 

0.440*** 

(22.93) 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡 
0.009*** 

(2.69) 

0.002 

(0.78) 

0.004* 

(1.65) 

0.007** 

(2.16) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
𝑖,𝑡

 
0.469*** 

(11.90) 

0.266*** 

(10.84) 

0.783*** 

(13.70) 

0.481*** 

(9.94) 

𝑆𝑝𝑟𝑒𝑎𝑑
𝑖,𝑡+1

 
0.092*** 

(2.65) 

0.105*** 

(3.77) 

0.066** 

(2.17) 

0.074*** 

(3.24) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡+1 
-0.111*** 

(-4.67) 

-0.041** 

(-2.14) 

-0.071*** 

(-3.75) 

-0.115*** 

(-6.04) 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡+1 
-0.001 

(-0.31) 

0.001 

(0.22) 

-0.001 

(-0.47) 

0.001 

(0.14) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
𝑖,𝑡+1

 
0.137*** 

(3.10) 

-0.192*** 

(-4.34) 

-0.154*** 

(-3.72) 

-0.012 

(-0.33) 

R2 0.4892 0.5257 0.6229 0.4876 
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Appendix E: Heat waves and meteor showers: Sub-periods 

This table reports the daily persistence coefficients of the following model: 

V𝑖,𝑡  =  𝛼𝑖,𝑡 + βi,D
HW𝑉𝑖,𝑡−1  +  ∑ βi,j,D

MS Vj,t−1

U

j≠i,j=A
+ βi,W

HWHW𝑖,𝑡−1,𝑊  +  ∑ βi,j,W
MS MS𝑖,𝑡−1,𝑊

U

j≠i,j=A

+ βi,M
HWHW𝑖,𝑡−1,𝑀  +  ∑ βi,j,M

MS MS𝑖,𝑡−1,𝑀

U

j≠i,j=A
 

where i = Asia (A), Europe (E), London/NYC (L), and US (U). HW stands for daily heat waves 

effect as proxied by βi,D
HW, while MS stands for meteor shower effect ∑ βi,j,D

MSU
j≠i,j=A  (i.e., the sum of 

volatility spillover effects from all other trading sessions). βi,W
HW, βi,M

HW are weekly and monthly heat 

waves effects, while βi,j,W
MS , βi,j,M

MS  are the weekly and monthly meteor shower effects respectively. 

The t-statistics are based on the Newey–West robust covariance with automatic lag selection using 

Bartlett kernel. The asterisks ***, **, * indicate significance at 1%, 5%, and 10% respectively.   

 Asia Europe London/NYC US 

 Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

AUD         

1999 – 2006 

𝐻𝑊 .1000*** 3.43 .0688** 2.39 .0445** 2.09 .0749*** 2.73 

𝑀𝑆 .3065*** 5.27 .2886*** 6.27 .3469*** 6.19 .3957*** 5.98 

𝑁 2024 2024 2022 2024 

𝑅̅2 .2118 .2656 .2113 .1436 

2007 – 2009 

𝐻𝑊 .1967*** 3.76 .1066** 2.32 .0926* 1.75 .1759*** 2.59 

𝑀𝑆 .5431*** 6.35 .4542*** 9.20 .6143*** 9.92 .8571*** 6.99 

𝑁 765 765 765 765 

𝑅̅2 .7169 .7978 .7714 .8060 

2010 – 2013 

𝐻𝑊 .1049*** 2.62 .1799*** 4.00 .0682** 1.96 .0424 1.15 

𝑀𝑆 .6575*** 4.79 .2774*** 7.63 .6304*** 7.51 1.189*** 5.53 

𝑁 1026 1026 1026 1026 

𝑅̅2 .4251 .5591 .4209 .6153 

GBP     

1999 – 2006 

𝐻𝑊 .1487*** 4.18 .1240*** 4.18 .0643*** 3.08 .0891*** 4.11 

𝑀𝑆 .1991*** 6.03 .3114*** 6.27 .2154*** 4.97 .4697*** 6.67 

𝑁 2025 2024 2024 2024 

𝑅̅2 .1863 .1672 .1071 .1604 

2007 – 2009 

𝐻𝑊 .3400*** 6.13 .1560*** 3.18 .1142** 2.32 .1311*** 2.86 

𝑀𝑆 .3321*** 6.23 .5447*** 7.22 .4048*** 7.02 .5379*** 6.48 

𝑁 765 765 765 765 

𝑅̅2 .7903 .7582 .7517 .7326 

2010 – 2013 

𝐻𝑊 .2499*** 4.60 .0801** 2.32 .1057*** 2.86 .0103 0.44 

𝑀𝑆 .2314*** 3.59 .4685*** 5.08 .4133*** 7.30 .5982*** 6.41 

𝑁 1026 1026 1026 1026 

𝑅̅2 .6223 .3360 .3263 .2247 

 

 



145 
 

Appendix E (Continued) 

 Asia Europe London/NYC US 

 Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

EUR         

2000 – 2006 

𝐻𝑊 .0892** 2.16 .1468*** 3.64 .0873** 2.30 .0105 0.37 

𝑀𝑆 1.263*** 3.24 .0633*** 3.07 .2552*** 5.03 1.789*** 8.15 

𝑁 1759 1759 1759 1759 

𝑅̅2 .1639 .2612 .1353 .2117 

2007 – 2009 

𝐻𝑊 .0816 1.18 .1304* 1.84 .1142* 1.81 .0473 0.78 

𝑀𝑆 .8610** 2.57 .2595*** 3.34 .3533*** 5.51 1.212*** 4.79 

𝑁 762 765 765 765 

𝑅̅2 .5300 .6726 .6629 .5708 

2010 – 2013 

𝐻𝑊 .0491* 1.84 .2600*** 6.60 .1329*** 2.77 .0732 1.60 

𝑀𝑆 .5613*** 4.22 .1733*** 4.54 .5117*** 8.07 .7253*** 7.20 

𝑁 1023 1023 1026 1026 

𝑅̅2 .2131 .4629 .2778 .1682 

JPY     

1999 – 2006 

𝐻𝑊 .1097* 1.81 .0545** 1.96 .0519* 1.64 .0691 1.38 

𝑀𝑆 .5170** 2.40 .0960*** 3.17 .2699*** 6.01 .5163*** 4.67 

𝑁 1986 1989 1940 1965 

𝑅̅2 .2802 .1619 .1625 .3103 

2007 – 2009 

𝐻𝑊 .0165 0.23 .1126** 2.03 .0069 0.18 .0959** 1.95 

𝑀𝑆 .5416** 2.53 .1623*** 2.28 .3104*** 5.46 .8199*** 5.12 

𝑁 611 723 749 724 

𝑅̅2 .3552 .2102 .2829 .3320 

2010 – 2013 

𝐻𝑊 .0335 0.46 .0438 1.44 .1312 1.22 -.0773 -1.15 

𝑀𝑆 .6517* 1.64 .0072 0.21 .6657*** 8.30 .9870** 2.03 

𝑁 1018 1022 1022 969 

𝑅̅2 .2232 .1670 .3318 .2727 
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Appendix F: Determinants of Conditional Volatility Spillover: Sub-periods 

This table reports the summary of the estimates of the daily conditioning variables (including the 

constant, negative return, positive return, volatility, and variance ratio) for the following equation in 

different sub-periods: 

𝑅𝑉𝑖,𝑡 = 𝛼𝑖,𝑡 + 𝛽𝐴,𝑡
𝑒 𝑅𝑉𝐴,𝑡−1 + 𝛽𝐸,𝑡

𝑒 𝑅𝑉𝐸,𝑡−1 + 𝛽𝐿,𝑡
𝑒 𝑅𝑉𝐿,𝑡−1 + 𝛽𝑈,𝑡

𝑒 𝑅𝑉𝑈,𝑡−1 + βi,W
HWRV̅̅ ̅̅

i,t−1,W

+ ∑ βi,j,W
MS RV̅̅ ̅̅

j,t−1,W

U

j≠i,j=A
+ βi,M

HWRV̅̅ ̅̅
i,t−1,M + ∑ βi,j,M

MS RV̅̅ ̅̅
j,t−1,M

U

j≠i,j=A
+ 𝜀𝑖,𝑡 

where i = Asia (A), Europe (E), London/New York (L), and US (U) and 𝛽𝑗,𝑡
𝑒 = 𝛽𝑗

0 + 𝛽𝑗
−𝑟𝑗,𝑡−1

− +

𝛽𝑗
+𝑟𝑗,𝑡−1

+ + 𝛽𝑗
RV𝑅𝑉𝑗,𝑡−1 + 𝛽𝑗

IS𝐼𝑆𝑗,𝑡−1 . Sig+ and Sig- present the total number of positively and 

negatively significant coefficients of each market state variables at 5% significance level 

respectively. For example, if all the coefficients of positive return 𝑟𝑡−1
+  are positively significant in 

𝛽𝐴,𝑡
𝑒 , then sig+ equals 4 for 𝛽𝑟

+ in Asia. 

 
Asia Europe LNY US 

Sig+ Sig- Sig+ Sig- Sig+ Sig- Sig+ Sig- 

1999-2006 

AUD         

𝛽0 2 0 2 0 3 0 3 0 

𝛽𝑟
+ 2 0 1 2 1 0 2 0 

𝛽𝑟
− 0 2 0 2 1 2 0 1 

𝛽𝑅𝑉 1 2 1 1 0 1 2 0 

𝛽𝐼𝑆 0 1 0 3 0 4 0 4 

GBP         

𝛽0 2 0 3 0 3 0 3 0 

𝛽𝑟
+ 2 0 2 0 2 0 1 1 

𝛽𝑟
− 0 2 0 1 1 0 2 0 

𝛽𝑅𝑉 0 1 0 2 0 1 2 0 

𝛽𝐼𝑆 0 2 0 2 0 4 0 4 

EUR         

𝛽0 2 0 3 0 3 0 3 0 

𝛽𝑟
+ 2 1 0 0 0 1 2 1 

𝛽𝑟
− 0 0 0 0 0 0 0 2 

𝛽𝑅𝑉 1 0 2 1 0 1 2 1 

𝛽𝐼𝑆 0 1 0 3 0 3 0 4 

JPY         

𝛽0 2 0 2 0 3 0 3 0 

𝛽𝑟
+ 1 1 1 0 0 0 3 0 

𝛽𝑟
− 0 3 1 1 1 1 0 2 

𝛽𝑅𝑉 0 2 0 1 0 1 1 2 

𝛽𝐼𝑆 0 1 0 1 0 3 0 3 
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Appendix F (Continued) 

 
Asia Europe LNY US 

Sig+ Sig- Sig+ Sig- Sig+ Sig- Sig+ Sig- 

2007-2009 

AUD         

𝛽0 2 0 2 0 3 0 3 0 

𝛽𝑟
+ 0 0 1 0 2 0 0 2 

𝛽𝑟
− 0 3 0 2 0 3 0 2 

𝛽𝑅𝑉 1 1 0 2 0 1 1 1 

𝛽𝐼𝑆 0 2 0 3 0 3 0 4 

GBP         

𝛽0 1 0 2 0 3 0 3 0 

𝛽𝑟
+ 1 0 1 0 1 0 0 1 

𝛽𝑟
− 0 3 0 2 1 2 0 1 

𝛽𝑅𝑉 0 1 0 2 0 2 1 1 

𝛽𝐼𝑆 1 1 1 3 0 4 0 4 

EUR         

𝛽0 1 0 2 0 3 0 3 0 

𝛽𝑟
+ 1 0 2 1 2 0 2 0 

𝛽𝑟
− 1 1 0 3 0 0 1 0 

𝛽𝑅𝑉 0 2 1 2 0 1 0 1 

𝛽𝐼𝑆 0 2 0 2 0 3 0 3 

JPY         

𝛽0 1 0 2 0 2 0 3 0 

𝛽𝑟
+ 2 0 2 0 0 0 0 0 

𝛽𝑟
− 0 3 0 1 1 2 1 2 

𝛽𝑅𝑉 0 1 0 2 0 1 0 1 

𝛽𝐼𝑆 0 1 0 2 0 3 0 3 
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Appendix F (Continued) 

 
Asia Europe LNY US 

Sig+ Sig- Sig+ Sig- Sig+ Sig- Sig+ Sig- 

2010-2013 

AUD         

𝛽0 2 0 2 0 3 0 2 0 

𝛽𝑟
+ 1 1 0 0 0 1 0 1 

𝛽𝑟
− 0 3 0 1 1 1 1 2 

𝛽𝑅𝑉 0 1 1 1 1 1 1 2 

𝛽𝐼𝑆 0 2 0 2 0 3 0 4 

GBP         

𝛽0 2 0 2 0 3 0 3 0 

𝛽𝑟
+ 0 1 1 1 1 0 2 0 

𝛽𝑟
− 0 1 1 0 0 1 1 2 

𝛽𝑅𝑉 1 0 0 1 1 1 1 1 

𝛽𝐼𝑆 0 1 0 2 0 3 0 4 

EUR         

𝛽0 1 0 4 0 2 0 2 0 

𝛽𝑟
+ 0 2 1 1 0 1 0 1 

𝛽𝑟
− 0 0 1 1 0 2 1 0 

𝛽𝑅𝑉 1 1 0 1 1 1 2 1 

𝛽𝐼𝑆 0 1 0 3 0 3 0 4 

JPY         

𝛽0 2 0 2 0 3 0 2 0 

𝛽𝑟
+ 1 1 2 0 2 1 1 0 

𝛽𝑟
− 0 3 0 2 0 0 1 1 

𝛽𝑅𝑉 0 1 2 1 0 2 1 2 

𝛽𝐼𝑆 1 2 0 1 0 3 0 3 
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Appendix G: Summary statistics of market state variables 

The definitions of the four sessions, namely, Asia, Europe, London/New York (NYLON), and North 

America, are as given in Table 2.1. Information share and market state variables (return, volatility, 

number of trades, illiquidity, and order flow) are defined as in Section 3.3. QLB(5) is the Ljung-Box 

Q statistics for 5 lags. The asterisk * indicates significance at 5% level. 

 

 

 

 

 

 

 

  Mean  Median  St Dev  Skew  Ex Kurt  Min  Max QLB(5) 

Panel A: AUD 

Asia         

Return .0001 .0002 .0047 -.2597 10.66 -.0477 .0525 35.64* 

RV .2051 .1260 .2452 3.608 15.91 .0257 1.667 6,993* 

IS .3784 .3629 .1506 .5296 .1086 .0161 .9522 96.96* 

 

 

 

# of Trade 2,821 2,023 2,261 1.389 2.752 33.00 21,030 6,999* 

Illiquidity 2.767 2.443 1.231 1.752 5.237 1.341 13.77 7,818* 

Order 

Flow 
26.02 28.00 196.3 -.1517 2.702 -1,021 1,108 24.13* 

Europe         

Return .0000 .0000 .0036 -.2024 8.534 -.0379 .0311 2.315 

RV .1350 .0847 .1624 3.848 18.45 .0139 1.162 8,277* 

IS .2039 .1935 .0887 .9832 2.472 .0102 .9462 48.85* 

# of Trade 1,962 1,438 1,576 1.400 2.622 8.000 12,638 9,873* 

Illiquidity 2.828 2.408 1.301 1.785 6.233 1.103 14.33 8,765* 

Order 

Flow 
2.005 7.000 145.8 -.2886 3.819 -952.0 744.0 22.62* 

LNY         

Return .0000 .0000 .0037 -.2991 6.583 -.0372 .0238 13.39* 

RV .1500 .0916 .1854 3.628 15.91 .0108 1.244 6,612* 

IS .2237 .2048 .1130 1.278 2.522 .0068 .8371 114.7* 

# of Trade 2,282 1,773 1,883 1.432 2.940 15.00 14,018 8,962* 

Illiquidity 2.869 2.370 1.342 1.268 1.534 .3384 10.75 7,765* 

Order 

Flow 
-1.522 11.00 168.5 -.4561 3.722 -1,161 852.0 32.52* 

US         

Return .0001 .0002 .0041 -.0218 17.01 -.0452 .0450 36.89* 

RV .2053 .1094 .3322 4.757 26.44 .0158 2.483 7,213* 

IS .1940 .1728 .1060 1.749 5.318 .0177 .9084 137.6* 

# of Trade 1,530 1,117 1,377 1.954 6.556 18.00 13,339 7,833* 

Illiquidity 3.292 2.530 1.872 1.454 2.229 1.277 14.91 7,998* 

Order 

Flow 
4.764 10.00 134.9 -.5683 6.645 -839.0 795.0 22.34* 
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Appendix G (Continued) 

 

 

 

 

 

 

 

 

 

  Mean  Median  St Dev  Skew  Ex Kurt  Min  Max QLB(5) 

Panel B: GBP 

Asia         

Return -.0001 .0000 .0027 -.4954 7.641 -.0280 .0168 5.923 

RV .0821 .0525 .0937 3.310 13.00 .0101 .6091 10,194* 

IS .2613 .2445 .1226 .9823 1.646 .0052 .9333 409.3* 

# of Trade 1,231 1,071 746.2 1.351 3.147 33.00 7,487 7,834* 

Illiquidity 2.081 1.943 .7954 3.000 17.47 .9549 10.24 9,948* 

Order 

Flow 
10.10 11.00 119.0 -.1200 5.098 -767.0 1,023 48.60* 

Europe         

Return -.0001 -.0001 .0032 -.0689 3.372 -.0208 .0177 1.299 

RV .1009 .0713 .1054 3.345 13.43 .0111 .6937 7244* 

IS .2914 .2817 .1132 .7053 1.074 .0035 .8600 175.1* 

# of Trade 2,436 2,194 1,280 1.057 1.754 19.00 10,844 5,532* 

Illiquidity 1.631 1.519 .6178 8.837 19.15 .8475 18.32 5,827* 

Order 

Flow 
6.539 8.000 173.6 .0148 4.102 -928.0 1,268 12.51 

LNY         

Return .0001 .0000 .0030 .1368 4.034 -.0192 .0238 5.951 

RV .0857 .0591 .0867 2.963 10.44 .0087 .5399 5785* 

IS .2555 .2341 .1174 1.298 2.686 .0097 .9840 131.1* 

# of Trade 2,357 2,194 1,121 .7381 .5144 45.00 7,761 5,071* 

Illiquidity 1.556 1.463 .4814 2.374 14.08 .8058 7.773 26.12* 

Order 

Flow 
14.02 16.00 153.7 .1008 3.300 -908.0 813.0 8,997* 

US         

Return .0002 .0002 .0027 .0759 10.61 -.0195 .0272 15.44* 

RV .0931 .0576 .1224 3.980 18.53 .0091 .8486 6571* 

IS .1918 .1703 .1028 1.524 3.924 .0073 .9111 580.1* 

# of Trade 1,382 1,216 803.8 1.279 2.339 26.00 6,606 5,675* 

Illiquidity 1.877 1.643 .7436 1.600 4.299 .9016 8.436 12.45 

Order 

Flow 
13.10 14.00 103.9 -.0333 3.826 -699.0 613.0 7,776* 
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  Mean  Median  St Dev  Skew  Ex Kurt  Min  Max QLB(5) 

Panel C: EUR 

Asia          

Return .0002 .0001 .0038 1.507 40.59 -.0355 .0726 7.895 

RV .3973 .1183 .7853 3.975 17.68 .0137 5.124 2753* 

IS .3773 .3347 .2000 .6977 -.1937 .0025 .9980 476.2* 

# of Trade 240.0 198.0 166.9 1.330 2.026 2.000 1,172 9,006* 

Illiquidity 6.625 3.883 12.69 9.379 11.50* 1.062 22.26 5,665* 

Order 

Flow 
.4587 0.000 39.70 .1032 4.726 -302.0 301.0 13.82* 

Europe          

Return -.0002 -.0002 .0032 .1258 5.183 -.0224 .0301 6.316 

RV .1080 .0665 .1579 5.058 30.33 .0112 1.246 7277* 

IS .1829 .1694 .1089 .8449 .8407 .0006 .7294 1285* 

# of Trade 710.1 625.0 424.8 .9253 .7874 5.000 2,905 9,987* 

Illiquidity 2.625 1.850 4.408 9.286 12.93* .0690 95.21 9,888* 

Order 

Flow 
-.4660 0.000 82.56 .1667 3.343 -461.0 570.0 53.6* 

LNY         

Return .0001 .0000 .0034 -.0018 2.422 -.0169 .0187 2.897 

RV .1239 .0800 .1504 3.792 17.84 .0081 1.059 4283* 

IS .2170 .1908 .1370 1.257 2.191 .0006 .9110 662.8 

# of Trade 629.0 574.0 365.1 .8190 .7059 4.000 2,634 8,108* 

Illiquidity 3.136 2.007 5.563 7.518 72.08 .0279 93.24 9,898* 

Order 

Flow 
8.049 4.000 76.77 .3918 2.101 -332.0 355.0 78.95* 

US          

Return .0001 .0001 .0029 .0578 6.304 -.0221 .0218 12.56* 

RV .3220 .1305 .5404 3.743 16.30 .0087 3.538 3367* 

IS .2229 .1865 .1495 1.293 1.713 .0002 .9312 170.2* 

# of Trade 157.0 123.0 116.9 1.612 3.835 1.000 1,030 6,494* 

Illiquidity 7.859 3.729 15.17 7.296 76.97 1.102 25.87 9,111* 

Order 

Flow 
.6969 0.000 29.12 -.0635 4.463 -230.0 184.0 6.58 
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  Mean  Median  St Dev  Skew  Ex Kurt  Min  Max QLB(5) 

Panel D: JPY 

Asia         

Return -.0002 -.0001 .0047 -.0172 9.854 -.0476 .0382 8.122 

RV .5799 .1773 1.393 5.354 32.25 .0044 10.66 1365* 

IS .4032 .3791 .2156 .3931 -.5131 .0003 .9989 159.5* 

# of Trade 56.00 45.00 47.47 1.500 3.844 1.000 420.0 7,079* 

Illiquidity 16.45 9.477 30.13 18.36 62.40 .9309 115.2 1,098* 

Order 

Flow 
.4587 0.000 39.70 .1032 4.726 -302.0 301.0 13.82* 

Europe          

Return .0001 .0001 .0033 -.8416 20.71 -.0494 .0327 7.640 

RV .2054 .0927 .3484 4.192 20.49 .0045 2.439 965.6* 

IS .2005 .1709 .1396 1.333 2.398 .0003 .8915 380.2* 

# of Trade 44.00 32.00 38.90 2.132 6.514 1.000 322.0 7,611* 

Illiquidity 11.85 5.627 16.05 5.833 66.38 .8551 29.31 3,473* 

Order 

Flow 
-.4660 0.000 82.56 .1667 3.343 -461.0 570.0 53.6* 

LNY         

Return .0000 .0000 .0032 .2383 4.540 -.0185 .0223 10.76 

RV .1856 .0963 .3017 4.456 24.02 .0034 2.226 586.2* 

IS .2054 .1760 .1477 1.304 2.122 .0003 .9420 208.6* 

# of Trade 40.00 29.00 38.15 2.758 17.68 1.000 587.0 3,928* 

Illiquidity 13.30 5.58 16.49 4.369 45.80 1.296 28.80 3,323* 

Order 

Flow 
8.049 4.000 76.77 .3918 2.101 -332.0 355.0 78.95* 

US         

Return .0000 .0000 .0029 -.2749 5.668 -.0207 .0187 8.112 

RV .3519 .0970 .7874 4.683 25.20 .0001 5.686 1198* 

IS .1909 .1449 .1690 1.506 2.342 .0001 .9867 461.2* 

# of Trade 22.00 12.00 28.70 3.137 14.79 1.000 318.0 4,265* 

Illiquidity 23.09 9.013 43.65 9.285 14.17 1.043 96.96 1,607* 

Order 

Flow 
.6969 0.000 29.12 -.0635 4.463 -230.0 184.0 6.58 
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Appendix H: Conditional Volatility Persistence (CVP) model: Sub-periods 

This table reports the daily persistence coefficients of the following model in three sub-periods (i.e., 1999/2000 – 2006, 2007 – 2009, 2010 – 2013): 

𝑅𝑉𝑖,𝑡+1 = 𝛼𝑖,𝑡+1 + (𝛽𝑖
0 + 𝛽𝑖

−𝑟𝑖,𝑡
− + 𝛽𝑖

+𝑟𝑖,𝑡
+ + 𝛽𝑖

𝑅𝑉𝑅𝑉𝑖,𝑡)𝑅𝑉𝑖,𝑡 + 𝛽𝑖,W𝑅𝑉𝑖,𝑡,𝑊 + 𝛽𝑖,𝑀𝑅𝑉𝑖,𝑡,𝑀 + 𝜃𝑖,𝑡𝑟𝑖,𝑡 + 𝜃𝑖,𝑊𝑟𝑖,𝑡,𝑊 + 𝜃𝑖,𝑀𝑟𝑖,𝑡,𝑀 + 𝜀𝑖,𝑡+1 

The t-statistics are based on the Newey–West robust covariance with automatic lag selection using Bartlett kernel. The asterisks ***, **, * indicate significance 

at 1%, 5%, and 10% respectively.   

 β0 β−  β+  βRV βRV,W βRV,M θr θr,W θr,M R̅2 

1999 - 2006 

AUD 
.3372*** -.0646** .0299 -.0647*** .3188*** .2831*** -.0566** -.0123 -.0507 

.3785 
(4.42) (-2.12) (0.75) (-6.10) (4.28) (4.25) (-2.38) (-0.35) (-0.79) 

GBP 
.2469*** -.1777*** .0934 -.1262* .3367*** .2526*** .0085 -.0029 -.0972** 

.2621 
(2.61) (-3.03) (1.45) (-1.86) (5.66) (4.35) (0.48) (-0.15) (-2.35) 

EUR 
.3217*** -.0528 .0257 -.0267** .2170*** .3137*** -.0189 .1194 -.3880** 

.1616 
(4.28) (-0.84) (0.27) (-2.16) (3.60) (5.38) (-0.32) (1.50) (-2.17) 

JPY 
.3267*** -.0343 .2096*** -.0132*** .2308*** .3392*** .0353 -.0483 -.0144 

.1676 
(4.25) (-0.55) (3.01) (-3.39) (4.30) (6.01) (0.55) (-0.48) (-0.07) 

2007 - 2009 

AUD 
.5818*** -.0230* .0473*** -.0217 .1876** .2192*** -.0867** -.0646 -.2604** 

.8440 
(6.35) (-1.70) (2.78) (-1.41) (2.17) (4.03) (-2.35) (-0.95) (-2.12) 

GBP 
.4832*** -.0648*** .0382* -.0268 .2091*** .2777*** .0182 -.0329 -.1383* 

.8707 
(5.01) (-2.76) (1.69) (-0.85) (3.26) (4.34) (0.81) (-1.00) (-1.82) 

EUR 
.5146*** -.0608 .1709*** -.0388** .2534*** .3364*** -.0251 .0455 -1.403*** 

.6994 
(2.75) (-1.36) (5.86) (-2.52) (2.75) (3.14) (-0.23) (0.24) (-3.08) 

JPY 
.3465*** -.0006 .0593 -.0185* .2898*** .3113*** -.3126* -.4499 -.6409 

.1836 
(2.53) (-0.01) (0.46) (-1.89) (2.69) (2.58) (-1.68) (-1.35) (-1.08) 
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Appendix H (Continued) 

 

 β0 β−  β+  βRV βRV,W βRV,M θr θr,W θr,M R̅2 

2010 - 2013 

AUD 
.4326*** -.1884*** .0070 -.0474** .2382*** .1959*** -.0384 -.1078** -.1069 .5404 

(3.92) (-5.12) (0.12) (-2.14) (4.14) (3.82) (-1.47) (-2.21) (-1.23)  

GBP 
.3954*** -.1701 .0211 -.1255** .3536*** .2129*** .0012 -.0833*** -.1195** .4840 

(4.47) (-1.27) (0.31) (-2.21) (4.73) (3.09) (0.04) (-3.17) (-2.47)  

EUR 
.5255*** -.0087 .0461*** -.0906** .3140*** .1523*** -.0611** -.0326 -.0718 .4330 

(5.07) (-0.08) (2.00) (-2.36) (5.84) (2.92) (-2.17) (-0.96) (-1.10)  

JPY 
.8664*** .1201** -.1420* -.0311** .0158 .2326** -.1335 -.2740** -.1910 .2254 

(4.71) (2.01) (-1.76) (-2.36) (0.28) (2.16) (-1.38) (-2.21) (-0.73)  
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