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Abstract 

Parkinson’s disease (PD) is the second most common age related neurodegenerative 

disorder, affecting approximately 1-2% of the elderly population. Freezing of Gait (FOG) 

is a very disabling feature of PD that causes frequent falls. During FOG, patients are 

suddenly unable to take a step despite the intention to walk or continue moving forward. 

The neural mechanisms of FOG are unclear and treatments have only limited 

effectiveness. 

Based on contexts of behavioural measures in daily life, different types of FOG have been 

observed including: freezing when turning (TF); freezing when getting through narrow 

doorways; freezing when reaching a target; freezing when straight walking or freezing 

when initiating gait to start a movement (GIF). TF and GIF are recognized to be the most 

frequent triggers of FOG seen in PD patients.  

To detect FOG, using parameters extracted from the Electroencephalogram (EEG) is one 

of the most promising methods. In the comparison of using “body-worn” sensors 

technique, EEG measures the activity of the brain where the root of FOG is occurring. 

Therefore, EEG will be quicker to detect FOG than “body-worn” sensors because of the 

time the neural signal has to travel all the way to the legs to be measured, thus offering 

the most optimal time window for intervention to overcome FOG.  

The research in this thesis introduces advanced algorithms for FOG detection using EEG 

signals. These algorithms have been developed and applied successfully to detect FOG 

and its two common subtypes (GIF, TF) based on various features extractions and 

classifiers, providing high accuracy for detection. It was found that the combination of 

Independent Component Analysis Entropy Boundary Minimization (ICA-EBM), S-

Transform (ST) and Bayesian Neural Networks (BNN) proved to be a very robust and 

effective method for freezing detection. 

In the first study, abnormal changes of EEG signal to detect FOG were investigated. By 

using Fast Fourier Transform as the feature extraction and Artificial Neural Networks 
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(ANN) as a classifier, the EEG data of FOG could be detected effectively from seven PD 

patients with sensitivity, specificity and accuracy of 72.20%, 70.58% and 71.46%, 

respectively. Furthermore, FOG episodes were found to be associated with significant 

increases in the high beta band (21-38Hz) across the central, frontal, occipital and parietal 

EEG sites. 

In the second study, the dynamic brain changes underlying a GIF episode and its detection 

were investigated in four PD patients. This research studied the brain activity underlying 

GIF by analyzing Wavelet Transform (WT) of EEG signals. Using ICA-EBM for EEG 

source separation, WT for feature extraction and Support Vector Machine (SVM) for 

classification, the correct identification of GIF episodes was improved with sensitivity, 

specificity, and accuracy of 83.94%, 89.39% and 86.67%, respectively. 

The final classification results produced by this dissertation indicated that by applying 

source separation ICA-EBM for pre-processing EEG data, time-frequency ST techniques 

for feature extraction and BNN for classification, a freezing event can be successfully 

detected using EEG signals. The results for the TF detection were achieved with 

sensitivity, specificity, and accuracy of 83.00%, 87.60% and 85.40%, respectively. The 

results for the GIF detection were relatively similar with sensitivity, specificity, and 

accuracy of 88.96%, 90.26% and 89.50%, respectively. 

With the final performance (ICA-EBM, ST, BNN) achieved by this thesis, future work 

will be carried out to pursue the eventual aim of the current research, which is developing 

an EEG-based system for detecting FOG that can be applied in real-time. 
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Chapter 1 INTRODUCTION 

 

Introduction 

 

 

 

1.1 MOTIVATION 

Parkinson’s disease is the second most common age related neurodegenerative disorder, 

affecting approximately 1-2% of the elderly population (De Lau & Breteler 2006). 

According to a report by Parkinson Australia, over 64,000 Australians had a diagnosis of 

PD in 2011 (Essential & CPE 2012), a prevalance that has signifcantly risen to over 

108,000 patients in 2017 (Parkinson's & Australia 2017). The number of people with PD 

has been predicted to double over the next 20 years due to the global ageing population 
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(Factor & Weiner 2007) and PD has been considered as one of the greatest threats to 

public health, generating an enormous cost burden to the society (Huse et al. 2005; Saarni 

et al. 2006).  

PD is characterized by the degeneration of dopamine producing neurons in the substantia 

nigra that innervate the basal ganglia (Agid et al. 1989). One role of dopamine is to enable 

smooth motor control; therefore, the loss of this neurotransmitter might make the muscles 

overly tense, cause tremor, joint rigidity and slow movement in PD (Hughes et al. 1992; 

Levy et al. 2002). Patients with PD suffer from both motor symptoms including 

bradykinesia or akinesia, tremor at rest, rigidity and postural instability (Braak et al. 2004; 

Jankovic 2008) as well as non-motor symptoms including sensory abnormalities, 

cognitive impairments, autonomic dysfunction and mood disorder that often develop after 

several years of the disease (Caballol, Martí & Tolosa 2007; Chaudhuri, Healy & 

Schapira 2006). As their disease progresses, the vast majority of patients also develop the 

freezing phenomenon (Giladi, Kao & Fahn 1997), which manifests as both freezing of 

gait (FOG) and gait initiation failure (a sub-type of FOG, otherwise called start hesitation) 

(Schaafsma et al. 2003).    

Clinically, FOG is often described by the patients as a feeling like their feet are “glued to 

the floor” (Nutt et al. 2011). During FOG, the patients are suddenly unable to take a step 

despite the intention to walk or continue moving forward (Nutt et al. 2011). The 

assessment of FOG is difficult because patients may not experience freezing in the 

clinical setting or sometimes do not have a proper understanding of what actual freezing 

looks likes (Snijders et al. 2012). Although FOG does not occur constantly, there are 

certain triggers that often cause a freeze, these include: initiating the first step (gait 

initiation failure – GIF), turning (Turning FOG), navigating environmental features, such 

as narrow doorways (narrow FOG), reaching a target (target FOG) and occasionally 

during straight walking (runway FOG) (Nutt et al. 2011; Schaafsma et al. 2003). 

Furthermore, cognitive dual tasking (i.e. performing a thinking task while walking) can 

also trigger a freeze (Spildooren et al. 2010). FOG is associated with a high risk for falls 
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and leads to significant morbidity in PD (Backer 2006). FOG has thus been identified as 

the most distressing symptom contributing to a poor quality of life for patients with PD 

(Walton et al. 2015).  

Unfortunately, FOG is a very complex symptom of the brain and the causes of FOG 

remain poorly understood (Nieuwboer & Giladi 2013). One of the biggest problems is 

that neuroimaging techniques, such as fMRI, do not allow patients to walk inside the 

scanner (Shine, Naismith & Lewis 2011). Therefore, these techniques are limited in their 

ability to investigate FOG. 

To date, a number of functional MRI studies have been conducted to explore several 

aspects of the freezing phenomenon (Gilat et al. 2015; Peterson et al. 2014; Shine, 

Moustafa, et al. 2013; Snijders et al. 2011). These neuroimaging results highlighted the 

key aspect that FOG behavior is associated with maladaptive changes in both cortical and 

subcortical processes in the brain, that ultimately cause the patients to become unable to 

move their feet during FOG (Lewis & Shine 2016). However, though insights have been 

gained using fMRI, this technique is not able to investigate the neural mechanisms 

underlying actual freezing episodes that occur while walking. 

Treating FOG is very challenging (Nonnekes et al. 2015). For instance, current 

dopaminergic replacement therapy reduces the appearance of FOG, but only in the short 

term for most PD patients (Nonnekes et al. 2015). Moreover, deep brain stimulation 

(DBS), which is reliably effective for cardinal motor symptoms of PD, does not 

adequately alleviate freezing (Nonnekes et al. 2015). It is possible that much of the failure 

of DBS to alleviate freezing may relate to the paroxysmal and functional nature of the 

phenomenon (Shine, Halliday, et al. 2014). Furthermore, somatosensory cues including, 

visual and auditory cues have been shown to reduce FOG (Nieuwboer 2008a). It is 

believed that cueing acts by requiring patients to step using goal-directed movements that 

do not require processing in the impaired basal ganglia (Lewis & Barker 2009). However, 

the effects of cueing are dramatically lost over time, possibly as patients habituate to the 
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novelty of the cue (Lewis & Barker 2009). There is therefore a need to develop 

appropriate “on demand” treatment strategies (Velik 2012) that may help to tailor 

treatments. 

This thesis, therefore, used electroencephalography (EEG) to investigate FOG for three 

main reasons. First, EEG is non-invasive and has no side effects and could be offered to 

all patients, including those with advanced stages of PD. Second, EEG allows for the 

investigation of the cortical neural mechanisms underlying FOG during actual gait (Velu 

et al. 2014). Third, the high temporal resolution of EEG might make it deal to ‘detect’ 

when a FOG event occurs (Handojoseno et al. 2014; Handojoseno et al. 2012; 

Handojoseno, Shine, et al. 2015). Knowing when FOG occured would allow for the 

timely implementation of treatment strategies for FOG, such as cueing or DBS, in order 

to overcome or even prevent the occurrence of FOG.  

1.2 PROBLEM STATEMENT 

In recent years, because FOG has been considered as a neurological disorder, few 

attempts have been made to detect the episode of FOG based on brain signal (EEG) (Jahn 

et al. 2008). In addition, there are a large number of studies using “body-worn” sensors 

such as accelerometers, goniometers and electromyography (EMG) as an indicator for 

FOG detection (Han et al. 2006; Nieuwboer et al. 2001). Electrocardiography (ECG)  was 

also analysed and reported as significant changes in the comparison between FOG and 

normal walking from the data of 11 PD patients (Mazilu et al. 2015). Moreover, a 

wearable device using acceleration sensors to measure patient’s movements has also been 

developed (Bachlin et al. 2010; Moore, MacDougall & Ondo 2008). 

The biggest advantage of EEG over “body-worn” sensors is that EEG measures the 

activity of the brain where FOG is caused. Therefore, EEG will be quicker to detect FOG 

than “body-worn” sensors because by the time “body-worn” sensors detect the freeze, the 

brain is already in a complete freezing state, making it more difficult to overcome a freeze 

(Lewis & Shine 2016). As a result, “body-worn” sensors are somewhat ‘too late’ in 
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detecting FOG. The neural signal has to travel all the way to the legs to be measured, 

whereas EEG directly measures the earliest onset of FOG from the brain itself, thus 

offering the most optimal time window for intervention to overcome FOG. Also, 

researches using “body-worn” sensors are limited in the detection FOG by different 

walking styles seen in PD patients. In fact, the accelerometer cannot differentiate the 

complete motor block associated with FOG from the period of voluntarily stopping in a 

patient with PD during walking and turning movement (Mazilu et al. 2012; Moore, 

MacDougall & Ondo 2008; Niazmand et al. 2011).  

Our primary aim is to better understand the freezing phenomenon and to develop a device 

that can aid medical treatment for FOG in PD patients. Using a brain signal appears to be 

a potentially effective solution, as it has been shown to provide information on the 

different gait tasks (i.e. turning and initiating gait). Moreover, it can measure scalp 

locations of the brain which is associated with the cause of FOG (Handojoseno et al. 

2012; Handojoseno, Shine, et al. 2015). EEG appears as a promising device for the 

detection of FOG in PD patients due to its portability, affordability, and convenience of 

use. It is hoped that the cueing and DBS treatments can be modified to only activate when 

required in the onset of FOG, thus improving their effectiveness. 

Our research team has recently shown that ‘surface EEG’ measurement can be utilized to 

detect specific brain signal changes that herald an episode of FOG when patients are 

walking and turning (Handojoseno, Gilat, et al. 2015; Handojoseno, Shine, et al. 2015). 

The term non-invasive ‘surface EEG’ electrodes was used to separate it from other types 

of EEG such as minimal invasive EEG or implanted EEG. However, to date, no study has 

investigated the EEG signals underlying GIF. In addition, it remains unclear what 

montage of EEG leads can provide the most sensitive and accurate detection of FOG 

episodes. Finally, much work is still needed to develop the most optimal EEG signal pre-

processing (artefact handling, amplifier and filtering), EEG signal transmission data 

mode (wireless), EEG signal feature extraction (feature extraction and selection), and 

EEG signal classification (better sensors for detection). As such, this thesis will be using 



Chapter 1                                                  Introduction 
______________________________________________________________________________________________ 

______________________________________________________________________________________________

6 

 

EEG to investigate the neural mechanism underlying different sub-types of FOG and to 

determine the most optimal EEG montage for the development of a real-time FOG 

detection device during actual ambulation. Also, further testing of EEG processing will 

be performed to inform future treatment development in patients with PD. 

1.3 THESIS OBJECTIVES 

This thesis aims to develop a new methodology for understanding and detecting five sub-

types of FOG (Turning FOG, Narrow FOG, Target FOG, Runway FOG and GIF) based 

on brain signals collected from PD patients during the performance of gait task. This 

thesis used Ag/AgCl scalp electrodes of a Biosemi ActiveTwo system to measure the 

EEG data from 32 electrodes positioned over main cortical regions. Using EEG, the 

cortical activity can be studied through the time-varying changes in certain spectral bands, 

allowing insights into the poorly understood neural mechanism of FOG.  

The first objective of this thesis is to develop a computational intelligence method to 

understand and detect four sub-types of FOG, namely Turning FOG, narrow FOG, target 

FOG and runway FOG using EEG signals. Further, this research aims to determine the 

most optimal EEG montage for the identification of these subtypes of FOG using a 32-

channel EEG system. Technically, we used input as Fast Fourier Transform (FFT) based 

featured extracted from every single channel to find the optimal EEG montage using 

Artificial Neural Networks (ANN) for FOG detection. This also allowed the most optimal 

montages to be used in the following research studies in this thesis to improve 

computation efficiency, robustness of the classification system and convenience for the 

use of ambulatory EEG by patients, as fewer sensors are required. 

The second objective is to understand and detect another subtype of FOG named GIF, 

which occurs when patients are about to start walking (i.e., initiate the first step). An 

improved computational intelligence method will be addressed further to detect the 

episode of GIF. The method of GIF detection is based on classification algorithms such 

as Support Vector Machine (SVM) with the input of features based on the combination 
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of Independent component analysis by entropy boundary minimization (ICA-EBM) and 

Wavelet transform (WT). This research also aimed to explore whether the classification 

results could be detected with a small number of EEG channels such as two EEG channels 

to further improve patient convenience.  

The third objective is to develop an advanced computational intelligence method for FOG 

detection to improve the accuracy of the system. This classification system was optimized 

by maximizing separation between signals using ICA-EBM for the advanced pre-

processing technique. The features were extracted in S-Transform (ST) and Bayesian 

Neural Networks (BNN) optimized classification. Because Turning FOG and GIF are the 

most common triggers for freezing (Schaafsma et al. 2003), these subtypes were used to 

test this new method (ICA-EBM, ST, BNN). 

1.4 THESIS CONTRIBUTIONS 

The thesis builds on the project of understanding and detecting freezing of gait in 

Parkinson disease. The contributions of this thesis can be summarized as follows: 

 Firstly, this research has investigated and discovered the abnormal 

changes of EEG signal underlying four sub-types of FOG and the ability 

to detect FOG based on optimal EEG montages. Using FFT as the feature 

extraction and a feed-forward neural networks as a classifier, the EEG data 

of FOG could be detected effectively in seven PD patients with FOG. 

Using an EEG system with fifteen channels provides accuracy results of 

around 70%. Further, this thesis was able to show that such accuracy could 

be obtained using only two input channels. Regarding the brain alterations, 

FOG episodes were found to be associated with significant increases in 

the high beta band (21-38Hz) across the central, frontal, occipital and 

parietal EEG sites. The study that shows the feasibility of using EEG 

approach in FOG detection is reported in (Ly et al. 2016). 
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 Secondly, this research utilized an EEG technique to investigate the 

dynamic brain changes underlying GIF episode and aims to detect the 

occurrence of GIF in four PD patients. This research studied the brain 

activity underlying GIF by analyzing WT of EEG signals. By 

implementing WT as input features with SVM as a classifier, the proposed 

system was able to detect GIF events with a classification performance of 

accuracy at 80.6%. Using ICA-EBM for EEG source separation, WT for 

feature extraction and SVM for classification, the correct identification of 

GIF episodes was improved with an accuracy of around 86.67%. The 

study that showed the feasibility of using this new approach in GIF 

detection is reported in (Ly et al. 2017b). 

 Thirdly, this research presented a novel methodology for FOG detection 

where ICA-EBM for source separation, Stock-well Transform (ST) 

techniques for feature extraction and BNN for classification were used. 

The results of this analysis demonstrated the correct identification of two 

of the most provoking triggers of FOG (Turning FOG and GIF) with an 

accuracy of around 89%. These results suggest that our proposed 

methodology is a promising non-invasive approach to improve FOG 

detection in PD. The study that showed the feasibility of using this new 

approach in Turning FOG and GIF detection is reported in (Ly et al. 

2017a). 

1.5 THESIS OUTLINE 

This thesis consists of six chapters, an appendix and references. The chapters of this thesis 

are organized as below: 

Chapter 2 reviews literature associated with the FOG and its sub-types based on the Time 

Up and Go (TUG) tasks that are often used to study FOG (Snijders et al. 2012). This 

chapter covers the key fundamentals to the understanding of PD, including history, the 
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pathophysiology, especially related to gait movement and FOG, diagnosis and treatment. 

It then provides the category of five sub-types of FOG and the need to divide them into 

two main groups for further analysis (namely FOG that occurs during gait and FOG that 

occurs when initiating gait). After that, the scope is also narrowed to focus on the 

detecting strategies of these two groups of FOG, providing a brief outline of the proposed 

FOG detection strategy regarding the development of a classification system for detecting 

different sub-types of FOG during ambulation using EEG signal.  

Chapter 3 illustrates the initial works on the detection of the first group, which includes 

the four subtypes of FOG that occur during gait, based on FFT for feature extraction. This 

study investigated periods of FOG (Turning FOG, Narrow FOG, Target FOG and 

Runway FOG) compared to periods of normal conditions (Good Turn, Good Narrow, 

Good Target, and Good Runway). Different EEG parameters in the form of Power 

Spectral Density, Centroid Frequency and Power Spectral Entropy (PSE) were extracted 

and analysed to find important features that were significantly changed during FOG 

compared to normal conditions. It is followed by the classification of the data for the 

detection of freezing using the artificial neural network. In addition, this chapter 

determined the most optimal montage of sensors to detect FOG amongst a 32-channel 

EEG system. 

Chapter 4 presents the strategy of detecting GIF (the second group of FOG) where the 

freezing happens at the start of gait. This study compares GIF episodes with Good Start 

(GS) of gait initiation without GIF during several standardized TUG assessments. This 

research studied the brain activity underlying GIF by analyzing wavelet analysis (Wavelet 

Energy, Wavelet Centroid Scale, and Wavelet Energy Entropy) of EEG signals. The 

method of GIF detection is based on a combination of ICA-EBM for source separation, 

WT for feature extraction and SVM for classifier (ICA-EBM, WT, SVM).   

Chapter 5 shows the strategy of developing a faster and better classification system for 

detecting two common sub-types of FOG including Turning FOG and GIF. Optimization 
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of the features was investigated using a combination of ICA-EBM for source separation 

and S-Transform (ST) as a feature. Optimization of the classifier was investigated by 

using Bayesian regularization in this chapter. The results of this study suggest that our 

proposed methodology (ICA-EBM, ST, BNN) is a promising non-invasive approach for 

improving classification accuracy during ambulation in PD patients. 

Chapter 6 presents the overall discussion and conclusions and future direction for this 

research. The discussion covers the important finding of the brain pattern and different 

detection methods utilized in the study for all subtypes of FOG using EEG signal. The 

chapter ends with suggestions for possible directions for future work for real-time 

detection of FOG. 
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Chapter 2 LITERATURE REVIEW 

Literature Review 

 

2.1 PARKINSON’S DISEASE (PD) 

Parkinson’s disease is one of most common neurodegenerative diseases, affecting 

approximately 1-2% of the population aged over 60 years. Nearly 70,000 Australian who 

were reported as living with Parkinson's Disease in 2015; however, more recent research 

indicates that the actual prevalence is over 108,000 (Parkinson's Australia Submission 

2017). Given the tendency that people live longer and that the risk of PD increases with 

age, the number of people with PD is expected to double by 2030 (Dorsey et al. 2007) 

Since the early 1980s, PD has been identified as a degenerative disorder with 

abnormalities of movement,  characterized by dopaminergic depletion in the nigrostriatal 

pathway (Agid et al. 1989). Dopamine is one of the neurotransmitters in the basal ganglia, 

which help transmit messages in the striatum to initiate and control movement. The 

dopamine system undertakes the responsibility to keep the muscles working smoothly. 

The substantial loss of dopamine in PD makes the muscles overly tense (i.e., rigidity), 
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causes slow movement (i.e., bradykinesia) and may cause resting tremor (Braak et al. 

2004; Jankovic 2008).  

PD patients suffered from motor and non-motor symptoms. Some non-motor symptoms 

such as sensory abnormalities, cognitive impairments, autonomic dysfunction and mood 

disorder are usually accompanying the patients after several years of PD (Caballol, Martí 

& Tolosa 2007; Chaudhuri, Healy & Schapira 2006). The motor symptoms by which a 

patient with PD is diagnosed are bradykinesia, resting tremor, rigidity as well as gait and 

balance impairments (Jankovic 2008). Bradykinesia or slowness of movement is recorded 

as the most characteristic feature of PD and observed during behaviors like rapid, 

sequential movement such as finger tapping. Resting tremor refers to unintended 

movements at high frequencies (4-6Hz) that mostly appear in the distal extremities. Rigid 

muscles often appear as an increased resistance to passive flexion, extension or rotation 

of the limb (Jankovic 2008). Importantly, “freezing” is also a major disabling problem in 

PD as it is a common cause of falls and injuries (Kerr et al. 2010) (Table 2.1). 

Gait disturbance is a cardinal features of this disease and is characterized by short 

shuffling steps, reduced arm swing and freezing events (Jankovic 2008). The disorder of 

gait has a negative impact on several domains of activities in PD patient’s daily life and 

causes falls and fall-related psychological issues. As the disease progresses, PD patients 

often develop FOG, which is described as a sudden inability to walk and patients often 

feel as though their feet have been ‘glued’ to the ground (Nutt et al. 2011). FOG often 

happens when patients are turning or are faced with obstacles, such as narrow doorways, 

reaching a target and sometimes during straight walking (Schaafsma et al. 2003). 

Furthermore, FOG can occur when patients initiate the first step, otherwise called gait 

initiation failure (Schaafsma et al. 2003). FOG is amongst the top symptoms that 

influence the quality of life (Walton et al. 2015). These disturbances of gait, especially 

FOG, respond poorly to current therapies and are associated with a high risk for falls and 

the need for institutional care (Bloem et al. 2004) 
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Table 2.1:  Motor and non-motor symptoms in PD (Magrinelli et al. 2016) 

 

Motor symptoms and signs 

Rest tremor 
associated with frequency 4–6 Hz in a tremor; usually involves 

fingers and hands; sometimes in forearm pronation, jaw and leg.  

Rigidity increased muscle tone involved both flexor and extensor muscles 

Postural instability 
impaired postural adjustment due to decrease or loss of postural 

reflexes 

Akinesia 
reduction, delay, or absence of either voluntary, spontaneous, or 

associated movement 

Hypokinesia reduced movement amplitude, particularly with repetitive movements 

Festination involuntary gait acceleration with step shortening 

Freezing of gait 
difficulty in gait initiation (GIF) and unintentional paroxysmal 

episodes of the motor block during walking or turning. 

Akathisia 
the feeling of inner restlessness and strong need to be in constant 

motion associated with the inability to sit or stay still 

Non-motor symptoms and signs 

Sensory abnormalities 
a condition in which the brain has trouble receiving or interpreting 

information from the senses 

Mood disorders increased anxiety, apathy or depression symptoms 

Cognitive impairment 
especially executive dysfunctions, but with disease progression also 

increasing risk for Parkinson dementia 
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Moreover, Politis et al. (2010) and others have shown that gait disturbance does not only 

affect patient’s daily activities but is also linked to other negative emotions, such as 

depression and anxiety (i.e., fear of falling), fatigue, which further decrease the quality of 

life (Schrag, Jahanshahi & Quinn 2000). This might be a barrier to perform physical 

activities and be another independent predictor for future falls (Dontje et al. 2013). 

Therefore, it is clear that novel treatment approaches are required. 

2.2 FREEZING OF GAIT (FOG) 

Freezing of Gait (FOG) is one of the primary features of gait disturbance in PD. It is a 

highly disabling symptom that affects approximately half of all Parkinson’s disease 

patients, especially in the advanced stages of the disease (Nutt et al. 2011). Clinically, 

FOG is defined as a “brief, episodic absence or marked reduction of forwarding 

progression of the feet despite the intention to walk” (Nutt et al. 2011). It commonly 

occurs in complex environments that necessitate integration of multiple sensory stimuli 

(Moore, MacDougall & Ondo 2008). Therefore, it is typically seen during turning or 

going through narrow doorways, reaching a target and sometimes during straight walking 

(Schaafsma et al. 2003). Furthermore, FOG can occur when patients initiate the first step, 

otherwise called gait initiation failure (Schaafsma et al. 2003). Importantly, FOG is 

ranked as one of the symptoms most easily leading to falls and injuries because of its 

sudden and unpredictable nature, (Giladi & Nieuwboer 2008). 

2.2.1 Characterizing of Freezing of Gait in PD 

FOG can be characterized as three gait impairments (Giladi & Nieuwboer 2008): a 

complete akinesia (no limbs or trunk movement), trembling in place (no effective 

forward), and very small shuffling forward steps. In relation to the character of leg 

movement, FOG is characterized by four categories such as a profound and incremental 

decrease in stride length; a highly reduced joint ranges in the hip, knee, and ankle; 

disordered temporal control of gait cycles; and high-frequency alternate trembling-like 

leg movements (Nutt et al. 2011).  
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Based on contexts of behavioural measures in daily life, different types of FOG have been 

observed including: freezing when turning (Turning FOG-TF); freezing when getting 

through narrow doorways (Narrow FOG); freezing when reaching a target (Target FOG), 

freezing when performing dual-tasking; freezing when straight walking or freezing when 

initiating gait to start movement (GIF) (Schaafsma et al. 2003). Turning FOG appears to 

be the strongest provoking factor of FOG because it is a complex task that requires 

difficult inter-limb coordination (Gilat et al. 2015). GIF is followed as the second most 

common trigger to FOG (Giladi & Nieuwboer 2008) due to failure to initiate the gait 

(Figure 2.1). Moreover, Snijders et al. (2012); Spildooren et al. (2010) reported that 360 

Turning FOG in combination with a dual-task (such as counting number, calling 

male/female name) is also the most important trigger to FOG.  

 

  

Figure 2.1:  The Relative proportion of five sub-types FOG observed during the 

TUG trials. (Shine et al. 2012; Snijders et al. 2012) 
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Indeed, in our study to collect FOG data using EEG signals, Turning FOG is recognized 

to be the most frequent trigger of FOG, totalling 62.7% of all witnessed FOG episodes. 

Moreover, GIF is also voted as the second common form of FOG, with over 20% of all 

FOG episodes recorded as being a GIF (Shine et al. 2012; Snijders et al. 2012). These 

two triggers accounted for more than half of all witnessed FOG, compared to other sub-

types of FOG. Therefore, these two common subtypes are selected to test the new 

advanced algorithm for FOG detection. 

2.2.2 Sub-types of FOG 

Based on previous research (Schaafsma et al. 2003; Shine et al. 2012), FOG can be 

distinguished into five sub-types in relation to their clinical situations in which they 

occurred. Moreover, depending on whether the patient was already walking or just about 

to start walking, FOG can be divided into two main groups. The first group includes four 

main subtypes of FOG in which the freezing episodes occurred while the patient was 

already walking or turning (Nieuwboer & Giladi 2013). These include Turning FOG, 

narrow FOG, target FOG and runway FOG. The second group is GIF, which considers 

the freezing episode occurred when the PD patients are just about to start walking. A 

description is provided below based on (Shine et al. 2012) 

 Group 1: patient was already walking or turning 

(i) Turning FOG is the phenomenon in which one or both of the patients’ legs 

failed to take a step during turning as part of all the routines. 

(ii) Target FOG is the phenomenon where FOG occurred upon the arrival to a 

defined target 

(iii) Narrow FOG is the freezing occurring during the navigation of a narrow 

portion of the routine (such as a doorway) 

(iv)  Runway FOG is the freezing happening when PD experienced normal 

walking  

 Group 2: patient just about to start walking 
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(v) Gait Initiation Failure (GIF) is the phenomenon where patients were unable to 

effectively initiate the first step at the start of a TUG task in any of the routines.  

2.2.3 Brain location associated with FOG and GIF in PD 

To better understand FOG, some research has identified the most affected areas of the 

brain underlying this phenomenon (Table 2.2). In fact, there are two approaches to 

investigate on FOG.  The first approach studies used function Magnetic Resonance 

Imaging (fMRI) techniques to compare motor imagery of gait movement disturbances in 

PD patients (Georgiades et al. 2016; Gilat et al. 2015; Snijders et al. 2011). The second 

approach studies concentrated on characterizing FOG using Electroencephalography 

(EEG) signal techniques (Handojoseno, Shine, et al. 2015; Velu et al. 2014).     

For fMRI approach, Bakker et al. (2008) revealed in the left and right superior parietal 

lobule, the right middle occipital gyrus and premotor cortex caudal was associated with 

FOG due to its increasing cerebral activity in PD patients that experience FOG. Amboni 

et al. (2008) focused on the executive functions of PD patients and found that FOG 

correlated with lower scores at frontal locations of early-stage PD patients. Snijders et al. 

(2011) reported the impact of the right superior parietal lobule underlying the episode of 

FOG when comparing the activity of motor imagery between walking and freezing in PD 

patients using fMRI. The frontal-parietal cortex has been noted by Crémers et al. (2012) 

as the brain location associated with FOG in PD patients because of decreased activity in 

the SMA being detected during mental imagery of gait.  

Regarding the pathophysiology underlying freezing of gait, Shine, Matar, et al. (2013) 

reported cortical frontal and motor as well as basal ganglia associated with a change in 

blood oxygen level-dependent response during freezing of gait based on the data of 18 

PD patients. These results provide novel insights into the pathophysiology underlying 

freezing of gait and lend support to models of freezing of gait that implicate dysfunction 

across coordinated neural networks. Vervoort et al. (2016) demonstrated the impairments 

between the inferior parietal lobule and premotor cortex (PMC) and between the caudate 
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and superior temporal lobe. In the combination of fMRI and virtual reality paradigm, 

Gilat et al. (2015) studied the neural correlates underlying turning episodes in PD patients 

with and without FOG. Interestingly, the activated inferior frontal regions and visual 

cortex activation were revealed as the implicated brain regions in PD patient with freezing 

during turning. 

With the understanding that the occurrence of FOG has been related to these brain 

regions, there are several studies that used portable EEG signals to research actual FOG 

episodes. Shine, Moustafa, et al. (2013) has reported the motor (Cz) and fronto-parietal 

network known as the implication of FOG (Figure 2.2). Velu et al. (2014) used portable 

EEG focused on the occipital (Oz), parietal (P4) and motor (Cz) to examine how visual 

cues effected freezing across these regions. EEG result from the data of two PD patients 

suggested there was a significant relationship between visual feedback cues and an 

occipital-parietal-motor network in FOG. Handojoseno, Shine, et al. (2015) measured 

EEG power of 16 PD patients with FOG and showed that motor cortex and pre-

supplementary motor area (pSMA) had been related to the episode of FOG. Handojoseno, 

Gilat, et al. (2015) used ambulatory EEG from data of four PD patients to investigate the 

brain dynamic changes associated with freezing of gait during turning. The occipital and 

parietal areas have been determined as the most suitable location underlying Turning 

FOG (Figure 2.3). 

2.3 TREATMENT OF FOG 

The medical treatment of FOG is complicated due to the multifactorial mechanism related 

to FOG, and that the pathogenesis of FOG is poorly understood (Nutt et al. 2011). 

Different stages of the disease and different sub-types of FOG likely need different 

strategies to treat FOG.  Determining the right cue parameters is important for obtaining 

the best effect on FOG. Dopaminergic medication, rhythmical cueing on gait, exercise 

training and development of assistive devices have been shown as the compensation 

strategies to prevent or lessen FOG (Okuma 2014). 
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Table 2.2:  The affected brain locations underlying FOG in PD  

 

Authors Subjects Methodology Affected brain regions 

M. Bakker et al., 

(2008) 

16 HC fMRI on FOG L Parietal; R Parietal 

A.H. Snijders et al., 

(2011) 

13 PD+FOG, 12 

PD-FOG 

fMRI & EMG on 

FOG 

L Central; L, R, M 

Parietal; Frontal 

J. Créemers et al., 

(2012) 

15 PD , 15 HC fMRI on FOG L Central; L, R, M 

Parietal; L R Frontal 

Shine, Matar, et al. 

(2013) 

18 PD patients fMRI on FOG L Central; L, R, M 

Parietal; L R Frontal 

D.S. Peterson et al., 

(2014) 

9 PD+FOG; 9 

PD-FOG 

fMRI on FOG R Central  

J. Youn et al., (2015) 19 PD+FOG, 23 

PD-FOG,  

fMRI on FOG M frontal; M central 

Gilat et al. (2015) 17 PD+FOG, 10 

PD-FOG 

fMRI on Turning 

FOG 

L motor; L parietal; L, R 

frontal;  Occipital  

Georgiades et al. 2016 54 PD, 15 HC GIF Frontal; Primary motor  

Vervoort et al. (2016) 17 PD+FOG, 59 

PD-FOG,  

fMRI on FOG Prefrontal; Premotor; 

Parietal  

Wu & Hallett (2008) 15 PD, 14 HC EEG on FOG Cz 

M. Sho et al., (2011) 20 HC, 20 PD EEG on FOG Cz 

P.D. Velu et al., 

(2013) 

2 PD+FOG; 6 

HC 

EEG, EMG on FOG P4, Oz, Cz 

J. B. Toledo et 

al.,2014 

22 PD  EEG on FOG C3, Cz, C4, F3,F4 

Shine et al. (2014) 24 PD EEG on FOG Cz, Fz 

Handojoseno, Shine, 

et al. (2015) 

16 PD or 4 PD EEG on FOG, 

Turning FOG 

O1, P4, Cz, Fz 

Or O1, O2, P3, P4 

 
L: Left; R: Right; M: Midline; HC: Healthy Control People; PD: Parkinson’s disease Patient; 

PD+/-FOG: Parkinson’s disease Patient with/without FOG;  
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Figure 2.2:  Comparison of BOLD activation and deactivation patterns during the 

contrast of the motor arrests and ‘walking’ using fMRI (Shine, Matar, et al. 2013) 

 

 

 

Figure 2.3:  The regional analysis reveals an increase of information flow to 

occipital underlying Turning Freezing using EEG signals (Handojoseno, Gilat, et 

al. 2015) 
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2.3.1 Dopaminergic medication  

Because widespread dopaminergic loss is a main feature of FOG and GIF, supplying 

dopaminergic replacement therapy has been chosen as the most effective treatment for 

PD and aims at restoring dopaminergic transmission. Overall, medication has been shown 

to improve bradykinesia of the limbs in PD patients (Vaillancourt et al. 2006). The extent 

of dopaminergic improvement in the treatment of FOG provided improvements in 

balance and gait tasks, led to faster walking velocity owing to longer steps (McNeely & 

Earhart 2013). 

2.3.2 Cueing techniques  

PD patients with FOG increased the length of stride when auditory cues are offered at 

based line frequency (Willems et al. 2006). Therefore, rhythmical cueing on gait has been 

chosen as a compensation strategy to break FOG episode in the form of a number of 

assistive devices. Indeed, specific cueing techniques using rhythmic auditory cues can 

reduce the severity of FOG by improving step length and walking speed (Nieuwboer 

2008b). Over 30% of FOG events can be broken by visual cues when patients pay 

attention to each step, go upstairs or stamp their feet based on the light direction (Rahman 

et al., 2008).  

Arias & Cudeiro (2010) reported the effect of auditory rhythmic stimulation in 19 PD 

patients when they performed several tasks in the presence of auditory sensory 

stimulation. The results showed the existence of auditory rhythmic stimulate could 

significantly reduce FOG in freezers with 10% compared with the case without cueing. 

Impressively, auditory stimulation at the frequency proposed has been concluded to avoid 

freezing episodes in a patient with FOG. However, when the frequency of auditory cueing 

is too high, patients with FOG do not improve their walking. In addition, cueing is known 

to lose its beneficial effect over time when constantly applied. 
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2.3.3 Exercise training   

Exercise is known as physical activities that enhance or maintain health in people’s lives. 

It is important to note that addressing balance impairments in PD patients can be solved 

by training exercise. According to the guideline for Parkinson’s disease in the European 

Physiotherapy, exercise is more likely to be affected directly by the impairment of 

balanced control in PD such as training them how to walk through a corridor or a narrow 

door. The regular practice of this movement in PD patients can improve the fluency of 

motor skills, original motor skills or motor learning skills, which lessen the appearance 

of FOG in PD. 

2.3.4 Assistive devices    

To improve the function of non-medication approach, research designed several assistive 

devices to support the PD patient such as canes or walking sticks, walkers and 

wheelchairs.  

U-step laser walker with a laser beam between the rear is known as one of the useful 

devices help the patient to overcome FOG or GIF episodes in some patients (Lisette 

Bunting-Perry PhD et al. 2013).  

Furthermore, the combination of a laser light cue with a walker has been confirmed to 

improve freezing and has been commercialized (Okuma 2014). Janssen et al. (2017) 

investigated the usability of three dimensions (3D) augmented visual cues delivered by 

smart glasses in reducing the occurrence of FOG, the percentage of time spent on FOG, 

and the variability of stride length and cycle time. However, this 3D method did not 

improve FOG (Figure 2.4). 
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Figure 2.4:   A Model of custom-made smart glasses allowing augmented reality 

visual cues when FOG happened (Janssen et al. 2017) 

 

2.4 CURRENT STRATEGIES FOR FOG DETECTION 

FOG has been known to be associated with trembling of the legs. Therefore, there are 

recent studies using wearable sensors such as accelerometers, goniometers to measure 

movement signal of the leg as an indicator of FOG detection (Table 2.3 and 2.4). To 

achieve the best performance, the most effective system also focused on the design of 

type of sensors, number of sensors, location of the sensors on the body. Sensors were 

positioned on the shin, waist, chest, insole, lower back and head of the patients to detect 

FOG (Rodríguez-Martín, Samà, Pérez-López, Català, Arostegui, et al. 2017). There are 

three approaches to detect FOG in PD.  The first approach concentrates on frequency 

analysis of leg movement. Tri-axial accelerometers, gyroscopes or magnetometers were 

attached to the body location to measure signals associated with trembling of the leg 

during FOG events (Moore, MacDougall & Ondo 2008). The second approach is based 

on the alteration of ECG signal and skin conductance signal of PD patients underlying 

FOG (Mazilu et al. 2015). The third approach is currently based on the detection of EEG 

signal to measure changes in the brain activity within FOG episodes (Handojoseno, 

Shine, et al. 2015). 
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Table 2.3: Overview of methods of selected FOG Detection studies                                                

(Rodríguez-Martín, Samà, Pérez-López, Català, Moreno Arostegui, et al. 2017) 

 

Work PD Methods S Location Significant results 

Rodríguez-

Martín et al. 

(2017) 

21 accelerometer 1 waist 
sensitivity (74.7%) 

specificity (79%) 

Pham et al. 

(2017) 
 accelerometers 3 

shank,thigh,low

er back, ankle 

sensitivity (94%), 

specificity (84%) 

Ahlrichs et 

al. (2015) 
8 accelerometers 1 waist accuracies >90% 

Maidan et al. 

(2015) 
11 

infrared 

spectroscopy 

1, 

1 
head 

haemoglobin changed 

before FOG 

Handojoseno 

et al. (2015) 
16 EEG 4  head 

sensitivity (86.0%), 

specificity(74.4%)   

Weiss et al. 

(2015) 
28 accelerometer 1 lower back 

gait parameters between 

freezers, non-freezers 

Tay et al. 

(2015) 
8 gyroscope 2 waist 

variability in gait 

parameters 

Mazilu et al. 

(2015) 
18 ECG 1  chest,  fingers 71.3% of success 

RodrõÂguez 

et al. (2014) 
10 accelerometer 1 waist 

improvement of 5% in 

specificity  

Coste et al. 

(2014) 
4 accelerometer 1 ankle 

approach to detect pre-

FOG  

Djuric-Jovici 

et al. (2014) 
12 

accelerometer 

gyroscope 
 shin 

sensitivity, specificity 

(>99%)   

Takac et al. 

(2013) 
1 

depth Sensor 

accelerometer 
1, 1 waist 

0.16 m error (RMSE) for 

human body orientation 

 
PD: number of PD patients 

S: number of sensors 

 



Chapter 2                                                              Literature Review 
______________________________________________________________________________________________ 

______________________________________________________________________________________________

27 

 

Table 2.4: Overview of methods of selected FOG Detection studies                                                

(Rodríguez-Martín, Samà, Pérez-López, Català, Moreno Arostegui, et al. 2017) 
 

Work PD Methods S Location Significant results 

Moore et al. 

(2013) 
25 accelerometers 7 

lower back, 

thigh, shank, l 

sensitivity, specificity 

(>70%) 

Tripoliti et 

al. (2013) 
5 

accelerometers, 

gyroscopes 

6, 

2 

shank, wrist, 

chest, abdomen 
accuracy (96.11%) 

Mazilu et al. 

(2013) 
10 accelerometers 3 

shank, thigh,  

lower back 
better performance  

Zhao et al. 

(2012) 
8 accelerometers 5 

shank, thigh, 

lower abdomen 
sensitivity (81.7%) 

Mazilu et al. 

(2012) 
10 accelerometers 3 

shank, thight, 

lower back 

sensitivity, specificity 

(>95%)   

Cole et al. 

(2011) 
10 

EMG and 

accelerometers 

1, 

3 

shin. thigh and 

forearm 

sensitivity(83%); 

specificity(97%) 

Niazmand et 

al. (2011) 
6 accelerometers 5 

shank, thigh, 

lower abdomen 

sensitivity(88.3%); 

specificity(85.3%) 

Maidan et al. 

(2010) 
10 

ECG, insoles,  

accelerometer 
2,2 

chest, insole at 

shoe. 

heart rate evolution 

during FOG 

Delval et al. 

(2010) 
10 

goniometer, 

video system 
2 knee 

sensitivity (75–83%), 

specificity (>95%) 

Jovanov et 

al. (2009) 
2 accelerometers 6 

ankle, knee,  

thigh 

the algorithm in real time 

with fast response 

Daphnet 

(2009–2011) 
11 accelerometer 1 left ankle 

sensitivity (73.1%), 

specificity (81.6% )  

Zabaleta et 

al. (2008) 
10 accelerometer 1 knee accuracy (82.7%) 

Moore et al. 

(2008) 
11 insole pressure 1 

insole at the 

shoe 
accuracy (89.1%)  

Han et 

(2003) 
2 accelerometers 2 ankle 

frequency response from 

6-8Hz in a FOG episode 
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2.4.1 Measure leg/knee oscillations for FOG detection   

Han et al. (2003) used accelerometers to measure the ankle movement underlying FOG 

from data of two PD patient. This study found a response from patients wearing 

accelerometers at the ankle associated with the frequency around 6-8Hz. Han et al. (2006) 

continued their preliminary work by applying 3-dimensional accelerometer with foot 

pressure system to monitor abnormal activity such as toe-walking and slowness of the 

patient’s movement and a camcorder for observing gait detection.  

To detect FOG, Moore, MacDougall & Ondo (2008) used an ankle-mounted sensor array 

attached to left shank transmitted data wirelessly to a pocket PC at a rate of 100 Hz. A 

freeze index (FI) was introduced in this study; which calculated by the division of the 

power in the ‘freeze’ band and the power in the ‘locomotor’ band (0.5–3 Hz).  

Hausdorff et al. (2003) used two sensors located under the heel and the balls of the feet; 

placed in the patient’s shoe. The data from both sensors were combined before recording 

to measure the severity of FOG. Djuric-Jovicic et al. (2014) published a proposed method 

to detect FOG based on data obtained from a 3-D accelerometer, 3-D gyroscope placed 

laterally along the shank segment of each leg from 12 PD patients.  

Mazilu et al. (2016) used wrist-mounted inertial sensors to collect data from eleven PD 

patients. The sensors were attached to both wrists and both ankles of patients in order to 

monitor upper limbs movements and detect FOG. Rodríguez-Martín, Samà, Pérez-López, 

Català, Moreno Arostegui, et al. (2017) used a single tri-axial accelerometer worn at the 

waist of twenty-one PD patients to evaluate FOG episode at home.  

Pham et al. (2017) used three tri-axial accelerometers attached to the shank, thigh, and 

lower back of the patients using elasticized straps. The data was recorded at 64 Hz, 

transmitted via a Bluetooth link, and used for FOG detection (Figure 2.5). 
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Figure 2.5:  Three tri-axial accelerometers were attached to the shank, the thigh, 

and the lower back (Pham et al. 2017). 

2.4.2 Measure ECG signal for FOG detection   

To test the hypothesis that heart rate was associated with FOG, Maidan et al. (2010) 

utilized the ECG data signal from 20 PD with FOG and without FOG in his experiment. 

Heart rate was measured when patients performed tasks and frequently provoke FOG. 

The finding showed that heart rate increases during FOG and further increases just prior 

to FOG based on 120 FOG episodes. Interestingly, present results provided experimental 

evidence linking between autonomic nervous system and FOG in PD.  

Essentially, Mazilu et al. (2015) analysed ECG and skin-conductance (SC) data from 11 

PD subjects experienced FOG in their daily activities. Compared to normal walking, ECG 

was found to change significantly just before the FOG episodes. These significant 

patterns were used to predict FOG with an accuracy of 71.3% and to help user avoid the 

gait freeze by external cues (Figure 2.6). However, Mazilu’s study was not able to build  
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Figure 2.6:  FOG detection system with a focus on the ECG and EC sensor systems 

(Mazilu et al. 2015) 

a FOG-prediction model from ECG data because ECG features might not only correlate 

to FOG, but it could come from the noise associated with ECG from sudden movements 

of the body during different walking events, e.g. during turning. Furthermore, the 

sympathetic response captured by ECG may only be associated with FOG in PD patients 

with a high level of anxiety (Martens, Ellard & Almeida 2014) 

2.4.3 Measure EEG signals for FOG Detection    

EEG is the electrical potential of brain activity recorded by using electrodes placed on 

the scalp (Wolpaw et al. 2002). The EEG signal on the scalp is within the range 5-300 

µV and the commercial EEG electrodes are usually made from silver/silver-chloride 

(Ag/AgCl). These scalp electrodes are sensitive for picking up the mixed activity of a 

large population of neurons, rather than the activity of a single neuron. To keep a good 

electrical contact in the process of measuring EEG signal, the electrodes are required to 

have proper connection with the scalp in the specific regions of the brain. The conductive 

gel is taken to make the electrode wet before the measurement. In fact, there are several 

artefacts known as non-brain physiological sources (heart activity, eye movements, 
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muscle activity) which could affect the EEG recording. A power line noise (50/60 Hz) 

can also contaminate the EEG signal. For these reasons, it is suggested that artefacts be 

removed from the raw EEG signal before analysing. To conduct measurements with the 

EEG system, electrodes will be placed on the scalp with even numbered electrodes on the 

right side and odd number electrodes on the left side of the head.  

From 2012 to 2015, Handojoseno et al. (2012) studied the EEG data from sixteen PD 

patients with significant FOG to detect FOG. EEG data were collected from UTS with 

sensors located at occipital one (O1-primary visual receiving area), parietal four (P4-

navigational movement area), central zero (Cz-primary motor area) and frontal zero (Fz- 

supplementary motor area) (Figure 2.7). This study demonstrated the potential of the EEG 

features extracted in both time and frequency domain giving more insight into the 

pathophysiology of FOG in PD. However, different aspects of the EEG signal, when 

combined, may provide more significant information, leading to a better classification of 

the EEG signal. 

 

 

Figure 2.7:  Four electrodes related to cortical control of movement in FOG 

detection system (Handojoseno et al. 2012; Handojoseno, Shine, et al. 2015) 
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2.4.4 Review on current Computational Intelligence for FOG 

Detection     

Computational intelligence is a fundamental component for FOG detection system in PD. 

After data is measured from different sensors attached to the PD patients, this is followed 

by the computational intelligence, including feature extraction block to extract the 

important features underlying FOG and a classification block to classify the feature vector 

to detect FOG.  

Similar to clinical observations, Han et al. (2003) could detect FOG using two biaxial 

accelerometers from 2 patients with FOG. Their study found that freezing has a higher 

main frequency acceleration (6-8Hz) compared with a normal gait (2Hz). Then, FOG, 

normal gait and resting state were classified by the authors based on the comparison of 

the wavelet power level on different frequency bands. The group continued their 

preliminary work by developing the wearable activity monitoring system using a 3-

dimensional accelerometer with foot pressure system, and a camcorder for the reference 

of gait detection (Han et al. 2006). They developed a general gait detection algorithm 

beyond FOG to detect any abnormality, such as toe-walking and slowness. Based on the 

subsequent evaluation of gait signal parameter, it has detection accuracies of 94% and 

93% for normal and PD gait, respectively.  

Zabaleta, Keller & Marti Masso (2008) were able to detect correctly 82.7 % of the FOG 

episodes based on the significant PSD features during FOG from inertial sensors located 

at each patient’s ankle. Niazmand et al. (2011) employed the hybrid approach which 

consists of three algorithms for detecting FOG achieving an 88.3% on sensitivity and 

85.3% on specificity in 6 PD patients. Tripoliti et al. (2013) used four classification 

algorithms: Random Tree, Random Forest, Decision Trees and Naïve Bayes in the 

detection of FOG. The Random Forest classifier was proved as giving the best 

classification result, with sensitivity (81%), specificity (98%) and accuracy (96%).  
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Djuric-Jovicic et al. (2014) published a novel method for FOG detection based on the two 

sections such as the selection of representative stride and the estimation of gait parameters 

(duration, spectrum, change of orientation and displacement). This proposed method 

identifies the episode of FOG with excellent results in the range of sensitivity 78% to 

100% for the FOG with trembling or completion motor blocks. Mazilu et al. (2012) 

evaluated a number of supervised classifier algorithms such as Random Forest, C4.5 

Decision Trees, Naïve Bayes, multilayer perceptron to detect FOG. Results from 10 PD 

patients obtained showed higher specificity and sensitivity, with nearly 90%. To continue 

his work, FOG episodes from data of eleven PD patients were collected and such freezing 

episodes can be detected by using wrist motion and current machine learning models with 

an improvement of 95% specificity (Mazilu et al. 2016).  

Handojoseno, Shine, et al. (2015) examined 16 PD patients with significant FOG. This 

research explored and detected FOG based on the various features of EEG, which can be 

used as indicators of FOG and aimed to introduce the effective features as inputs for the 

FOG. Importantly, the most effective features achieving the highest performance in EEG 

study were extracted in the time-frequency domain (wavelet transform). When predicting 

FOG episode, the classifier resulted in a sensitivity of 86.0%, specificity of 74.4%, and 

accuracy of 80.2%.  

Currently, Rodríguez-Martín, Samà, Pérez-López, Català, Moreno Arostegui, et al. 

(2017) present a new algorithm to detect FOG with machine learning approach based on 

Support Vector Machine. Results obtained a mean sensitivity of 84% for detecting FOG 

at the patient’s home, which seems to be significant enough to evaluate FOG. Pham et al. 

(2017) developed an automated FOG detector for subject-independent. The system 

applied an anomaly score detector (ASD) with adaptive thresh holding to detect FOG 

events. The results achieved an improved performance in the classification with a 

sensitivity of 94% for ankle as an indicator and 89% for back sensors indicator. 
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2.5 DISCUSSION AND PROPOSED STRATEGY 

Because PD is a neural disorder, the brain is the first affected organ. Therefore, both the 

invasive (DBS) and non-invasive (fMRI, EEG) approaches have been popularly applied 

in several FOG studies to understand brain mechanism underlying PD. The invasive 

method requires surgery on patients with obvious disadvantages for safety and the DBS 

can only provide information of one brain region that is targeted. For the non-invasive 

methods, these approaches have been ultilized as the common way to understand the brain 

activities underlying FOG because it is safer for patients and is able to investigate larger 

areas of the brain involved with FOG. Table 2.5 shows the advantages and disadvantages 

of FOG detection methods.   

Compared to EEG, the neuroimaging techniques, such as fMRI, cannot measure actual 

FOG in the clinical environment because patients cannot walk inside the scanner to 

trigger FOG. EEG allows for the investigation of the cortical neural mechanism 

underlying actual FOG and can be applied in real life environments. As such, this thesis 

used ambulatory EEG to investigate FOG. 

Most of the existing research has used ‘body-worn’ sensors (such as accelerometer, 

gyroscope, goniometers or ECG sensors) to detect FOG in PD. Compared with these 

‘body-worn’ sensors, the advantage of EEG is the ability to measure the earliest onset of 

FOG in the brain which is the root of FOG. Detecting FOG using ECG provides a sub-

optimal time window, whereas EEG records the onset of FOG from where it originates, 

namely the brain itself. Therefore, EEG can detect FOG quicker than “body-worn” 

sensors due to the time that the neural signal travels to control the legs. Also, researches 

using “body-worn” sensors could not detect FOG by different walking styles seen in PD 

patients such as the complete motor block associated with FOG (Mazilu et al. 2012; 

Moore, MacDougall & Ondo 2008; Niazmand et al. 2011).  
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Table 2.5: Overview FOG detection methods, their advantages and disadvantages 

Methods Advantages Disadvantages 

Accelerometers 

(Han et al. 2006) 

portable and wearable  

fewer artefacts 

good temporal resolution 

not measure brain for medical treatment 

not identify the episode of motor block 

Insole pressure 

(Moore, 

MacDougall & 

Ondo 2008) 

portable and wearable  

reasonable estimate of the 

duration of stride  

non-invasive 

good temporal resolution 

not measure brain for medical treatment 

artefacts interference 

not identify the episode of motor block 

Gyroscope 

(Delval et al. 

2010) 

fast and simple to use 

measure relative orientation on 

three axes 

not measure brain for medical treatment 

not identify the episode of motor block  

Accelerometer 

Gyroscope  

(Djuric-Jovicic et 

al. 2014) 

portable and wearable  

identify the episode of GIF 

good temporal resolution 

not measure brain for medical treatment 

not identify the episode of shuffle 

freezing because of the stride length 

threshold  

ECG and Skin 

Conductance 

(Mazilu et al. 

2015) 

good temporal 

resolution 

not measure brain for medical treatment 

artefacts interference 

not identify the episode of motor block 

EEG 

 

(Handojoseno, 

Shine, et al. 2015) 

non-invasive 

good temporal resolution 

portable and wearable 

low cost 

identify the episode of motor 

block 

measure brain for medical 

treatment 

artefacts interference 

identify the episode of FOG in general 

not separate the specific sub-types of 

FOG 
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For the instrumentation point of view, portability and convenience are important aspects 

of a FOG detection system. Previous research used four EEG channels preselected based 

on theory to detect FOG (Handojoseno, Shine, et al. 2015). However, it remains unclear 

whether these four channels are indeed the most sensitive locations for FOG detection 

and prediction. As such, this thesis will use 32 channels of EEG positioned over the cortex 

to detect the most optimal montages. However, a disadvantage of using many channels is 

that it contributes to the complexity of the instrumentation and likely becomes 

inconvenient to use by patients on a daily basis. Therefore, using a lower number of EEG 

channels is important, but the most optimal montage needs to be determined based on 

data. This would improve portability, convenience, and effectiveness of the system. 

Therefore, this thesis aims to determine the best montages and the most effective number 

of channels for detecting FOG using EEG signals among 32 channels. 

With regards to the comparison of computational intelligence, several proposed 

classification algorithms can obtain excellent results with a sensitivity ranging from 95% 

to 100% for the detection of FOG using ‘body-worn’ sensors (Djuric-Jovicic et al. 2014; 

Pham et al. 2017). Online system to identify FOG episode has been proposed using power 

spectrum, Spatio-Temporal Stride Parameters and Rule-Based classification (Djuric-

Jovicic et al. 2014). This system has obtained the sensitivity 100% for FOG detection, 

using ‘body-worn’ sensors. However, one of its weaknesses is the error rate achieved up 

to 16 % in the classification of normal episodes such as standing. Further, an automated 

FOG detector for subject independence was developed using spectral coherence, 

Koopman spectral analysis, and intra-class correlations (Pham et al. 2017). This research 

achieved an improved classification performance with sensitivity, specificity of 94% for 

FOG indicator. However,  it failed to detect FOG in another out-group patient where it 

reached only 58 % specificity.  

Our previous research has used EEG signal to study cortical activities in particular 

spectral bands and specific location underlying FOG and the transition (5 seconds before 

FOG) to FOG(Handojoseno, Shine, et al. 2015). This study identified an increase of theta 
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sub-band activities in the frontal and motor cortex in the transition to FOG episode and 

was able to detect FOG with sensitivity around 80% (Handojoseno, Shine, et al. 2015). 

However, these previous studies have focused on episodes of freezing in general without 

classifying specific sub-types of FOG, potentially limiting its clinical accuracy. Also, 

they used the predefined four channels. Therefore, there is a need to detect different sub-

types of FOG and develop the most optimal montage. 

The advantages of EEG is that it is a portable, convenient and safe method that is able to 

measure actual FOG quicker than “body-worn” sensors. This thesis, therefore, used EEG 

signal to understand and detect FOG in PD. Overall, the improvements of this research 

are: (1) collecting EEG data from 32 channels to further explore the neural basis of FOG; 

(2) dividing sub-types of FOG into two main groups and (3) developing advanced 

computational intelligence for FOG detection. To assist with the clinical translation, a 

limited number of EEG channels need to be determined based on our EEG data, which 

would also improve portability and convenience.  

This thesis proposes a new system for detecting FOG using EEG signals. The proposed 

FOG detection is presented in Figure 2.8. In general, the input of FOG detection is EEG 

features, which are fed to the classifier which has the output of either FOG or normal 

states in PD. This thesis focuses on the improvement of pre-processing techniques, 

feature extracting and classifiers algorithms for the FOG-based EEG detection. 

Specifically, the advanced pre-processing technique applied is ICA-EMB for improving 

classification. The feature extractor using frequency (Fast Fourier Transform) and time-

frequency (Wavelet Transform, S-Transform) analysis are applied in this thesis. This 

thesis explores using different classification algorithms, which include Artificial Neural 

Networks, Support Vector Machine and Bayesian Neural Networks.  

This study is one of a small number of original studies in the world to look into the 

classification and prediction of FOG using real-time EEG signals, so there are not many 

relevant clinical data available in the literature. Essentially, the method are being 
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developed the real-time strategies to detect and to predict FOG in the PD patients from 

the clinic at the Prince Alfred Hospital. Further validation involving a large number of 

patients in different environments is required before translating our research into a 

practical and effective FOG detection system. In the near future, we will collaborate with 

other clinics around the world to improve our detection algorithms collectively. 
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Figure 2.8:  Overall EEG-based FOG detection in this thesis 
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Chapter 3 DECTION OF FREEZING OF GAIT USING EEG AND ARTIFICIAL 

NEURAL NETWORKS 
 

 

Detection of Freezing of Gait using 

EEG and Artificial Neural Networks 

 

 

3.1 INTRODUCTION 

As discussed in chapter 2, FOG was divided into two groups based on whether the PD 

patient was walking or just starting walking. The first group considers four sub types of 

FOG which occurred when the patient was already walking. They include Turning FOG, 

Target FOG, Narrow FOG, and Runway FOG. The second group has gait initiation failure 

(GIF). This chapter focuses on the detection of the first group compared to the periods of 

normal conditions (Good Turn, Good Narrow, Good Target and Good Runway). The 

second group (GIF analysis) will be explored in Chapter 4. For comparison with FOG, 

the normal conditions were defined by effective forward progression of the feet during 
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gait, hereafter called 'Effective walking' (EW). The core objectives of this chapter are (1) 

to build up a computational framework for detecting the episode of FOG; (2) to determine 

the most optimal locations amongst a 32-channel EEG montage. 

For the computational intelligence methods, a Fast Fourier Transform (FFT) algorithm is 

used as feature extraction in this work. FFT is the most popular method for EEG based 

feature extraction strategy as it converts the time domain EEG signal into a frequency 

spectrum. For the classification, artificial neural networks (ANN) was investigated. The 

ANN as non-linear classification algorithm has been widely used in biomedical 

applications, especially dealing with EEG signal which contains non-linear and non-

stationary properties. The task is on the basis of the measured features, which are 

extracted from seven patients with PD and FOG during a series of Timed up and Go tasks.  

In this chapter, EEG features, including power spectral density, centroid frequency, and 

power spectral entropy, were used for FOG detection. A feed-forward neural networks 

with the Levenberg-Marquardt algorithm applied to train the neural network to classify 

EEG data will be explored. The input of ANN classification consists of the mean, 

maximum and minimum values of PSD, CF, and PSE which are extracted from EEG 

signals based on four EEG frequency bands such as theta, alpha, low beta and high beta. 

The desired output was set at 1 in cases of FOG and 0 in cases of EW. The obtained 

results showed that even a small number of electrodes suffice to construct a FOG detector 

with expected performance, which is comparable to the use of a full 32 channels montage. 

This finding, therefore, progresses the realization of a FOG detection system that can be 

implemented efficiently on a daily basis for FOG prevention, improving the quality of 

life for many patients with PD. 

3.2 SYSTEM OVERVIEW  

The development of FOG detection model based on ANN approach is presented in Figure 

3.1.  
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Figure 3.1:  Components of EEG-based FOG detection system 

 

There are five main components in the strategy, including EEG data collection, pre-

processing, feature extraction and ANN classification. The specific function is elaborated 

in the following: 

 EEG data collection: the brain activity of the PD patient was recorded by using 

32 Ag/AgCl scalp electrodes from a Bio-semi ActiveTwo system with the 32 

electrodes. The brain signal EEG being measured was amplified, digitized and 

transmitted for further signal processing. 
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 Pre-processing: Band-pass filtering and artifacts removal algorithms were applied 

for enhancing the raw EEG signal. 

 Feature extraction: Different EEG parameters in the form of Power Spectral 

Density (PSD), Centroid Frequency (CF) and Power Spectral Entropy (PSE) were 

extracted and analyzed to find important features that were significantly changed 

during FOG 

 Feature selection: Wilcoxon Rank Sum Test was used to investigate the 

significant difference of feature PSD, CF, and PSE between EW and FOG. 

 Classification: the significant features from each single channel were then 

employed as inputs for neural networks to classify patients’ conditions during two 

stages: EW and FOG. 

3.3 STUDY, DATA COLLECTION  

3.3.1 Study  

This study was approved by The Human Research and Ethics Committee, University of 

Sydney. EEG data were obtained from seven Parkinson’s disease patients (six males, one 

female) with clinically confirmed FOG. They were recruited from the Parkinson’s disease 

Research Clinic at the Brain and Mind Centre, The University of Sydney. These patients 

were assessed in their practically-defined ‘off’ state following overnight withdrawal of 

dopaminergic therapy. The PD patients experienced multiple episodes of FOG during a 

structured series of Timed Up and Go tasks (walking, turning, going through a narrow 

doorway and reaching the target). 

All patients completed Mini-Mental State Examination (MMSE) (Folstein, Folstein & 

McHugh 1975). They also underwent a neurological assessment including Movement 

Disorders Society-Unified Unified PD Rating Scale (UPDRS), Hoehn and Yahr stage 

(H&Y), and Freezing of Gait Questionnaire (FOGQ) to determine the stage of the disease 

(Shine et al. 2012).   



Chapter 3                                                            Detection of FOG using EEG and ANNs            
______________________________________________________________________________________________ 

______________________________________________________________________________________________

44 

 

3.3.2 Data Collection  

EEG data was acquired using 32 Ag/AgCl scalp electrodes from a Biosemi ActiveTwo 

system with the 32 electrodes positioned over the main cortical regions: frontal (motor 

planning and working memory), central (motor execution), parietal (sensory integration) 

and Occipital (visual area) (Figure 3.2). These electrodes are over the following specific 

locations such as: 

 Frontal region: FP1, FP2, AF3, AF4, F7, F3, Fz, F4, F8, FC5, FC1, FC2 and 

FC6. 

 Central region: C3, Cz, C4, CP5, CP1, CP2, and CP6. 

 Parietal region: P7, P3, Pz, P4, and P8 

 Occipital region: O1, O2, and Oz. 

The notations are F (frontal), C (central), P (parietal), O (occipital) and z (midline). 

References were taken by averaging two electrodes placed on the ear lobes. Technically, 

 

Figure 3.2:  The international ten-twenty (10-20) system for electrode placement 
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the EEG signal was amplified with the common-mode rejection ratio >95 dB. They were 

sampled at a rate of 2048 (2 kHz), and band-pass filtered between 0.15 and 100 Hz. The 

EEG signals were re-sampled at a rate of 512 Hz for further analysis. 

In order to trigger FOG episode data, PD patients were asked to perform a series of Timed 

“Up-and-Go” (TUG) tasks and were video recorded for assessment. There are four 

contexts in the TUG experiment aimed at provoking four sub-types of FOG such as 

Turning FOG, Narrow FOG, Target FOG and Runway FOG. First, the patient sat on a 

chair, stood up and walked approximately five meters to a target 0.6 m X 0.6 m box 

marked on the floor and then tried to make a turn around the box (Turning FOG). Second, 

they were asked to pass a narrow gap of <1 m such as a doorway and then return to the 

chair (Narrow FOG). Third, patients were asked to imagine trying to catch a bus or pick 

up a phone in a hurry (Target FOG). Four, freezing events was acquired when PD patients 

walk (Runway FOG). Four different tasks to triggers four sub-types of FOG are shown 

in Figure 3.3.  

 

 

Figure 3.3: Experiment to provoke FOG episode in PD patients 
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Two clinicians labelled the time onset and offset of different sub-types of FOG events 

based on video recording. The EEG data from EW event was taken based on the time 

when the patients were able to walk effectivelly. The EEG data FOG events were taken 

according to the time of onset and offset as scored on the video when the patients felt 

their feet ‘stuck to the floor’, they want to walk, but they cannot walk during the TUG 

tasks. In this study, 343 seconds of EEG data samples of EW and 343 seconds of EEG 

data samples of FOG from seven PD patients were collected. 

3.4 COMPUTATIONAL INTELLIGENCE FOR FOG 

DETECTION 

3.4.1 Signal Pre-Processing  

As EEG signals tend to be mixed with artefacts, an automatic artefact removal strategy 

was used. The EEG signals were filtered using a non-linear IIR band-pass filter with a 

cut-off frequency lower than 1 Hz and higher than 50 Hz. Ocular, muscular and heart rate 

signal artefacts were reduced using an automatic artefact removal (AAR) algorithm in the 

EEGLab (Delorme & Makeig 2004). Figure 3.4 shows EEG data with artefacts filtered 

or removed. 

3.4.2 Feature Extraction Algorithm based on Fast Fourier Transform 

(FFT) 

EEG signals are captured in the time domain and described as a sequence of numbers 

𝑥(𝑡) = [𝑥(1), 𝑥(2), 𝑥(3), … … . 𝑥(𝑁)]                          (3.1) 

EEG signal can be shown by continuous amplitude and frequency domain using the band 

power method. FFT is a method to transforms a time-domain into its frequency domain. 

The EEG signal can be characterized as a sum of a number of amplitude-scaled and time- 
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Figure 3.4:  Raw, filtered and removed artifacts EEG data 

 

shifted sinusoids at specific frequencies. To model continuous signals, it is necessary to 

adjust the phase and magnitude of each sinusoid. For an arbitrary signal x(t), the 

magnitude (scale) and the phase (shift) of the sinusoid at each frequency ω (radian) = 2𝜋f 

(Hz) required to represented the arbitrary signal can be determined from the Fourier 

transform 

𝑋(𝜔) = ∫ 𝑥(𝑡)
∞

−∞
𝑒−𝑗𝜔𝑡𝑑𝑡 = ∫ 𝑥(𝑡)

∞

−∞
[cosω 𝑡 + 𝑗 𝑠𝑖𝑛 𝜔𝑡]𝑑𝑡          (3.2) 

= ∫ 𝑥(𝑡)
∞

−∞

cosω 𝑡 𝑑𝑡 +  ∫ 𝑥(𝑡)
∞

−∞

sinω 𝑡 𝑑𝑡     = 𝑎(𝜔) + 𝑗𝑏(𝜔) 

Magnitude and phase of each sinusoidal component are computed as: 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∶  |𝑋(𝜔)| = √𝑎2(𝜔) + 𝑏2(𝜔)                                            (3.3) 

𝑃ℎ𝑎𝑠𝑒 ∶  𝜃 = arg(𝑋(𝜔)) =  tan−1 (
𝑏(𝜔)

𝑎(𝜔)
)                         3.4) 

The inverse Fourier transform can compute the magnitude and phase to reconstruct the 

signal back in the time domain. As a result, the original time-domain signal is 

reconstructed from the scaled and shifted sinusoids at each frequency, as follows: 

x(t)= ∫ |𝑋(𝜔)|
∞

−∞
cos(ω 𝑡 + 𝜃(𝜔))𝑑𝜔                  (3.5) 
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Figure 3.5:  FFT for feature extraction 

 

In this study, FFT is applied to the EEG signal by applying 256 point FFT to every 

second width data set and converting into frequency bands of EEG sub-band with an 

overlap of 50% (Figure 3.5). 

Power Spectral Density 

Power spectral density (PSD) shows the strength of the energy as a function of frequency. 

It can be based on the Fourier transform which represents a time series in the frequency 

domain. It can be defined as the average signal power over the interval [0, T] or as the 

Fourier transform of the autocorrelation function 𝑟𝑥𝑥(t) and in continuous and discrete 

notation are given by (Semmlow, 2011). It is defined as P(f): 

𝑃(𝑓) = ∫  𝑟𝑥𝑥(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
𝑇

0
                                                  (3.6) 

𝑃(𝑓) = ∑ 𝑟𝑥𝑥
𝑁−1
𝑛−0 (𝑛)𝑒−𝑗2𝜋𝑓𝑇𝑇𝑠                                                (3.7) 

The direct approach based on Parseval’s theorem leads to the FFT, which relates the 

energy of an analogue signal, x(t), to the magnitude of the signal squared, integrated over 

time. 

𝐸 = ∫ |𝑥𝑡|2
∞

−∞

𝑑𝑡 = ∫ |𝑋𝑇(𝑓)|2
∞

−∞

𝑑𝑓                                  (3.8) 

The power spectral density in the direct approach is calculated by 
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𝑃(𝑓) =
|𝑋𝑇(𝑓)|2

𝑇
                                                                        (3.9) 

The spectra are calculated via Welch's method using a 256-point Fast Fourier Transform 

(FFT) and periodic Hamming windows with an overlap of 50%. The duration of the 

stationary fragments is assumed to be 220 ms with the sampling frequency 512 Hz. To 

eliminate inter-individual and inter-electrode variance in absolute measurements, power 

spectra are normalized using z-score normalization: 

𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑙𝑑−µ

𝜎
                                                                    (3.10) 

where 𝑥𝑜𝑙𝑑, 𝑥𝑛𝑒𝑤 , µ and 𝜎 denotes the original value, the new value, the mean and 

standard deviation of EEG data, respectively.  

Based on our previous work, sub-band delta (1-4 Hz) did not contribute to FOG detection; 

therefore, in this study we focused on four frequency bands, namely: theta (4-8 Hz), alpha 

(8-13 Hz), low beta (13-21 Hz), high beta (21-38 Hz) (Handojoseno, Shine, et al. 2015). 

The beta frequency band was divided into low and high band, based on previous findings 

showing that high beta frequencies correlate with freezing (Toledo et al. 2014) (Figure 

3.6 and Figure 3.7). 

Power Spectral Entropy 

Single neurons are highly nonlinear elements, and more nonlinearity is found in the 

neuronal group level with multiple feedback loops at different levels of distributed and 

interconnected cortical processing. Entropy was used as an index of EEG complexity or 

irregularly based on Shannon’s Information Theory (Shannon 2001).  

PSE of EEG signals x is defined as: 

𝑃𝑆𝐸(𝑥) = − ∑ 𝑃(𝑖)𝑓ℎ
𝑖=𝑓𝑖

𝑙𝑜𝑔𝑃(𝑖),                             (3.11) 

where 𝑃(𝑖) is computed by the normalized power density from the signal’s spectrum. 
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Centroid Frequency 

Furthermore, we calculate the balance point for the area under the curve representing 

PSD. CF has been reported as the shift in the center of gravity of a frequency band based 

on the normalized power spectrum. CF is defined as: 

𝐶𝐹 =
∑ 𝑓𝑖 ∗ 𝑃(𝑓)𝑖

∑ 𝑃(𝑓)𝑖
                                        (3.12) 

 

Figure 3.6:  Power Spectral Density of Effective Walking and Freezing of Gait 
 

 

 

Figure 3.7:  Comparison of PSD between Effective Walking and Freezing of Gait 
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3.4.3 Feature Selection 

After feature extraction, feature selection is considered as one of the crucial steps in 

improving performance for our classifier. The purpose is to find the most significant and 

compact set of features between two different conditions, which steer clear of an 

excessive number of features affecting the dimensional problem. To compare EEG 

responses between EW and FOG, a non-parametric statistical analysis named Wilcoxon 

Sum Rank Test was chosen as feature selection method.  

The Wilcoxon rank-sum test is defined as a nonparametric approach to establish 

significant difference between two sample groups using magnitude-based ranks, based 

on the two-sample t-test. The Wilcoxon test is based upon ranking the observations of the 

combined sample. Each observation has a rank: the smallest has rank 1, the 2nd smallest 

rank 2, and so on. The Wilcoxon rank-sum test statistic is the sum of the ranks for 

observations from one of the samples. To assess significance, the rank sum value from 

the dataset with the smallest size is compared to established tables containing p_value 

associated with rank sum scores. The statistical analysis with p_value ≤0.05 was used to 

investigate significant differences between periods of EW and periods of FOG.  

The estimates of effect size are useful for determining the practical or theoretical 

importance of an effect, the relative contributions of factors, and the power of an analysis. 
Cohen (1962, 1988) introduced a measure similar to a z-score in which one of the means 

from the two distributions is subtracted from the other and the result is divided by the 

population standard deviation for the variables Cohen’s d (Fritz, Morris & Richler 2012). 

Cohen’s d effect sizes were also applied to check the most significant difference between 

EW and FOG conditions with d ≥ 0.4. 

These significant features were used as the main parameters for evaluating the best 

electrode locations to detect FOG events in PD patients. The mean, maximum and 

minimum values of PSD, CF, and PSE from 32 electrode’s location of four EEG 

frequency bands were taken to evaluate their strength in detecting freezing. 
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3.4.4 Classification Algorithm using Artificial Neural Networks 

(ANN) 

The two-layer feed-forward neural networks with 2 to 12 hidden nodes was utilized to 

classify the pattern into two categories of the disease: FOG and EW (Figure 3.8). In the 

following section, the structure of neural networks and Levenberg-Marquardt algorithms 

are discussed further. 

Neural Networks Structure 

The output of the neural networks is caculated as follows: 

𝑧(𝑥, 𝑤) = 𝑓1 (𝑏𝑘 + ∑ 𝑤̅𝑘𝑗

𝑚

𝑗=1

𝑓2 (𝑏𝑗 + ∑ 𝑤𝑗𝑖

𝑛

𝑖=1

𝑥𝑛))            (3.13) 

 

 

Figure 3.8:  Neural Networks Structure 
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where  𝑓1, 𝑓2 is the activation function, x presents the input vector, 𝑤 is the weight matrix 

vector; 𝑤𝑗𝑖 is the weight of the link between the i-th hidden node and the j-th input; 𝑤̅𝑘𝑗 is 

the weight of the link between i-th hidden node and the output, 𝑏𝑘 and 𝑏𝑗 are the biases. 

m is the number of outputs; n is the number of inputs and the tan-sig function was assigned 

as the activation function of the hidden layer. 

The Levenberg-Marquardt Algorithm of ANN 

Levenberg Marquardt algorithm is preferred as a training method due to its stability and 

speed (Übeyli 2009). Known as an approximation to the Gauss-Newton technique, the 

Levenberg-Marquardt algorithm is essentially an interactive technique to minimize the 

objective error function 𝐸(𝑤), with 𝐸(𝑤) = (𝑦 − 𝑡)2.  This function can be expressed as 

follows 

𝐸(𝑤) =
1

2
∑ {𝑦(𝑥𝑛, 𝑤) − 𝑡𝑛}2𝑁

𝑛−1                                      (3.14) 

            = ∑ 𝑒2𝑁
𝑛−1 (𝑤) =  𝑒𝑇(𝑤)𝑒(𝑤)                            (3.15) 

where N denotes the number of data points of the training set. The aim of the Levenberg-

Marquardt algorithm is to compute the network weight vector w at which E(w) is 

minimum. To do this, the weight vector 𝑤𝑘+1, will be updated from the previous weight 

vector𝑤𝑘, based on the second-order Tayler series as follows: 

𝐸(𝑤𝑘+1) = 𝐸(𝑤𝑘 + 𝛥𝑤𝑘) ≈ 𝐸(𝑤𝑘) +  
𝜎𝐸(𝑤𝑘)

𝜎𝑤
𝛥𝑤𝑘 +

1

2
𝛥𝑤𝑘

𝑇
𝜎2𝐸(𝑤𝑘)

𝜎𝑤2
𝛥𝑤𝑘 (3.16) 

A local minimum of the error function is calculated by taking the gradient of the function 

with respect to 𝐴(𝑤𝑘), and setting it equal to zero, leading to 

𝑤𝑘+1 = 𝑤𝑘 +  𝐴𝑘
−1𝑔𝑘                                                    (3.17) 

where                       𝑔𝑘 = 𝛻𝐸(𝑤)|𝑤−𝑤𝑘
 , 𝑎𝑛𝑑  𝐴𝑘 = 𝛻2𝐸(𝑤)|𝑤−𝑤𝑘

                             (3.18) 

  



Chapter 3                                                            Detection of FOG using EEG and ANNs            
______________________________________________________________________________________________ 

______________________________________________________________________________________________

54 

 

we obtain 

𝑤𝑘+1 = 𝑤𝑘 − [2𝐽𝑇(𝑤𝑘)𝐽(𝑤𝑘)]−1𝐽𝑇(𝑤𝑘)𝑒(𝑤𝑘)       (3.19) 

In the process of training neural networks, the procedure of the Levenberg-Marquardt 

algorithm to minimize the cost function E(w) can be presented as the five steps following 

1. Computing 𝐸(𝑤𝑘) 

2. Initialising µ𝑘 with a small value 

3. Solving for 𝑤𝑘+1 to compute 𝐸(𝑤𝑘+1) 

4. If 𝐸(𝑤𝑘+1)  ≥ 𝐸(𝑤𝑘) then increase µ𝑘 by a factor of  γ(e.g γ=10), then go to step 

3 

5. If 𝐸(𝑤𝑘+1)  ≤ 𝐸(𝑤𝑘) then decrease µ𝑘 by a factor of  γ, then go to step 3 

Performance Evaluation of ANN 

The significant features were fed into feed-forward neural networks with 2 to 8 hidden 

nodes to classify the pattern into two categories: EW or FOG. In this study, Levenberg 

Marquardt’s algorithm with early stopping was used to train 34% of the EEG EW-FOG 

data, followed by 33% of validation and 33% of testing of the total data. The performance 

of the proposed features was determined using the following statistical measures: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                            (3.20) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
                                            (3.21) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
                          (3.22) 

where 

 TP (true positive) is the number of inputs which correspond to FOG classified 

as FOG. 
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 TN (true negative) is the number of inputs which correspond to EW classified 

as FOG. 

 FP (false positive) is the number of inputs which correspond to EW classified 

as EW 

 FN (false negative) is the number of inputs which correspond to FOG 

classified as EW 

3.5 EXPERIMENTAL RESULTS 

3.5.1 Feature Extraction Results  

The general PSD pattern of low and high beta band during freezing is shown in Figure 

3.9. A comparison of EEG frequency band power during the two conditions EW vs. FOG 

in these two sub-bands showed that the high beta band stood out as the most affected sub-

band during freezing (p < 0.0001) regardless of the position of the EEG channel. The low 

beta band showed the same pattern with a significant increase in frontal and central 

cortical region during the episode of FOG (p < 0.0001).  

Specifically, compared to the EW period, FOG was associated with significant shifting 

in two sub-bands namely low beta and high beta band at locations: frontal F3, F4, F8, 

FC1, FC2, FC6, central Cz, C3, C4, CP1, CP2, CP6, parietal Pz, P4, P8, PO3, PO4 and 

occipital O1, Oz, O2. The high beta sub-band continues to increase only in several frontal 

locations FP1, F7, shifting AF3, F4, and Fz. Also, there were remarkable increases in 

alpha and theta power in the four main regions of the brain during the period of FOG. 

The increases of sub-bands theta only appeared in frontal-central and parietal such as at 

locations of AF3, FC1, FC2, CZ, CP1, CP2, and PZ. Further, the alpha power increased 

significantly in the four main regions of the brain such as at frontal F3, F4, F8, FC1, FC2, 

FC6, central C3, Cz, C4, CP5, CP1, CP2, parietal P7, P3, Pz, P4, P8, PO3, PO4 and 

occipital O1, Oz, O2. 
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When the effect size d was taken into account, the high beta alteration was strongest in 

frontal F3 (d=0.4557) and central C4 (d=0.4394), with remarkably increased power in 

these two locations. In the parietal locations, episodes of freezing were associated with a 

large increase of power in low-high beta frequency with parietal P4 appearing as the most 

affected location. In occipital region, O2 (d=0.4673) appeared as the location with the 

largest increase in the high beta band.  

In addition, there was significant increases in low beta in occipital O1 (d=0.3245), parietal 

P4 (d=0.3333) and central C4 (d=0.3081). This pattern is along with the increase of theta 

in central Cz (d=0.2169), frontal FC2 (d=0.262). The largest increased alpha activity was 

found in frontal F3 (d= 0.3188), followed by central C3 (d= 0.244 ), parietal P4 (d=0.328) 

and occipital O1 (d= 0.3268) (Table 3.1). 

The results of our entropy analysis showed that there was an increase of entropy in the 

frequency high beta in most locations during FOG episodes. The most significant change 

was detected in PSE high beta in frontal FC1 (d=0.4433), central CP6 (d=0.4953). There 

were also significant increases in the regularity of theta, alpha and low beta activity in 

frontal F3, central C4 and occipital O2 (Table 3.2). 
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Figure 3.9:  Significant PSD pattern between EW and FOG in theta alpha, low 

beta and high beta 
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Table 3.1: Features analysis of PSD between EW and FOG 

 

Parameter Band EW(µV±std) FOG(µV±std) p d EW vs FOG 

PSD-F3 α 0.089 ± 0.08 0.119 ± 0.09 ≤0.0001 0.324 ** 

 lβ 0.038 ± 0.03 0.048 ± 0.03 ≤0.0001 0.2776 ** 

 hβ 0.043 ± 0.03 0.049 ± 0.04 ≤0.0001 0.4557 *** 

PSD-C4 α 0.081 ± 0.07 0.110 ± 0.09 ≤0.0001 0.3361 ** 

 lβ 0.043 ± 0.03 0.055 ± 0.04 ≤0.0001 0.3081 ** 

 hβ 0.050 ± 0.04 0.061 ± 0.05 ≤0.0001 0.4394 *** 

PSD-P4 α 0.080 ± 0.07 0.110 ± 0.08 ≤0.0001 0.328 ** 

 lβ 0.050 ± 0.04 0.062 ± 0.05 ≤0.0001 0.3333 ** 

 hβ 0.050 ± 0.06 0.090 ± 0.08 ≤0.0001 0.528 *** 

PSD-O2 lβ 0.067 ± 0.05 0.083 ± 0.07 0.0091 0.2459 * 

 hβ 0.087 ± 0.09 0.137 ± 0.11 ≤0.0001 0.4673 *** 

*:   Significant at 0.001 < p ≤ 0.05 and Cohen’s d < 0.3 

**:   Significant at 0.0001 <p ≤ 0.001 and Cohen’s 0.3 ≤ d <0.4 

***:  Significant at p≤0.0001 and Cohen’s d ≥ 0.4 

 

Table 3.2:  Features analysis of PSE between EW and FOG 

 

Parameter  Band EW(µV±std) FOG(µV±std) p d EW vs FOG 

PSE-F3 θ 0.866 ± 0.11 0.893 ± 0.09 0.0096 0.2503 * 

 lβ 0.900 ± 0.05 0.910 ± 0.05 0.0127 0.1559 * 

 hβ 0.911 ± 0.04 0.920 ± 0.04 0.0026 0.2024 * 

PSE-C4 θ 0.862 ± 0.12 0.890 ± 0.09 0.0096 0.2870 * 

 α 0.890 ± 0.08 0.870 ± 0.09 0.0416 0.1418 * 

 hβ 0.917 ± 0.04 0.990 ± 0.04 0.0447 0.1131 * 

PSE-P4 lβ 0.919± 0.05 0.920± 0.05 0.0381 0.0811 * 

 hβ 0.910± 0.04 0.920 ± 0.04 0.0072 0.1537 ** 

PSE-O2 lβ 0.910 ± 0.05 0.920 ± 0.05 0.0029 0.1635 * 

 hβ 0.918 ± 0.04 0.926 ± 0.04 0.0037 0.1807 * 

*:   Significant at 0.001 < p ≤ 0.05 and Cohen’s d < 0.3 

**:   Significant at 0.0001 <p ≤ 0.001 and Cohen’s 0.3 ≤ d <0.4 

***:  Significant at p≤0.0001 and Cohen’s d ≥ 0.4 
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The CF analysis revealed the changes of centroid frequency in theta, low and high beta 

in almost all of 32 channels during freezing episodes (p < 0.0001).  The CF high beta 

stood out as the most affected frequency band from EW episode to FOG episode with the 

largest shifts in the frontal F3, central C4, followed by occipital O2 and parietal P4.  

When compared to the effective walking, episodes of freezing were associated with a 

significant shift in theta frequency band with the largest shift of CF in frontal and central 

leads such as F3 and C4 (Figure 3.10). This suggests that frontal-central cortical regions 

were more affected than the parietal-occipital region in terms of CF features (Table 3.3). 

This brain pattern is aligned with function Magnetic Resonance Imaging (fMRI) studies 

in which freezing provoked by a virtual reality gait paradigm was associated with 

alterations in the pre-supplementary and primary motor areas, presumably as a 

compensatory strategy to overcome reduced automaticity of gait (Shine, Moustafa, et al. 

2013). 

Table 3.3:  Features analysis of CF between EW and FOG 

 

Parameter Band EW (Hz±std) FOG (Hz±std) p d EW vs FOG 

CF-F3 θ 5.493 ± 0.59 5.673 ± 0.06 00002 0.2993 ** 

 lβ 16.150 ± 0.88 16.419 ± 0.91 ≤0.0001 0.3 ** 

 hβ 27.680 ± 1.81 28.438 ± 1.82 ≤0.0001 0.4180 *** 

CF-C4 θ 5.460 ± 0.59 5.636 ± 0.58 ≤0.0001 0.2953 ** 

 lβ 16.278 ± 0.91 16.526 ± 0.94 0.0002 0.1418 ** 

 hβ 27.901 ± 1.78 28.620 ± 1.85 ≤0.0001 0.3958 *** 

CF-P4 θ 5.608 ± 0.57 5.729 ± 0.56 
0.0187 0.2113 

* 

 lβ 16.348 ± 0.91 16.491 ± 0.90 
0.0116 0.1574 

* 

 hβ 28.175 ± 1.89 28.897 ± 1.88 
≤0.0001 0.3827 

*** 

CF-O2 lβ 16.333 ± 0.93 16.477 ± 0.89 0.0118 0.1569 * 

 hβ 28.402 ± 2.00 29.021 ± 1.93 ≤0.0001 0.3144 ** 

*:   Significant at 0.001 < p ≤ 0.05 and Cohen’s d < 0.3 

**:   Significant at 0.0001 <p ≤ 0.001 and Cohen’s 0.3 ≤ d <0.4 

***:  Significant at p≤0.0001 and Cohen’s d ≥ 0.4 
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Figure 3.10:  Boxplot of Centroid Frequency of EEG signals between EW and FOG 
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3.5.2 Affected EEG Montages Systems underlying FOG 

EEG data samples of FOG events were processed and analysed using the EEGLab 

toolbox. They were categorized separately into three bands: theta, low beta and high beta 

and summarized into a color-coded map in the form of scalp topography. Figure 3.11 

displays the topographic distribution of spectral power represented by the three bands: 

theta, low beta and high beta underlying FOG episodes. The power values were calculated 

and transferred into the corresponding values using an interpolation method in order to 

produce a smooth surface of the scalp topography. 

Each oval topography depicts a view of the head from above with frontal areas at the top. 

For individual scalp topography, each electrode zone is color coded to indicate how much 

activity it contains compared to other regions, with a blue color indicating reduced power 

and a red color spectrum indicating increased power. It is observed that the theta power 

escalation spreads within central and frontal locations while the low-high beta power 

increased significantly in frontal F3, central C4, parietal P4 and occipital O2 locations. 

This finding is strongly consistent with multiple studies that have shown a relationship 

between FOG and impairments within both visual-attention (P4-O2) networks and motor 

planning-executive network (F3-C4) in the human cortex (Handojoseno, Shine, et al. 

2015; Shine, Moustafa, et al. 2013). 

 

Figure 3.11:  Scalp topography of EEG power activity underlying FOG  
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3.5.3 Classification Results 

The strength of the alteration of the EEG signal parameters differs from one location to 

another. Therefore, the following factors were analyzed for their influence on the 

accuracy of FOG detection. First, a combination of four affected channels representing 

frontal, central, parietal and occipital regions were analysed. Second, a combination of 

channels, which experienced similar PSD pattern underlying FOG episodes, were 

analysed. Therefore, based on the result of feature extraction and classification system 

using the single channel as input, we designed the three EEG montages systems including 

15 EEG channels that might facilitate the identification of FOG arising from four main 

cortical regions.  These systems were also compared with the previous finding to validate 

that they are the most affected locations of the brain during FOG in many fMRI studies 

(Snijders 2012). The three EEG Systems were designed as followed: 

 EEG System 1: Four most affected channels among 32 channels during FOG. The 

EEG montages were F3, C4, P4, and O2.  

 EEG System 2: Six channels experienced a significant increase in four sub-bands: 

theta, alpha, low-high beta. The EEG montages were FC1, FC2, Cz, CP1, CP2 

and Pz.  

 EEG System 3: Seven channels experienced a significant increase in only three 

sub-bands: alpha, low-high beta. The EEG montages were as follows: F3, F4, C3, 

C4, P3, P4, and Oz 

The neural networks were developed with inputs corresponding to significant data 

(p<0.05) from 1, 2, 3, 4, 6, 7 and 32 EEG channels as shown in Table 3.4 and 3.5. The 

classification results using input from each single channel location at a time showed that 

the central regions were the best area for detecting freezing events. Indeed, central C4 

seemed to be the best location to detect freezing with 70.88% sensitivity and 69.13% 

accuracy. Frontal F3 and parietal P4 provided strength as an indicator of FOG, with 
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70.29% and 69.59%.sensitivity, respectively. These two locations achieved similar 

accuracy in detecting FOG with 68.93%. The best performance of classifier using a single 

channel from the occipital region was with O2, which had 70.72% sensitivity and 66.60% 

accuracy. 

The performance of the detection of FOG using the combination of these four different 

channels was also studied. In the systems using input from two to four locations, central-

occipital C4O2 appeared as the best combination of two channels to detect freezing with 

a sensitivity of 72.54% and an accuracy of 69.71%. The combination from four locations 

that provided the best indicator of freezing was F3C4P4O2 with 72.29% sensitivity and 

70.29% accuracy. As the results are shown in Table 3.5, the neural networks based 

classifier with inputs obtained from six locations in System 2 provided 70.23% sensitivity 

and 68.93% accuracy. The sensitivity of the system was improved slightly with 70.94% 

when using the input from seven locations of System 3. Interestingly, when all the 32 

channels were taken as an input, the classification system provided the sensitivity of 

72.20%; which is lower than that of the two channels system C4O2. 

3.6 DISCUSSION 

In this chapter, EEG measures, including power spectral density, centroid frequency and 

power spectral entropy, were extracted and used as input of our classifier. By applying a 

feed-forward neural networks, the obtained results showed that even a small number of 

electrodes suffice to construct a FOG detector with expected performance with the 

accuracy around 70%, which is comparable to the use of a full 32 channels montage.  

The high beta oscillations in the cortex increasing and remaining high across all the brain 

regions during freezing is consistent with previous studies (Toledo et al. 2014). This 

finding suggests that high beta frequencies are likely linked to neural communications of 

a stopping network in which the beta power increases in order to prohibit movements, 

which could cause FOG in PD (Aron, Robbins & Poldrack 2004).  
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Table 3.4:  Classification results of FFT based features using ANN in detecting 

FOG from EW 

Channels Hidden 
Training Testing 

Sen (%) Spec (%) Acc(%) Sen (%) Spec(%) Acc(%) 

F3 2 72.20 70.29 70.92 69.65 67.28 68.93 

O2 2 76.42 70.72 74.67 72.73 62.93 66.60 

P4 2 73.99 69.59 71.50 68.99 68.11 68.93 

C4 3 74.36 70.88 73.21 72.03 67.41 69.13 

F3C4 6 75.88 71.97 73.96 71.66 68.09 69.71 

F3P4 8 76.73 71.86 74.33 71.04 68.31 69.71 

F3O2 7 75.99 78.44 77.25 70.71 69.18 69.90 

C4P4 5 74.91 69.95 72.46 71.38 66.94 68.93 

C4O2 6 77.99 69.77 73.92 72.54 66.96 69.71 

P4O2 2 73.05 72.05 72.54 71.00 68.31 69.71 

F3C4P4 7 77.15 72.87 74.96 71.20 68.56 69.90 

F3C4O2 5 74.96 72.29 73.63 71.40 67.02 69.13 

C4P4O2 2 73.29 72.90 73.08 71.25 67.26 69.13 

F3C4P4O2 8 76.19 76.66 76.46 72.29 68.22 70.29 

Sen: Sensitivity; Spe: Specificity; Acc: Accuracy 

Table 3.5:  Comparison of classification results in detecting FOG from EW 

Number  Channels 
Testing 

Sen (%) Spec(%) Acc(%) 

1 C4 72.03 67.41 69.13 

2 C4O2 72.54 66.96 69.71 

3 F3C4O2 71.40 67.02 69.13 

4 F3C4P4O2 72.29 68.22 70.29 

6 FC1, FC2, Cz, CP1, CP2, Pz 70.23 67.45 68.93 

7 F3, F4, C3, C4, P3, P4, Oz 70.94 67.03 68.93 

32 All 32 channels 72.20 70.58 71.46 

Sen: Sensitivity; Spe: Specificity; Acc: Accuracy 
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Fifteen electrodes positioned over the following cortical regions: frontal F3, F4, FC1, 

FC2 (motor planning and working memory), central C3, C4, CP1, CP2, CZ (motor 

execution), parietal P3, PZ, P4 (sensory integration) and occipital O1, OZ, O2 (visual 

area) has been reported as the most affected channels underlying FOG based on our EEG 

data. Our goal in evaluating differing montages was to find a minimum number of 

electrodes strategically placed to maximize the identification of FOG. Further, this study 

revealed that optimal FOG detection was achieved when using an EEG system with only 

two channels C4-O2 with a sensitivity of 72.54%.  

These results are closely aligned with several previous fMRI studies in which the motor 

lead C4, planning motor lead F3, parietal lead P4, and visual lead O2 are recording over 

regions that have been implicated in the pathogenesis of FOG in PD (Shine, Handojoseno, 

et al. 2014; Snijders 2012). This information would greatly assist with the clinical 

translation of a FOG detection device since fewer sensors will improve computation 

efficiency, robustness of the classification system and convenience for the use of 

ambulatory EEG by patients. 

Although limited to seven patients, this part of the study demonstrated that FOG would 

be detected effectively using an EEG system with only two input channels (C4O2). 

Further studies using larger sample sizes are now required to confirm these preliminary 

findings and further delineate the specific neural networks to provide a better 

performance of FOG detection and prediction system. 
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Chapter 4 DETECTION OF GAIT INITIATION FAILURE USING EEG AND SUPPORT VECTOR MACHINE  

 

Detection of Gait Initiation Failure 

using EEG and Support Vector 

Machine  

 

4.1 INTRODUCTION 

Gait Initiation is a complex task that requires both motor and cognitive processing to 

enable the correct selection, timing and scaling of movements (Delval et al. 2015). Gait 

Initiation Failure (GIF) is clinically important as a trigger for FOG (accounting for 24% 

of all sub-types of FOG). When PD patients initiate gait, this frequently increases the risk 
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of falls induced by GIF (Backer 2006). As a result, it can negatively affect the quality of 

life for patients with PD and can result in injury as well as nursing home placement 

(Moore, Peretz & Giladi 2007). However, understanding of the neurobiological 

mechanisms underlying GIF has been limited by difficulties in eliciting and objectively 

characterizing such gait phenomena in the clinical setting. 

Using a computational intelligence strategy, this study investigates abnormal changes in 

EEG parameters associated with GIF by extracting EEG signals in the time-frequency 

domain Wavelet Transform (WT). This is then continued by applying Support Vector 

Machine (SVM) to be used for GIF classification and detection. GIF detection has been 

performed with different classification methods to achieve the highest performance. 

Although the traditional logistic regression classification methods can be used for 

detection as described in some EEG studies (Mumtaz et al. 2015), its drawback is that it 

requires large sample size and has overfitting issue to achieve stable results. Our ANN 

and SMV strategies minimise the overfitting issue. In addition, one of the reasons why 

SVM was used is that EEG signals will be represented in high dimensional features space 

and it is therefore difficult to interpret. SVM aims to maximize the margin in order to 

avoid the risk of over-fitting data and minimize the misclassification error. Further, with 

the goal of developing a faster and better classification system, the current chapter have 

developed a more advanced strategy which uses Independent Component Analysis (ICA) 

for EEG source separation, Wavelet Transform (WT) for feature extraction and Support 

Vector Machine (SVM) for classification, with good sensitivity and specificity 

performance. It is expected the convolutional neural network strategy would provide a 

similar result to our research, and will explore this option in our future direction. 

The contributions of this chapter are as follows: first, different feature extractors were 

explored, including FFT, WT to find a better feature extractor. Second, two classifiers 

were used for detecting GIF, including the ANN and SVM. These optimization 

techniques combined ICA-EBM as source separation, WT as feature extraction and SVM 
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as classifier showed the highest classification accuracy between these methods in the 

detecting of GIF. 

4.2 SYSTEM OVERVIEW  

An overview of the GIF detection based on SVM approach is illustrated in Figure 4.1. 

This starts from data collection in which EEG data was measured using a Biosemi 

ActiveTwo system and was categorized into two events: Good Start (GS) and Gait 

Initiation Failure (GIF). Next, raw EEG data was filtered and artifacts removed. Different 

EEG parameters in the form of Wavelet Transform (Wavelet Energy, Wavelet Centroid 

Scale, Wavelet Energy Entropy) were extracted and analyzed to explore important 

features that were significantly changed between two events GS and GIF. Regarding the 

input of the classification, the source separation technique was applied such as ICA-EBM 

for separating EEG data into independent components before extracting features (ICA-

EBM, WT). The feature pattern was examined using the non-parametric Wilcoxon Rank-

Sum Test to investigate the significant alteration of these features. Next, the significant 

features of two events were then employed as inputs for neural networks to classify using 

SVM. 

4.3 STUDY, DATA COLLECTION  

4.3.1 Study  

EEG data was obtained from five Parkinson’s disease patients who were recruited from 

the Parkinson’s disease Research Clinic at the Brain and Mind Centre, The University of 

Sydney. Patients were tested in their practically-defined ‘off’ medication state, following 

overnight (minimum 12 hours since the last dose) withdrawal of dopaminergic therapy. 

The subjects demonstrated multiple episodes of GIF (40% of gait initiations elicited a 

GIF) during a structured series of Timed Up and Go tasks.  
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Figure 4.1:  Components of EEG-based GIF detection system 

 

4.3.2 Data Collection  

EEG data was acquired from 15 electrodes using a Bio Semi Active Two system. These 

electrodes were positioned over the following cortical regions: frontal F3, F4, FC1, FC2 

(motor planning and working memory), central C3, C4, CP1, CP2, CZ (motor execution), 

parietal P3, PZ, P4 (sensory integration) and occipital O1, OZ, O2 (visual area). 

References signal was taken by averaging two electrodes placed on the ear lobes. The 

recording was segmented to 1-second durations and digitized at 512 Hz. In order to 

provoke GIF data, PD patients were asked to start from a starting position where they 

were seated in a chair, listen to a simple order ‘Ready, go!’. After that, they stood up and 

started walking along the center of a large open corridor. A video camera was placed on 

a tripod to evaluate any episode of GIF (Figure 4.2).  
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Figure 4.2:  Experiment 2 to provoke GIF episode in PD patients 
 

 

Both GS and GIF were determined according to the time onset and offset as scored on 

the video during the TUG tasks by two clinical experts:  

 Good Start (GS) is defined as the 2-second period after the patients were able 

to take an effective first step in a normal start during the TUG tasks. 

 Gait Initiation Failure (GIF) is defined as the period when the patients tried to 

take first steps, but failed to do so.  

 

 

4.4 COMPUTATIONAL INTELLIGENCE FOR GIF DETECTION  

4.4.1 Signal Pre-Processing 

66 seconds of EEG data samples of GS were matched to 66 seconds of data samples of 

GIF as recorded from five PD patients. Data samples were then filtered using a band-pass 
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filter at 0.5-50 Hz. Eye movement and heart rate signals artefacts were eliminated using 

Automatic Artefact Removal (AAR) in the EEGLab from all electrode locations of raw 

EEG data (Delorme & Makeig 2004).  

Figure 4.3 shows the amplitude spectra of representative raw EEG data of one patient that 

were tracked in the time domain.  

Overall, decomposition of the EEG data into theta, alpha and low-high beta bands 

demonstrated that GIF was associated with high amplitude within a range from 4 to 8 Hz 

(theta) and 21 to 38 Hz (high beta). In addition, GS was typically characterized by 

regularly decreased amplitude in these two sub-bands within different brain regions.  

 

 

 

Figure 4.3:  Amplitude spectra of representative raw EEG data of one patient 
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4.4.2 Source separation: Independent Component Analysis Entropy 

Boundary Minimization (ICA-EBM) 

Since EEG data is recorded from different locations on the scalp, one of the problems is 

that its electrical potential was generated as the mixing complex connection from a 

different component of brain activity. Therefore, the idea of using ICA to separate the 

linearly mixed neural activities into its constituent independent components (ICs) was 

applied to solve this problem. Most of ICA algorithms exploit both higher order and 

second order statistics to minimize the non-Gaussian minimization aspect of the sources. 

ICA by entropy bound minimization (ICA-EBM) has emerged as an effective source 

separation technique (Li & Adali 2010).  

The algorithm takes both non-Gaussian property and sample correlation into account by 

minimizing mutual information rates. It is originally introduced as a full Blind Source 

Separation (BSS), which results in the improved general temporal structure of sources. 

This chapter uses ICA-EBM as a source separator to our EEG data. 

A full BSS algorithm is introduced as 

𝑥(𝑡) = 𝐴𝑠(𝑡)                                                         (4.1) 

where 𝑠(𝑡) is a zero mean source, calculated as  𝑠(𝑡) = [𝑠1(𝑡), … , 𝑠𝑁1(𝑡)]𝑇. 𝑠(𝑡) is mixed 

with a mixing matrix A(N x N). The mixture x(t) is obtained as follows 𝑥(𝑡) =

[𝑥1(𝑡), … , 𝑥𝑁(𝑡)]𝑇where T and t denotes the transpose and time index respectively.  

The objective of ICA is to separates the mixture calculated as  

𝑦(𝑡) = 𝑊𝑥(𝑡)                                                         (4.2) 

where y is an independent component (IC) which was calculated as 𝑦(𝑡) =

[𝑦1(𝑡), … , 𝑦𝑁(𝑡)]𝑇  and W is the un-mixing or reparation matrix. 

The statistical IC estimations are expressed as a new cost function 
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𝐼(𝑦1, … … . . , 𝑦𝑁)  = ∑ 𝐻(𝑦𝑛) − log|det (𝑊)| − 𝐻(𝑥)

𝑁

𝑛=1

        (4.3) 

where 𝐼(𝑦1, … … . . , 𝑦𝑁) is the mutual information among N random variables 𝑦𝑛, 𝑛 =

1, … , 𝑁. 𝐻(𝑦𝑛) represents the entropy of the nth individual separated source, and entropy 

of observation H(x) is constant with respect to the un-mixing matrix W. However, a new 

cost function is needed because the current function cannot obtain most of the temporal 

information of data sources. The new cost function is re-calculated as:  

𝐼(𝑦1, … … . . , 𝑦𝑁) = ∑ 𝐻(𝑦𝑛) − log|det(𝑊)| − 𝐻𝑟(𝑥)

𝑁

𝑛=1

        (4.4) 

where  𝐻𝑟(𝑦𝑛) = lim
𝑡→∞

𝐻[𝑦𝑛(1), … , 𝑦𝑛(𝑡)] /𝑡 is the entropy rate of the nth process of 

𝑦𝑛 and entropy rate of observation  𝐻𝑟(𝑥) = lim
𝑡→∞

𝐻[𝑥(1), … , 𝑥(𝑡)] /𝑡 of the observed 

vector-valued process x is constant with respect to the un-mixing matrix W. 𝐻𝑟(𝑥) is the 

entropy rate of the separated process of the individual. Equation is modified using the 

method proposed by Li & Adali (2010) to obtain new entropy estimator and cost function. 

The new cost function is explained as:  

𝐽(𝑊, 𝑝1, … … . . , 𝑝𝑁)  = ∑ 𝐻(𝑣𝑛) − log|det (𝑊)|

𝑁

𝑛=1

              (4.5) 

where 𝑣𝑛(𝑡) = ∑ 𝑎𝑛(𝑞)𝑦𝑛(𝑡 − 𝑞),𝑝−1
𝑞−0 𝑦𝑛 = 𝑤𝑛

𝑇𝑥 is the nth separated source, and  𝑎𝑛 =

[𝑎𝑛(0), … , 𝑎𝑛(𝑝 − 1)]𝑇 are the filter coefficients.  

Later, the algorithm is optimized to obtain a new W, which minimizes the mutual 

information rate. The ICs, 𝑠̂(𝑡) are recovered using the equation  𝑠̂(𝑡) = 𝑊𝑥(𝑡) where W 

and x(t) are the un-mixing matrix and recordings (mixtures) respectively.  

ICA-EBM was applied to 15 EEG channels for source separation with the aim of 

improving detection ability of GIF events as compared to the normal initiation of gait 
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(Good Start) (Figure 4.4). After source separation, the 15 ICs separated data were 

extracted in the form of WT and fed into our classifier. 

Figure 4.4:  EEG Data and ICA-EEG data 

4.4.3 Feature Extraction using Wavelet Transform (WT) 

Due to the strengths in the time-frequency method, WT was chosen to extract the EEG 

data in the form of Wavelet Energy (WE), Wavelet Centroid Scale (WCS) and Wavelet 

Energy Entropy (WEE). WT is defined as the convolution between the signal and wavelet 

function generated by dilations and translations of scaled mother wavelet (Burrus, 

Gopinath & Guo 1997).  

In this research, the discrete wavelet transforms (DWT) based on dyadic scales and 

positions is used (Burrus, Gopinath & Guo 1997). DWT is computed as  

𝐷𝑊𝑇(𝑗, 𝑘) =
1

√|2𝑗|
∫ 𝑥(𝑡)𝛹 (

𝑡 − 2𝑗 𝑘

2𝑗 
)

∞

−∞

 𝑑𝑡                   (4.6) 

where 2𝑗 denotes the scale and 2𝑗 𝑘 denotes the time localization and 𝛹 denotes the 

mother wavelet function.The wavelet decomposition for an EEG signal x(t) at scales j, 

time point k could be calculated as: 

𝑥(𝑡) = ∑ 𝐴(𝑘)𝜑𝐽,𝑘(𝑡)

∞

𝑘=−∞

+  ∑ ∑ 𝐷(𝑗, 𝑘)𝛹𝑗,𝑘

∞

𝑘=−∞

∞

𝑗=0

(𝑡)                (4.7) 
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where 𝐴(𝑘), 𝐷(𝑗, 𝑘), 𝜑𝐽,𝑘, 𝛹𝑗,𝑘 (𝑡) denotes approximation coefficients, detail coefficients, 

scaling function, and wavelet functions, respectively.  

Daubechies wavelet of order 4 (db4) was selected as the wavelet function since its 

smoothing feature has been confirmed to work well in discovering changes of EEG 

signals (Burrus, Gopinath & Guo 1997). For EEG sampled at 512Hz, a six level 

decomposition (D1, D2, D3, D4, D5, and D6) was computed by squaring and summing 

the wavelet coefficients of the decomposed level. Four levels of coefficients correspond 

approximately to our four EEG sub-bands. The theta sub-band is reconstructed by the 

wavelet component at level 6 of the decomposition (D6). The alpha sub-band is 

reconstructed by the wavelet component at level 5 of the decomposition (D5). The low 

beta sub-band is reconstructed by the wavelet component at level 4 of the decomposition 

(D4). The high beta sub-band is reconstructed by the wavelet component at level 3 of the 

decomposition (D3). They were used for further analysis. Reconstruction of these signals 

into decompositions is represented in Figure 4.5. 

 

Figure 4.5: Wavelet decomposition of EEG signal with frequency at 512 Hz 
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Wavelet Energy (WE) 

According to Parseval’s Theorem, in wavelet analysis, the energy of signals which 

correspond to PSD, WE can be partitioned at different levels of wavelet decomposition 

(j = 1, … l) and is expressed as a function of the scaling and wavelet coefficient: 

𝐸𝑇 = ∫|𝑓(𝑡)|2 dt =  ∑|𝐶𝐽,𝑘|
2

+  ∑ ∑|𝐶𝐽,𝑘|
2

𝑗𝑘

                          

𝑘

(4.8) 

The analysis of each detail of decomposed signals also captures the temporal dynamics 

of the signals in each electrode and frequency band through the calculation of the mean, 

minimum and maximum values of signals. 

Wavelet Centroid Scale (WCS) 

The calculation of Wavelet Centroid Scale (WCS), based on the CWT scale-gram, shows 

the shift of the centre of gravity of the frequency band. The CWT is chosen since it has a 

better frequency (scale) representation compared to the DWT. The complex Morlet 

wavelet is used due to its narrow spectral band and its having an extended time domain 

made it more suitable for extracting information in the frequency domain (Misiti et al. 

2013). It is equivalent to a complex sinusoid with a Gaussian envelope and can be written 

as:  

ѱ0(𝑡) =
1

√𝜋
4 𝑒2𝜋𝑓𝑡𝑒−

𝑡2

2                                              (4.9) 

Wavelet Energy Entropy (WEE) 

The wavelet energy entropy (WEE) is calculated as  

𝑃𝑖 =
E𝑗

𝐸𝑇
                                                           (4.10) 
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where Ej refers to the energy of signals at a  jth frequency band of decomposition and ET 

refers to the energy of all frequency bands of decomposition. 

4.4.4 Feature Extraction using Fast Fourier Transform (FFT)  

As discussed in Chapter 3 for FFT feature extraction, the EEG data in the time domain 

was transformed into the frequency domain using Welch’s method with a 256 points FFT 

with 55% overlapping.  

The power spectrum P (fi) was used to analyse into four frequency subbands, namely 

theta (4-8Hz), alpha (8-13Hz), low beta (13-21 Hz) and high beta (21-38Hz). The PSD, 

PSE and CF of each frequency band were estimated and chosen as the main parameters 

for GIF detection. 

4.4.5 Classification Algorithm using Support Vector Machine (SVM)  

A Wilcoxon signed-rank test with p-value ≤ 0.5 was used to investigate significant 

differences between periods of GS and GIF. The significant mean, maximum and 

minimum power value of four sub-bands from each electrode taken from two events were 

chosen as the features to detect GIF. 

Support Vector Machine (SVM) was utilized to detect GIF because of its accuracy and 

ability to deal with a large number of predictors (Yuwono et al. 2014). The significant 

features were divided into half portions, one for the training set (50%) and the same 

amount for the testing set (50%). SVM with a Radial Basis Function (RBF) kernel is 

computed as follows (Yuwono et al. 2014) 

𝑅𝐵𝐹𝐽𝑆(𝑥, µ𝑘 , 𝜎𝑘) = exp (− 
𝐽𝑆(𝑥||µ𝑘)

2 𝜎𝑘
2 )             (4.11) 

where x, k, µ𝑘 and 𝜎𝑘  denote a random vector, support vector index, support vector 

centroid and support vector radius, respectively. JS denotes the Jensen-Shannon (JS) 

divergence between x and µ𝑘. 
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The 𝐽𝑆 divergence is a symmetrized and smoothed version of the Kullback-Leibler (KL) 

divergence. 𝐽𝑆 divergence is calculated as  

𝐽𝑆(𝑃||𝑄) =
1

2
𝐾𝐿(𝑃||𝑀) +  

1

2
𝐾𝐿(𝑄||𝑀)          (4.12) 

where P, Q denote discrete probability distribution, 𝑀 = (𝑃+Q) / 2 denotes the central 

probability mass function and KL divergence is computed as 

𝐾𝐿(𝑅||𝑆) = ∑ 𝑅(𝑥) log
𝑅(𝑥)

𝑆(𝑥)
𝑥

                           (4.13) 

A particle swarm ensemble clustering algorithm known as Ensemble Rapid Centroid 

Estimation (ERCE) was used for estimating the parameters for the RBF kernel (Yuwono 

et al. 2014). When using ERCE, µ𝑘 and 𝜎𝑘 could be inferred from the training data by 

using the following four steps: 

1. Execute ERCE to cluster the training set to an arbitrary number based on JS 

distance. 

2. Aggregate the ensemble clustering results using average linkage to get the final 

clustered sets ℂ𝑘. The corresponding centroid vector µ𝑘 was computed as:  

µ𝑘 = 𝐸[𝑥|ℂ𝑘 ] =
1

|ℂ𝑘|
 ∑ 𝑥𝑥 ∊ ℂ𝑘                     (4.14) 

3. The RBF kernel radius 𝜎𝑘 was taken as the square root of conditional JS 

divergence, which is given as follows 

𝜎𝑘
2 = 𝐸[𝐽𝑆(𝑥||µ𝑘)ℂ𝑘] =  

1

|ℂ𝑘|
∑ 𝐽𝑆(𝑥||µ𝑘 )   (4.15)

𝑥 ∊ ℂ𝑘

 

The SVM was then trained using the LS algorithm 
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4.4.6 Classification Algorithm using ANN  

Two-layer feed-forward neural networks was applied to classify the pattern into two 

categories: GIF and GS. The input of ANN included WE, WCS and WEE features 

extracted from the EEG signals.  The desired output was set at 1 in cases of GIF and 0 in 

cases of GS. The Levenberg-Marquardt algorithm was chosen as a training method for 

its speed and stability. The data set was separated randomly into a training set and test set 

at 50%, and 50%, respectively. 

4.5 EXPERIMENTAL RESULTS 

4.5.1 Feature Extraction Results  

Figure 4.6. shows the time-frequency distributions in two events GS and GIF in central 

location C4 from the EEG data of one PD patient using the EEGLab toolbox.  In this 

analysis, we explored the mean event-related changes in spectral power at each time 

during the epoch and at each frequency in this PD patient. It is observed that significant 

increase in power occurred at low beta (13-21 Hz) and high beta (21-38 Hz) frequency 

bands during GIF. 

For the feature extraction, 132 seconds from the two events GS and GIF (66 seconds 

each) from all five PD patients were analysed. Table 4.1 shows the significant maximum 

amplitude from 15 locations based on four EEG frequency bands activities. A Wilcoxon 

signed-rank test with p-value ≤ 0.001 and a Cohen’s effect size d ≥ 0.4 were used to 

investigate significant differences between periods of GS and GIF.  
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Figure 4.6:  EEG signal during GS and GIF episodes in time-frequency domain in 

C4 
In Table 4.1, a decrease in WE alpha was found in frontal F4 (d=0.2456) and an increase 

in WE alpha in occipital O2 (d=0.3619). However, there was no change in WE alpha in 

the other locations underlying the GIF episode. Overall, compared to Good start, there 

was an increase in WE theta in parietal P3 (d=0.4529).  

In addition, it is apparent that WE high beta increased throughout the cortical brain 

regions underlying GIF. More specifically, WE high beta experienced the largest 

significant rise in parietal regions P3 (d=0.5013), P4 (d=0.5378), central region CP1 

(d=0.4484) and occipital regions O1 (d=0.499), O2 (d=0.4577). WE high beta also 

changed significantly in central locations CP1 (d=0.4484) and CP2 (d=0.4). There was a 

slight changes in WE high beta in frontal F3 (d=0.1136); however, no change was found 
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in the opposite side at frontal F4. Low beta increased only in occipital O2 (d=0.2537) in 

the context of GIF seen in PD patients. This finding is similar to our previous studies 

using PSD for analysis (Handojoseno, Shine, et al. 2015; Ly et al. 2016). Figure 4.7 shows 

the comparison in WE theta and WE high beta within frontal-central cortical locations. 

The wavelet energy entropy (WEE) measures the temporal regularity of energy of the 

frequency bands and shows the loss of complexity in most of the frequency bands and 

electrodes during each event (GIF or GS). The results of entropy analysis in Table 4.2 

showed an increase of entropy in most frequency bands and locations during GIF. The 

WEE low beta appeared as the most affected sub-band underlying GIF, with the strongest 

increase in central C4 (d=0.5024). There was a slight increase of WEE theta in central Cz 

(d=0.3625), along with a decrease in occipital O2 (d=0.3878) during GIF episode. The 

WEE alpha increased only in frontal F3 when PD patients were not able to initiate the 

gait. 

The results of wavelet centroid scale (WCS) show an increase in theta in frontal F4 

(d=0.2) and high beta in occipital O1 (d=0.3308) only during GIF episode. There were 

no changes in two other sub-band alpha and low beta in this episode (Table 4.3). 
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Table 4.1:  Features analysis of WE between GS and GIF 

Parameter Band GS(µ𝐕 ± std) GIF(µV± std) p d GS vs.GIF 

WE-F3 α 0160 ± 0.08 0158 ± 0.10 0.4568 0.0201  

 hβ 0.068 ± 0.07 0.076 ± 0.06 0.0453 0.1136 * 

WE-F4 α 0.132 ± 0.06 0.113 ± 0.09 0.0026 0.2456 * 

 hβ 0.067 ± 0.06 0.068 ± 0.06 0.9655 0.0133  

WE-C3 hβ 0.091 ± 0.07 0.103 ± 0.06 0.0095 0.2205 * 

WE-C4 hβ 0.091 ± 0.07 0.107 ± 0.06 0.00219 0.3129 * 

WE-CP1 hβ 0.078 ± 0.07 0.119 ± 0.06 0.0008 0.4484 ** 

WE-CP2 hβ 0.088 ± 0.07 0.119 ± 0.07 0.0058 0.4 * 

WE-P3 θ 0.359 ± 0.20 0.377 ± 0.15 0.0178 0.4529 * 

 hβ 0.112 ± 0.07 0.150 ± 0.07 0.0015 0.5013 ** 

WE-PZ θ 0.283 ± 0.01 0.226 ± 0.01 0.0181 0.4510  

 hβ 0.114 ± 0.07 0.150 ± 0.09 0.0093 0.216 * 

WE-P4 θ 0.271 ± 0.01 0.232 ± 0.01 0.1077 0.3149  

 hβ 0.084 ± 0.06 0.115 ± 0.05 0.0055 0.5378 ** 

WE-O1 α 0.175 ± 0.07 0.191 ± 0.07 0.1801 0.2304  

 hβ 0.203 ± 0.09 0.252 ± 0.09 0.0096 0.315 ** 

WE-O2 α 0.160 ± 0.07 0.188 ± 0.08 0.0305 0.3619 * 

 lβ 0.197 ± 0.11 0.224 ± 0.09 0.033 0.2537 * 

 hβ 0.199 ± 0.09 0.242 ± 0.09 0.0065 0.4577 ** 

 

*: Significant at   p ≤ 0.05, Cohen’s d <0.4; **: Significant at p ≤ 0.001 and Cohen’s d ≥ 0.4 
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Figure 4.7:  Wavelet Energy in Frontal and Central location underlying GS and 

GIF episodes 
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Table 4.2:  Features analysis of WEE between GS and GIF 

Parameter Band GS (µV ± sdt) GIF (µV ± sdt) p d GS vs.GIF 

WEE-F3 α 0.731 ± 0.08 0.760 ± 0.07 0.0403 0.3732 * 

 lβ 0.770 ± 0.06 0.796 ± 0.03 0.033 0.4725 * 

WEE-F4 α 0.739 ± 0.08 0.747 ± 0.07 0.6871 0.1087  

 lβ 0.770 ± 0.06 0.788 ± 0.06 0.0301 0.2839 * 

WEE-C3 θ 0.695 ± 0.10 0.711 ± 0.09 0.5648 0.1547  

WEE-C4 θ 0.695 ± 0.11 0.690 ± 0.10 0.8752 0.0453  

 lβ 0.758 ± 0.07 0.791 ± 0.05 0.0014 0.5024 ** 

WEE-CP1 lβ 0.774 ± 0.05 0.764 ± 0.06 0.2200 0.1593  

WEE-CP2 lβ 0.759 ± 0.07 0.783 ± 0.05 0.0305 0.3656 * 

WEE-Cz θ 0.685 ± 0.09 0.718 ± 0.09 0.044 0.3625 * 

 lβ 0.788 ± 0.04 0.768 ± 0.06 0.1472 0.3436  

WEE-P3 α 0.741 ± 0.07 0.760 ± 0.07 0.048 0.2572 * 

WEE-P4 α 0.760 ± 0.06 0.766 ± 0.06 0.6409 0.0962  

 lβ 0.778 ± 0.05 0.762 ± 0.07 0.3335 0.2386  

WEE-O1 θ 0.676 ± 0.10 0.700 ± 0.10 0.2431 0.2289  

WEE-O2 θ 0.714 ± 0.09 0.670 ± 0.12 0.046 0.3878 * 

 lβ 0.743 ± 0.08 0.742 ± 0.07 0.5285 0.0073  

 
*:      Significant at   p ≤ 0.05 and Cohen’s d < 0.4; **:    Significant at p ≤ 0.001 and Cohen’s 

d ≥ 0.4 
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Table 4.3:  Features analysis of WCS between GS and GIF 

Parameter Band GS (µV ± sdt)       GIF (µV ± sdt)    p d GS vs.GIF 

WCS-F3 θ 69.141 ± 6.43 73.115 ± 8.20 0.0483 0.2 * 

 hβ 20.176 ± 6.12 20.915 ± 6.93 0.5587 0.1129  

WCS-F4 θ 72.106 ± 7.90 73.974 ± 8.36 0.5405 0.1030  

 hβ 20.176 ± 6.12 20.915 ± 6.93 0.5587 0.1129  

WCS-C3 θ 72.527 ± 8.00 73.547 ± 6.83 0.1409 0.1733  

 hβ 19.914 ± 5.77 21.532 ± 7.90 0.5679 0.2337  

WCS-C4 θ 72.291 ± 9.70 74.734 ± 6.71 0.3026 0.1337  

WCS-P3 hβ 19.469 ± 6.00 21.729 ± 8.47 0.2524 0.3078  

WCS-P4 hβ 19.774 ± 7.02 20.572 ± 7.44 0.6214 0.1102  

WCS-O1 θ 75.887 ± 7.56 76.720 ± 8.66 0.3785 0.2383  

 hβ 19.649 ± 7.57 22.705 ± 7.64 0.045 0.3308 * 

WCS-O2 θ 74.856 ± 6.59 76.484 ± 9.82 0.2717 0.2821  

 hβ 20.473 ± 9.13 21.539 ± 9.99 0.3520 0.1059  

 
*:      Significant at   p ≤ 0.05 and Cohen’s d < 0.4 

4.5.2 Classification Results 

Next, the 15 channels EEG data was fed to the ICA-EBM which resulted in the 15 ICs 

separated sources. These optimized sources were further segmented for feature extraction 

using wavelet transform. To build a faster and better classification system, only 

significant statistically different features between two groups of data (p-values < 0.05) 

were chosen as input for the GIF detection. 

Table 4.4 shows the classification result for GIF detection using WT as feature extraction 

and SVM as classification. For comparison purposes, the performance of the classifier 

using SVM depends on the input based on different parameters extracted by wavelet 

analysis. The classification result is from the original 15 EEG channels with different 

features such as WE, WCS and WEE in the case of with/without using of ICA-EBM. The 

classification (without ICA-EBM) using the WE, WCS and WEE as an input from 15 
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channels resulted in a sensitivity of 81.52%, a specificity of 85.45% and an accuracy of 

83.48%, while the classification using 15 ICs (with ICA-EBM) resulted in a higher 

sensitivity of 83.94%, a specificity of 89.39% and an accuracy of 86.67%. 

In addition, the performance using WCS and WEE features as input results in 77.12%, 

79.24% and 78.18% for sensitivity, specificity, and accuracy, respectively, whereas the 

WE obtained the better result at 80.70% sensitivity, 80.60% specificity and 80.60% 

accuracy. The results confirmed that the combination of ICA-EBM as the source 

separator, WT as feature extraction and SVM as classifier achieved a better performance 

for detecting GIF. 

Table 4.4:  Classification results of WT based features using SVM in detecting GIF 

from GS 

ICA-EBM Features 
Training Testing 

Sen(%) Spe(%) Acc(%) Sen(%) Spe(%) Acc(%) 

No WCS,WEE 77.18 79.33 78.25 77.12 79.24 78.18 

No WE 81.00 80.80 80.90 80.70 80.60 80.60 

No WE,WCS,WEE 81.65 85.47 83.56 81.52 85.45 83.48 

Yes WE,WCS,WEE 84.25 89.43 86.84 83.94 89.39 86.67 

 
Sen: Sensitivity; Spe: Specificity; Acc: Accuracy 

 

Further comparisons were carried out between different classifiers (ANN, SVM) and 

feature extractors (FFT, WT) using ICA-EBM as source separation. Figure 4.8 shows the 

results in the receiver operating characteristic (ROC) curve and analyses of two classifiers 

(ANN, SVM) for detecting GIF based on the training data set (accounting for 50% of the 

total data). By definition, the ROC curve defines the compromise between the true 

positive rate (sensitivity) versus false positive rate (1-specificity). The ROC curve 

determines the desired classification performance in the comparison of different methods. 

In the ROC curve, each point is corresponding to one specific output threshold. The area 
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under the ROC curve (AUC) is an important value that reveals the performance of 

classification. The better ROC curve is the one that has the highest number of AUC.  

The bold red coloured line represents the ROC curve for the method using ICA-EBM, 

WT, and SVM for GIF detection. The star blue coloured line represents the technique 

using ICA-EBM, WT, and ANN. The green coloured line represents the method using 

ICA-EBM, FFT, and SVM and the black line shows the ROC curve method using ICA-

EBM, FFT and ANN. Using the same training data set, the ROC curves demonstrated 

that the combination of ICA-EBM, WT and SVM produced the highest AUC of 0.9036 

for classifying GIF. This value outperforms the method using different classifier (ICA-

EBM, WT, ANN) that achieved the AUC at 0.8552. On the same feature extractor FFT, 

the method using ICA-EBM, FFT, SVM achieved the higher AUC values (AUC= 0.7651) 

than that using ICA-EBM, FFT, ANN (AUC=0.7355) for detecting GIF. 

 

 

Figure 4.8:  ROC plot 
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For the testing data set (accounting for 50% of the rest of the total EEG data), the results 

of the experiment show that wavelet analysis provided a better result compared to Fourier 

analysis based on the feature extraction related to power, centroid and entropy and 

classifiers such as ANN and SVM. When using WT based feature and ANN as a 

classifier, the 15 ICs data provided better results than using FFT based features and the 

same classifier. The results show sensitivity, specificity, and accuracy of 83.83%, 

85.84%, and 85.00%, respectively. The performance was increased when using WT and 

SVM, with results of 83.94% sensitivity, 89.39% specificity and 86.67% accuracy (Table 

4.5).  

Table 4.5 Comparison of classification results in detecting GIF from GS using 

source separation ICA-EBM 

Feature Classifier 
 Testing  

Sen (%) Spec (%) Acc(%) 

FFT ANN 80.59 74.52 77.59 

FFT SVM 79.04 78.89 78.81 

WT ANN 83.83 85.84 85.00 

WT SVM 83.94 89.39 86.67 

Sen: Sensitivity; Spe: Specificity; Acc: Accuracy 

4.6 DISCUSSION 

This chapter compared ambulatory EEG during Gait Initiation Failure and Good Start in 

patients with PD who had GIF. By applying WT for feature extraction, the results showed 

the fast temporal changes occurring in the brain during GIF associated with an overall 

increase in high beta activities over frontal, central, parietal and occipital cortical 

locations underlying GIF. FOG has previously been associated with high beta oscillations 

in the subthalamic nucleus, which are coherent with both supplementary and primary 

motor areas (Toledo et al. 2014). Together these may constitute inhibitory control over 

motor actions when response conflict arises (Georgiades et al. 2016). This could explain 

the high beta frequencies found in frontal and central cortical regions during GIF in the 
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current study. High beta oscillation in parietal and occipital locations support the notion 

that PD patients with GIF suffered from impaired sensory integration and thus had to gain 

more information from the environment to initiate gait (Georgiades et al. 2016). 

Classification results also showed that GIF could be detected using an advanced algorithm 

for GIF detection that applied ICA-EBM for source separation, wavelet for feature 

extraction and Support Vector Machine. This method achieved the best performance 

indicators for GIF detection, with sensitivity increasing by 2.42% (from 81.52% to 

83.94%) and accuracy increasing by 3.19 % (from 83.48% to 86.67%) as compared with 

the case without using ICA-EBM (Table 4.4).  

This research has successfully used EEG signals to investigate dynamic brain changes 

underlying GIF. Furthermore, using this technique, GIF could be detected with high 

performance using wavelet analysis as feature extraction. The current study provided 

additional support toward detecting freezing events (in this case GIF) by testing similar 

technique such as the combination of ICA-EBM (Source Separation), SVM (classifier) 

with different feature extraction (FFT, WT). The classification results showed the 

accuracy improved from 78.81% (ICA-EBM, FFT, SVM) to 86.67% (ICA-EBM, WT, 

SVM) for GIF detection. Finally, this work helps to understand the neurobiology of GIF, 

showing it is associated with high beta frequencies across the motor and sensory cortices. 

These results will ultimately promote the development of novel therapies and 

technologies to assist with the management of FOG in PD. 
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Chapter 5 ADVANCED DECTION OF TURNING FOG AND GAIT INITIATION FAILURE USING EEG AND BAYESIAN NEURAL NETWORKS 

 

Advanced Detection of Turning FOG 

and Gait Initiation Failure using EEG 

and Bayesian Neural Networks  

5.1 INTRODUCTION: TURNING FOG AND GAIT INITIATION 

FAILURE 

In contrast to chapters 3 and 4, where FFT and WT based feature was used for feature 

extraction, in this chapter, a time-frequency S-Transform (ST) was applied for feature 

extraction. One of the advantages of S-Transform technique is the capability to detect and 

analyse non-stationarity and their related aspects of EEG signals such as trends, 

breakdown points and discontinuity (Tran et al. 2014). Therefore, the FOG pattern can 

be characterized in both time and frequency domains. Further improvement focused on 
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developing an advanced computational intelligence system, in which advanced pre-

processing techniques such as ICA-EBM and advanced classifier Bayesian Neural 

Networks (BNN) were built and applied to FOG detection system using EEG signals. As 

discussed in Chapter 2, Turning FOG and GIF were recognized to be the most frequent 

trigger of FOG. In our EEG data collection, Turning FOG and GIF accounted for 62.7% 

and around 24% of all witnessed FOG episodes, respectively (Schaafsma et al. 2003). 

Therefore, this chapter testes an advanced detection algorithm on these two common 

subtypes of FOG. 

The main contributions of this chapter are the novel technique that combined ICA-EBM 

as the EEG source separation technique and EEG feature extraction using ST 

decomposition. Artificial neural networks optimized by Bayesian inference techniques 

were used for detecting Turning FOG and GIF. The reason why BNN was used is that 

Bayesian regularization framework has been proposed to enhance the generalization 

abilities of neural networks regardless of finite and/or noisy data. The probability 

distribution of network parameters is considered in Bayesian learning, providing the best 

generalization of the trained network. Especially, this type of neural network can be 

trained on all of the available data. Therefore, it is suitable for applications where the 

dataset is small.  

The entropy bound estimation in ICA-EBM was chosen for its flexibility and its ability 

to approximate sources of a wide range of distributions that fit with the EEG signals, 

which indeed improved classification performance in previous EEG studies (Chai et al. 

2017). The S-Transform was used to track alterations in signal magnitude, frequency and 

phase of selected EEG sources as it has been shown to outperform classical techniques 

based on either frequency or time domain (Stockwell, Mansinha & Lowe 1996).  

5.2 SYSTEM OVERVIEW  

An overview of the advanced Turning FOG/GIF detection based on BNN approach is 

illustrated in Figure 5.1. This started with data collection and was followed by pre- 
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Figure 5.1:  Components of EEG-based Turning FOG detection system 

 

processing steps (filtered and removed artifacts in EEG signals) and was extracted in the 

form of S-Transform Decomposition. For input of classifier, the raw EEG signal was 

separated into Independent Components (ICs) using ICA-EBM and extracted using S-

Transform decomposition. Artificial neural networks optimized by Bayesian framework 

was used for detecting Turning FOG/GIF in PD. 

5.3 DATA COLLECTION 

EEG data was recorded from 15 locations positioned over the following key cortical 

regions: F3, F4, FC1, FC2, C3, C4, CP1, CP2, CZ, P3, P4, Pz and O1, O2, Oz. PD patients 

were asked to perform either a right or a left turn (180 degrees or 540 degrees) 

inside/outside the taped box on the floor in a TUG task. Two separate conditions were 

identified for each patient based on video recordings, which was currently used as the 

golden standard to characterize FOG (Handojoseno, Gilat, et al. 2015) (Figure 5.2).  
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Figure 5.2:  Experiment setup to provoke Turning FOG in PD patients 

 Good Turn (GT): identified as a 2-second epoch of time in which a patient 

successfully made a right or left turn (180 degrees or 540 degrees) inside a 

taped 1m2 box on the floor.  

 Turning FOG (TF): identified as an epoch of time in which patients suddenly 

became unable to make a turn inside a taped 1m2 box on the floor, despite the 

intention to do so. The duration of FT episodes occurs typically from 2 

seconds to 5 seconds. 

Raw EEG data from six PD patients resulted in 204 seconds of EEG data samples of 

Turning FOG (TF), which were matched to 204 seconds of EEG data samples of Good 

Turn (GT). EEG Data was then filtered using a band-pass filter (0.5-40 Hz). Artefacts 

such as eye activity movement and heart rate signals were removed by Automatic Artefact 

Removal (AAR) using the EEGLab toolbox before using the data for further analyses. 
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5.4 COMPUTATIONAL INTELLIGENCE  

5.4.1 Data Pre-processing: Source separation ICA-EBM  

As mentioned in chapter 4, ICA-EBM provided flexible density matching through the use 

of contrast functions based on the maximum entropy principle (Li & Adali 2010). ICA-

EBM can separate sources that are both sub- or super-Gaussian distributions using only 

a small class of nonlinear functions. The algorithm adopted a line search procedure and 

initially used updates that constrain the ICA de-mixing matrix to be orthogonal for robust 

performance. Therefore, ICA-EBM was applied as a source separator to EEG data of 

Turning FOG/GIF in this chapter. 

5.4.2 Feature Extraction using S-Transform Decomposition 

The S-transform (ST) is a time-frequency analysis technique proposed by Stockwell, 

Manisinha and Lowe in 1996 (Stockwell, Mansinha & Lowe 1996). The ST was 

developed on the basis of short time Fourier Transform (STFT) and continuous wavelet 

transform (CWT) involving direct time-frequency mapping. The advantages of the S-

transform are its linearity, lossless reversibility, multi-resolution and good time-

frequency resolution. The S-Transform generates a constant relative bandwidth analysis 

while maintaining a direct link with the Fourier spectrum. In this study, four frequency 

bands were analysed using ST, namely: theta, alpha, low beta and high beta (Figure 5.3).  

Given h(t) is a continuous signal, the S-transform is defined as: 

𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)𝑤(𝜏 − 𝑡, 𝑓) 𝑒𝑥𝑝(−𝑖2𝜋𝑓𝑡) 𝑑𝑡
∞

−∞

              (5.1) 

where 𝑤(𝜏 − 𝑡, 𝑓) denotes the specific mother wavelet of the signal 

     𝑤(𝜏 − 𝑡, 𝑓) =
|𝑓|

√2𝜋
exp (−0.5(𝜏 − 𝑡)2𝑓2)                             (5.2) 
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Figure 5.3:  S-Transform Decomposition in Good Turn (1-5s), Turning FOG (6-

10s) in F4 location 

 

where f denotes the frequency, t denotes the time and τ denotes the delay with 

∫ 𝑤(𝑡, 𝑓)𝑑𝑡
∞

−∞

= 1                                                        (5.3) 

Here, two parameters were extracted: the first is the maximum amplitude for each band 

at a time (t), 𝑆𝑇𝑚𝑎𝑥(𝑡). The second parameter was computed as the mean of the of sum 

amplitudes within each band at a time (t), 𝑆𝑇𝑚𝑒𝑎𝑛(𝑡). These main features were used to 

explore the neural correlates underlying the episodes of turning FOG. In this study, a non-

parametric statistical analysis, the Wilcoxon Sum Rank Test was chosen as feature 

selection method. Only useful features with corrected p-values<0.05, as computed by the 

non-parametric Wilcoxon Sum Rank Test, were employed as input for our classifier. 
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5.4.3 Feature Extraction using FFT and WT 

The FFT feature extractor, which has been discussed and used previously in Chapter 3 

and 4, is a frequency domain analysis. The power spectrum was calculated by using 

established FFT and Hanning window to derive spectral power. The WT feature extractor 

applied previously in Chapter 4, is obtained by shifting and dilating a mother wavelet 

function. The decomposition of the signal leads to a set of wavelet coefficients. As a 

result, the signal could be reconstructed as a linear combination of the wavelet functions 

weighted by the wavelet coefficients. The key feature of wavelets is the time-frequency 

localisations, which means that most of the energy of the wavelet is restricted to finite 

time intervals. Theta, alpha, low beta and high beta were analysed based on FFT and WT 

for the purpose of comparison detection. 

5.4.4 Classification using Bayesian Neural Networks 

The next step included a feature extraction module that transformed the pre-processed 

EEG signal with ICA-EBM into ST decomposition based on four sub-bands. Only useful 

features with corrected p-values<0.05, as computed by the non-parametric Wilcoxon 

Signed Rank Test, were employed as input for our classifier. 

For the classification algorithm, Bayesian neural networks were implemented. Bayesian 

regularization framework has been proposed to improve the generalization abilities of 

neural networks regardless of finite and noisy obtainable data (Bishop 1995). Applying 

Bayesian techniques to neural network training and prediction offers principal methods 

for determining optimal weight decay coefficients and model selection while making 

efficient use of training data. The use of the hyper parameters in the cost function can 

prevent the network from being trapped in poor generalization. As a result, a validation 

data set is not needed for Bayesian training. BNN is highly suitable for experiments such 

as ours where a limited set of data is only available for training and testing. The BNN 

structure uses a 3-layer (input, hidden and output layers) feed-forward structure as 

follows: 
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  𝑧(𝑥, 𝑤) = 𝑓1 (𝑏𝑘 + ∑ 𝑤̅𝑘𝑗

𝑚

𝑗=1

𝑓2 (𝑏𝑗 + ∑ 𝑤𝑗𝑖

𝑛

𝑖=1

𝑥𝑛))       (5.4) 

where  𝑓1, 𝑓2 denotes the activation function, x represents the input vector, w denotes the 

weight matrix vector; 𝑤𝑗𝑖 indicates the weight of the link between the i hidden node and 

the j input; 𝑤̅kj denotes the weight of the link between i hidden node and the output, 𝑏𝑘 

and bj denote the biases; m denotes the number of outputs; n denotes the number of inputs.  

In the Bayesian framework, the most probable model corresponding to the training data 

D is found automatically. Based on the Gaussian probability distribution over weight 

values, the posterior distribution of the weights w in network H can be calculated using 

Bayes’ theorem as shown below: 

𝑝(𝑤|𝐷, 𝐻) =
𝑝(𝐷|𝑤, 𝐻) 𝑝(𝑤|𝐻)

𝑝(𝐷|𝐻)
                                       (5.5) 

where 𝑝(𝑤|𝐷, 𝐻) is the likelihood which contained information about weight from 

observations, the prior distribution 𝑝(𝑤|𝐻) contains information about background 

weight set, and the 𝑝(𝐷|𝐻) is known as the evidence of the network H. 

The BNN training modifies the objective function of the networks such as the sum of 

squared error (mse) with the error function is calculated as  

𝐹 = 𝐸𝑑 =
1

𝐼
√∑ (𝑑𝑖 

𝑛
𝑖=1 −  𝑜𝑖)2                                  (5.6) 

where 𝑑𝑖 is the desired output, and 𝑜𝑖  is the actual output. 

The regularization improves the model’s generalization by adding the sum of squared 

weight function 𝐸𝑤 to the objective function component(𝑤) : 

𝐹(𝑤) = 𝛽𝐸𝑑(w) +  α𝐸𝑤(w)                                    (5.7) 
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where β and α are two hyper-parameters which indicate a minimal error, and minimal 

weights to seek in the learning process. 𝐸𝑑(w) is the error function, and 𝐸𝑤(𝑤) is the sum 

square of weight function, defined in the following equation: 

𝐸𝑤(𝑤) =
1

2
||𝑤||

2
                                                    (5.8) 

By introducing hyper-parameters in the cost function, neural network weights can be 

prevented from being too large, which would result in poor generalization for new test 

cases. As a result, a validation set is not required in a neural network training procedure.  

Next, the Bayesian algorithm regularization is applied to revise hyper-parameters as 

follows 

𝛼𝑀𝑃 =
𝛾

2𝐸𝑤(𝑤𝑀𝑃)
                                                      (5.9) 

𝛽𝑀𝑃 =
𝑁 − 𝛾

2𝐸𝐷(𝑤𝑀𝑃)
                                                   (5.10)  

where 𝛾 = 𝑛 − 2𝛼𝑀𝑃𝑡𝑟(𝐻𝑀𝑃)−1 is called the effective number of parameters, n is the 

total number of parameters in the network, N is the total number of errors, and H is 

Hessian matrix of F(w) at the minimum point of 𝑤𝑀𝑃. The log evidence of model 𝐻𝑖  is 

evaluated by Bayesian framework as follows: 

ln p(𝐷|𝐻𝑖) = −𝛼𝑀𝑃𝐸𝑊
𝑀𝑃 − 𝛽𝑀𝑃𝐸𝑊

𝑀𝑃 −  
1

2
𝑙𝑛|𝐴| +

𝑊

2
𝑙𝑛 𝛼𝑀𝑃 +

𝑁

2
𝑙𝑛 𝛽𝑀𝑃 +

ln 𝑀! + 2 ln 𝑀 +  
1

2
𝑙𝑛

2

𝛾
+  

1

2
𝑙𝑛

2

𝑁−𝛾
    (5.11) 

where W is the number of network parameters, M is the number of hidden nodes, and A 

is the Hessian matrix of the cost function. A network structure with the highest log 

evidence value will be selected as the best optimal structure of that network.  

This addition was proposed to find the best generalization by optimizing these parameters 

in the Bayesian framework. To improve the efficiency of the optimization, Bayesian was 
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added to the Levenberg-Marquardt to be used for the Gauss-Newton approximation to 

the Hessian matrix, available in this optimization algorithm for learning. For Bayesian 

neural network classification, a validation set is not required in a neural network training 

procedure. As a result, the current dataset was randomly divided into a training set and a 

test set with each containing 50% of the original data from PD patients. For the 

performance measurement, the well-known performance indicators, including specificity 

(%), sensitivity (%) and accuracy (%) were calculated based on function 3.20; 3.21 and 

3.22 in chapter 3. 

5.4.5 Classification Algorithms using ANN and SVM 

Two-layer feed-forward neural networks with 2 to 12 hidden nodes was applied to 

classify the pattern. The input of this classifier included ST features extracted from the 

EEG signals. The motivation behind the support vector machine (SVM) classification is 

to map the input into a high dimensional feature space, in which the data might be linearly 

separable. The training of the SVM is defined in the first place for the case of a binary 

classification problem, for which a linear decision surface exists that can perfectly 

classify the training data. The assumption of linear separability means that there exists 

some hyperplane, which perfectly separates the data. The data set was separated randomly 

into a training set and test set with the ratio of 50% and 50%, respectively for 

classification. 

5.5 DETECTION OF TURNING FOG USING ICA-EBM 

(SOURCE SEPARATOR), S-TRANSFORM (FEATURE 

EXTRACTOR) AND BAYESIAN NEURAL NETWORKS 

(CLASSIFIER) 

Figure 5.4 shows the time-frequency distributions of S-transform based on the above EEG 

signals from the frontal F4 electrode of one PD patient in two events Good Turn and 

Turning FOG. The GT segments run from 1 to 5 seconds and the TF segments run from  
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Figure 5.4:  Time-frequency distributions of S-transform in Good Turn (1-5s), 

Turning FOG (6-10s) in F4 location 

6 to 10 seconds. As clearly demonstrated, there are significant increases during TF across 

theta, alpha, low beta and specifically high beta frequency bands. 

To investigate significant differences between periods of GT and periods of TF, a 

Wilcoxon Signed-Rank Test was conducted on the sample of 6 patients. Table 5.1 and 

Table 5.2 shows the significant maximum amplitude (𝑆𝑇𝑚𝑎𝑥(𝑡)) in the four sub-bands 

between periods of GT and TF. Smaller p-values (p-values ≤0.0001) and larger Cohen’s 

d (d≥0.4) indicated the biggest differences in features between the two conditions.   

The most considerable significant increase in activity was found in low beta and high beta 

bands across the brain regions during TF. The most substantial maximum differences 

were found in high beta activity from frontal F4 (d=0.6143) and occipital O2 (d=0.5919) 

locations. Moreover, maximum alpha band activity increased significantly only in 

occipital locations O1 (d=0.3731), Oz (d=0.3911) and O2 (d=0.3089) during TF stages. 

Theta band increased remarkably just in occipital locations O1 (d=0.3202), O2 

(d=0.2043) and the low beta increased in F3 (d=0.3777), O1 (d=0.508), O2 (d=0.483) 

and Oz (d=0.4647) during TF. 
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Table 5.1:  Feature analysis of ST (𝐒𝐓𝐦𝐚𝐱) based feature between GT and TF in 

Frontal, Central and Parietal 

Parameter Band GT(µ𝐕± std) TF(µ𝐕 ± std) p d GTvs. TF 

ST-F3 θ 0.233 ± 0.12 0.213 ± 0.11 0.1354 0.1702  

 α 0.302 ± 0.12 0.335 ± 0.11 0.0067 0.2278 * 

 lβ 0.261 ± 0.09 0.296 ± 0.09 0.0002 0.3777 ** 

 hβ 0.292 ± 0.10 0.343 ± 0.08 ≤0.0001 0.4994 *** 

ST-F4 θ 0.213 ± 0.14 0.191 ± 0.11 0.8782 0.0937  

 lβ 0.224 ± 0.09 0.262 ± 0.09 0.0004 0.3993 ** 

 hβ 0.262 ± 0.10 0.322 ± 0.09 ≤0.0001 0.6143 *** 

ST-FC1 lβ 0.295 ± 0.09 0.302 ± 0.10 0.2185 0.1768  

 hβ 0.323 ± 0.09 0.362 ± 0.09 0.0004 0.3818 ** 

ST-FC2 lβ 0.262 ± 0.09 0.283 ± 0.10 0.0851 0.1958  

 hβ 0.302 ± 0.09 0.353 ± 0.09 ≤0.0001 0.5354 *** 

ST-C3 θ 0.222 ± 0.13 0.192 ± 0.10 0.1572 0.2212  

 hβ 0.334 ± 0.09 0.371 ± 0.09 ≤0.0001 0.4938 *** 

ST-C4 lβ 0.241 ± 0.10 0.278 ± 0.10 0.0017 0.3234 * 

 hβ 0.27 ± 0.09 0.310 ± 0.09 0.0001 0.4295 ** 

ST-CP1 lβ 0.321 ± 0.11 0.337 ± 0.12 0.5677 0.1072  

 hβ 0.329 ± 0.09 0.376 ± 0.09 0.0001 0.4556 ** 

ST-CP2 hβ 0.320 ± 0.09 0.362 ± 0.08 0.0001 0.4729 ** 

ST-P3 lβ 0.302 ± 0.14 0.302 ± 0.12 0.4401 0.0347  

 hβ 0.362 ± 0.11 0.415 ± 0.10 0.0002 0.4397 ** 

ST-P4 lβ 0.220 ± 0.13 0.194 ± 0.10 0.1572 0.2212  

 hβ 0.332 ± 0.10 0.373 ± 0.09 0.0011 0.3654 ** 

ST-Pz lβ 0.383 ± 0.13 0.372 ± 0.14 0.5780 0.0242  

 hβ 0.359 ± 0.10 0.402 ± 0.09 ≤0.0001 0.4427 *** 

 

*:   Significant at 0.001 < p ≤ 0.05 and Cohen’s d < 0.3 

**:   Significant at 0.0001 <p ≤ 0.001 and Cohen’s 0.3 ≤ d <0.4 

***:  Significant at p≤0.0001 and Cohen’s d ≥ 0.4 
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Table 5.2:  Feature analysis of ST (𝐒𝐓𝐦𝐚𝐱) based feature between GT and TF in 

Occipital 

Parameter Band GT(µ𝐕± std) TF(µ𝐕 ± std) p d GTvs. TF 

ST-O1 θ 0.302 ± 0.12 0.332 ± 0.08 0.0081 0.3202 * 

 α 0.582 ± 0.22 0.662 ± 0.18 0.0007 0.3731 ** 

 lβ 0.513 ± 0.21 0.593 ± 0.16 ≤0.0001 0.4304 *** 

 hβ 0.444 ± 0.15 0.514 ± 0.12 ≤0.0001 0.508 *** 

ST-Oz α 0.595 ± 0.23 0.671 ± 0.18 0.0002 0.3911 ** 

 lβ 0.516 ± 0.21 0.602 ± 0.15 ≤0.0001 0.4647 *** 

 hβ 0.433 ± 0.14 0.502 ± 0.11 ≤0.0001 0.5063 *** 

ST-O2 θ 0.302 ± 0.12 0.321 ± 0.10 0.0079 0.2043 * 

 α 0.588 ± 0.25 0.657 ± 0.20 0.0055 0.3089 * 

 lβ 0.481 ± 0.22 0.586 ± 0.17 ≤0.0001 0.483 *** 

 hβ 0.402 ± 0.15 0.488± 0.11 ≤0.0001 0.5919 *** 

*:   Significant at 0.001 < p ≤ 0.05 and Cohen’s d < 0.3 

**:   Significant at 0.0001 <p ≤ 0.001 and Cohen’s 0.3 ≤ d <0.4 

***:  Significant at p≤0.0001 and Cohen’s d ≥ 0.4 

 

Table 5.3 and 5.4 shows the significant mean of the S-Transform decomposition 

𝑆𝑇𝑚𝑒𝑎𝑛(𝑡) in the four sub-bands within frontal, central and parietal regions between 

periods of GT and TF. The results show that theta and high beta oscillations increase and 

remain high during the TF in these four regions. When compared to the period of GT, the 

TF are associated with the largest significant increase in theta in frontal FC1 (d=0.5894), 

parietal P1 (d=0.6018), Pz (d=0.6042) and occipital O1 (d=0.594). There is a high beta 

increase underlying the TF episodes seen in PD patients, with the most significant 

increase in frontal F4 (d=0.526), central Cz (d=0.53), parietal P4 (d=0.4858) and occipital 

O2 (d=0.6388). In addition, there are significant increases in low beta in frontal F4 

(d=0.4476), central C4 (d=0.3034), parietal P4 (d=0.3947) and occipital O1 (d=0.5927), 

along with alpha activity in frontal F3 (d=0.5523). Overall, occipital regions stand out as 

the most affected locations during the episode of TF with the smallest p (p-values 

≤0.0001) and largest Cohen’s d (d≥0.4). 
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Table 5.3:  Feature analysis of ST (𝐒𝐓𝐦𝐞𝐚𝐧) based features between GT and TF in 

Frontal and Central  

Parameter Band GT(µ𝐕±std) TF(µ𝐕 ±std) p d GTvs.TF 

ST-F3 θ 1.161 ± 1.07 2.101 ± 2.15 0.0021 0.5523 ** 

 α 2.312 ± 0.96 2.471 ± 0.77 0.006 0.1863 * 

 lβ 1.072 ± 0.32 1.132 ± 0.32 0.0003 0.384 ** 

 hβ 2.163 ± 0.60 2.316 ± 0.53 ≤0.0001 0.4586 *** 

ST-F4 θ 2.165 ± 2.44 1.182 ± 1.26 0.048 0.5042 * 

 lβ 0.851 ± 0.38 1.021 ± 0.36 ≤0.0001 0.4476 *** 

 hβ 1.841 ± 0.68 2.181 ± 0.60 ≤0.0001 0.526 *** 

ST-FC1 θ 1.160 ± 1.06 2.048 ± 1.93 ≤0.0001 0.5894 *** 

 lβ 1.112 ± 0.29 1.215 ± 0.32 0.0173 0.3051 * 

 hβ 2.391 ± 0.59 2.615 ± 0.56 0.0011 0.37 ** 

ST-FC2 θ 2.083 ± 2.01 1.133 ± 1.11 ≤0.0001 0.5836 *** 

 lβ 1.010 ± 0.36 1.125 ± 0.37 0.0142 0.2909 * 

 hβ 2.260 ± 0.67 2.467 ± 0.59 0.0012 0.3701 ** 

ST-C3 θ 2.281 ± 2.22 1.254 ± 1.16 ≤0.0001 0.5777 *** 

 lβ 1.232 ± 0.33 1.321 ± 0.33 0.0328 0.2496 * 

 hβ 2.471 ± 0.64 2.713 ± 0.58 0.0003 0.3852 ** 

ST-C4 θ 2.174 ± 2.24 1.202 ± 1.20 0.008 0.5366 ** 

 lβ 0.901 ± 0.46 1.049 ± 0.44 0.004 0.3034 ** 

 hβ 1.912 ± 0.74 2.193 ± 0.69 ≤0.0001 0.3965 ** 

ST-CP1 θ 1.218 ± 1.17 2.332 ± 2.16 ≤0.0001 0.6018 *** 

 hβ 2.423 ± 0.69 2.641 ± 0.60 0.007 0.3261 ** 

ST-CP2 θ 2.253 ± 2.15 1.251 ± 1.18 ≤0.0001 0.5778 *** 

 lβ 1.183 ± 0.41 1.292 ± 0.41 0.0062 0.2787 * 

 hβ 2.361 ± 0.69 2.601 ± 0.61 0.0009 0.3672 ** 

ST-Cz θ 1.912 ± 1.78 1.082 ± 0.98 ≤0.0001 0.5724 *** 

 lβ 1.122 ± 0.32 1.292 ± 0.33 ≤0.0001 0.4929 *** 

 hβ 2.351 ± 0.63 2.682 ± 0.58 ≤0.0001 0.53 *** 
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Table 5.4:  Feature analysis of ST (𝐒𝐓𝐦𝐞𝐚𝐧) between GT and TF in Parietal and 

Occipital 

 

Parameter Band GT(µV± std) TF(µV ± std) p d GTvs.TF 

ST-P3 θ 2.510 ± 2.45 1.362 ± 1.30 ≤0.0001 0.5862 *** 

 α 2.691 ± 0.83 2.548 ± 0.86 0.0511 0.1748  

 lβ 1.442 ± 0.46 1.583 ± 0.40 0.0072 0.3133 * 

 hβ 2.721 ± 0.79 2.991 ± 0.64 0.0005 0.4109 ** 

ST-Pz θ 2.311 ± 2.07 1.292 ± 1.17 ≤0.0001 0.6042 *** 

 α 2.339 ± 1.42 2.164 ± 1.08 0.2220 0.1847  

 lβ 1.253 ± 0.39 1.361 ± 0.37 0.0077 0.2862 * 

 hβ 2.452 ± 0.69 2.629 ± 0.60 0.0007 0.3655 ** 

ST-P4 θ 2.546 ± 2.37 1.408 ± 1.25 ≤0.0001 0.601 *** 

 α 2.397 ± 1.42 2.161 ± 1.08 0.2220 0.1847  

 lβ 1.421 ± 0.43 1.588 ± 0.36 0.0005 0.3947 ** 

 hβ 2.622 ± 0.68 2.927 ± 0.55 ≤0.0001 0.4858 *** 

ST-O1 θ 1.541 ± 1.30 2.799 ± 2.69 ≤0.0001 0.594 *** 

 α 3.843 ± 1.14 4.225 ± 0.82 0.0018 0.3737 * 

 lβ 1.791 ± 0.58 2.079 ± 0.39 ≤0.0001 0.5699 *** 

 hβ 3.032 ± 0.87 3.536 ± 0.55 ≤0.0001 0.6115 *** 

ST-O1 θ 1.561 ± 1.25 2.776 ± 2.59 ≤0.0001 0.591 *** 

 α 3.902 ± 1.19 4.297 ± 0.86 0.0015 0.3727 ** 

 lβ 1.792 ± 0.56 2.079 ± 0.37 ≤0.0001 0.5927 *** 

 hβ 3.091 ± 0.87 3.550 ± 0.56 ≤0.0001 0.6369 *** 

ST-O2 θ 1.572 ± 1.34 2.719 ± 2.52 ≤0.0001 0.5613 *** 

 α 3.901 ± 0.54 3.681 ± 1.21 0.0706 0.1791  

 lβ 1.674 ± 0.62 1.988 ± 0.46 ≤0.0001 0.5517 *** 

 hβ 2.913 ± 0.93 3.429 ± 0.64 ≤0.0001 0.6388 *** 

 

*:   Significant at 0.001 < p ≤ 0.05 and Cohen’s d < 0.3 

**:   Significant at 0.0001 <p ≤ 0.001 and Cohen’s 0.3 ≤ d <0.4 

***:  Significant at p≤0.0001 and Cohen’s d ≥ 0.4  
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For Source Separator ICA-EBM and classification results, EEG data was fed into the 

ICA-EBM, which resulted in ICA separated sources of EEG data. Based on our previous 

findings, the additional optimal systems comprised four locations, frontal F3, central C4, 

parietal P4 and occipital O2, which were selected for TF detection (Ly et al. 2016). These 

optimized ICA data sources were further segmented for feature extraction using the S-

Transform. The input included the maximum amplitude   𝑆𝑇𝑚𝑎𝑥(t) and the mean 

amplitude   𝑆𝑇mean(t) obtained from the EEG signals based on four sub-bands from two 

events (GT and TF). These significant features with p-values ≤ 0.05 were used as the 

main parameters for detecting TF events in PD patients. In comparison, the features were 

extracted by S-Transform in both cases, with ICA-EBM and without ICA-EBM were 

used for classification. The desired output was set at 1 in case of TF and 0 in the cases of 

GT. 

Figure 5.5 shows the results in the receiver operating characteristic (ROC) curve and 

analyses. The bold red coloured line represents the ROC curve for the method using the 

source separation of ICA-EBM. The star blue coloured line represents the technique 

without source separation.  

 

Figure 5.5:  ROC plot 
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The areas under the curve (AUC) of ROC were also calculated to evaluate classification 

performance quantitatively. It can be seen that the method 1 (ICA-EBM, ST, BNN) using 

the inclusion of the source separation of ICA-EBM had a higher AUC of 0.9296 

compared to the method 2 (ST, BNN) without inclusion of the source separation, which 

had an AUC of 0.8127. 

Classification results for TF events detection using S-Transform decomposition as the 

feature methods and Bayesian neural networks as the classifier are shown in Table 5.5. 

The outcome indicated that the S-Transform based feature extraction provided 

respectable results for TF detection, with 79.1% of sensitivity, 77.1% of specificity and 

78.2% of accuracy for the test set. Interestingly, further improvements were obtained 

when using the combination of ICA-EBM as the source separator before extracting 

feature, which improved outcomes to a sensitivity of 83.0%, a specificity of 87.6% and 

an accuracy of 85.4% in detecting TF.  

The ST based features extracted from the three occipital locations (O1O2Oz) provided 

good results at 81.47%, 80.98%, and 84.47% of sensitivity, specificity, and accuracy, 

respectively in the case of using ICA-EBM, comparing with results at 75.93%, 76.72%,  

Table 5.5:  Classification Results of ST based features using BNN in detecting TF 

from GT 

Input ICA H 
Training Testing 

Sen(%) Spe(%) Acc(%) Sen(%) Spec(%) Acc(%) 

15 Channel No 4 79.80 78.70 79.20 79.10 77.10 78.20 

15 ICs Yes 4 84.60 88.00 86.30 83.00 87.60 85.40 

O1O2Oz No 10 77.54 73.18 76.12 75.93 76.72 75.27 

O1O2Oz Yes 5 84.03 84.82 8128 81.47 80.98 84.47 

F3C4P4O2 No 7 76.30 72.30 74.20 75.70 70.30 73.30 

F3C4P4O2 Yes 7 85.80 88.00 86.80 84.20 88.00 86.02 

H: Hidden Node; ICA: ICA-EBM; Sen: Sensitivity; Spe: Specificity; Acc: Accuracy 
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and 75.27% of sensitivity, specificity, and accuracy, respectively in the case of without 

using ICA-EBM. Moreover, as we expected, the best performance for TF detection was 

achieved when using our predefined regions of interest (F3C4P4O2) plus ICA-EBM for 

pre-processing. For this combination (ICA-EBM, ST, BNN), the results were a sensitivity 

of 84.2%, a specificity of 88.0% and an accuracy of 86.2%. 

Further Comparison Classifiers and Feature Extractors for Detecting Turning FOG  

Table 5.6  shows the comparision of classification results for TF detection. The classifier 

BNN with the optimization methods in this study provided the best result compared to 

the classifier ANN and SVM methods. The ST as the feature extractor has resulted in a 

more accurate method compared to FFT and WT. The result shows the ANN classifier 

provided an accuracy of: 74.92% using the FFT, 76.60% using the WT, 82.83% using the 

ST. The accuracies are slightly improved across different feature extractors (FFT, WT, 

and ST) when using the SVM classifier with the accuracy of: 76.81% using the FFT, 

81.79% using the WT, 83.11% using the ST. The BNN classifier improved the most, with 

the accuracy of 79.54% using FFT, 81.81% using WT, 85.40% using ST. 

Table 5.6:  Comparison of classification results in detecting TF using source 

separation ICA-EBM 

Feature Classifier 
 Testing  

Sen (%) Spec (%) Acc(%) 

FFT ANN 77.67 72.17 74.92 

 SVM 78.14 75.49 76.81 

 BNN 79.79 78.20 79.54 

WT ANN 79.77 77.26 78.60 

 SVM 81.42 82.16 81.79 

 BNN 81.44 80.91 81.81 

ST ANN 81.48 83.75 82.83 

 SVM 82.89 83.33 83.11 

 BNN 83.00 87.60 85.40 
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5.6 DETECTION OF GAIT INITIATION FAILURE USING ICA-

EBM (SOURCE SEPARATOR), S-TRANSFORM (FEATURE 

EXTRACTOR) AND BAYESIAN NEURAL NETWORKS 

(CLASSIFIER) 

GIF was analysed using 66 seconds of GIF compared to 66 seconds of GS from all five 

PD patients, extracted using the S-Transform in Table 5.7 and Table 5.8. A Wilcoxon 

signed-rank test with p-value threshold of ≤ 0.001 and a Cohen’s effect size d ≥ 0.4 were 

used to investigate the significant mean of S-Transform decomposition 

𝑆𝑇𝑚𝑒𝑎𝑛(𝑡) between periods of GS and GIF. When compared to the GS episode, GIF 

episodes were associated with increased theta, alpha, low and high beta band frequencies 

in frontal, central, parietal and occipital areas.  

Compared to GS, the most significant change of theta activity during GIF was found in 

frontal F3 (d=0.3026), central C4 (d=0.3089), and occipital O1 (d=0.3439). Furthermore, 

there was a significant increase of alpha activity in central C4 (d=0.4384), parietal P3 

(d=0.4889) and occipital O1 (d=0.5029) and O2 (d=0.5007) as well as high beta 

activities increases in central CP2 (d=0.341), occipital O2 (d=0.5559) and Oz (d=0.493). 

The low beta activities demonstrated a similar pattern with an increases in occipital O2 

(d=0.4681) and Oz (d=0.4225) during GIF. 

Fifteen channels of EEG data were fed into the ICA-EBM, which resulted in 15 ICs 

separated sources. To localize the source of ICs, “Component maps 2D”, a plug-in in 

EEGLab toolbox was used to plot the IC scalp topographies. Figure 5.6 shows the ten 

mean ICs scalp maps across five PD patients with a contribution to both events (i.e., GS 

and GIF). For each IC scalp map, the electrode zone is colour coded to indicate how much 

activity it contributed to the left/right frontal, central, parietal and occipital locations. The 

blue colour indicates low contribution and a red colour indicates a high contribution to 

either GS or GIF. 
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Table 5.7:  Feature analysis of ST (𝐒𝐓𝐦𝐞𝐚𝐧) between GS and GIF in Frontal, 

Central and Parietal 

Parameter Features GS(µV±std) GIF(µV±std) p d GSvs GIF 

ST-F3 θ 0.167 ± 0.10 0.201 ± 0.11 0.047 0.3026 * 

 α 0.257 ± 0.14 0.301 ± 0.13 0.0093 0.319 ** 

 hβ 0.242 ± 0.09 0.247 ± 0.09 0.8968 0.0019  

ST-C3 θ 0.194 ± 0.11 0.225 ± 0.10 0.0143 0.2862 * 

 α 0.313 ± 0.15 0.370 ± 0.13 0.0021 0.3953 * 

 hβ 0.288 ± 0.11 0.302 ± 0.11 0.4486 0.1188  

ST-CP2 θ 0.182 ± 0.10 0.215 ± 0.10 0.039 0.3089 * 

 α 0.298 ± 0.14 0.347 ± 0.13 0.0072 0.352 * 

 lβ 0.264 ± 0.13 0.295 ± 0.13 0.1325 0.2376  

 hβ 0.268 ± 0.10 0.304 ± 0.11 0.0092 0.341 ** 

ST-C4 θ 0.202 ± 0.13 0.242 ± 0.13 0.0275 0.2988 * 

 α 0.321 ± 0.15 0.389 ± 0.16 0.0058 0.4384 *** 

 hβ 0.284 ± 0.10 0.328 ± 0.12 0.0386 0.3798 * 

ST-Cz θ 0.174 ± 0.10 0.207 ± 0.10 0.0465 0.3157 * 

 α 0.282 ± 0.12 0.335 ± 0.14 0.0176 0.3987 * 

 hβ 0.286 ± 0.09 0.311 ± 0.11 0.1938 0.2694  

ST-P3 θ 0.217 ± 0.12 0.251 ± 0.09 0.0066 0.2943 * 

 α 0.372 ± 0.16 0.450 ± 0.15 0.0021 0.4889 *** 

 hβ 0.313 ± 0.12 0.353 ± 0.13 0.0900 0.2935  

ST-P4 α 0.381 ± 0.15 0.443 ± 0.17 0.0212 0.3751 * 

 lβ 0.338 ± 0.14 0.381 ± 0.14 0.0611 0.3044  

 hβ 0.313 ± 0.11 0.353 ± 0.12 0.0326 0.3419 * 

 

*:   Significant at 0.001 < p ≤ 0.05 and Cohen’s d < 0.3 

**:   Significant at 0.0001 <p ≤ 0.001 and Cohen’s 0.3 ≤ d <0.4 

***:  Significant at p≤0.0001 and Cohen’s d ≥ 0.4 
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Table 5.8:  Feature analysis of ST (𝐒𝐓𝐦𝐞𝐚𝐧) between GS and GIF in Occipital  

Parameter Features GS(µV±std) GIF(µV±std) p d GSvs GIF 

ST-O1 θ 0.268 ± 0.10 0.302 ± 0.09 0.0094 0.3439 ** 

 α 0.537 ± 0.18 0.629 ± 0.18 0.002 0.5029 *** 

 lβ 0.493 ± 0.16 0.577 ± 0.18 0.0049 0.4817 ** 

 hβ 0.420 ± 0.12 0.477 ± 0.14 0.0183 0.4128 * 

ST-O2 θ 0.270 ± 0.11 0.289 ± 0.08 0.0496 0.1945 * 

 α 0.536 ± 0.18 0.629 ± 0.18 0.0016 0.5007 *** 

 lβ 0.487 ± 0.17 0.571 ± 0.18 0.0039 0.4681 *** 

 hβ 0.4 ± 0.13 0.475 ± 0.13 0.0004 0.5559 *** 

ST-Oz θ 0.278 ± 0.11 0.272 ± 0.07 0.8076 0.0683  

 α 0.558 ± 0.18 0.631 ± 0.19 0.0174 0.3853 * 

 lβ 0.497 ± 0.16 0.570 ± 0.18 0.0098 0.4225 *** 

 hβ 0.402 ± 0.12 0.464 ± 0.124 0.0014 0.493 *** 

 

 

 

Figure 5.6:  IC scalp maps underlying Good Start and Gait Initiation Failure 
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During GS, the red zone spread around the bilateral frontal and central regions, 

illustrating that these regions may be activating in an attempt to control the muscle and 

joints in PD patients for movement. However, during the GIF, the red zone spreads 

significantly around this bilateral frontal and central regions compared with the GS. It 

might be that due to the inadequate input from motor regions, these freezers might need 

to use more of their visual system (occipital) to gain information about what is happening 

(parietal) in order to break GIF (frontal) and send this information to the primary motor 

regions (central) to initiate walking again (Shine, Matar, et al. 2013). 

For the Bayesian framework, the plot of the log evidence against the optimum number of 

hidden neurons of the Bayesian neural network training is shown in Figure 5.7, which 

includes: (i) the S-Transform feature extractor without the ICA-EBM with ten hidden 

nodes which resulted in the best classification evidence; (ii) using the S-Transform 

feature extractor with the ICA-EBM with seven hidden nodes which produced the best 

classification evidence.  

 

Figure 5.7:  The log evidence against the optimum number of hidden nodes 
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For the input of classification, 15 optimized ICA data sources were further segmented for 

feature extraction using the S-Transform. The mean and maximum amplitude from four 

EEG frequency bands (theta, alpha, low beta and high beta) of each location were used 

to evaluate their ability in detecting GIF. These significant features with p-values ≤ 0.05 

were used as the main parameters for detecting GIF events in PD patients. Classification 

results for GIF events detection using S-Transform decomposition as the feature methods 

and Bayesian neural networks as the classifier are shown in Table 5.9.  

The outcome indicated that the S-Transform based feature extraction of 15 EEG channels 

provided respectable results for GIF detection, with 85.24% sensitivity, 83.06% 

specificity and 84.30% accuracy for the test set. When using the combination of ICA-

EBM, the classification improvements were obtained, which had the outcome to a 

sensitivity of 88.96%, a specificity of 90.26% and an accuracy of 89.50% in detecting 

GIF. Feature extracted from occipital region provides the high sensitivity of 83.98%, 

specificity of 88.06% and accuracy of 84.00%. The central-frontal locations obtained the 

lower sensitivity for detecting GIF, with a sensitivity of 81.75%, a specificity of 78.32% 

and an accuracy of 78.50%. Moreover, the performance for ten dominant ICs shown in 

Table 5.9 was calculated with a sensitivity of 84.61%, a specificity of 86.17% and an 

accuracy of 84.40% for detecting GIF. 

Table 5.9:  Classification Results of ST based features using BNN in detecting GIF 

from GS using ICA-EBM 

Input ICA H 
Training Testing 

Sen (%) Spec(%) Acc(%) Sen (%) Spec (%) Acc(%) 

15 Channel No 3 86.06 84.82 85.46 85.24 83.06 84.30 

O1O2Oz Yes 6 87.08 89.10 88.39 83.98 88.06 84.00 

Cen-Fro Yes 7 86.03 79.82 83.30 81.75 78.32 78.50 

10 ICs Yes 9 88.32 88.84 88.80 84.61 86.17 84.40 

15 ICs Yes 7 90.34 91.15 90.73 88.96 90.26 89.50 

ICA: ICA-EBM; H: Hidden Node; Sen: Sensitivity; Spe: Specificity; Acc: Accuracy 
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Further comparison Classifier and Feature Extractors for Detecting GIF 

Three proposed methods with different feature extractor namely FFT, WT and ST with 

several classifiers such as ANN, SVM and BNN are compared and analysed in Table 

5.10.  

From the results of the GIF detection, using the BNN as classifier and FFT as the feature 

extractor achieved the sensitivity at 80.87%, specificity at 87.42% and accuracy at 

83.50% for the testing set. The system with WT based feature and BNN provided an 

improved performance with a sensitivity at 84.44%, a specificity at 89.75% and an 

accuracy at 86.96%. The results of GIF detection using ST as feature extraction and BNN 

as classifier achieved the highest performance with the testing set leading to 88.96% 

sensitivity, 90.26% specificity and 89.50% accuracy. 

 

Table 5.10:  Comparison of classification results in detecting GIF using source 

separation ICA-EBM 

Feature Classifier 
 Testing  

Sen (%) Spec (%) Acc(%) 

FFT ANN 80.59 74.52 77.59 

 SVM 79.04 78.89 78.81 

 BNN 80.87 87.42 83.50 

WT ANN 83.83 85.84 85.00 

 SVM 83.94 89.39 86.67 

 BNN 84.44 89.75 86.96 

ST ANN 83.46 88.15 86.85 

 SVM 89.88 89.16 88.50 

 BNN 88.96 90.26 89.50 

Sen: Sensitivity; Spe: Specificity; Acc: Accuracy 
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5.7 DISCUSSION 

Turning FOG was found to be associated with a remarkable increase in high beta activity 

across the cortex. This finding is in accordance with our previous work using FFT 

(Handojoseno, Gilat, et al. 2015; Ly et al. 2016). Gilat et al. (2015) hypothesized that the 

subthalamic nucleus (STN) of PD patients with freezing, which has been shown to shut 

down motor activity using high beta frequencies (Toledo et al. 2014), likely underlies the 

trigger of TF. Indeed, deep brain stimulation of the STN, specifically when using lower 

60Hz frequencies can often alleviate FOG in PD. The STN has projections with the 

frontal cortex as part of stopping network (Aron, Robbins & Poldrack 2004), thus the 

high beta of frontal regions in the present study could further implicate the recruitment of 

a putative stopping network that worsens freezing behaviour as proposed by Gilat et al. 

(2015).  

As in chapter 3 and 4, this GIF study again showed high beta oscillations over frontal, 

central, parietal and occipital cortical locations, which may relate to stopping network 

that inhibits motor output and can cause FOG in PD (Aron, Robbins & Poldrack 2004; 

Georgiades et al. 2016).  

For classification, the source separation using ICA-EBM improved the classification 

performance as compared to the case without source separation. Further, the result shows 

that the combination of the ICA-EBM (source separator) and the S-Transform (feature 

extraction) significantly improved the sensitivity and specificity of TF detection. The 

distinctive frequency-based features of selected independent components of EEG were 

extracted using S-Transform and classified using Bayesian Neural Networks. This is 

because the BNN classifier handles only noisy data, which are significantly responsible 

for the variation of EEG data. This may lead to an increased likelihood of correct 

identification of FOG events. Therefore, optimal EEG variables are still utilised in the 

proposed method using BNN to achieve high classification performance.  
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It can be seen in Table 5.6 that the accuracy of TF detection using this technique (ICA-

EBM, ST, BNN) is much higher than that of the others using different feature extractors 

More specifically, the accuracy performance increased  from 79.54% (ICA-EBM, FFT, 

BNN) to 81.81% (ICA-EBM, WT, BNN) and then jumped to 85.40 (ICA-EBM, ST, 

BNN) for TF detection. For the GIF detection, the accuracy performance increased from 

83.50% (ICA-EBM, FFT, BNN) to 86.96% (ICA-EBM, WT, BNN) and then 89.50% 

(ICA-EBM, ST, BNN) when using the similar source separator ICA-EBM, classifier 

BNN and different feature extractors (FFT, WT, ST).  

With regard to the affected locations underlying freezing event, the classification results 

suggest that occipital cortex regions (O1, O2 and Oz) could be the location for detecting 

TF/GIF in PD patients with the accuracy around 84%. This indicates that the PD patients 

are ‘over-relying’ on visual information during freezing. Especially during a period of 

freezing, due to the inadequate input from motor regions, the response of the muscles and 

joints in PD patients are different to what they are expected to be. Therefore, these 

freezers might need to use more of their visual system to gain the information about what 

is happening in order to break freezing by getting primary motor regions to activate again. 

In terms of computation time of classifiers, it is estimated by MATLAB’s built-in tic/toc 

functions whereas the tic function was called before the program and the toc afterwards 

on the computer (Intel(R) Core(TM) i7-7600 CPU @ 2.80GHz, 16.0 GB RAM). In terms 

of the classification/execution time, all classifiers were able to complete the task in less 

than a second. The program developed in MATLAB takes more computational time 

compared to C language with significantly faster training time. Furthermore, the priority 

is the classification accuracy in terms of sensitivity and specificity in our study. Although 

the algorithms are highly efficient, they are obtained off-line and the parameters will be 

implemented in real-time. If convolutional neural networks (CNN) are to be used, it is 

expected that the off-line computational time associated with CNN will be longer than 

our current algorithms. 
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This research has successfully utilized EEG signals to investigate brain dynamic changes 

underlying the specific sub-types of FOG and detected these events with high 

performance. The current studies provided additional support toward detecting a freezing 

event by using the combination of ICA-EBM, time-frequency analysis of S-Transform 

and advanced classifier of BNN. This method (ICA-EBM, ST, BNN) improved 

classification results in detecting TF and GIF in PD. This novel methodology will help 

the development of a real-time detection device for different sub-types of FOG in PD. 

Also, the understanding of underlying neuroscience will ultimately promote the 

development of novel therapies and technologies to assist with the management of FOG 

in PD. 
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Chapter 6 CONCLUSION AND FUTURE WORK 

 

Conclusion and Future Work 

 

6.1 CONCLUSION 

This thesis used EEG to understand and detect freezing of gait in people with Parkinson’s 

disease.  The core objective of this thesis is to introduce a computational intelligence of 

detecting FOG based on EEG signals. Two main tasks have been implemented throughout 

the thesis: (1) extracting and finding significant EEG features underlying freezing 

episodes, in comparison with the normal episodes; (2) detecting freezing events using 

several classifiers based on input as EEG features are extracted in the frequency and time-

frequency domains. The investigation showed using BNN as classifier and ST as feature 

extraction, optimized by ICA-EBM, provides an advanced detection method with high 

accuracy in detecting FOG events. 
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Throughout the research, EEG was able to better understand FOG with three main 

findings. The first important finding in this thesis is that fifteen channels are reduced from 

32 channels based on our EEG data and classifiers to be determined as the most optimal 

locations underlying FOG. They are positioned on the four main regions of the cortex; 

including frontal (F3, F4, FC1, FC2), central (C3, C4, CP1, CP2, Cz), parietal (P3, Pz, 

P4) and occipital (O1, Oz, O2) (Figure 6.1). The second important finding is that the high 

beta (21 -38 Hz) has identified the most affected EEG sub-band underlying FOG among 

four sub-bands (theta alpha, low beta and high beta) in three clinical experiments. The 

final finding is the advanced computational intelligent for FOG detection. By extracting 

EEG signal based time-frequency techniques and classifying freezing events using 

several classifiers, the combination of source separation ICA-EBM for improving 

classification performance, S-Transform and BNN have proved to be a very effective 

method for FOG detection. Table 6.1 shows the significant results underlying freezing 

episodes in Chapters 3, 4 and 5.   

 

Figure 6.1:  Fifteen affected channels underlying FOG based on our EEG data 
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Table 6.1:  Significant results underlying Freezing events in this thesis 

Work Summary 

Chapter 3: 

 

Events: EW vs. FOG 

 

Method: 

- Feature extraction: FFT 

- Classification: ANN 

 

 

Feature extraction:  

- Increase in PSD theta in Cz, FC2. 

- Increase in PSD alpha in F3, C3, P4 

- Increase in PSD low beta in O1, P4, C4.  

- Increase in PSD high beta in F3, C4, P4, O2. 

- Fifteen channels are reduced from 32 channels 

including frontal F3, F4, FC1, FC2; central C3, C4, 

CP1, CP2, Cz; parietal P3, Pz, P4 and occipital O1, 

Oz, O2. 
Classification: 

- Sensitivity at 72.20% 

- Specificity at 70.58% 

Chapter 4: 

 

Event: GS vs. GIF  

 

Method: 

- Feature extraction: WT 

- Classification: SVM 

Feature extraction:  

- Decrease in WE alpha in F4, increase in O2.  

- Increase in WE theta in P3. 

- Increase in WE low beta in O2. 

- Increase in WE high beta in F3, CP1, CP2, P3, P4. O1, 

O2. 

Classification: 

- Sensitivity at 83.94% 

- Specificity at 89.39% 

Chapter 5: 

 

Event: GT vs. TF 

 

Method: 

- Feature extraction: ST 

- Classification: BNN 

Feature extraction: ST 

- Increased in ST theta in O1, O2 

- Increased in ST alpha in O1, O2, Oz. 

- Increase in ST low beta in F3, O1, O2, Oz. 

- Increase in ST high beta in F4 and O2. 

Classification: 

- Sensitivity at 83.00% 

- Specificity at 87.60% 

Chapter 5: 

 

Event: GS vs. GIF 

 

Method: 

- Feature extraction: ST 

- Classification: BNN 

Feature extraction: ST 

- Increase in ST theta in F3, C4, O1 

- Increase in ST alpha in C4, P3, O1, O2.  

- Increased in ST low beta in O2, Oz 

- Increase in ST high beta in CP2, O2, Oz 

Classification: 

- Sensitivity at 88.96% 

- Specificity at 90.26% 
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Chapter 3 was about the comparison of the period of EW and FOG from seven PD 

patients. For the computational intelligence, the feature extraction was based on Fast 

Fourier Transform and the FOG events were classified using a feed-forward artificial 

neural networks trained with the Levenberg-Marquardt algorithm. The high beta 

alteration was strongest in frontal F3, central C4, parietal P4 and occipital O2. The 

classification result for FOG detection reached the sensitivity at 72.20% and specificity 

at 70.58%. 

Chapter 4 described the work for the detection of GIF episode from GS episode based on 

EEG data of five PD patients. The GIF detection system used Wavelet Transform as the 

feature extractor and Support Vector Machine as the classifier. In the context of GIF, the 

results showed that the high beta activity experienced the largest significant rise in frontal 

F3, F4, central CP1, CP2, parietal P3, P4 and occipital regions O1, O2. The results for 

GIF detection showed that the combination of ICA-EBM as source separation, WT for 

feature extraction and SVM for classifier achieved the sensitivity at 83.94% and 

specificity at 89.39%. 

Chapter 5 applied the advanced techniques in two studies: GIF detection and Turning 

FOG detection. This technique used ICA-EBM as source separation, ST as feature 

extraction and BNN as a classifier. For the Turning FOG, the investigation of significant 

differences between periods of GT and periods of TF shows the most substantial 

maximum differences were found in high beta activity from frontal F4 and occipital O2 

locations. For the GIF study, GIF episodes were associated with the high beta activities 

increases in CP2, O2 and Oz. 

For the advanced computational intelligence for FOG detection, the improvement of pre-

processing techniques, feature extraction methods and classification algorithms were 

applied for the TF and GIF detection and are shown in Figure 6.2 and Figure 6.3. For TF 

detection, the advanced method (ICA-EBM, ST, BNN) reached the accuracy at 85.4%; 

which is the highest result comparing with the other methods (Figure 6.2). The 
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classification for GIF detection (ICA-EBM, ST, BNN) reached the highest performance 

with the accuracy at 89.5% (Figure 6.3).  

 

 

Figure 6.2:  Best performances of proposed methods for detecting TF 

 

 

 
Figure 6.3:  Best performances of proposed methods for detecting GIF 
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6.2 FUTURE WORK 

In terms of the hardware, an improvement can be further done for the instrumentation, 

particularly with the EEG electrodes. A dry and contactless sensor technology can be 

preferred to apply in the real-time FOG detection’s instrumentation because the gels used 

with the EEG electrodes usually dry out after a long period. In addition, the EEG 

measurement method could be improved by using a wireless embedded system or 

standalone detection.   

In terms of the data collection, larger sample sizes will be required to confirm the findings 

in this thesis. For the five sub-types of FOG detection, the current research had focused 

on two specific sub-types GIF and Turning FOG and the four sub-types in general (group 

1). Different mechanisms are responsible for different subtypes of FOG and might reflect 

different pathophysiology. Therefore, it is expected to have enough data for the study and 

detection of two more sub-types of FOG in group 1 based on their trigger factors: Narrow 

FOG, Target FOG. Moreover, we did not use a high-threat condition to elicit anxiety-

related FOG (Martens, Ellard & Almeida 2014). Future work should assess larger 

samples to investigate whether the EEG signals change as a function of disease 

progression and other clinical variables, including dopaminergic medication intake, 

cognitive performance and mood - all features of PD that likely contribute to the 

development and severity of FOG (Nonnekes et al. 2015; Nutt et al. 2011). 

This study covers various levels of FOG, and we have shown that reasonable 

classification accuracies have been achieved. Nevertheless, more advanced feature 

extraction and neural network strategies could be further developed to improve the 

performance of FOG prediction. For our future work, we will also aim to increase our 

understanding strategy of the underlying neurobiology associated with PD to promote 

better FOG prediction performance. 

Also, the number of EEG channels could be reduced based on this current finding. For 

the computational intelligence, another method of feature extraction can be explored as 
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well, such as Hilbert-Huang transform (HHT) for time-frequency analysis or p-burg for 

autoregressive time analysis. The classifier such as self-organizing map and deep learning 

could be used. It is hoped that an increased understanding of underlying neurobiology 

will ultimately promote the development of novel therapies and technologies to assist the 

management of FOG in PD. 
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