Faculty of Engineering and Information Technology University of Technology Sydney

Visual Saliency Prediction For Stereoscopic Image

A thesis submitted in partial fulfillment of the requirements for the degree of **Doctor of Philosophy**

by

Hao Cheng

July 2018

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

i

Acknowledgments

Foremost, I would like to express my gratitude to my chief supervisor, Assoc. Prof. Jian Zhang, my co-supervisor Assoc. Prof. Qiang Wu at the University of Technology Sydney, and my supervisor Prof. Ping An at Shanghai University. I am extremely grateful for all the advice and guidance so unselfishly given to me over the last three and half years by these three distinguished academics. This research would not have been possible without their encouragement, continuous support and insight, especially during my leave of absence from the University.

Meanwhile, I am grateful to the doctors and nurses of Royal Prince Alfred Hospital. Without their help and treatment, I could not have recovered from myelitis. I would also like to thank the physiotherapists at MetroRehab Hospital for helping me to stand up again during physical therapy. My sincere appreciation and gratitude go to the people who helped me in my leave of absence for all their freely-given encouragement and care.

The wonderful support and assistance provided by many people during this research are very much appreciated by me and my family. I am very grateful for the help that I received from all of these people, but there are some special individuals who deserve thanks by name.

A very sincere thank you is definitely owed to my loving wife, Yaping Wang. Thank you for taking care of me when I was receiving treatment for six months. A very special thanks to my little son Luojia Cheng for bringing me a lot of happiness. Special thanks are also owed to my mother Hua Shao for all her tremendous assistance and unfailing support.

I thank my fellow labmates in the Big Data Technologies Centre (GB-DTC) and the Advanced Analytics Institute: Shangrong Huang and Yucheng Wang for their invaluable advice and insightful discussions throughout my research, and for all the help during my leave of absence due to my illness. I would also like to thank my colleagues: Renhua Song, Jing Ren, Wenbo Wang, Dongyan Guo, Ying Cui, Jinsong Xu, Xiaoshui Huang and many more, for their selfless support over the course of my PhD candidature and for all the fun that we have shared over the last three and half years. Finally, to anyone whom I have not mentioned, please forgive me. I can most definitely assure you that you have occupied a unique and special place in my thoughts. Thank you!

Hao Cheng January 2018 @ UTS

Contents

Certific	cate .		j
Acknow	wledgr	nent	iii
List of	Figur	es	ix
List of	Table	s	X
List of	Publi	cations	cii
Abstra	ct		ΧV
Chapte	er 1 I	Introduction	1
1.1	Backg	ground	1
	1.1.1	Visual saliency	2
	1.1.2	Application of visual saliency	3
	1.1.3	Classification of visual saliency	Ş
	1.1.4	Development of 3D saliency detection	5
1.2	Resea	rch issues	6
	1.2.1	Depth factor	6
	1.2.2	Mechanisms of stereoscopic vision	7
	1.2.3	Relationship among these mechanisms	7
1.3	Resea	rch contributions	7
1.4	Thesis	s structure	6
Chapte	er 2 I	Literature Review	12
2.1	The 3	D saliency model	12
	2.1.1	Development of 3D saliency detection	12
	2.1.2	Classification of 3D saliency detection	15

CONTENTS

	2.1.3	Recent research about 3D saliency detection 17
2.2	The fu	ındamental method of saliency analysis
	2.2.1	SLIC and multi-scale integration
	2.2.2	Bayesian integration
	2.2.3	Center bias
2.3	Exper	imental datasets and measurements
2.4	Summ	nary
Chapte	er 3 A	A Preliminary Saliency Model for Stereoscopic
	I	mages
3.1	Introd	luction
3.2	Propo	sed stereo saliency detection
	3.2.1	Local-global saliency
	3.2.2	Surrounded enhancement
	3.2.3	Stereo center prior enhancement
3.3	Exper	iments
	3.3.1	Experimental setup
	3.3.2	Experimental results and comparisons
3.4	Concl	usion and discussion
Chapte	er 4 S	Stereoscopic Visual Saliency Prediction Based on
	S	Stereo Contrast and Stereo Focus 48
4.1	Introd	luction
4.2	Metho	odology
4.3	Propo	sed stereoscopic visual saliency prediction model 55
	4.3.1	Pre-processing
	4.3.2	Stereo contrast model
	4.3.3	Stereo focus model
	4.3.4	Enhancement
	4.3.5	Bayesian integration scheme
4.4	Result	ts and discussion
	4.4.1	Experimental setup

	4.4.2	Performance comparison with different combinations	
		of components	69
	4.4.3	Comparison of our proposed method with other methods.	72
4.5	Concl	usion and discussion	77
Chapte	er 5 A	A Computational Model for Stereoscopic Visual	
	S	Saliency Prediction	7 9
5.1	Introd	uction	79
5.2	Relate	ed work	81
5.3	The pr	roposed computational model for stereoscopic visual salience	y 83
	5.3.1	PE-CZ-BE mechanisms	84
	5.3.2	The three modules based on the PE-CZ-BE mechanisms	86
	5.3.3	Control function	87
	5.3.4	The selection strategy	88
	5.3.5	Framework based on a multi-feature saliency model	91
5.4	Exper	iments	99
	5.4.1	Experimental setup	99
	5.4.2	Performance of the features and components	101
	5.4.3	Comparison with the state-of-the-art methods	101
5.5	Concl	usions	106
Chapte	er 6 (Conclusions and Future Work	108
6.1	Concl	usions	108
6.2	Future	e work	109
Bibliog	raphy		111

List of Figures

1.1	Thesis Structure. Ch. 1 introduced the research background.	
	Ch.2 provides the literature review. Ch. 3 presents a prelim-	
	inary saliency model for stereoscopic images. Ch. 4 propose	
	stereoscopic saliency detection based on stereo contrast and	
	stereo focus. Ch. 5 presents a computational model for stereo-	
	scopic 3D visual saliency based on three mechanisms: pop-out	
	effect, comfort zone, and background effect.Ch. 6 provides a	
	final summary of this research and also suggests some future	
	directions	11
2.1	(a) a typical depth weight model and (b) a typical depth	
	saliency model	16
2.2	Examples of SLIC	20
3.1	The framework of the proposed stereo saliency detection method	30
3.2	Global and local range	32
3.3	Visual comparison of various saliency detection models	43
3.4	Visual comparison of various saliency detection models	44
4.1	Stereo perception based on the different parallax	52
4.2	Stereo comfort zone based on human stereo vision	54
4.3	The framework of the proposed stereo saliency model \dots	56
4.4	Global and local range	58
4.5	A example of stereo contrast map	60

LIST OF FIGURES

4.6	The examples of the stereo focus maps	63
4.7	An example of the proposed visual saliency prediction. (a) is	
	the original left image and depth map. (b) shows the maps	
	computed by the stereo contrast and stereo focus models. (c)	
	shows the maps after clustering. (d) Final saliency map and	
	ground truth	64
4.8	An example of the proposed visual saliency prediction	73
4.9	Stereo comfort zone based on human stereo vision. DSM rep-	
	resents the depth saliency map in (Wang, DaSilva, LeCallet $\&$	
	Ricordel 2013)	77
5.1	Examples of the different combinations of the mechanisms.	
	The first row depicts the left version of several stereoscopic	
	images. The second row shows the corresponding depth maps.	
	The last row shows the ground truths	85
5.2	Flow chart of the stereoscopic saliency model	89
5.3	The main steps of the framework based on the multi-feature	
	analysis	92
5.4	Attention maps at pixel-level and at superpixel-level	93
5.5	Global and local range	94
5.6	Global and local saliency maps	95
5.7	A saliency map based on IP, and a ground-truth saliency map	
	based on the GP \dots	95
5.8	Samples of four features and combined saliency maps	97
5.9	Samples of the proposed saliency model	98
5.10	Examples of the components of the proposed model	103

List of Tables

3.1	The Pseudo-code	37
3.2	Comparison between each component in database (Wang et al.	
	2013)	40
3.3	Comparison between each component in database (Lang, Nguyen,	
	Katti, Yadati, Kankanhalli & Yan 2012)	40
3.4	Comparison between the proposed framework with others. DSM $$	
	represents the depth saliency map in (Wang et al. 2013) $$	42
3.5	Comparison between different 3D saliency detection models.	
	"+" means the combination by simple summation by study	
	(Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan 2012). " \times "	
	means the combination by point-wise multiplication (Lang,	
	Nguyen, Katti, Yadati, Kankanhalli & Yan 2012). DSM repre-	
	sents the depth saliency map in (Lang, Nguyen, Katti, Yadati,	
	Kankanhalli & Yan 2012)	45
4.1	The Pseudo-code	66
4.2	Comparison between different component orders in database	
	(Wang et al. 2013)	70
4.3	Comparison between different component orders in database	
	(Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan 2012) $$	70
4.4	Comparison between the proposed framework with others. DSM	
	represents the depth saliency map in (Wang et al. 2013) $$	75

4.5	Comparison between different 3D viusal saliency prediction
	models. "+" means the combination by simple summation
	by study (Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan
	2012). "×" means the combination by point-wise multiplica-
	tion (Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan 2012).
	DSM represents the depth saliency map in (Lang, Nguyen,
	Katti, Yadati, Kankanhalli & Yan 2012)
5.1	Comparison between four features and two components in the
	dataset (Wang et al. 2013)
5.2	Comparison between each component in the dataset (Lang,
	Nguyen, Katti, Yadati, Kankanhalli & Yan 2012) 102
5.3	Comparison between the proposed framework and others. DSM
	represents the depth saliency map in (Wang et al. 2013) 105
5.4	Comparison between 3D saliency detection models 107

List of Publications

Papers Published

- Hao Cheng, Jian Zhang, Qiang Wu, and Ping An (2017), Stereoscopic Saliency Detection Based on Stereo Contrast And Stereo Focus. The EURASIP Journal on Image and Video Processing. Volumn 2017, pp.32-61.
- Hao Cheng, Jian Zhang, Ping An, Zhi Liu (2015), A Novel Saliency Model for Stereoscopic Images. in 'Proceedings of the Internetional Conference on Digital Image Computing: Techniques and Applications (DICTA2015)', pp.1-7.

Papers to be Submitted/Under Review

• Hao Cheng, Jian Zhang, Qiang Wu, and Ping An (2016) A Computational Model for Stereoscopic 3D Visual Saliency Based on Surrounding Region, Contrast and Interest Point, to be submit the IEEE Transactions on Multimedia.

Abstract

Saliency prediction is considered to be key to attentional processing. Attention improves learning and survival by compelling creatures to focus their limited cognitive resources and perceptive abilities on the most interesting region of the available sensory data. Computational models for saliency prediction are widely used in various fields of computer vision, such as object detection, scene recognition, and robot vision. In recent years, several comprehensive and well-performing models have been developed. However, these models are only suitable for 2D content. With the rapid development of 3D imaging technology, an increasing number of applications are emerging that rely on 3D images and video. In turn, demand for computational saliency models that can handle 3D content is growing. Compared to the significant progress in 2D saliency research, studies that consider depth factor as part of stereoscopic saliency analysis are rather limited. Thus, the role depth factor in stereoscopic saliency analysis is still relatively unexplored.

The aim of this thesis is to fill this gap in the literature by exploring the role of depth factors in three aspects of stereoscopic saliency: how depth factors might be used to leverage stereoscopic saliency detection; how to build a stereoscopic saliency model based on the mechanisms of human stereoscopic vision; and how to implement a stereoscopic saliency model that can adjust to the particular aspect of human stereoscopic vision reflected in specific 3D content. To meet these three aims, this thesis includes three distinct computation models for stereoscopic saliency prediction based on the past and present outcomes of my research. The contributions of the thesis are as

follows:

Chapter 3 presents a preliminary saliency model for stereoscopic images. This model exploits depth information and treats the depth factor of an image as a weight to leverage saliency analysis. First, low-level features from the color and depth maps are extracted. Then, to extract the structural information from the depth map, the surrounding Boolean-based map is computed as a weight to enhance the low-level features. Lastly, a stereoscopic center prior enhancement based on the saliency probability distribution in the depth map is used to determine the final saliency.

The model presented in Chapter 4 predicts stereoscopic visual saliency using stereo contrast and stereo focus. The stereo contrast submodel measures stereo saliency based on color, depth contrast, and the pop-out effect. The stereo focus submodel measures the degree of focus based on monocular vision and comfort zones. Multi-scale fusion is then used to generate a map for each of the submodels, and a Bayesian integration scheme combines both maps into a stereo saliency map.

However, the stereoscopic saliency model presented in Chapter 4 does not explain all the phenomena in stereoscopic content. So, to improve the models robustness, Chapter 5 includes a computational model for stereoscopic 3D visual saliency with three submodels based on the three mechanisms of the human vision system: the pop-out effect, comfort zones, and the background effect. Each mechanism provides useful cues for stereoscopic saliency analysis depending on the nature of the stereoscopic content. Hence, the model in Chapter 5 incorporates a selection strategy to accurately determine which submodel should be used to process an image. The approach is implemented within a purpose-built, multi-feature analysis framework that assesses three features: surrounding region, color and depth contrast, and points of interest.

All three models were verified through experiments with two eye-tracking databases. Each outperforms the state-of-the-art saliency models.