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Abstract

Saliency prediction is considered to be key to attentional processing. Atten-

tion improves learning and survival by compelling creatures to focus their

limited cognitive resources and perceptive abilities on the most interesting

region of the available sensory data. Computational models for saliency pre-

diction are widely used in various fields of computer vision, such as object

detection, scene recognition, and robot vision. In recent years, several com-

prehensive and well-performing models have been developed. However, these

models are only suitable for 2D content. With the rapid development of 3D

imaging technology, an increasing number of applications are emerging that

rely on 3D images and video. In turn, demand for computational saliency

models that can handle 3D content is growing. Compared to the significant

progress in 2D saliency research, studies that consider depth factor as part of

stereoscopic saliency analysis are rather limited. Thus, the role depth factor

in stereoscopic saliency analysis is still relatively unexplored.

The aim of this thesis is to fill this gap in the literature by exploring

the role of depth factors in three aspects of stereoscopic saliency: how depth

factors might be used to leverage stereoscopic saliency detection; how to build

a stereoscopic saliency model based on the mechanisms of human stereoscopic

vision; and how to implement a stereoscopic saliency model that can adjust

to the particular aspect of human stereoscopic vision reflected in specific

3D content. To meet these three aims, this thesis includes three distinct

computation models for stereoscopic saliency prediction based on the past

and present outcomes of my research. The contributions of the thesis are as

xv



ABSTRACT

follows:

Chapter 3 presents a preliminary saliency model for stereoscopic images.

This model exploits depth information and treats the depth factor of an im-

age as a weight to leverage saliency analysis. First, low-level features from the

color and depth maps are extracted. Then, to extract the structural informa-

tion from the depth map, the surrounding Boolean-based map is computed

as a weight to enhance the low-level features. Lastly, a stereoscopic center

prior enhancement based on the saliency probability distribution in the depth

map is used to determine the final saliency.

The model presented in Chapter 4 predicts stereoscopic visual saliency

using stereo contrast and stereo focus. The stereo contrast submodel mea-

sures stereo saliency based on color, depth contrast, and the pop-out effect.

The stereo focus submodel measures the degree of focus based on monocular

vision and comfort zones. Multi-scale fusion is then used to generate a map

for each of the submodels, and a Bayesian integration scheme combines both

maps into a stereo saliency map.

However, the stereoscopic saliency model presented in Chapter 4 does not

explain all the phenomena in stereoscopic content. So, to improve the models

robustness, Chapter 5 includes a computational model for stereoscopic 3D

visual saliency with three submodels based on the three mechanisms of the

human vision system: the pop-out effect, comfort zones, and the background

effect. Each mechanism provides useful cues for stereoscopic saliency analysis

depending on the nature of the stereoscopic content. Hence, the model in

Chapter 5 incorporates a selection strategy to accurately determine which

submodel should be used to process an image. The approach is implemented

within a purpose-built, multi-feature analysis framework that assesses three

features: surrounding region, color and depth contrast, and points of interest.

All three models were verified through experiments with two eye-tracking

databases. Each outperforms the state-of-the-art saliency models.

xvi



Chapter 1

Introduction

1.1 Background

In computer science, digital image processing is the use of computer algo-

rithms to perform image processing on digital images. As a subcategory or

field of digital signal processing, digital image processing has many advan-

tages over analog image processing. It allows a much wider range of algo-

rithms to be applied to the input data and can avoid problems such as the

build-up of noise and signal distortion during processing. Since images are

defined over two dimensions (perhaps more) digital image processing may be

modeled in the form of multidimensional systems (Solomon & Breckon 2011).

With the development of the 3D technology, stereo image processing be-

comes the new branch in the computer vision. Computer stereo vision is the

extraction of 3D information from digital images, such as those obtained by

a CCD camera. By comparing information about a scene from two vantage

points, 3D information can be extracted by examining the relative positions

of objects in the two panels. This is similar to the biological process Stere-

opsis. Stereoscopic images are often stored as MPO (multi-picture object)

files. It is widely used in different kinds of fields (Shapiro 1992).

Saliency detection for the stereoscopic images can significantly improve

the performance of the other computer vision algorithm. Recently, it be-
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CHAPTER 1. INTRODUCTION

comes a new branch in computer vision. The main focus of this thesis is

to develop three different stereoscopic saliency models that are each able to

generate a saliency map of a stereoscopic image. Each model is based on

a different way of leveraging depth information. One model uses depth in-

formation as a weight in saliency analysis. A second stereo-vision model is

based on the mechanisms of the human vision system. And a third three-

mechanism model incorporates a multi-feature analysis selection strategy.

Accordingly, this section briefly introduces saliency detection in computer

vision, the development of 2D saliency detection and emerging 3D saliency

detection models.

1.1.1 Visual saliency

Humans have a unique ability to understand complex scenes in real time,

despite the limited speed of the neurons we have available for such tasks.

Intermediate and higher visual processes appear to select a subset of the

available sensory information before further processing (Tsotsos, Culhane,

Wai, Lai, Davis & Nuflo 1995), most likely to reduce the complexity of a

scene for analysis (Niebur & Koch 1998). This selection appears to occur as a

spatially circumscribed region of the visual scene, the so-called “visual atten-

tion”, which allows humans to scan the scene in both a rapid, saliency-driven,

bottom-up, task-independent manner, and in a slower, volition-controlled,

top-down, task-dependent manner (Tsotsos et al. 1995).

The definition of visual attention is the behavioral and cognitive pro-

cess of selectively concentrating on a discrete aspect of information, whether

subjective or objective, while ignoring other perceived information. It is the

mind taking possession, in clear and vivid form, of one of several simultaneous

objects or trains of thought. Focalisation and concentration of consciousness

are its essences. Visual attention has also been referred to as the allocation

of limited processing resources (Anderson 1990).

Visual attention is a major area of investigation within education, neu-

ropsychology, psychology and neuroscience. Areas of active investigation

2



CHAPTER 1. INTRODUCTION

involve determining the source of the sensory cues and signals that gener-

ate attention, the effects of those sensory cues and signals on the tuning

properties of sensory neurons, and the relationships between attention and

other behavioral and cognitive processes like working memory and vigilance

(Eriksen & James 1986).

A key property of visual attention is that attention can be selective given

some cues, such as luminance, contrast, shape, and orientation. These cues

reflect some mechanisms of the human vision system, and most computa-

tional models of visual attention are based on these mechanisms.

1.1.2 Application of visual saliency

Computational models of visual attention simulate the attention mechanism

of humans. These models are used in many fields, such as visual neuro-

science, computer vision, and multimedia processing (Borji & Itti 2013).

Visual attention enables the discovery of an object or region that efficiently

represents a scene and, thus, can be harnessed to solved complex vision

problems like scene understanding. Visual attention helps us to distinguish

between the foreground and background of an image, and highlights regions

that attract people’s attention. Therefore, visual attention is a very impor-

tant research topic in computer vision and is widely used for such purposes as

object detection (Viola & Jones 2001)(Felzenszwalb, Girshick, McAllester &

Ramanan 2010), object recognition (Rutishauser, Walther, Koch & Perona

2004)(Ren, Gao, Chia & Tsang 2014), image retrieval (Li, Jiang, Zha, Wu

& Huang 2013)(Smeulders, Worring, Santini, Gupta & Jain 2000), image

segmentation (Cheng, Jiang, Sun & Wang 2001), and so on.

1.1.3 Classification of visual saliency

The approach to the prediction of visual attention are usually divided into

two categories: bottom-up and top-down (Yarbus, Haigh & Rigss 1967).

Bottom-up is a rapid, data-driven, task-independent process and is usually

3



CHAPTER 1. INTRODUCTION

feed-forward. A prototypical example of a bottom-up attention model is the

act of looking at a scene that only has one horizontal bar among several ver-

tical bars; attention is immediately drawn to the horizontal bar (Treisman

& Gelade 1980). Although many models use this mechanism, they can only

explain a small fraction of the eye movements since the majority of visual at-

tention is top-down, i.e., task-driven (Henderson & Hollingworth 1999), such

as recognizing an object or a human face. For example, years of evolution

have made people very sensitive to human faces in a scene. The top-down

mechanism is a slower, task-driven, task-dependent process. It relies on a

humans subjective intentions, experiences, and the target (Frintrop, Rome

& Christensen 2010). Top-down attention models consider high-level cogni-

tive features to quantify visual saliency, such as human faces (Judd, Ehinger,

Durand & Torralba 2009) and prior knowledge about the target (Frintrop

et al. 2010). Among these top-down features, prior knowledge about the

target is the most difficult to model. Recently, a number of saliency models

have incorporated both top-down and bottom-up feature detection processes

in an effort to improve prediction accuracy (Jiang, Ling, Yu & Peng 2013).

Wei et al. (Wei, Wen & Sun 2013) turned to background priors to guide

saliency detection. Goferman et al. (Goferman, Zelnik-Manor & Tal 2010)

and Judd et al. (Judd et al. 2009) integrated high-level information, making

their methods potentially suitable for specific tasks.

However, visual attention can also be classified in other ways. Based on

the results of prediction, visual attention can also be categorized into two

types of models: salient object detection and fixation prediction. Salient

object detection models are designed to highlight salient objects while com-

pletely suppressing the background regions in the generated saliency maps

(Liu, Sun, Zheng, Tang & Shum 2007)(Achanta, Estrada, Wils & Süsstrunk

2008)(Liu, Zou & Le Meur 2013)(Liu, Shi, Shen, Xue, Ngan & Zhang 2012).

Fixation prediction models predict the region’s humans will fixate on within

a saliency map to verify the efficacy of a saliency model and to understand

human visual attention. A typical prediction model was proposed by Itti et

4
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al. based on the feature contrast of intensity, color, and orientation (Itti,

Koch & Niebur 1998) based on the feature contrasts in intensity, color, and

orientation. However, the boundary between fixation prediction models and

salient object detection models has blurred, as these models now share many

concepts associated with established areas of computer vision, such as object

segmentation algorithms (Li, Hou, Koch, Rehg & Yuille 2014), which use

a fixation model to perform object detection, and fixation prediction mod-

els (Zhang & Sclaroff 2013)(Erdem & Erdem 2013), which threshold their

saliency maps to detect and segment the salient proto-objects.

1.1.4 Development of 3D saliency detection

Most current saliency detection models are designed for 2D images. How-

ever, with the rapid development of 3D technology, an increasing number

of applications are emerging for 3D images or videos, such as 3D rendering

(Chamaret, Godeffroy, Lopez & Le Meur 2010), 3D visual quality assess-

ment (Huynh-Thu, Barkowsky & Le Callet 2011) and 3D video coding (Shao,

Jiang, Yu, Chen & Ho 2012). These 3D applications increase the demand

for saliency models that are designed for 3D visual content.

Unlike 2D saliency detection, 3D saliency models must consider the depth

dimension. Thus, the key issues in a 3D saliency detection model are how to

incorporate depth as a factor and how to combine that depth factor with 2D

information.

Some researchers have built models based on the mechanisms of stereo-

scopic perception in the human vision system, which are depth and color

information. Bruce and Tsotsos (Bruce & Tsotsos 2005a) extended a 2D

model that uses a visual pyramid processing architecture by adding neuronal

units to model stereoscopic vision. However, this study does not include a

computational model. Thus, the mechanisms of stereoscopic vision still pose

several research challenges, such as how to build a neural vision model.

Other researchers have used depth saliency as a feature for saliency mea-

surement. Depth saliency is extracted from a depth map, or disparity map,

5



CHAPTER 1. INTRODUCTION

to create an additional depth saliency map. The final result is a combina-

tion of the 2D saliency map and the depth saliency map. Niu et al. (Niu,

Geng, Li & Liu 2012) explored stereo saliency by analyzing the characteris-

tics of stereo vision and proposed a depth saliency model for a depth map

that would expand the 2D saliency model. However, the proposed model

does not fully explore the relationship between the depth model and the 2D

saliency model.

There have also been some attempts to build a model directly. These

models are designed to fuse the depth feature and 2D features into one

saliency measurement (Fan, Liu & Sun 2014). Composite 2D and 3D saliency

models to analyze the stereoscopic saliency have also emerged in recent years.

However, despite the many and varied stereoscopic saliency detection mod-

els that have been proposed, no one model has become the standard for

stereoscopic saliency analysis.

1.2 Research issues

This overview of the scholarly progress in stereoscopic saliency analysis re-

veals some current research limitations. These issues are discussed next.

1.2.1 Depth factor

Unlike 2D saliency detection, stereoscopic saliency detection needs to con-

sider depth as a factor. Direct solutions treat the depth factor as a weight to

leverage saliency analysis, with two main benefits. First, most existing 2D

saliency models can easily be complemented with a weighted depth factor

to extend their applicability to 3D content. Second, the classic 2D saliency

models have already been proven to be effective, so good results should be

relatively easy to attain. However, depth factors are able to convey different

kinds of information in stereoscopic saliency analysis. Therefore, different

ways of using depth factor as a weight need to be explored.
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1.2.2 Mechanisms of stereoscopic vision

Simply treating depth as a weight in stereoscopic saliency does not necessarily

provide a complete analysis of 3D content. Other mechanisms of stereoscopic

vision, such as the pop-out effect and comfort zones, need to be considered

for a stereo-vision model to effectively detect stereoscopic saliency. These

mechanisms reflect some of the characteristics of the depth factor, and they

are theoretically more consistent with human visual attention. Therefore,

further exploration into how to design a computational model based on the

mechanisms of the human visual system is required.

1.2.3 Relationship among these mechanisms

Further, expanding the features used to analyze stereoscopic saliency to in-

clude the pop-out effect and comfort zones still does not explain all phe-

nomenon in stereoscopic content (Cheng, Zhang, Wu, An & Liu 2017).

Some conditions create conflicts between the pop-out effect and comfort

zones, which may negatively impact stereoscopic saliency analysis. There-

fore, stereoscopic saliency detection models could be improved by reducing

these conflicts. Additionally, a new mechanism needs to be defined for special

cases to explain the “background effect”. The background effect occurs when

salient regions are located in or near a background region - a phenomenon

that neither the pop-out effect or the comfort zone can explain.

1.3 Research contributions

The purpose of this thesis is to study stereoscopic saliency detection. Given

the characteristics of the depth factor in the human visual system and the

gaps in the literature identified above, this research project has three primary

objectives.

• Develop a preliminary saliency model for stereoscopic images.

7
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Chapter 3 presents a preliminary saliency model for stereoscopic im-

ages. This model exploits depth information and treats the depth factor

of an image as a weight to leverage saliency analysis. First, low-level

features from the color and depth maps are extracted. Then, to ex-

tract the structural information from the depth map, the surrounding

Boolean-based map is computed as a weight to enhance the low-level

features. Lastly, a stereoscopic center prior enhancement based on the

saliency probability distribution in the depth map is used to obtain the

final saliency.

• Develop a stereoscopic saliency detection model based on stereo con-

trast and stereo focus.

Two characteristics of the stereoscopic vision, the pop-out effect and

comfort zones, are explored in Chapter 3. In line with these two charac-

teristics, the model presented in Chapter 4 predicts stereoscopic visual

saliency using stereo contrast and stereo focus. The stereo contrast

submodel measures stereo saliency based on color, depth contrast and

the pop-out effect. In parallel, the stereo focus submodel measures the

degree of focus based on monocular vision and comfort zones. The

resulting values from these two submodels are clustered. Multi-scale

fusion is then used to generate a map for each of the submodels, and a

Bayesian integration scheme combines both maps into a stereo saliency

map. Experimental results on two eye-tracking databases show that

this method outperforms the state-of-the-art saliency models.

• Develop a computational model for stereoscopic 3D visual saliency

Chapter 5 explores the role of depth information in analyzing stereo-

scopic saliency and presents a computational model that predicts stereo-

scopic visual saliency based on three aspects of human vision: the

pop-out effect, comfort zones, and the background effect. Most salient

stereoscopic regions can be explained by analyzing these three phenom-

ena. Therefore, the model presented in this chapter model comprises
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three submodules, each describing one aspect of saliency distribution,

and a control function that can be used to independently adjust the

three models. The relationship between the three models is not mutu-

ally exclusive. One, two, or three phenomena may appear in one image.

Therefore, to accurately determine which phenomena the image con-

forms to, the model incorporates a strategy that selects the appropri-

ate combination of submodels based on the content of the image. The

approach is implemented within a purpose-built, multi-feature analysis

framework that considers three features surrounding regions, color and

depth contrast and points of interest to further enhance prediction.

1.4 Thesis structure

The structure of this thesis follows and is also illustrated in Fig. 1.1.

Chapter 1 provides the background to this thesis, beginning with a brief

discussion on the stereoscopic saliency analysis, the research questions and

the contributions of this thesis to the literature. The structure of the thesis

is also provided.

Chapter 2 includes a literature review of 3D saliency models, including

their classifications and the common methods. Useful tools and 2D features

in saliency analysis are also discussed along with the benchmark stereoscopic

saliency datasets.

Chapter 3 presents a preliminary saliency model for stereoscopic images.

It is a direct stereoscopic saliency detection model based on the 2D contrast

model and depth weight. However, this model enhances the 2D contrast

model in three ways: at a low-level, depth contrast is treated as a weight; at

the middle-level, depth structure information is treated as a weight; and at

a high-level aspect, the saliency probability distribution of the depth map is

treated as a weight.

Chapter 4 presents a stereoscopic saliency detection model based on stereo

contrast and stereo focus. Two characteristics of stereoscopic vision are ex-
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ploited: stereo contrast and stereo focus. Stereo contrast is based on the

contrast in color and depth and the pop-out effect. Stereo focus describes

the binocular and monocular focus regions of human vision. The values re-

sulting from the two modules are enhanced individually to make the salient

regions more distinct, and then each is converted into a saliency map us-

ing multi-scale fusion. The two saliency maps are integrated using Bayesian

integration.

Chapter 5 presents a computational model for stereoscopic 3D visual

saliency. The model comprises three modules based on the pop-out effect,

comfort zones and the background effect, respectively. Given most salient

stereoscopic regions can be explained by analyzing these three phenomena,

the model incorporates a strategy that selects the appropriate combination of

submodels based on the content of the image. The approach is implemented

within a purpose-built, multi-feature analysis framework that considers three

features surrounding regions, color and depth contrast and points of interest.

Chapter 6 concludes the thesis and outlines the scope of future work.
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Figure 1.1: Thesis Structure. Ch. 1 introduced the research background.

Ch.2 provides the literature review. Ch. 3 presents a preliminary saliency

model for stereoscopic images. Ch. 4 propose stereoscopic saliency detec-

tion based on stereo contrast and stereo focus. Ch. 5 presents a computa-

tional model for stereoscopic 3D visual saliency based on three mechanisms:

pop-out effect, comfort zone, and background effect.Ch. 6 provides a final

summary of this research and also suggests some future directions.
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Chapter 2

Literature Review

This chapter reviews the related work, which includes 3D saliency models,

fundamental methods and stereoscopic datasets. The development and clas-

sification of 3D saliency detection are introduced in Section 1, and the related

fundamental methods for saliency analysis are introduced in Section 2. Sec-

tion 3 introduces the stereoscopic saliency datasets and their limitations. A

summary is provided in the last section.

2.1 The 3D saliency model

3D saliency modeling is a new field of computer vision and is continuing to

develop. To understand the concept of stereoscopic saliency analysis, the

development of 3D saliency models and their classifications are introduced

first, followed by recent research on 3D saliency detection.

2.1.1 Development of 3D saliency detection

In some applications, 2D saliency models can be directly applied to 3D

saliency detection (Lang, Hornung, Wang, Poulakos, Smolic & Gross 2010)(Jeong,

Ban & Lee 2008) with some degree of effectiveness. However, some re-

searchers have found that the depth cues in 3D content have an effect on

human visual attention (Häkkinen, Kawai, Takatalo, Mitsuya & Nyman
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2010)(Wang, Le Callet, Tourancheau, Ricordel & Da Silva 2012), and the

quality of predictions can be improved by incorporating depth information

into saliency detection models. This discovery has lead to an increase in

research attention of the role of depth information in 3D saliency analysis.

Based on the results of psychophysical experiments, some studies have

begun to exploit how visual attention is influenced by 2D visual features and

additional depth cues, both qualitatively and quantitatively.

One of the earliest works was proposed by Jansen et al. (Jansen, Onat &

König 2009). They studied the influence of disparity on viewing behaviors

with 2D and 3D still images. A free-viewing task on 2D and 3D versions

of the same set of images was conducted. They found that the additional

depth information led to an increased number of fixations, shorter and faster

saccades and broader spatial exploration. However, there was no significant

difference between the viewing of 2D and 3D stimuli concerning the saliency

of several 2D visual features, such as mean luminance, luminance contrast

and texture contrast. These results imply that: (a) the influence of 2D low-

level visual features are important in 3D visual saliency analysis; and (b)

adapting existing 2D visual attention models to the design of 3D models is

feasible.

Liu et al. (Liu, Cormack & Bovik 2010) investigated the visual features

at fixation positions in stereo images with natural content. Rather than com-

paring the viewing behavior with 2D images compared to 3D images, they

paid more attention to the visual features extracted from fixations and ran-

dom locations when viewing still 3D images. The study illustrates that the

values of some 2D visual features, such as luminance contrast and luminance

gradient, are generally higher in fixation areas. The results also show that the

disparity contrast and disparity gradients are lower at fixation locations than

randomly selected locations. However, these findings are inconsistent with

the results of Jansen et al. (Jansen et al. 2009), which show that observers

consistently look more at depth discontinuities (high disparity contrast areas)

than at planar surfaces. The contradiction in Liu et al.’s findings may lie in
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the quality of the ground-truth disparity map, which was generated through

a simple correspondence approach rather than from depth-range sensing sys-

tems or a sophisticated depth estimation approach. Therefore, Liu et al.’s

final results might have been affected by a considerable amount of noise in

the estimated disparity maps.

Hakkinen et al. (Häkkinen et al. 2010) examined the difference in eye-

movement patterns when viewing 2D and 3D versions of the same video

content. The results show that eye movements are more widely distributed

for 3D content. Compared to 3D content, viewers not only look at the main

actors but they also look at other targets in typical movie content. Their

results indicate that depth information provides viewers with additional in-

formation and, thus, forms new salient regions in a scene. These results also

suggest that a stereoscopic saliency map could combine both 2D saliency and

depth saliency. Moreover, Ramasamy et al.s results (Liu et al. 2010) show

that viewers’ gaze points are more concentrated when viewing 3D versions

of some content, for example, scenes containing long deep hallways.

In terms of studies that focus on the places where fixations on depth tend

to be located, Wang et al. (Wang et al. 2012) investigated “depth-bias” in

a free-viewing task of still stereoscopic synthetic stimuli. They found that

the objects closest to the viewers always attract the most fixations. And

that the number of fixations on each object decreases as the depth order of

the object increased, except for the furthest object which receives slightly

more fixations than the one or two objects in front of it. They also found

that the number of fixations on the objects in the different depth planes is

time-dependent. This is consistent with the results of Jansen et al. (Jansen

et al. 2009). Considering the influence of center bias in 2D visual attention,

these results indicate an additional location prior exists according to the

depth information in the 3D content viewed. This location prior implies the

possibility of integrating depth information using a weight.

Wismeijer et al. (Wismeijer, Erkelens, van Ee & Wexler 2010) studied

whether saccades were aligned with either individual depth cues or with a
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combination of depth cues, by presenting stimuli in which monocular per-

spective cues and binocular disparity cues conflicted. They found that there

is a weighted linear combination of cues when the conflicts are small and

a cue dominance when the conflicts are large. The results also show that

vergence is only dominated by binocular disparity and the interocular dis-

tance recorded by the binocular eye-tracking experiment. Hence, 3D content

should compensate for the local disparity value.

The combined results of these comprehensive research efforts into study-

ing viewing behavior with 3D content indicate that viewing behavior has

strong relationships to saliency detection, and that there are some relation-

ships between 3D content and additional depth cues that affect viewing be-

haviours. They also imply that 3D saliency detection relies on 2D features

and additional depth cues.

2.1.2 Classification of 3D saliency detection

Compared to the plethora of 2D visual saliency models, only a few 3D visual

saliency models have been proposed. Further, the few existing 3D visual

saliency models are all based on 2D saliency features and depth cues. These

models can be divided into two categories based on their use of the depth

information.

One category relies on depth cues for visual attention. These models are

called “depth models”. They exploit depth cues for saliency analysis in an

attempt to use depth information to enhance 2D features. Depth models

can be divided into two subclasses: depth weight models and depth saliency

models, as shown in Fig.2.1.

Depth weight models do not contain any depth feature extraction pro-

cesses based on a depth map. Rather, they treat depth information as a

weight factor for 2D visual saliency features. The saliency of each location in

the scene, such as pixels, targets or the depth plane, is directly related to its

depth. Maki et al. (Maki, Nordlund & Eklundh 1996) proposed a saliency

model based on assigning the target closest to the observer with the highest
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Figure 2.1: (a) a typical depth weight model and (b) a typical depth saliency

model.

priority. Zhang et al. (Zhang, Jiang, Yu, Chen & Dai 2010) proposed a

saliency model based on irregular space conversion and an assumption that

the pixels closer to the observer and at the front of the screen are considered

to be more salient. This model only considers one mechanism of the human

vision system: the pop-out effect. Chamaret et al. (Chamaret et al. 2010)

weights each pixel in a 2D saliency map according to its depth value. It is

worth noting thatThese three models are not evaluated by the quantitative

measure in the eye-tracking data.

Depth saliency models treat depth saliency as additional information.

Depth features are first extracted from a depth map to compute a depth

saliency map. Then, the resulting stereoscopic saliency map is combined

with a 2D visual saliency model and the depth saliency model using a saliency

map pooling strategy. Niu et al. (Niu et al. 2012) proposed using the charac-

teristics of stereoscopic vision to enhance existing saliency models; however,

their method does not fully exploit the relationship between existing saliency
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models and a depth model. Ramenahalli et al. (Ramenahalli & Niebur 2013)

extended the Itti model by treating depth information as an additional chan-

nel. This model uses color, intensity, orientation and depth channels to gen-

erate a 3D saliency map. However, the characteristics of stereoscopic vision,

such as comfort zones and the pop-out effect (Häkkinen et al. 2010), are not

considered in this model.

The second category of 3D visual saliency models considers the mecha-

nisms of the human vision system when building the model by fusing depth

information with other 2D features. These models are called “stereo-vision

models”. Fan et al. (Fan et al. 2014) proposed the use of region-level depth,

colour contrast and spatial information to measure saliency. Peng et al.

(Peng, Li, Xiong, Hu & Ji 2014) proposed an RGBD model based on both

depth and appearance cues derived from color and depth contrast features. A

study by Khaustova et al. (Khaustova, Fournier, Wyckens & Le Meur 2013)

shows that the characteristics of natural disparity improve prediction accu-

racy in 3D visual saliency. It is, therefore, reasonable to consider that a 3D

saliency models performance can be improved by incorporating human vision

characteristics into the design (Bruce & Tsotsos 2005a).

2.1.3 Recent research about 3D saliency detection

All the above 3D visual saliency models have proven to be effective in ex-

periments under some conditions. However, to the best of my knowledge,

none of these models are able to explain all the phenomena of human vi-

sual attention. Depth models simply rely on depth factors to enhance 2D

features, neglecting the mechanisms of associated with depth information.

Depth saliency models are effective at individually extracting 2D features

and depth information for saliency detection. However, these models ignore

the relationships between depth and the other features. Stereoscopic models

do consider the relationships between depth and other features, but designing

a suitable and reasonable model for stereoscopic visual attention is a difficult

task.
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Hence, to explain more phenomena in human visual attention, some schol-

ars have designed mixed saliency models that combine multiple features from

different models to increase prediction performance. Iana et al. (Iatsun,

Larabi & Fernandez-Maloigne 2015) proposed a new stereoscopic saliency

model by considering two separate spatial saliency models. One model relies

on the characteristics of points of interest; the other relies on depth-color

saliency. Jiang et al.(Jiang, Shao, Jiang, Yu, Peng & Yu 2015) designed a

saliency model by fusing three models: a 2D saliency model, a depth saliency

model and a visual comfort saliency model. The multiple features extracted

from different models reflect different cues for saliency detection. Combining

these different features improved prediction performance in saliency analysis

because multiple features simultaneously rely on multiple mechanisms of the

human vision system (Pylyshyn & Storm 1988)(Awh & Pashler 2000), which

effectively limits noise.

2.2 The fundamental method of saliency anal-

ysis

The analysis of saliency in stereoscopic images discussed in this thesis is built

on several foundational techniques. These methods include simple linear

iterative clustering (SLIC) segmentation, multi-scale integration, Bayesian

integration and center bias. These methods supply a very good basis for

stereoscopic saliency analysis. The following subsections explain each method

in more detail.

2.2.1 SLIC and multi-scale integration

Segmentation is a useful tool for both 2D and 3D saliency detection. The

main idea of this method is to divide an image into many segments based

on an edge or texture. We can see that in different size of the superpixel,

SLIC can segment the image into small part based on the edge and texture.

18



CHAPTER 2. LITERATURE REVIEW

Clustering these segments according to the different cues can create an ini-

tial saliency area (i.e., a saliency map). SLIC is based on K-means clustering

(Achanta, Shaji, Smith, Lucchi, Fua & Susstrunk 2012). The method is very

simple to use and easy to understand. The algorithms do not have many

parameters, and generating superpixels is straightforward and efficient. Sim-

ply setting the number of superpixels initializes the center of each segment,

and then the algorithms automatically set the weighted distance measure

to balance color and spatial weight. The technique is as sensitive to image

boundaries as previous methods, if not more sensitive.

SLIC has two parameters in the algorithms is k and S. The first pa-

rameter is the number of superpixels, which can initialize the center of each

segment. The second parameter is a little difficult to explain but it can

be simply understood as a weighted distance measure to balance color and

spatial weight.

For color images in LAB color space, the first step starts at an initial-

ization where k initialize cluster centers ci and search area is on a regular

grid spaced S pixels apart. Then the centers are moved to another location

relying on the lowest gradient position in a 33 neighborhood. This can avoid

move a center to an edge and reduce the chance of seeding a superpixel with a

noisy pixel. In the assignment step, every pixel i is associated with the near-

est cluster center whose search area overlaps the location. This is the reason

that SLIC speeds up because limiting the search area can significantly reduce

the number of distance calculations. When each pixel has been associated to

the nearest cluster center, an update step can adjust the cluster centers loca-

tion. Experiments show that 10 iterations suffice is enough for most images.

Finally, a post-processing step connects disjoint pixels to nearby superpixels.

The result is shown in Fig.2.2

The models presented in this thesis use SLIC as the method of processing

the color and depth maps. However, in practice, SLIC was always combined

with multi-scale integration to facilitate stereoscopic saliency analysis. The

input images (color/depth image) were segmented several times by control-
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Figure 2.2: Examples of SLIC.
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ling the numbers (scale) of the superpixels in the SLIC segmentation. For

each scale, the images were segmented into a set of non-overlapping superpix-

els. Each superpixel was described by the mean color/depth feature and the

mean coordinate of the pixels. Then, according to the different saliency cues,

different models were built to calculate the saliency value of each superpixel.

A multi-scale integration of all the scales was conducted to produce a

pixel-level saliency image following the method in (Lu, Li, Zhang, Ruan &

Yang 2016) of fusing the segmentation feature values in the different scales.

This method considers the multi-scale value and its textural information

using the textural features of the pixel and its corresponding superpixel as

the weight value to average the multi-scale value. The textural feature of

pixel p and its corresponding superpixel ts are used as the weight value to

average the multi-scale value as follows:

S(p) =

M∑
s=1

zpts · S(ts)
M∑
s=1

zpts

(2.1)

zpts =
1∥∥Pp − xts

∥∥
2

(2.2)

where M is the numbers of all scales. S(ts) is the value of superpixel ts in

scale s. Pp is a 6-dimensional feature of pixel p that includes the colour/depth

and position information as H,S, V, x, y, z and xts is a 6-dimensional feature

of the superpixel ts including the pixel p in scale s. The pixel-level saliency

map s is computed after the multi-scale integration.

2.2.2 Bayesian integration

When two saliency maps have been built by two different cues or methods,

they need to be integrated. However, as discussed in (Gopalakrishnan, Hu &

Rajan 2009), the quality of good individual saliency maps may deteriorate

when they are combined with other maps using a weighting technique. A

Bayesian model is a good choice for integrating two saliency maps to avoid
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this problem, as Bayesian models tend to be very robust to various types of

images.

In terms of probability, the stereoscopic saliency of each pixel is defined

as being equal to the probability of the point being viewed. A Bayesian for-

mulation is used to measure the saliency by posterior probability (Chamaret

et al. 2010)(Sun, Lu & Li 2012), which can be expressed as

p(g|h(p)) = p(g)p(h(g)|g)
p(g)p(h(p)|g) + p(b)p(h(p)|b) (2.3)

p(b) = 1− p(g) (2.4)

where h(p) is a feature vector of pixel p. g is the gaze area and b is the

background. p(g) and p(b) represent the prior distribution of the gaze area

and background respectively. p(h(p)|g) and p(h(p)|b) are the observation

likelihoods (Huynh-Thu et al. 2011), as shown below:

p(h(p)|g) =
∏

i∈H,S,V

Ng(h(p))

Ng

(2.5)

p(h(p)|b) =
∏

i∈H,S,V

Nb(h(p))

Nb

(2.6)

where Ng is the number of pixels in the gaze area and Ng(h(p)) is the number of

pixels whose colour features fall into the gaze area g, which contains feature

h(p). The colour feature distribution of the background is likewise denoted

as Nb and Nb(h(p)).

The Bayesian integration method is as follows. Take one saliency map Si

(i = 1, 2), as the prior probability and use the other map Sj (i �= j, j = 1, 2) to

compute the likelihood. Then, based on the Bayesian formulation, compute

the posterior probability as the final saliency.

In practice, however, the threshold of the map Si is set to its mean saliency

value. The gaze area and background region can be described by gi and bi.
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The likelihood can then be computed by comparing Sj and Si in terms of

the gaze area and background bins at pixel p:

p(Sj(p)|gi) =
Ngi(Sj(p))

Ngi

(2.7)

p(Sj(p)|bi) =
Nbi(Sj(p))

Nbi

(2.8)

The posterior probability is computed with Si as the prior by

p(gi|Sj(p)) =
Si(p) · p(Sj(p)|gi)

Si(p) · p(Sj(p)|gi) + (1− Si(p)) · p(Sj(p)|bi) (2.9)

Similarly, the posterior saliency with Sj as the prior can also be computed.

Two posterior probabilities are used to produce one integrated saliency map.

S(S1(p), S2(p)) = p(g2|S1(p)) + p(g1|S2(p)) (2.10)

2.2.3 Center bias

The center bias describes the saliency probability distribution in the X-axis

and the Y-axis. Since many datasets have a property that locates the salient

object or region in the center of the image (Borji, Cheng, Jiang & Li 2015),

the center bias G can be used to process the saliency map in both the X

and Y directions. In general, the centre bias can be modeled using Gaussian

standard deviations, as follows:

G(p) = exp[−(x− u)2

2σ2
x

− (y − v)2

2σ2
y

] (2.11)

where (x, y) is the coordinate of the pixel p, and u and v denote the centre

of the image. Thus, σx = 0.25 × H and σy = 0.25 ×W , where H and W

represent the height and width of the image, respectively.
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2.3 Experimental datasets and measurements

One obstacle to the development of 3D saliency is the lack of enough stereo-

scopic image material. Additionally, the quality of the stereoscopic images

captured by various 3D devices differs significantly. For example, a Panasonic

AG-3DA1 3D camera can supply high-quality left/right images image/video

for saliency analysis in experiments. But the stereoscopic image generated

by the Kinect-1 is a 640x480 image with holes that may cause noise. When

both are used in a saliency analysis experiment, the low-quality stereoscopic

images may introduce noise into the results, which makes designing a stereo-

scopic saliency model difficult. In this thesis, all the depth map are supplied

by datasets, which is generated by the different depth-capture sensors. Some

of them are captured by the stereoscopic camera including the Panasonic

AG-3DA1 3D camera and Kinect-1. The others are generated by two-view

image with the peoples adjustment.

Two public datasets were selected to evaluate the performance of the

saliency models presented in this thesis. The first was published in (Lang,

Nguyen, Katti, Yadati, Kankanhalli & Yan 2012). This dataset is an eye-

tracking database with 600 stereoscopic 3D images of outdoor and indoor

scenes containing different numbers of objects of different sizes. Addition-

ally, different degrees of interaction or activity are depicted in the scene. The

images were generated by the Kinect-1 at 640x480 pixels, so they are likely

to introduce noise and contain a number of holes that need to be smoothed.

Stereoscopic image pairs were produced by pre-processing, calibration and

post-processing. Eye-tracking data from 80 participants (ranging from 20 to

33 years old) were captured by an eye-tracker in both 2D and 3D free-viewing

experiments. In order to produce a continuous fixation map of an image, we

convolve a Gaussian filter across all corresponding viewers fixation locations.

Human fixation maps were constructed from the fixations of viewers to glob-

ally represent the spatial distribution of human fixations. A Gaussian kernel

was used to obtain the continuous fixation density maps as the ground-truth

maps. Both the 2D and 3D fixation maps are supplied with the dataset to
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facilitate comparisons. In this thesis, the 3D fixation maps were used as the

stereoscopic 3D ground-truth map.

The second eye-tracking database was published in a study by (Wang

et al. 2013). It includes 18 stereoscopic images of various types (e.g., indoor

scenes, outdoor scenes and scenes containing various numbers of objects).

Ten images were taken from the Middlebury database 2005/2006, with their

accompanying accurate depth images, which is adjusted by people. The

other eight images were recorded by the authors with a Panasonic AG-3DA1

3D camera as 1080P stereoscopic images. To avoid 3D fatigue (Hoffman,

Girshick, Akeley & Banks 2008) resulting from a conflict in the depth field,

when, for example, one object is seen by the right eye but is missed by

the left eye, the degree of vergence in human vision within the stereoscopic

3D viewing environment is considered in this eye-tracking experiment. The

stereoscopic image pair is produced by pre-processing, calibration and post-

processing. The eye-tracking data are captured in both 2D and 3D free-

viewing experiments by the eye-tracker from 80 participants (ranging in age

from 20 to 33 years old). Human fixation maps are constructed from the

fixation of viewers to globally represent the spatial distribution of human

fixation. Then a Gaussian kernel is used to obtain the continuous fixation

density maps as the ground-truth maps

To quantitatively evaluate the performance of our proposed saliency model,

similar quantitative measure methods to those used in (Wang et al. 2013)

were followed. The performance of each model was measured by compar-

ing the computed saliency map with the ground-truth map supplied in the

database. Because any stereoscopic image pair comprises two images (left

and right), the saliency map of the left image was used for comparison, simi-

lar to the study in (Wang et al. 2013). The area under the receiver operating

characteristics curve (AUC) and correlation coefficient (CC) were used to

evaluate quantitative performance for each model. Using AUC, human fixa-

tions are considered to be the positive set, and some points from the image are

sampled to form the negative set. The saliency map S was then treated as a
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binary classifier to separate the positive samples from the negatives. A ROC

curve was generated for each image by thresholding over the saliency map

and plotting the true positive rate vs the false positive rate. The resulting

ROC curves were then averaged over all images, and the area underneath the

final ROC curve was calculated as the AUC. The CC measures the strength

of a linear relationship between the predicted saliency map and the ground-

truth saliency map. When the CC is close to +1/1, there is almost a perfectly

linear relationship between the two variables.

2.4 Summary

This chapter introduced the development of 3D saliency detection and some

fundamental saliency tools used within this thesis. The stereoscopic datasets

used in the experiments were also described. Section 2.1 provided the back-

ground on 3D saliency detection and related research through a review of the

historical development of 3D saliency detection and current classifications of

3D saliency detection models. Section 2.2 explained the fundamental meth-

ods in saliency analysis used in this thesis. The SLIC segmentation method

and multi-scale integration were introduced, followed by Bayesian integra-

tion, which analyses saliency from the perspective of Bayesian theory, and

center bias as another a useful tool in saliency analysis. Section 2.3 presented

two eye-tracking datasets, which have been used repeatedly for measuring

and evaluating the performance of visual saliency detection, and are also

used in the experiments for this thesis.
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Chapter 3

A Preliminary Saliency Model

for Stereoscopic Images

3.1 Introduction

Visual saliency is a fundamental problem in neuroscience, psychology, and

vision perception, and refers to the measurement of low-level stimuli that at-

tract human attention in visual processing (Itti et al. 1998). It measures the

distinctiveness of a region from its neighboring regions and a more salient re-

gion conveys more information (Thomas & Thomas 2006). The computation

of visual saliency is widely used in various applications of image processing,

such as image segmentation (Ko & Nam 2006), content-aware image/video

re-targeting (Luo, Yuan, Xue & Tian 2011), video quality assessment (Wang

& Li 2011) and adaptive image compression based on region-of-interest (ROI)

detection (Guo & Zhang 2010).

In general, visual saliency relies on four kinds of features for saliency

detection (Goferman, Zelnik-Manor & Tal 2012): local features, global fea-

tures, visual forms and high-level factors. The local features include low-level

factors such as intensity, color and contrast. These always assume that hu-

man attention is sensitive to high-contrast regions. If a region is distinctive

in intensity, color, texture or motion, it is considered a high salient region.
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Global features detect the overall structure or arrangement of the features

which form the salient region. A prototypical example of the attention model

is looking at a scene with only one horizontal bar among several vertical

bars, where attention is immediately drawn to the horizontal bar (Treisman

& Gelade 1980). Visual forms or shapes assume that visual saliency can pos-

sess one or several centers of gravity about which the form is organized. A

region with a more compact form should be assigned as more salient. High-

level factors include semantic objects, such as human faces or objects which

have more saliency because of our empirical knowledge.

Based on these features, various saliency detection algorithms are pro-

posed. For example, local intensity, orientation and color features have been

utilized to obtain visual saliency, based on center-surround enhancement (Itti

et al. 1998). Global features have been exploited by contrast-based methods

(Cheng, Zhang, Mitra, Huang & Hu 2011) and by spectral analysis methods

(Hou & Zhang 2007). The shape feature has been studied by a Boolean

map method (Zhang & Sclaroff 2013) which uses a set of binary images

to compute the shape of the saliency region. High-level factors have been

used to improve the accuracy of the saliency, such as object detection (Jiang

et al. 2013), face detection (Cerf, Harel, Einhäuser & Koch 2008) and center

bias (Borji et al. 2015).

The above models are designed for 2D saliency detection. However, with

the rapid development of 3D technology, the number of applications for a 3D

image or video is increasing, such as 3D visual quality assessment (Huynh-

Thu et al. 2011), 3D video coding (Shao et al. 2012), 3D rendering (Chamaret

et al. 2010), and more. These 3D applications require more and more saliency

models for 3D visual content.

Compared to the significant progress in 2D saliency research, the work

leveraging depth information for saliency analysis is rather limited (Peng

et al. 2014). Niu et al. (Niu et al. 2012) analyzed the characteristics of

stereo vision and proposed a depth saliency model for a depth map that

would leverage the 2D saliency model for stereo saliency analysis. However,
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the proposed model does not fully exploit the relationship between the depth

model and the 2D saliency model. Fan et al. (Fan et al. 2014) utilized

the region-level depth, color and spatial information to analyze saliency for

stereoscopic images. Fang et al. (Fang, Wang, Narwaria, Le Callet & Lin

2013) proposed a stereoscopic saliency model based on the low-level features

extracted by DCT (Discrete Cosine Transform) coefficients of image patches

and feature contrast. However, they did not consider the characteristics of

human stereo vision such as 3D fatigue or the pop-out effect.

According to the above analysis, the key issue for a 3D saliency detection

model is how to adopt the depth factor and how to combine the depth factor

with 2D information. In this chapter, a preliminary saliency detection model

for stereoscopic images is proposed. This model utilizes depth information to

leverage stereo saliency analysis from three aspects. In the low-level aspect,

the local-global features are used to analyze saliency by considering the color

and depth contrast in local and global ranges. In the mid-level aspect, the

surrounding map based on the Boolean map is obtained as a weight value

to enhance the local-global features. Lastly, by analyzing the saliency prob-

ability distribution in depth information, a stereo center prior enhancement

is used to form the final saliency.

The rest of the chapter is organized as follows: Section 3.2 proposes

a preliminary saliency detection model for stereoscopic images; Section 3.3

describes the quantitative comparison of the proposed model with the state-

of-the-art algorithms; Section 3.4 gives the research outcome and discussion.

3.2 Proposed stereo saliency detection

The framework of the proposed stereo saliency detection method is shown in

Fig.3.1. Firstly, the local and global features are extracted from the left image

and depth map. Then, surrounded enhancement based on boolean map is

used to increase the accuracy of the saliency. Lastly, the stereo center prior

enhancement is utilized by considering the saliency probability distribution
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in the depth map and color map to obtain the final saliency map. Each step

in detail is described in the following subsection.

Figure 3.1: The framework of the proposed stereo saliency detection method

3.2.1 Local-global saliency

Based on observations of biological vision, where the vision system is sensitive

to contrast in visual signals, a local-global saliency, defined by color and depth

contrast, is proposed. The colors of the salient region are usually distinctive

and show contrast with the other regions. However, if the color contrast is

not distinct enough, the depth cue can leverage the saliency analysis under
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the assumption that an absolute region is usually more salient for human

visual attention. Therefore, a region is defined as a salient region if its color

and depth are more distinct than the other regions, which include local and

global ranges.

Specifically, to capture the structural information of the stereoscopic im-

age, a simple linear iterative clustering (SLIC) algorithm (Achanta et al.

2012) is used for the segmentation. SLIC can segment an input image (left

image) into N non-overlapping patches (superpixels). Let DC(i, j) be the

Euclidean distance between the vectored superpixels i and j in Lab color

space, normalized to the range [0, 1]. L(i, j) is the position distance between

the superpixel i and j. DP (i, j) is the depth distance between superpixel i

and j. Both of them are normalized to the range [0, 1]. Based on the ob-

servation above, a distinctive measure D(i, j) between a pair of superpixels

i and j based on color, spatial and depth information can be defined as:

D(i, j) = (
DC(i, j)

1 + c ∗ L(i, j)) ∗ ωj ∗DP (i, j) (3.1)

where ωj is the pixel number of superpixel j and c is a control value about

spatial information (c = 3 in our implementation). As mentioned above, the

saliency of a superpixel z can be defined by its distinctive measure as:

SCR(z) =
∑

i�=z,i∈R
D(z, i) (3.2)

where R is the range and SCR(z) is the saliency value of superpixel z in

the range R. For different ranges, the local and global saliency are com-

puted, as shown in Fig.3.2. All the distance is normalized to [0, 1]. Based on

experience, we set the R = 0.3.

In practice, to measure a superpixel distinctiveness, its distinctiveness

with respect to all other superpixels. the proposed model simply considers

the K most similar superpixels. As the most similar superpixels are ex-

tremely different from the current superpixel, clearly all image superpixels

are extremely different from it. Therefore, the proposed model searches for
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the K most similar superpixels {t1, t2, ...tk}, based on DC(i, j). The local-

global saliency of superpixel z is expressed as:

SC(z) =
∑
R

SCR(z) (3.3)

Figure 3.2: Global and local range.

3.2.2 Surrounded enhancement

In addition, to improve the performance of the local-global contrast feature,

the topological structural information is used to leverage saliency detection.

For example, Markov chain graphs (Harel, Koch & Perona 2006), a graph

model measured (Wei et al. 2013) by its shortest edges and a Boolean map

approach (Zhang & Sclaroff 2013) can obtain the structural information of

the image for saliency analysis. In this chapter, a Boolean map for the depth

channel is proposed, because it is easy to implement and produces favorable

results from the experiments.

The Boolean map concept comes from Boolean map theory (Huang &

Pashler 2007) of visual attention, where a viewer’s momentary conscious

awareness of a scene can be represented by a Boolean map. We assume the

Boolean map is computed by a feature channel (here, we use the depth chan-

nel). The influence of a Boolean map B on visual attention can be expressed

by an attention map A(B), in which the salient regions are highlighted on
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B.

BD =

∫ max

min

A(B)w(B|I)dB (3.4)

where I is a feature channel and w(B|I) is a weight value to describe the

salient probability of the attention map B. BD represents a weighted map

obtained by a depth map. The Boolean map is used to process the depth map

because the depth map can supply stereo information to reflect the positional

relationships between the different objects. The weighted map obtained by

the depth map leverages the stereo saliency analysis.

In practice, at first, the thresholds by clustering the depth information

is computed. Then, the depth map is processed by the thresholds to a set

of Boolean maps B = {B1, B2, ...Bn}. Each Boolean map Bi computes an

attention map Ai. Lastly, a linear combination of all attention maps forms

the depth weight map.

Thresholds

The depth weight map relies on a set of Boolean maps by thresholding the

depth map.

Bi = Threshold(DM, θi) (3.5)

where DM represents the depth map and θi is the threshold. If a superpixel

depth value is bigger than θi, the function Threshold(DM, θi)) is 1, otherwise

it is 0.

The threshold θi divides a depth map into two regions: background region

(0 region) and surrounded region (1 region), with the latter having a greater

chance of being a salient region than the former (Huang & Pashler 2007).

Therefore, a reasonable threshold is important for salient analysis. A clus-

tering approach is used to determine the threshold, which can separate the

background and surrounded region efficiently.

For each superpixel, the mean depth value of the pixels in one superpixel

is d. The K-means algorithm is used to cluster N superpixels into K clusters,
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via the depth value. To enlarge the difference between neighboring clusters,

we adjust the di in cluster k by considering its own value and the other

superpixels in cluster k as follows:

Su(i) = δ

Nc∑
j=1,j �=i

rijdj + (1− δ)di (3.6)

where {1, 2, ..., Nc} represents the Nc segment labels in cluster k and Su(i)

is the adjusted depth value of superpixel i and δ is a weight value, based on

the spatial information of a pair of superpixels:

rij =
L(i, j)

Nc∑
j=1,j �=i

L(i, j)

(3.7)

where L(i, j) is the Euclidean distance between superpixels i and j.

Through the above process, all superpixel depth values are modified.

Then, the center of each cluster is computed. The threshold is the median

value of neighboring-cluster centers. For all Boolean maps, an opening oper-

ation with kernel ψ is then applied to each Boolean map for noise removal,

such as an isolated point or making the boundary of the object more clearly

visible (Huang & Pashler 2007).

Boolean map

By thresholding the depth map, we can obtain a Boolean map B, while an

attention map A(B) is computed based on the Gestalt principle for figure-

ground segregation, in which the surrounded regions are more likely to be

perceived as figures (Palmer 1999). Surrounded regions in a Boolean map

are defined as having the property of a connected region (either of value 1

or 0) that has a closed outer contour (Huang & Pashler 2007). Under this

definition, the regions connected to the image borders are not surrounded.

To compute the attention map, 1 is the union of the surrounded regions and

0 is the background regions. A flood fill algorithm is used to implement this

operation by masking out all the pixels connected to the image borders.
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Before the linear combination step, the weight value w(B|I) should be

computed, which describes the salient probability of an attention map. Based

on observation, the attention map with small concentrated active areas will

receive more emphasis. Therefore, the weight value is inversely proportional

to the surrounded region as follows:

w(B|I) = exp
1

ωs

(3.8)

where ωs is the pixel number of surrounded region. An exponential function

is used in Eq. (3.8) to emphasize the significance of surrounded region. All

w are normalize to [0, 1].

The weighted map from the depth map is expressed:

BD =
∑

i=1,i∈θ
A(Bi)w(Bi|I) (3.9)

3.2.3 Stereo center prior enhancement

In the final stage, we fuse the saliency map, combined with stereo center

prior enhancement. Stereo center prior enhancement relies on two aspects:

depth bias and center bias.

Depth bias describes the saliency probability distribution on the Z-axis

and the center bias describes the saliency probability distribution on the X-

axis and Y-axis. Before the model of depth bias is built, we should know the

characteristics of the depth information. When viewers spend a long time

watching stereoscopic images or video, they may experience fatigue. The

reason is that the focus range of the stereoscopic image or video may not

be suitable for human focus. A good stereoscopic image needs to avoid and

minimize 3D viewer fatigue. To avoid and minimize 3D fatigue for viewers,

a comfort zone is proposed (Niu et al. 2012), which is a zone around the zero

disparity plane. When photographers capture a stereoscopic image or video,

they always place more important objects or regions in a comfort zone rather

than in other zones. Based on this characteristic of depth information, the
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important object or regions have a high probability of being located in a

comfort zone. This is one characteristic of depth information. In addition,

when viewers watch a stereo image or video, some objects may look like they

are popping out of the screen because these objects have negative disparity.

This phenomenon is named as the pop-out effect. Studies show that an

object which has a pop-out effect has a high probability of catching the

viewer’s attention (Häkkinen et al. 2010). Based on these two characteristics

of depth information, a Gaussian model to describe the depth bias Z based

on the combination of the pop-out effect and comfort zone, which can be

expressed as follows:

Z(p) =

⎧⎨
⎩ exp(

d2p
−2σ2

2
) dp ≥ 0

α · exp( d2p
−2σ2

2
) + (1− α) dp < 0

(3.10)

where dp denotes the disparity value of pixel p. σ2 represents the range of

the negative and positive disparity and α is the weight to control the weight

of the negative disparity. For the negative disparity, if we directly use a

comfort value to measure saliency, it may conflict with the pop-out effect.

For example, if the pixel has a big negative disparity and is far away from

the comfort zone, based on the pop-out effect, its saliency value becomes big;

however, based on the comfort zone, its saliency value is small. In this case,

it is hard to determine its saliency. To avoid the conflict of negative disparity

with the pop-out effect, we set a weight value α to balance the comfort value

of negative disparity. Similar to (Niu et al. 2012), we set α = 0.5.

The center bias describes the saliency probability distribution in the X-

axis and Y-axis. As many datasets have a property that locates the salient

object or region in the center of the image (Borji et al. 2015), we use the

center bias G to process the saliency map in the X-axis and Y-axis direction

which can be modeled by Gaussian standard deviations, in general.

G(p) = exp[−(xz − ux)
2

2σ2
x

− (yz − uy)
2

2σ2
y

] (3.11)

where ux and uy denote the center of the image, we set σx = 0.25 ×H and
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σy = 0.25×W , where H andW represent the width and height, respectively,

of the image.

The saliency map S is expressed as:

S = SC ∗ BD ∗ (G+ Z) (3.12)

The proposed model is based on the superpixels of SLIC. Since the content

of each superpixel may have more than one object or texture, a single scale

segmentation scheme is not suitable for objects of different sizes. We conduct

multi-scale segmentation, based on controlling the numbers of superpixels in

the SLIC. To combine the multi-scale saliency maps, we adopt the multi-scale

integration proposed in (Li, Lu, Zhang, Ruan & Yang 2013). The complete

saliency detection algorithm can be summarized as:

Table 3.1: The Pseudo-code

Algorithm: A preliminary saliency detection for stereoscopic images

Input: Left image and disparity map

Output: Stereoscopic saliency Map

1. SLIC segmentation, superpixel number s = {600, 800, 1000, 1200}
2. For each scale s

3. For each superpixel i

4. Local-global saliency: SC(i), in Eq.3.3

5. Surrounded map from depth map: BD, in Eq.3.9

6. For each pixel p

7. Stereo center prior enhancement: Z(p), G(p), in Eq.3.10,3.11

8. After multi-scale fusion, the final stereo saliency map are computed:

S in Eq.3.12

3.3 Experiments

In this section, we evaluate the performance of our proposed model on

two eye-tracking datasets (Wang et al. 2013)(Lang, Nguyen, Katti, Yadati,
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Kankanhalli & Yan 2012) including color and depth information. In Part

A, we present the quantitative metrics of the evaluation for the proposed

method. In Part B, we provide the performance evaluation by comparing

the proposed methods and the state-of-the-art methods. All depth map are

supplied by datasets, which is generated by the different depth-capture sen-

sors.

3.3.1 Experimental setup

Our stereo saliency framework is based on the segmentation of SLIC. In the

experiment, we set the superpixel count as {600, 800, 1000, 1200}. All the

distance are normalized to [0, 1]. Based on the experiment, we set R=0.3. In

K-means clustering of the surrounded enhancement, we set K = 32. Similar

to (Zhang & Sclaroff 2013), we set the kernel ψ to 7 pixels. In stereo center

prior enhancement, we set α as 0.3, similar to (Fang et al. 2013).

One eye-tracking database is published in the study to evaluate the per-

formance of our method (Wang et al. 2013). It has 18 stereoscopic images of

various types (e.g. outdoor scene, indoor scene, and scenes containing differ-

ent numbers of objects). To avoid and minimize 3D fatigue from the conflict

in different depth fields (for example, one object is seen by the right eye but

missed by the left eye because it is blocked or obscured), in the eye-tracking

experiment, the degree of vergence in human vision was considered within a

stereoscopic 3D viewing environment. The disparity of the used stereoscopic

images is computed and meets the requirements of the comfort viewing zone

(Wang et al. 2013). The conflict in different depth fields is not detected by

the observers in the eye tracking experiments. The gaze points are recorded

by the eye-tracker and processed by a Gaussian kernel to form the fixation

density maps, which are used as the ground-truth maps. The other eye-

tracking database is proposed in (Lang, Nguyen, Katti, Yadati, Kankanhalli

& Yan 2012). It includes 600 stereoscopic images of various scenes. The

depth maps are captured by Kinect and do post-process to obtain smooth

depth maps. These images are diverse, with different numbers and sizes of
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objects and degrees of interaction or activity depicted in the scene. The eye

tracker is used to record the human fixation of 80 participants and processed

by a Gaussian kernel to form the fixation density maps, which are used as

the ground-truth maps.

For a quantitative evaluation of the performance of the proposed model,

we conduct similar quantitative measure methods to the study in (Wang

et al. 2013). The performance of the proposed model is evaluated by com-

paring the saliency map with the ground truth supplied by the database. As

there are two images (the left and right images) for any stereoscopic image

pair, we only use the saliency map of the left image for comparison, similar

to the study in (Wang et al. 2013). The Area under the Receiver Operat-

ing Characteristics Curve (AUC) and Correlation Coefficient (CC) are used

to measure the quantitative performance of the proposed saliency detection

model. Of these measures, CC is calculated directly from the fixation den-

sity map and the predicted saliency map, while AUC is computed from the

actual fixation density map and the predicted saliency map. We adopt these

two measures to quantitatively compare the eye-tracking ground truth and

predicted saliency map.

3.3.2 Experimental results and comparisons

In addition to comparisons with other state-of-the-art models, we also evalu-

ate each component of the proposed model on the two eye-tracking databases.

Performance of each component: we show the results of five components:

local saliency (LS), global saliency (GS), local-global saliency (LGS), sur-

rounded enhancement (SE) and stereo center prior enhancement (SCP). The

local-global saliency extracts the contrast feature from the local and global

range to form a low-level contrast map. Then, we use the weighted map from

the Boolean map to increase the performance from the mid-level surrounded

region. Lastly, stereo center prior enhancement is used to enhance the results

from the high-level factors. The performance of each component is shown in

Table I and Table II.
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Table 3.2: Comparison between each component in database (Wang et al.

2013)

Component combination AUC(→ 1) CC(→ 1)

LS 0.588 0.198

GS 0.648 0.257

LGS 0.674 0.293

SE 0.703 0.312

SCP 0.838 0.597

Table 3.3: Comparison between each component in database (Lang, Nguyen,

Katti, Yadati, Kankanhalli & Yan 2012)

Component combination AUC(→ 1) CC(→ 1)

LS 0.588 0.198

GS 0.648 0.257

LGS 0.662 0.287

SE 0.719 0.308

SCP 0.859 0.416
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In Table 3.1 and 3.2, we can see that the performance of “LGS” is im-

proved, compared with “LS” and “GS” in AUC and CC. This is because the

content of the images are complex. We should consider the saliency from

local and global features. “SE” has some improvement in AUC and CC.

This is because the surrounded region can leverage the saliency. “SCP” en-

hances the performance significantly because the high-level features, such as

probability saliency distribution, is important for saliency analysis.

Comparisons with State-of-the-Art Methods: We compare the pro-

posed stereo saliency detection framework with the best methods in (Wang

et al. 2013) and (Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan 2012).

We firstly compare the performance of existing 2D saliency models: IT (Itti

et al. 1998), AIM (Bruce & Tsotsos 2005b), SR (Hou & Zhang 2007) and

GBVS (Harel et al. 2006). Then, we fuse these models with the depth saliency

models proposed by (Chamaret et al. 2010) and (Wang et al. 2013). Lastly,

we compare the proposed model with the 3D saliency models proposed by

(Fang et al. 2013). Please note that the AUC and CC values of these two

models are from the original paper.

It can be concluded from Table 3.4 that performance is not improved sig-

nificantly using depth information as a weighted value (2D×Depth (chamaret))

in AUC and CC. We can see that directly using depth information as a

weighted value for the stereo saliency analysis does achieve a good result.

This is because the method does not consider the characteristics of depth in-

formation. In contrast, the performance of the 2D + Depth Contrast methods

does increase compared with 2D × Depth (chamaret) in IT, AIM and SR,

because it considers the characteristics of depth information. However, in re-

lation to GBVS, neither 2D × Depth (chamaret) nor 2D + Depth Contrast

improve the performance in AUC and CC. It is shown that two depth models

are not suitable for the 2D model GBVS. When we design the stereoscopic

saliency detection model like 2D+Depth, we should consider the relationship

between the 2D model and the depth saliency map. DSM is the best of

the three models in (Wang et al. 2013). The performance of our proposed
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Table 3.4: Comparison between the proposed framework with others. DSM represents the depth saliency map in

(Wang et al. 2013)

Model AUC(→ 1) CC(→ 1)

2D Model

IT 0.538 0.137

AIM 0.638 0.326

SR 0.63 0.291

GBVS 0.809 0.54

2D × depth (chamaret)

IT × depth 0.54 0.137

AIM × depth 0.636 0.299

SR × depth 0.634 0.292

GBVS × depth 0.771 0.515

2D + Depth Contrast

IT + Depth Contrast 0.596 0.211

AIM + Depth Contrast 0.644 0.343

SR + Depth Contrast 0.662 0.307

GBVS + Depth Contrast 0.799 0.53

DSM (Wang et al. 2013)

Model 1 0.656 0.356

Model 2 0.675 0.424

Model 3 0.67 0.41

Stereo Model (Fang et al. 2013) 0.703 0.55

Our Model 0.838 0.597
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Table 3.5: Comparison between different 3D saliency detection models. “+”

means the combination by simple summation by study (Lang, Nguyen, Katti,

Yadati, Kankanhalli & Yan 2012). “×” means the combination by point-

wise multiplication (Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan 2012).

DSM represents the depth saliency map in (Lang, Nguyen, Katti, Yadati,

Kankanhalli & Yan 2012).

Component com-

bination

AUC(→ 1) CC(→ 1)

IT+DSM 0.849 0.375

IT×DSM 0.854 0.398

GBVS+DSM 0.851 0.39

GBVS×DSM 0.855 0.413

AIM+DSM 0.85 0.342

AIM×DSM 0.85 0.391

FT+DSM 0.797 0.315

FT×DSM 0.745 0.268

SR+DSM 0.846 0.385

SR×DSM 0.808 0.325

Our Model 0.859 0.416
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framework shows a significant increase over all the methods. The stereo

model (Fang et al. 2013) extracts four features including color, luminance,

texture and depth based on DCT coefficients to measure the saliency for

image patches. Our model is based on superpixel and measures the saliency

based on the color contrast. Then we use topological structural information

computed from depth Booleaning Map and stereo center prior to enhance

the results. Our model is sensitive to the boundary of the object. The depth

information supplies the topological structural information and saliency prob-

ability distribution on Z-axix. Hence, our model has better performance then

stereo saliency models (Fang et al. 2013) in CC and AUC. Fig. 3.33.4 shows

some examples of all models. It is shown that IT, IT × Depth (chamaret)

and IT + Depth Contrast mainly detect the contour of the saliency area in

the images. The models related to AIM and SR detect some background

areas as the saliency area in the images. In contrast, our stereo saliency

detection framework estimates the saliency region accurately with regard to

the ground truth map from the eye-tracking data.

Although the eye-tracking database (Wang et al. 2013) greatly assists in

stereo saliency analysis, its samples (only 18 stereoscopic images) are insuf-

ficient to demonstrate the performance statistically. Hence, we use another

published eye-tracking database (Lang, Nguyen, Katti, Yadati, Kankanhalli

& Yan 2012) with 600 diverse stereoscopic images, including outdoor and

indoor scenes, to evaluate performance. As we could not find the code of the

depth saliency map (DSM) in (Lang, Nguyen, Katti, Yadati, Kankanhalli &

Yan 2012), we can only compare our results with the best methods listed in

their original paper. The experimental results are shown in Table 3.5. Note

that the AUC and CC values of other existing models are taken from the

original paper. From this table, we see that the performance of our proposed

model is the best of the 11 stereo saliency detection models.
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3.4 Conclusion and discussion

In this Chapter, we proposed a preliminary saliency detection method for

stereoscopic images, which is based on local-global contrast features, followed

by surrounded region enhancement and stereo center prior enhancement. Ex-

perimental results show that our proposed saliency detection method achieves

the best performance on two eye-tracking databases compared to existing

methods. The proposed model is based on contrast and surrounded cues.

In the present study, our model still suffers from some limitations. The

main one is that this model does not deeply explore the characteristics of

pop-out effect and comfort zone. We use one model to describe the possible

saliency distribution based on the pop-out effect and comfort zone, which will

decrease the performance of the pop-out effect. Meanwhile, we only treated

the depth information as a weight.

47



Chapter 4

Stereoscopic Visual Saliency

Prediction Based on Stereo

Contrast and Stereo Focus

The stereoscopic saliency detection model in the previous chapter only treats

the depth information as a weight. It ignores the importance of the charac-

teristics of the human visual system. In this chapter, we will deeply explore

the characteristics of the human visual system: pop-out effect and comfort

zone, which supply two important cues for stereoscopic saliency analysis.

Based on them, we propose the stereoscopic visual saliency prediction.

4.1 Introduction

The models of visual attention are usually divided into two categories: bottom-

up and top-down (Yarbus et al. 1967). The bottom-up approach is a rapid

data-driven task-independent process and is usually feed-forward. A pro-

totypical example of a bottom-up attention model is the act of looking at

a scene which has only one horizontal bar among several vertical bars, in

which attention is immediately drawn to the horizontal bar (Treisman &

Gelade 1980). Top-down model considers high-level cognitive features to

48



CHAPTER 4. STEREOSCOPIC VISUAL SALIENCY PREDICTION
BASED ON STEREO CONTRAST AND STEREO FOCUS

quantify the visual saliency, such as human faces (Judd et al. 2009) and prior

knowledge about the target (Frintrop et al. 2010). Of these top-down fea-

tures, prior knowledge about the target is difficult to model. Recently, a num-

ber of saliency models have incorporated both top-down and bottom-up fea-

ture detection in an effort to improve prediction accuracy (Jiang et al. 2013).

Wei et al. (Wei et al. 2013) turned to background priors to guide the generic

object level saliency detection. Goferman et al. (Goferman et al. 2010) and

Judd et al. (Judd et al. 2009) integrate high-level information, making their

methods potentially suitable for specific tasks.

These models are mainly designed for 2D images. With the rapid develop-

ment of 3D technology, many devices for stereoscopic capture have appeared.

For example, the Panasonic 3D camera captures the stereoscopic images and

video for 3D movies. The Kinect-1 device by Microsoft for the XBox captures

both the color map and the depth map at the same time, which can generate

the stereoscopic images (the depth map of the Kinect-1 may have holes that

need to be smoothed (Camplani & Salgado 2012), which may cause noise).

These devices make up a number of applications for 3D images or videos,

such as 3D rendering (Chamaret et al. 2010), 3D visual quality assessment

(Huynh-Thu et al. 2011), 3D video detection (Kim, Lee & Bovik 2014), and

more. These 3D applications increase the need for saliency modeling for 3D

visual content.

Stereo saliency models can be classified into two categories according to

the way they use the depth factor: stereo-vision models and depth-saliency

models.

Stereo-vision models take into account the mechanisms of stereoscopic

perception in the human visual system (HVS). This type of model considers

the characteristics of depth factors and color information. Bruce and Tsotsos

extended the 2D model, which uses a visual pyramid processing architecture

(Bruce & Tsotsos 2005a), by adding neuronal units to model the stereo vision;

however, they did not propose a computational model in that study. Based

on our knowledge, designing the stereo-vision model is a hard work and we
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only find two models in (Wang et al. 2013), because the mechanisms of stereo

vision still pose several research challenges, such as how to build then apply

the model for the stereoscopic vision mechanism.

Depth-saliency models take depth saliency as a feature of saliency mea-

surement, and methods of formulating and using depth saliency fall into two

further categories. One category relies on a depth-saliency map (DSM)(Lang,

Nguyen, Katti, Yadati, Kankanhalli & Yan 2012). The depth saliency is

extracted from the depth map or disparity map (usually based on depth

contrast or the depth pop-out effect) to create an additional depth-saliency

map. The final result combines the 2D saliency maps (from 2D saliency

models usually using color contrast, intensity, or image texture) and the

depth-saliency maps (DSM). The other category builds the model directly.

In other words, it builds the stereoscopic visual saliency prediction model by

taking the mechanisms of stereoscopic perception in the HVS into account.

It designs the model by fusing the depth and 2D features into the saliency

measurement, based on the mechanisms of the HVS (Fan et al. 2014).

Kim et al. (Kim et al. 2014) designed a stereoscopic visual attention al-

gorithm for 3D video based on multiple perceptual stimuli, which assumes

that pixels closer to observers and at the front of the screen are more salient.

Niu et al. (Niu et al. 2012) explored stereo saliency by analyzing the char-

acteristics of stereo vision and proposed a depth saliency model for a depth

map that would expand the 2D saliency model for stereo saliency analysis.

However, the proposed model does not fully explore the relationship between

the depth model and the 2D saliency model. Fan et al. (Fan et al. 2014)

proposed a stereo saliency model based on region-level depth, color and spa-

tial information. Wang et al. (Wang et al. 2013) proposed a computational

model that took the depth factors as an additional visual dimension and

provided a public database with a ground truth of eye-tracking data. Fang

et al. (Fang et al. 2013) proposed a visual attention model for stereoscopic

images based on the feature contrast of low-level features. However, they did

not consider the characteristics of human stereo vision, such as the pop-out
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effect or 3D fatigue.

According to the above analysis, the key issue for a 3D visual saliency pre-

diction model is how to adopt the depth factor and how to combine the depth

factor with 2D information based on the mechanisms of HVS. In Chapter 3,

a preliminary saliency model for stereoscopic images was proposed. However,

this model did not deeply explore the HVS characteristics of pop-out effect

and comfort zone and only treated the depth information as a weight. In

this chapter, we deeply analyze two characteristics of the stereoscopic vision:

pop-out effect and comfort zone. Based on two characteristics, we design two

stereo-vision models for visual saliency prediction: one based on stereo con-

trast and the other based on stereo focus. We enhance these two models by

clustering and then integrate them into the final stereoscopic saliency map.

The main contributions of this chapter are:

1. We propose a stereo contrast model for detecting stereo saliency. This

model detects saliency based on color and depth contrast and the pop-out

effect.

2. We propose a stereo focus model for detecting stereo saliency. This model

detects the degree of focus via monocular focus and the comfort zone.

3. We propose an enhancement to increase the performance of the stereo

contrast and stereo focus models.

The rest of the chapter is organized as follows: In Section 4.2, we intro-

duce the two mechanisms of stereo human vision for stereo saliency analysis.

Section 4.3 proposes a new stereo visual saliency prediction method based

on the stereo contrast and stereo focus models. Section 4.4 describes a quan-

titative comparison of the proposed model and state-of-the-art algorithms.

Section 4.5 provides the research outcomes and discussion.

4.2 Methodology

When watching a stereoscopic image, people experience different effects, such

as the pop-out effect and deep-in effect (Beato 2011). When we watch the
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stereoscopic image/video, the pop-out effect occurs when an object looks like

it is going to pop out of the screen and the deep-in effect occurs when an

object looks like it is behind the screen. To obtain these two effects, we

can control the parallax of objects, such as the negative or positive parallax

as in Fig.4.1. This finding is based on the research about human stereo

vision (Zhang, An, Zhang & Shen 2010). These effects make viewers feel

immersed in the image, which is the most attractive aspect of stereoscopic

images. Moreover, studies show that an object that has the pop-out effect

often catches a viewers attention (Häkkinen et al. 2010). This phenomenon

provides a useful depth cue for stereo saliency analysis, since the object

having a pop-out effect is usually more salient than objects that have a deep-

in effect. We assume that the object having pop-out effect has more salient

than other objects. In addition, we use color/depth contrast for the stereo

saliency analysis. Hence, we propose a stereo contrast model to simulate the

pop-out effect by combining the color/depth contrast and pop-out value.

Figure 4.1: Stereo perception based on the different parallax

Another property of stereo vision is the viewing comfort zone based on

binocular information. Viewers may experience fatigue when they spend

a long time watching stereoscopic images or video. The reason may be

accommodation-vergence conflict or too much divergence (Yano, Ide, Mit-
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suhashi & Thwaites 2002). A good stereoscopic image needs to minimize 3D

viewer fatigue. A common cause of 3D fatigue is the vergence-accommodation

conflict (Mendiburu 2009). This conflict increases as the perceived depth of

an object becomes further away from the screen, as shown in Fig. 4.2 (Niu

et al. 2012). The zone close to the screen plane is called the comfort zone.

Photographers usually make sure the more important objects are in the com-

fort zone when they capture a stereoscopic image or video. This is another

depth cue for saliency analysis: the object in the comfort zone tends to be

more salient than other zones. Studies show that the object near the zero dis-

parity plane is more salient than those which are away from the zero disparity

plane, which can be described by the linear formulation (Niu et al. 2012).

When a person watches one salient object, this object should be in the fo-

cus region (Jiang et al. 2013). According to the above phenomenon, in the

perspective of the comfort zone, this object should meet two conditions: one

is that it is located in or near the comfort zone; the second is that it is in

the focus region. Therefore, we use monocular focus and comfort zone to

analyse stereo saliency. The monocular focus assumes that the salient object

is usually located in the focus region. The comfort zone is treated as a weight

to adjust the importance of the object located in focus region. The proposed

stereo focus model is based on the comfort zone and monocular focus.

In order to describe the two mechanisms of the human visual system: pop-

out effect and comfort zone, we have chosen to develop our proposed model on

a combination of the stereo contrast and stereo focus models of the stereo-

vision model. The stereo saliency of an object can be determined by the

values calculated from the stereo contrast and stereo focus models. However,

in some cases, the values obtained by these two models can be substantially

different. For example, if an object has negative parallax and is far from

the comfort zone, or if the object has zero parallax, the two values are quite

different. To obtain the benefits from two models and detect the saliency

for different stereoscopic content, our stereo visual saliency prediction model

considers both the stereo contrast model and the stereo focus model.
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Figure 4.2: Stereo comfort zone based on human stereo vision
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4.3 Proposed stereoscopic visual saliency pre-

diction model

The proposed stereoscopic visual saliency prediction framework is shown in

Fig.4.3. To capture the structural information of the stereoscopic image, we

first adopt a simple linear iterative clustering (SLIC) algorithm (Achanta

et al. 2012) for the segmentation. The SLIC algorithm can segment an in-

put image (left image) into multiple uniform and compact superpixels. By

controlling the number of superpixels in the SLIC algorithm, the image is

segmented into multi-scale images. Then we calculate the saliency values

individually by applying the stereo contrast and stereo focus models for each

superpixel based on the left image and disparity map. An enhancement is

based on clustering and increases the performance of two models according

to the experiments. Multi-scale fusion is then used to form the pixel-level

stereo contrast and stereo focus maps. Last, the two maps are integrated by

Bayesian integration to form the final stereo saliency map.

4.3.1 Pre-processing

In this chapter, we convert the stereoscopic images from the RGB color space

to the Hue-saturation-value (HSV) color space. Compared to the RGB color

space, the HSV colour space is more consistent with the characteristics of

human vision attention, and using it leads to a saliency value with higher

accuracy (Mendiburu 2009).

As mentioned previously, we conduct multi-scale visual saliency predic-

tion. Based on the number of superpixels, the input image (left image) is

segmented into a set of non-overlapping superpixels in the scale s using the

SLIC algorithm. s represents the scale of the segmentation. We chose the

SLIC algorithm as the segmentation method because it is a fast and highly

efficient segmentation algorithm that is sensitive to the boundary of the ob-

ject (Lee & Song 2010). Each superpixel t is described by the mean color

feature {H,S, V }, coordinates of the superpixels {x, y}, and the mean dis-
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Figure 4.3: The framework of the proposed stereo saliency model
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parity value d, xt = {H,S, V, x, y, d}t. The entire image can be represented

as X = [x1, x2, . . . , xN ]s.

4.3.2 Stereo contrast model

We propose the stereo contrast model based on the color/depth contrast

and the pop-out effect to calculate the saliency value (using disparity map

to analyze the pop-out effect). According to the human vision system, the

human attention is sensitive to contrast region that includes color contrast

and depth contrast (Häkkinen et al. 2010). The colors of the salient region are

distinctive and show contrast with the other regions. The depth discontinuity

region may attract the viewers attention when view positions or angles are

changed. Therefore, the distinctive region may attract the viewer’s attention

in color/depth information. According to (Einhäuser & König 2003)(Cheng

et al. 2011), humans pay more attention to those image regions that contrast

strongly with their surroundings. Based on our observation, the distance

between neighboring regions and the area of the region plays an important

role in human visual attention. To simulate the above mechanism, we define

the contrast value to measure the contrast of stereoscopic information.

LetDC(i, j) be the Euclidean distance between the vectorized superpixels

i and j in HSV color space and DD(i, j) be the Euclidean distance between

superpixel i and j in disparity. DC and DD are normalized to the range

[0, 1]. We define the contrast measure C(i, j) between superpixel i and j as:

C(i, j) = (1− a) ∗DC(i, j) + a ∗DD(i, j) (4.1)

where a is a control weight to balance the color and disparity contrast. Al-

though several approaches (Wang et al. 2013)(Lang, Nguyen, Katti, Yadati,

Kankanhalli & Yan 2012)(Fang, Wang, Narwaria, Le Callet & Lin 2014) com-

bining depth saliency maps with 2D visual features have been proposed, any

specific and standardized approaches still lack the combination of saliency

maps from depth with 2D visual features. Reference (Wang et al. 2013)(Lang,

Nguyen, Katti, Yadati, Kankanhalli & Yan 2012) treats depth with the same
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importance as color. Reference (Fang et al. 2014) uses the adaptive weight

for color and depth. In our experiments, we adopt a straightforward ap-

proach to merge color and depth contrast, treating the depth contrast with

the same importance as the color contrast. We set a = 0.5 empirically.

Let L(i, j) be the Euclidean distance between the position of superpixel

i and j normalized to the range [0, 1]. According to the analysis above, we

define the stereo contrast measure S(i, j) between a pair of superpixels i and

j based on color, disparity and spatial information:

S(i, j) = (
C(i, j)

1 + c ∗ L(i, j)) ∗ ωj (4.2)

where ωj is the number of pixels in superpixel j and c is a control value for

spatial information (c = 3 in our implementation). As mentioned above, the

saliency of a superpixel z can be defined by its stereo contrast measure as:

SCR(z) =
∑

i�=z,i∈R
S(z, i) (4.3)

where R is the range and SCR(z) is the saliency value of superpixel z in the

range (All the distance is normalized to [0, 1]. We set R = 0.3 empirically).

Fig.4.4 shows the global and local range. Then, we compute the global and

local saliency maps.

Figure 4.4: Global and local range.

When we compute the stereo contrast saliency value of the current super-

pixel, we do not compute all superpixels in the range. We only choose the

K most similar superpixels in the range and use them to compute the stereo

contrast saliency of the current superpixel. This is based on the experiments

58



CHAPTER 4. STEREOSCOPIC VISUAL SALIENCY PREDICTION
BASED ON STEREO CONTRAST AND STEREO FOCUS

and (Cheng, Zhang, An & Liu 2015), as using the k most similar superpixels

to compute the stereo contrast can prevent the stereo contrast saliency value

of an abnormal superpixel becoming too great. Therefore, in practice, to

measure a superpixels stereo contrast,we simply consider the K most simi-

lar superpixels. If the most similar superpixels are extremely different from

the current superpixel, clearly all image superpixels are extremely different

from it. In other words, to measure a superpixels stereo contrast, there is no

need to incorporate its stereo contrast value in all other superpixels in the

range. We simply consider the K most similar superpixels. If the most sim-

ilar superpixels are extremely different from the current superpixel, clearly

all image superpixels are extremely different from it. Therefore, we search

for the K most similar superpixels k = {1, 2, ..., K}, k ∈ R, where R is all

superpixels in the range. Based on the observation of the experiments, we set

K as 15 empirically. The local-global stereo contrast saliency of superpixel

z is expressed as:

SC ′(z) =
K∑

k=1,k∈R
S(z, k) (4.4)

According to the pop-out effect in Section II, the region that has the

pop-out effect may attract people’s attention. Therefore the pop-out effect

describes the importance of the superpixel in stereoscopic saliency analy-

sis. We treat the pop-out effect as a weight to enhance the stereo contrast

saliency. Based on the reference (Niu et al. 2012) and our experiments, the

superpixel of the pop-out effect can be represented by an exponential func-

tion of the disparity. We use d to represent the disparity, and dz is the mean

disparity for superpixel z which is quantized to [−1,+1]. Let o be the pop-

out value for superpixel z. If dz < 0, it means that the superpixel has a

pop-out effect. The saliency of this superpixel should increase. If dz > 0, it

means the superpixel has a deep-in effect and saliency should decrease. The
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pop-out value can be expressed as follows:

oz = 2−dz (4.5)

We use the local-global stereo contrast and the pop-out value to simu-

late the pop-out effect. Fig.4.5 is an example of stereo contrast map. The

stereo contrast SC(z) relies on the color/depth contrast, distance contrast,

superpixel area and pop-out value, which can be expressed as follows:

SC(z) = SC ′(z) ∗ oz (4.6)

Figure 4.5: A example of stereo contrast map.

4.3.3 Stereo focus model

We propose a stereo focus model based on monocular focus and the comfort

zone. According to the comfort zone as mentioned in Chapter 4-2, human

visual attention can take the initiative to focus on the salient region by using

two monocular focus. Mnocular focus can be detected by the focal blur

(Elder & Zucker 1998) and we add the comfort zone to improve its accuracy.
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For monocular focus, sharp edges of an object may be spatially blurred

when projected on the image plane. The degree of blur model (Jiang et al.

2013) can measure the focus/defocus for the edges of the image by computing

the Differential-of-Gaussian (DOG) operation in a different scale for the edge

pixels. The monocular focus of the edge pixel p is F2D(p). This value is

sensitive to the edge pixels and easy to implement. However, it is a 2D focus

measure and only useful for the edge pixels of the image. For stereoscopic

analysis, we expand this model to measure the edge of stereoscopic focus by

combining the monocular focus and the comfort zone. Then we expand the

stereoscopic focus model from edge to region.

According to our experiments, we use a comfort value to measure the

comfort zone. The comfort value is a weight to indicate the objects impor-

tance by measuring the comfort zone. When multiple objects have zero or

small disparity in the stereoscopic images and are located in the comfort

zone, our observation is that their comfort values are similar. When they are

far away from the zero disparity plane, their comfort values decrease sharply.

Based on this observation, the comfort value complies with a Gaussian dis-

tribution. v(p) denotes the comfort value of pixel p. This can be expressed

as:

v(p) =

⎧⎨
⎩ exp(

d2p
−2σ2

1
) dp ≥ 0

α · exp( d2p
−2σ2

1
) + (1− α) dp < 0

(4.7)

where dp represents the disparity of pixel p. σ1 is the range of positive

and negative disparity. α controls the weight of negative disparity. For

negative disparity, we cannot directly follow the comfort zone model (Niu

et al. 2012) to design our comfort value. The reason for this is that there is

the conflict between the pop-out effect and comfort zone. If we directly use

the comfort zone model (Niu et al. 2012) to measure saliency, in some cases,

stereo contrast model and stereo focus model may give quite different results

for an object with negative disparity, which will reduce the performance our

proposed model. For example, if the pixel has a large negative disparity
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and is far from the comfort value, its pop-out value becomes big, and its

comfort value is small. After the fusion of two models, the results may be

not reliable. To reduce the errors caused by such conflicts, we increase the

importance of the negative disparity in the comfort zone by using to balance

the comfort value of the negative disparity. There are two benefits in this

modification. Firstly, this modification increases the importance of the pop-

out effect for the object with the negative disparity. Secondly, it still keeps

a high importance for the object in the comfort zone in stereoscopic saliency

analysis. According to our experiments, our modification for the comfort

zone works in most cases and improves the performance of the proposed

model.

We set the comfort value as a weight, because the comfort value describes

the importance of the stereo saliency analysis. We define the stereo focus

value of the edge pixels p by combining the monocular focus value F2D with

the comfort value. It is expressed as:

F3D(p) = F2D(p) · v(p) (4.8)

It would be ideal to analyze the saliency for each object as a whole. How-

ever, it is difficult to segment an object accurately. Therefore, we compute

the stereo saliency at the superpixel level instead. For each stereo focus

value of the edge pixels, we filter by using a Gaussian kernel with σ, equal

to 1 degree of visual angle. This processing can effectively reduce the noise,

such as isolated point. The stereo focus value of superpixel t relies on the

stereo focus degree of all its pixels. Further, our observation is that a region

with a sharper boundary usually stands out as being more salient. We set

the boundary sharpness as a weight value, which can be represented by the

stereo focus value of the boundary pixels. The stereo focus value SF (t) of

superpixel t is formulated as:

SF (t) =
1

m

∑
p∈Bt

F3D(p) · 1
n

∑
q∈t

(F3D(q)) (4.9)

Bt represents all the edge pixels in superpixel t, m is the number of edge

62



CHAPTER 4. STEREOSCOPIC VISUAL SALIENCY PREDICTION
BASED ON STEREO CONTRAST AND STEREO FOCUS

pixels and n is the number of all the pixels in superpixel t. The first term on

the right-hand side of Eq. 4.9 is the average value of the stereo focus value for

all the edge pixels. The second term is the average value of the stereo focus

value for all the pixels in superpixel t. The stereo focus model simulates the

stereoscopic focus vision by combining the monocular focus and the comfort

value. Fig.4.6 shows the examples of the stereo focus maps.

Figure 4.6: The examples of the stereo focus maps.

4.3.4 Enhancement

The stereo contrast model and stereo focus model are superpixel-level. To

make the salient region more distinctive and separated easily, we propose

an enhancement based on clustering for the two models. In practice, we

use the k-means algorithm to cluster N superpixels to K clusters via the

value of superpixel t. For simplicity, we use SV to represent SC and SF

(SV = SC = SF ). To enlarge the difference between neighboring clusters,

each value of superpixel t belonging to cluster k(k = 1, 2, 3 . . . , K) is modified

by considering its own value and the other superpixels in cluster k:

Sm(t) = δ

Nc∑
i=1,ki �=t

rtkiSVki + (1− δ)SVt (4.10)

where {k1, k2, . . . , kNc} denotes the Nc superpixels in cluster k and t is one

superpixel in cluster k. δ is the weight parameter. Sm(t) is the value of
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superpixel t belonging to cluster k. rtki is a weight value that relies on the

value of superpixels t and ki. The first term on the right-hand side of the

equation is the weighted average of all the superpixels without superpixel t in

cluster k, and the other is the weighted value of superpixel t. The weighted

value is more sensitive to the spatial information of superpixel pairs:

rtki =
exp SD(ki,t)

−σ2
2

Nc∑
i=1,ki �=t

exp SD(ki,t)

−σ2
2

(4.11)

SD(ki, t) is the spatial distance between the superpixels ki and t. σ2 is a

weight to control the range of the spatial information. After re-calculating the

value of each superpixel, the values of the important superpixels in cluster k

are enhanced. Fig. 4.7 gives an example in which two maps computed by the

stereo contrast and stereo focus models are processed by the enhancement.

Figure 4.7: An example of the proposed visual saliency prediction. (a) is the

original left image and depth map. (b) shows the maps computed by the

stereo contrast and stereo focus models. (c) shows the maps after clustering.

(d) Final saliency map and ground truth.

Since the content of each superpixel may have more than one object or

texture, a single scale segmentation scheme is not suitable for objects of

different sizes. We conduct multi-scale segmentation based on controlling

the number of superpixels in the SLIC algorithm. At each superpixel scale

size layer, both the stereo contrast and stereo focus models are individually
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applied to calculate their respective saliency values. A multi-scale pixel-level

fusion is introduced to fuse the results for each model. Through this fusion,

the saliency value for each pixel is calculated based on multi-scale saliency

and its texture information.

To deal with the values in the different scales, we adopt (Li, Lu, Zhang,

Ruan & Yang 2013) fusing the multi-scale layered value. This method consid-

ers the multi-scale value and its textural information, which uses the textural

feature of the pixel and its corresponding superpixel as the weight value to

average the multi-scale value. For each pixel, the saliency value relies on

the saliency value of each scale and its corresponding weight. The weight

considers the textural information that relies on the difference between the

current pixel value and superpixel value.

4.3.5 Bayesian integration scheme

At this stage, two saliency maps have been built based on the stereo contrast

and stereo focus model. The next step is to integrate them; however, as

has been discussed (Gopalakrishnan et al. 2009), good individual saliency

maps may become worse maps when they are combined by using weights.

Therefore, we adopt a Bayesian model to integrate the two saliency maps (Lu

et al. 2016). For the Bayesian model, each pixel’s saliency can be estimated

by the posterior probability. The Bayesian integration approach is suitable

for dealing with two saliency maps. When we compute one saliency map,

it treats the other saliency map as the prior while the current saliency map

computes the likelihood. The specific steps are as follows: when we compute

the saliency map S
′
2 based on the Bayesian formula, using one saliency map

S1 computes the prior probability and using the other saliency S2 computes

the likelihood. After that, we use the saliency maps in the formula in the

opposite way. In other words, S2 then computes the prior and S1 computes

the likelihood. In this way, the saliency map S
′
1 is computed. Finally, S

′
1 and

S
′
2 are combined to obtain the final saliency map. Using this approach, it is

possible to avoid reintroducing the noise in different saliency features, thereby
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obtaining a more accurate posterior probability. This model is very robust

with regards to various types of images. After Bayesian integration, we use

center bias to conduct post-processing to obtain the final stereo saliency map,

because many datasets place the salient object or region in the center of the

image (Borji et al. 2015). Fig. 4.7 is an example of the saliency map after

Bayesian integration and center bias.

The complete visual saliency prediction algorithm can be summarized as:

Table 4.1: The Pseudo-code

Algorithm: Stereo visual saliency prediction based on

stereo contrast and stereo focus

Input: Left image and disparity map

Output: Saliency Map

1. Multi-scale segmentation, superpixel number {600, 800, 1000, 1200}
2. For each scale X = [x1, x2, . . . , xN ]s

3. For each superpixel t = [H,S, V, x, y, z]t

4. Stereo contrast: SC(t), in Eq.4.6

5. Enhancement for stereo contrast: Sm c(t), in Eq.4.10

6. Stereo focus: SF (t), in Eq.4.9

7. Enhancement for stereo contrast: Sm f(t), in Eq.4.10

8. After multi-scale fusion, two pixel-level saliency maps are computed:

Si (i = 1, 2)

9. Bayesian integration scheme: S(S1, S2)

4.4 Results and discussion

In this section, we evaluate the performance of our proposed model on

two eye-tracking datasets (Wang et al. 2013)(Lang, Nguyen, Katti, Yadati,

Kankanhalli & Yan 2012). One supplies high-quality stereoscopic images

and the other supplies low-quality stereoscopic images generated by Kinect-

1. First, we present the quantitative metrics of evaluation for the proposed
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method in Section 4.4.1. To demonstrate the effect of the different com-

ponent combinations of our algorithm, a performance comparison is given

in Section 4.4.2. Last, we give a performance evaluation by comparing the

proposed methods to state-of-the-art methods in Section 4.4.3.

4.4.1 Experimental setup

Our stereo saliency framework is based on the superpixel. In the experi-

ment, we set the segmentation scale of superpixels in the SLIC algorithm.

The number of superpixels were set as {600, 800, 1000, 1200}. The SLIC al-

gorithm automatically adjusts the shape of each superpixel based on the

segmentation scale and texture information of the image, which is sensitive

to the boundary of the object. The main parameters of our proposed method

are the number of clusters K and δ in Eq.4.10. In the experiment, we var-

ied K(K = 6, 8, 10, 12) and δ (δ = 0.4, 0.5, 0.6, 0.7), and observed that the

saliency results were insensitive to either parameter. We set the number of

clusters K = 10 and δ = 0.5. The parameters of σ1 and σ2 are given in Eq.4.7

4.11 ,we differed these values to [0.01, 3] and observed the saliency results.

Then we set σ2
1 = 0.8 and σ2

2 = 0.6. In Eq. 4.7, α is set to α = 0.5, same to

(Cheng et al. 2015).

All depth map are supplied by datasets, which is generated by the dif-

ferent depth-capture sensors. We used one of the databases from (Wang

et al. 2013). This database is consistent with the characteristics of the HVS,

and includes 18 high-quality stereoscopic images of various types (e.g. indoor

scenes, outdoor scenes, and scenes containing various numbers of objects).

Some images in the database were collected from the Middlebury 2005/2006

dataset (Scharstein & Pal 2007), which has high accuracy depth maps, while

others were produced from videos recorded using a Panasonic AG-3DA1 3D

camera, which supplies high-quality left/right images. To avoid 3D fatigue

resulting from conflict in the depth field (for example, one object is seen by

the left eye but missed by the right eye), the degree of vergence in human vi-

sion was considered within the stereoscopic 3D viewing environment in this
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eye-tracking experiment. The disparity of the stereoscopic images used is

within the comfortable viewing zone. The conflict in different depth fields

will not be detected by observers during the eye tracking experiments. The

gaze points are recorded by the eye-tracker and processed by a Gaussian ker-

nel to generate the fixation density maps, which are used as the ground-truth

maps.

The other eye-tracking database was published in (Lang, Nguyen, Katti,

Yadati, Kankanhalli & Yan 2012). This database supplies low-quality stereo-

scopic images compared with (Wang et al. 2013) and has 600 stereoscopic

images that include outdoor and indoor scenes. These stereoscopic images

generated by Kinect-1 are diverse in term of the numbers and sizes of ob-

jects and the degree of interaction or activity depicted. The stereoscopic

images only have a resolution of 640x480 and may have some noise because

the depth map by the Kinect-1 has some holes and need to be smoothed.

The stereoscopic image pair is produced by pre-processing, calibration and

post-processing. The eye-tracking data are captured in both 2D and 3D free-

viewing experiments by the eye-tracker from 80 participants (ranging in age

from 20 to 33 years old). Human fixation maps are constructed from the

fixations of viewers to globally represent the spatial distribution of human

fixations. Then a Gaussian kernel is used to obtain the continuous fixation

density maps as the ground-truth maps. This dataset supplies 2D and 3D

fixation maps. To facilitate a comparison, we used 3D fixation maps as the

stereoscopic 3D ground-truth maps.

To quantitatively evaluate the performance of the proposed model, we

applied similar quantitative measuring methods to (Wang et al. 2013). The

performance of the proposed model was measured by comparing the saliency

map with the ground-truth map supplied by the database. Because there

are two images (left and right) for any stereoscopic image pair, we used the

saliency map of the left image for comparison (Wang et al. 2013). The area

under the receiver operating characteristics curve (AUC) and the correlation

coefficient (CC) were used to evaluate the quantitative performance of the

68



CHAPTER 4. STEREOSCOPIC VISUAL SALIENCY PREDICTION
BASED ON STEREO CONTRAST AND STEREO FOCUS

proposed stereo visual saliency prediction model. Of these measures, the

AUC is the area under the receiver operating characteristics (ROC) curve

(DAVID 1966). Using this score, human fixations were considered to be

the positive set, and some points from the image were sampled to form the

negative set. The saliency map S was then treated as a binary classifier to

separate the positive samples from the negatives. By thresholding over the

saliency map and plotting the true positive rate vs. the false positive rate,

an ROC curve was generated for each image. Then, the ROC curves were

averaged over all images and the area underneath the final ROC curve was

calculated as the AUC (Bruce & Tsotsos 2006). Perfect prediction corre-

sponds to a score of 1 while a score of 0.5 indicates a level of chance. To

compute the AUC, each eye fixation density map and saliency map were

normalized to [0,1]. In practice, we set different thresholds from [0.01, 1].

The CC measures the strength of a linear relationship between the predicted

saliency map and the ground truth saliency map. When CC is close to +1/1

there is almost a perfectly linear relationship between the two variables.

4.4.2 Performance comparison with different combina-

tions of components.

Four main components were compared: stereo contrast, stereo focus, and

enhancement and integration via the Bayesian scheme. The performance of

different combinations of components is shown in Table 4.1 and Table 4.2.

SCM is the saliency map based on stereo contrast followed by multi-scale

fusion. SFM is the saliency map based on stereo focus followed by multi-

scale fusion. SCE is the saliency map based on stereo contrast followed

by enhancement. SFE is the saliency map based on stereo focus, followed

by the enhancement. OurWE is the proposed stereo saliency map without

enhancement. Our model is the proposed stereo saliency map.

Table 4.1 indicates that SFM performs better than SCM on the database

(Wang et al. 2013) in AUC and CC. Table 4.2 shows that SFM performs bet-

ter than SCM on the database (Lang, Nguyen, Katti, Yadati, Kankanhalli
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Table 4.2: Comparison between different component orders in database

(Wang et al. 2013)

Different combinations AUC(→ 1) CC(→ 1)

of components

SCM 0.588 0.198

SFM 0.648 0.257

SCE 0.598 0.213

SFE 0.65 0.258

OurWE 0.864 0.557

Our model 0.881 0.656

Table 4.3: Comparison between different component orders in database

(Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan 2012)

Different combinations AUC(→ 1) CC(→ 1)

of components

SCM 0.619 0.148

SFM 0.533 0.115

SCE 0.628 0.154

SFE 0.541 0.116

OurWE 0.849 0.37

Our model 0.861 0.419
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& Yan 2012) with AUC and CC. The two models performed differently on

each database, so using either one to form the saliency map would not result

in good performance. Tables I and II show that the enhancement slightly

improves the performance of the two models with AUC and CC. However,

if we remove the enhancement from our proposed model, the performance

of our model will be affected. In order to verify the improvement of the

enhancement, we conduct a significance test for Our model and OurWe. For

the dataset in (Wang et al. 2013), we use a paired-samples t-test to com-

pare the average performance of our model with the average performance

of the OurWE model. For AUC, the improvement of the enhancement is

not significant (t(18) = 1.61, P (T <= t) = 0.126, P < 0.05). For CC, the

improvement of the enhancement is significant (t(18) = 3.09, P (T <= t) =

0.0067, P < 0.05). For the dataset in (Lang, Nguyen, Katti, Yadati, Kankan-

halli & Yan 2012), we use an ANOVA to compare the average performance

of our model with the average performance of the OurWE model. The im-

provement of the enhancement is significant in AUC (F = 14.89, P−value =
0.00012, P < 0.05) and CC (F = 114.948, P−value = 1.13E−25, P < 0.05).

According to the results of the significant test, we can see there are three pos-

itive results and one negative result. We believe that the enhancement can

increase the performance of our proposed model slightly.

From Tables 4.1 and 4.2, we can see that the contribution of stereo focus

varies. In Table 4.1, the stereo focus has a more important contribution than

the stereo contrast because the objects of the stereoscopic image from the

database in (Wang et al. 2013) lie in different focus regions and the stereo

focus works more effectively. In Table 4.2, we can see that the contribution

of the stereo focus is less than the stereo contrast because the content of

the database in (Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan 2012) is

more sensitive to the color/depth contrast. Thus, to deal with these different

types of stereoscopic images, we designed our model based on both stereo

focus and stereo contrast. Fig.4.8 shows examples of the proposed visual

saliency prediction. We notice that the small cap is not detected as a salient
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region in the stereo focus model. The stereo focus is related to the monocular

focus and comfort value. In this case, the zero disparity plane is at the big

cap according to our comfort value. The monocular focus model detects

the big cap as the focus region and the small cap is out of the focus region.

Therefore, the salient region is the big cap region and the small cap is not the

salient region in the monocular focus model. Even if we increase the weight of

the comfort value (because the small cap is near the zero disparity plane and

it pops out), it is not detected as the salient region according to the proposed

stereo focus model. In stereo contrast model, the small cap is detected as the

salient region because of the pop-out effect. Although the conflict between

the stereo focus and stereo contrast still exists, our proposed model obtains

the acceptable result that has the benefits from the stereo focus and stereo

contrast models. This case shows that the stereo focus model may not work

in the object with the negative disparity. For improving the performance of

the proposed model, it is necessary to take the stereo contrast model into

consideration.

4.4.3 Comparison of our proposed method with other

methods.

First, we compared the proposed model with other state-of-the-art methods

(Wang et al. 2013). We compare it with 2D saliency methods, the mixed mod-

els and stereoscopic 3D saliency models. The 2D saliency methods includes

IT (Itti et al. 1998), AIM (Bruce & Tsotsos 2005b), SR (Hou & Zhang 2007)

and GBVS (Harel et al. 2006) (denoted as 2D model in Table 4.4). The mixed

model means combining these 2D models with the depth saliency models pro-

posed by (Huynh-Thu et al. 2011) (denoted as 2D × depth (chamaret)) and

(Wang et al. 2013) (which have two models denoted as 2D + depth contrast

and 2D +DSM). We used a Bayesian integration (Lu et al. 2016) to process

the 2D model and depth contrast saliency. For a fair comparison, we added

center bias to process the results of the Bayesian integration. 2D +DSM

has considered the center-surrounded mechanisms. We then compared our
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Figure 4.8: An example of the proposed visual saliency prediction
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proposed model with the stereoscopic 3D saliency model proposed by (Iatsun

et al. 2015) (denoted as Stereo Model). We should note that the stereo model

in (Iatsun et al. 2015) has already taken the center bias into consideration.

From Table III we can see that the performance is not improved significantly

using the depth information as a weighted value (2D × depth (chamaret)) in

AUC and CC. Directly using depth information as a weighted value for the

stereo saliency analysis does not achieve a good result because the method

does not consider the actual characteristics of the depth information. By con-

trast, the performance of the 2D + DSM and 2D + depth contrast methods

are better than the 2D × depth (chamaret), precisely because both consider

the characteristics of the depth information. Bayesian integration and cen-

ter bias do increase the performance compared with 2D + Depth Contrast

methods. The performance of our proposed framework shows a significant

increase over all the methods. The 2D + DSM method demonstrated the

best performance against four comparative stereo saliency models. As shown

in Fig 4.9, IT + DSM mainly detects the contour of the saliency area in the

images. In AIM + DSM and SR + DSM, some background areas are detected

as the saliency area in the images. By contrast, our stereo visual saliency

prediction model estimates the saliency region accurately with regard to the

ground truth map from the eye-tracking data.

Second, we used the published eye-tracking datasets in (Lang, Nguyen,

Katti, Yadati, Kankanhalli & Yan 2012) with 600 3D images, including out-

door and indoor scenes, to evaluate performance. We used the 3D fixation

maps as the ground-truth maps. Because we could not find the code of

depth saliency map (DSM) in (Lang, Nguyen, Katti, Yadati, Kankanhalli &

Yan 2012), we could only compare our results with the best methods listed

in their original paper. The comparative model is DSM, and the 2D saliency

modes are IT(Itti et al. 1998), AIM (Bruce & Tsotsos 2005b), FT(Achanta,

Hemami, Estrada & Susstrunk 2009), GBVS(Harel et al. 2006), ICL(Hou &

Zhang 2009), LSK(Seo & Milanfar 2009), LRR(Lang, Liu, Yu & Yan 2012).

To compare the results of these models, we quantitatively evaluated their
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Table 4.4: Comparison between the proposed framework with others. DSM

represents the depth saliency map in (Wang et al. 2013)

Model AUC(→ 1) CC(→ 1)

2D Model

IT 0.538 0.137

AIM 0.638 0.326

SR 0.63 0.291

GBVS 0.809 0.54

2D×Depth(Chamaret)

IT × depth 0.54 0.137

AIM × depth 0.636 0.299

SR × depth 0.634 0.292

GBVS × depth 0.771 0.515

2D + Depth Contrast

IT + Depth Contrast 0.596 0.211

AIM + Depth Contrast 0.644 0.343

SR + Depth Contrast 0.662 0.307

GBVS + Depth Contrast 0.799 0.53

Bayesian Integration

IT ⊕ Depth Contrast 0.668 0.254

AIM ⊕ Depth Contrast 0.713 0.336

SR ⊕ Depth Contrast 0.714 0.369

GBVS ⊕ Depth Contrast 0.787 0.511

Center Bias

CB(IT ⊕ Depth Contrast) 0.798 0.547

CB(AIM ⊕ Depth Contrast) 0.830 0.61

CB(SR ⊕ Depth Contrast) 0.844 0.629

CB(GBVS ⊕ Depth Contrast 0.856 0.632

2D + DSM

Model 1 0.656 0.356

Model 2 0.675 0.424

Model 3 0.67 0.41

Stereo Model

CB(CNSP) 0.79 0.48

CB(CNMC) 0.78 0.63

CB(GNLNS) 0.77 0.65

Our Model 0.881 0.656
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Table 4.5: Comparison between different 3D viusal saliency prediction mod-

els. “+” means the combination by simple summation by study (Lang,

Nguyen, Katti, Yadati, Kankanhalli & Yan 2012). “×” means the combina-

tion by point-wise multiplication (Lang, Nguyen, Katti, Yadati, Kankanhalli

& Yan 2012). DSM represents the depth saliency map in (Lang, Nguyen,

Katti, Yadati, Kankanhalli & Yan 2012).

Component

combination

AUC(→ 1) CC(→ 1)

IT+DSM 0.849 0.375

IT×DSM 0.854 0.398

GBVS+DSM 0.851 0.39

GBVS×DSM 0.855 0.413

AIM+DSM 0.85 0.342

AIM×DSM 0.85 0.391

FT+DSM 0.797 0.315

FT×DSM 0.745 0.268

ICL+DSM 0.846 0.385

ICL×DSM 0.808 0.325

LSK+DSM 0.845 0.379

LSK×DSM 0.824 0.351

LRR+DSM 0.856 0.385

LRR×DSM 0.846 0.395

Our model 0.861 0.419
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Figure 4.9: Stereo comfort zone based on human stereo vision. DSM repre-

sents the depth saliency map in (Wang et al. 2013)

.

performance on the database of the proposed method, using AUC and CC

(Ouerhani, Von Wartburg, Hugli & Muri 2003). The experimental results

are shown in Table IV. Note that the AUC and CC values of other existing

models were taken from the original paper (Lang, Nguyen, Katti, Yadati,

Kankanhalli & Yan 2012). From this table, we see that the performance

of our proposed model is the best out of 15 stereo visual saliency predic-

tion models. Here, we notice that our proposed model does slightly better

than the GBVS×DSM. The reason is that sometimes the pop-out effect and

comfort zone will fail because the salient region may be located at the back-

grounds or near the background. Therefore, although the results of our

proposed model are better than other existing models, it is not much better

than GBVS×DSM.

4.5 Conclusion and discussion

The model in Chapter 3, we only use the combination of two characteris-

tics of stereoscopic vision as an enhancement. It does not fully explore the
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stereoscopic characteristics.

In this chapter, we explore two characteristics of stereoscopic vision and

propose stereo visual saliency prediction based on stereo contrast and stereo

focus. Stereo contrast is a product of color and depth contrast and the pop-

out effect, which describes the contrast in objects. Stereo focus is based on

the focus mechanism of human stereo vision, which describes the region of

human focus. After adopting the stereo contrast and stereo focus models for

the stereoscopic saliency analysis, the multi-scale fusion is used to form the

respective maps of two models. Lastly, both saliency maps were integrated

using Bayesian integration. Experimental results show that our proposed

model can process stereoscopic images from different stereoscopic capture

devices to achieve the best performance on two eye-tracking databases com-

pared to existing methods.

In the present study, even if the performance of the proposed model is

good, our model still suffers from some limitations. The main one is that

in some cases, the pop-out effect and comfort zone may fail in stereoscopic

saliency analysis. For example, if the salient region is located near the back-

ground, the performance of our model will decrease. The reason for this is

that this case is not suitable for our assumption that the salient region should

be located in the comfort zone or have the pop-out effect. In the next chap-

ter, we will explore more mechanisms of HVS for saliency analysis. We try

to find out how to deal with the conflict between pop-out effect and comfort

zone, and how to improve the accuracy of the salient region if the pop-out

effect and comfort zone are not working very well. Additionally, we will try

more features to improve our proposed model in different color spaces.
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Chapter 5

A Computational Model for

Stereoscopic Visual Saliency

Prediction

The characteristics of the human visual system can be used in stereoscopic

saliency analysis, which is proved by the previous chapter. However, the

proposed stereoscopic saliency model in Chapter 4 still suffers from some

limitations. For example, in some cases, it may fail in stereoscopic saliency

analysis. The reason is that the pop-out effect and comfort zone can not

explain all phenomenon of stereoscopic saliency analysis. In this chapter,

we propose a computation model for stereoscopic visual saliency prediction,

which can overcome these limitations effectively.

5.1 Introduction

Research into 3D saliency models is still at an early stage compared to the sig-

nificant progress made with 2D saliency models, and is generally considered

to be an explored direction in HVS. In some cases, 3D saliency can be effec-

tively detected by simply applying a 2D saliency model (Lang et al. 2010).

However, 2D models ignore depth information, which plays an important
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role in saliency analysis (Desingh, Krishna, Rajan & Jawahar 2013)(Peng

et al. 2014). Some researchers have proposed using depth contrast to ana-

lyze stereoscopic saliency (Song, Liu, Du, Sun, Le Meur & Ren 2017)(Wang

et al. 2013). However, these models do not consider the characteristics of

human stereo vision; they merely treat depth information as a fourth chan-

nel. Stereopsis refers to the perception of depth through retinal disparity,

which occurs when two slightly different images are projected onto the retina

of each eye in binocular vision (Poggio & Poggio 1984). Depth information,

also known as disparity or a depth map, often enables people to distinguish

objects from a background with similar visual attributes. Several charac-

teristics of HVS were discovered by analyzing depth information, including

the pop-out effect and the comfort zone (Beato 2011)(Lambooij, Fortuin,

Heynderickx & IJsselsteijn 2009). Recently, these characteristics have been

used to improve the accuracy of stereoscopic saliency analysis and prediction

(Niu et al. 2012)(Lin, Lin, Zhao, Xiao & Tillo 2015). Additionally, in some

cases, the salient object may be located in or near the background region,

which can not be explained by the pop-out effect and comfort zone (Cheng

et al. 2017) (in this chapter, we call it the background effect).

Our approach capitalizes on these recent developments. First, we analyze

the pop-out effect, the comfort zone, and the background effect (hereafter re-

ferred to as PE-CZ-BE) to deeply exploit the depth information in images.

Then, we use a control function to govern each mechanism respectively. Fi-

nally, we propose a strategy for selecting the most suitable models based on

the content of the image.

The main contribution of this chapter follow:

1. We propose three models to describe the PE-CZ-BE mechanisms with the

control functions to enhance these models.

2. We propose a strategy for choosing the most suitable models based on the

content of the image.

The rest of the chapter is organized as follows: Section II introduces

related work. Section III proposes a new stereoscopic visual saliency predic-
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tion method. Section IV presents a quantitative comparison of the proposed

model and the state-of-the-art algorithms. Section V concludes this chapter.

5.2 Related work

Saliency models for stereoscopic images can be divided into two categories

based on their use of the depth information (Cheng et al. 2017). One cat-

egory relies on a depth saliency map (DSM-based model). It extends 2D

saliency models into 3D models using the depth saliency map (DSM). Ra-

menahalli et al. (Ramenahalli & Niebur 2013) extended Itti’s model to treat

depth information as an additional channel. This model uses color, intensity,

orientation, and depth channels to generate a 3D saliency map. The charac-

teristics of stereoscopic vision, such as comfort zone and the pop-out effect

(Häkkinen et al. 2010), are not considered in this model. However, Niu et al.

(Niu et al. 2012) did incorporate these features into their saliency model, al-

though their method might not produce optimal results if the salient region

is located in the background. In our earlier work (Cheng et al. 2015), we

proposed a preliminary saliency model for stereoscopic images that considers

depth bias, based on the center bias, the pop-out effect, and the comfort zone.

However, this model only treats depth information as a weight and does not

consider the relationship between the pop-out effect and the comfort zone.

Therefore, developing a suitable mechanism for stereoscopic saliency analysis

is essential.

The second category considers the relationship between the depth feature

and the other 2D features. This type of stereoscopic saliency model is usually

based on multiple features (multi-feature models), such as depth, contrast,

shape, and spatial information. Fan et al. (Fan et al. 2014) proposed using

region-level depth, color, and spatial information to measure saliency. Peng

et al. (Peng et al. 2014) proposed an RGB-D model based on both depth

and appearance cues derived from color and depth contrast features. While

multi-feature analysis has been shown to improve the performance of stereo-
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scopic saliency prediction models (Bruce & Tsotsos 2005a), it ignores the

mechanisms of HVS.

Neither of these categories fully explains all the phenomena of human

visual attention. DSM-based models efficiently extract the individual 2D

features and depth information for saliency detection but ignore the rela-

tionships between depth and the other features. Multi-feature models con-

sider depth and other features but choosing and combining suitable features

is a difficult task. As a result, some researchers have designed stereoscopic

saliency models that fuse more than one model to increase prediction per-

formance. Iana et al. (Iatsun et al. 2015) proposed a stereoscopic saliency

model by considering two spatial saliency models one based on points of in-

terest, the other based on depth-color saliency. Jiang et al.(Jiang et al. 2015)

saliency model fuses three models: a 2D saliency model, a depth saliency

model, and a visual comfort saliency model. The features extracted by the

different models reflect different cues for saliency detection, and performance

is improved by fusing the different features (Awh & Pashler 2000). However,

none of these models consider background effect.

The work of these researchers does show that HVS mechanisms can im-

prove the accuracy of stereoscopic saliency predictions. The key points are

how to build the model based on these mechanisms and how to use them for

stereoscopic saliency analysis. Some of the above models incorporate the pop-

out effect and the comfort zone (Niu et al. 2012)(Cheng et al. 2015) but do

not consider the conflicts between these features (Cheng et al. 2017). Com-

fort zone models assume that objects in the comfort zone are more salient

than objects in other zones (Niu et al. 2012)(Jiang et al. 2015), and the

pop-out effect assumes that objects with a pop-out effect are usually more

salient (Zhang, Jiang, Yu, Chen & Dai 2010)(Kobyshev, Riemenschneider,

Bódis-Szomorú & Van Gool 2016). In some situations, combining both these

concepts of salience can create conflicts. If an object with a pop-out effect is

far from the comfort zone, it will have low salience even though its salience

should be high. Our comfort zone model considers such conflicts. Addition-
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ally, pop-out effect and comfort zone do not fully explain all the phenomena

in human visual attention (Cheng et al. 2017). For example, if a salient ob-

ject is located in or near a background region, relying solely on pop-out effect

and comfort zone may fail to distinguish the object as it conforms to neither

of these features. The reason is that the furthest object receives a few more

fixations than the one or two objects in front of it (Wang et al. 2012)(Wang

et al. 2013). In this chapter, we define this phenomenon as the background

effect. The background effect can explain salience in a way that the pop-out

effect and comfort zone cannot. Thus, our stereoscopic saliency model also

takes the background effect into account.

To address these two shortcomings in existing models, we based our

stereoscopic saliency model on the pop-out effect, comfort zone, and back-

ground effect. Our model actually comprises three models, each describing

one aspect of saliency distribution, The comfort zone model considers po-

tential conflicts between the pop-out effect and comfort zone. The control

function is used to adjust the three models independently. The relationship

between the three models is not mutually exclusive. One, two, or three mod-

els may appear in one image. To accurately determine which mechanism

the image conforms to, we have devised a selection strategy that chooses the

appropriate combination of models based on the content of the image. Our

approach is implemented within a framework based on multi-feature anal-

ysis. The framework considers surrounding regions, contrast, and points of

interest to further enhance prediction. A series of experiments on two recent

eye-tracking datasets show that our proposed method outperforms several

state-of-the-art saliency models.

5.3 The proposed computational model for

stereoscopic visual saliency

This chapter presents a computational model for stereoscopic saliency anal-

ysis. This model considers three phenomena of human vision, the pop-out
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effect, the comfort zone, and the background effect, to supply possible distri-

butions of the salient region. Our approach combines a multi-feature stereo-

scopic visual saliency model as input with the proposed model to generate a

stereoscopic saliency map that is then used to predict salient objects.

5.3.1 PE-CZ-BE mechanisms

The PE-CZ-BE mechanisms provide useful cues for stereoscopic saliency

analysis.

Objects with the pop-out effect look like they are going to pop out of the

screen and the deep-in effect occurs when an object looks like it is behind

the screen (Zhang, An, Zhang & Shen 2010). When watching a stereoscopic

image, viewers feel immersed in the scene because of these effects. Current

studies show that objects with the pop-out effect catch viewers attention

more than objects with the deep-in effect (Sheng, Liu & Zhang 2016), which

provides a useful cue for stereoscopic saliency analysis. We refer to this

phenomenon as PE.

Further, viewers may experience fatigue or feel uncomfortable when watch-

ing stereoscopic images or video for long periods of time. This has been at-

tributed to accommodation-vergence conflict or too much divergence (Chang,

Hsueh, Tung, Jhou & Lin 2016), and comfort zones are thought to minimize

3D viewer fatigue (Jang, Park, Lee, Han, Donghyun & Song 2017). The

zone close to the zero-disparity plane (where the disparity of the pixels in

the zero-disparity plane is zero) is called the comfort zone. Objects located

in the comfort zone can be observed for long periods without causing fa-

tigue. By contrast, objects that are far away from the comfort zone may

cause viewer fatigue or discomfort. This phenomenon also provides a useful

cue for stereo saliency analysis: objects close to the zero-disparity plane tend

to be more salient than the objects far away from the zero-disparity plane

(Niu et al. 2012). This phenomenon is referred to as CZ.

The pop-out effect and the comfort zone are able to explain most of the

phenomena in human visual attention. However, in some cases, the furthest
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object may receive a few more attention than the one or two objects in front

of it (Wang et al. 2012)(Wang et al. 2013). For example, if the salient region

is located near or in the background, the pop-out effect and comfort zone do

not produce good results according to our experiments. This phenomenon

is referred to as the background effect (BE), and it supplies another useful

cue: objects with a background effect may be more salient than the objects

in front.

The relationships between these three phenomena are not mutually ex-

clusive; an image may include one or more of these phenomena, as shown in

Fig.5.1. Therefore, to accurately determine the most suitable phenomena for

identifying the salient object(s) in the image belongs to, a selection strategy

based on the content of the image is needed.

Figure 5.1: Examples of the different combinations of the mechanisms. The

first row depicts the left version of several stereoscopic images. The second

row shows the corresponding depth maps. The last row shows the ground

truths.
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5.3.2 The three modules based on the PE-CZ-BE mech-

anisms

As mentioned above, a region with a pop-out effect (PE) is likely to attract

attention. Therefore, a pop-out effect suggests an important object in stereo-

scopic saliency analysis. We treat the pop-out effect as a weight to enhance

the objects saliency. Based on the work in (Niu et al. 2012) and our experi-

ments, the pixels that make up the pop-out effect can be represented using an

exponential function of their disparity. We use dp to represent the disparity

of pixel p, which is normalized to [−1,+1]. Let PE ′ be the pop-out value for

pixel p. If d < 0, the pixel has a pop-out effect. The saliency of this pixel

should be increased and, if d > 0, it means the pixel has a deep-in effect and

saliency should be lowered. The pop-out value can be expressed as

PE ′(p) = exp(−dp) (5.1)

The comfort value CZ ′ is used to measure the comfort zone (CZ). The

comfort value is a weight indicating the objects importance by measuring

the comfort zone. Through observation, we find that when multiple objects

in a stereoscopic image have zero or a small disparity and are located in

the comfort zone, they have similar comfort values. As their distance to the

zero-disparity plane increases, comfort values decrease sharply. Based on this

observation, the comfort value complies with a Gaussian distribution, which

can be expressed as

CZ ′(p) =

{
exp(

d2p
−2σ2 ) dp ≥ 0

α · exp( d2p
−2σ2 ) + (1− α) dp < 0

(5.2)

where σ is the range of positive and negative disparity. We use α to control

the weight of the negative disparity.

We should notice that for reducing the conflict between pop-out effect and

comfort zone, we can not directly use the comfort zone model (Niu et al. 2012)

to design our comfort value. This is because, in some cases, the pop-out value

and the comfort value may produce very different results for an object with
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negative disparity, which reduces the performance of the model. For example,

a pixel with a large negative disparity that is far from the comfort value

returns a high pop-out value and a low comfort value. Hence, the results

may be not reliable when the two models are combined. To reduce such

errors, we use α to balance the negative disparity and increase the importance

of the comfort value. There are two benefits to this modification. First,

it increases the importance of the pop-out effect for objects with negative

disparity. Second, it maintains high importance for objects in the comfort

zone. According to our experiments, this modification works, in most cases,

and improves the performance of the proposed model.

According to the description of BE and our experiments, we believe the

background effect as a replica of the pop-out effect. Denoted as BE ′, the

background value can be represented by an exponential function of disparity:

BE ′(p) = exp(dp) (5.3)

5.3.3 Control function

The pop-out, comfort, and background values describe the possible distribu-

tion of the stereoscopic saliency regions based on the PE-CZ-BE mechanisms.

However, directly using these values to influence the input saliency map may

produce poor results as they also might enhance non-salient regions which

would decrease prediction accuracy. For example, using the background value

to enhance an image with a salient region located near a background region

would also enhance the non-salient regions of the background, decreasing

the accuracy of the final prediction. Therefore, non-salient regions are not

considered when applying these three values. Instead, a control function G

overcomes this problem. The three benefits of this control function are: it

does not enhance the non-saliency region (does nothing to the non-saliency

region); it can assist the three mechanisms in enhancing the saliency region

based on their importance; and it removes ambiguity.

For simplicity, we use M to represent the value M = PE ′ = CZ ′ = BE ′.
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The input saliency map is denoted as Sinput. A threshold value ts is used

to classify the salient and non-salient regions. In practice, ts is the mean

value of Sinput. If the current saliency value of pixel Sinput(p) is less than ts,

G = M−1, which means nothing happens. If Sinput(p) >= ts, enhancements

are conducted based on importance. The control function can be expressed

as

G(p) =

{
M−1 Sinput(p) < ts

1 + β ∗W (p) ∗H(p) Other
(5.4)

where β is a weight to control the magnitude of the enhancement; in practice,

β = 0.5. W is a window function used to reduce noise. It describes the

relationship between the nearby pixel and the current pixel. The saliency

map according to the threshold ts is processed through binarization and

the number of positive pixels (1) in the range r are counted. W is the

percentage of the number of positive values and all pixels in the range r. In

practice, all distance is normalized to [0, 1] and we set r = 0.1 empirically.

H describes the importance of the current pixel, which can be expressed as

H(p) = exp(Sinput(p)).

After adding the control function, the pop-out value (PE), comfort value

(CZ), and background value (BE) are changed to

PE = PE ′(p) ∗G(p)
CZ = CZ ′(p) ∗G(p)
BE = BE ′(p) ∗G(p)

(5.5)

5.3.4 The selection strategy

As shown in Fig.5.1, each of the three mechanisms are not mutually exclusive.

Depending on the image, a combination of each of the three values may be

required to produce accurate predictions. Therefore, a selection strategy

to determine the best combination is required. The proposed stereoscopic

saliency model is illustrated in Fig.5.2.
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Figure 5.2: Flow chart of the stereoscopic saliency model
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First, the three values PE,CZ,BE are computed by the disparity map.

We define C as the combination of the three values, which can be expressed

as:

C = γ1 ∗ PE + γ2 ∗ CZ + γ3 ∗ BE (5.6)

where γ1, γ2, γ3 are Boolean values. 0 means the corresponding value does not

work in the current image. 1 means the corresponding value works. There

are eight total combinations. However, the combination γ1 = γ2 = γ3 = 0

(C0) is not considered because this would mean that no mechanism works, as

in the cases such as monochrome images, which are not common. In practice,

only the remaining seven combinations (C1, C2, ..., C7) are considered.

Second, the combinations of C provide for all possible distributions of the

saliency values based on the PE-CZ-BE mechanisms. However, a saliency

map Sinput is needed to compute all possible stereoscopic saliency maps. SCi

represents the corresponding stereoscopic saliency map for each combination

of Ci, i = {1, 2, ..., 7}. This is calculated from the combination Ci and the

saliency map Sinput, which can be expressed as

SCi = Ci ∗ Sinput (5.7)

Lastly, the best saliency map is selected from among all the stereoscopic

saliency maps (SC1, SC2, ..., SC7). As mentioned, the pop-out, comfort, and

background values are only applied to possibly salient regions and do nothing

in non-salient regions. Similarly, these combinations are also only applied to

possibly salient regions. The greater the similarity between the combina-

tion and the corresponding stereoscopic saliency map, the more effective the

combination is. Therefore, the most similar map is selected as the final

stereoscopic saliency map Sbest based on a measure of the similarity between

Ci and SCi, i = {1, 2, ..., 7}. In practice, we use the expectation Ei(Ci, SCi)

to measure the similarity between the combination Ci and the stereoscopic

saliency map SCi. The saliency map Sbest with the least expectation is se-

lected as the final stereoscopic saliency map.
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5.3.5 Framework based on a multi-feature saliency model

As outlined in Fig.5.2, we need to construct a saliency map as the input for

the stereoscopic saliency model. We propose a framework based on four fea-

tures that reflect three different aspects of saliency: the surrounding region,

contrast, and the point of interest. The main steps are shown in Fig.5.3.

The surrounding region is computed according to an attention map based

on Boolean map theory, which considers the structure of the salient region

(Huang & Pashler 2007). Contrast comprises color and depth contrast maps,

which are derived by assuming the salient region is unique (Cheng et al. 2015).

The point of interest (IP) is reflective of the distribution of the gaze point

(GP), which is processed as the saliency maps ground truth (Nauge, Larabi

& Fernandez-Maloigne 2012).

A fusion strategy based on the importance of the different features is used

to generate the saliency map from the three feature maps above:

Sinput = Fusion(SBM , SCol, SDep, SIP ) (5.8)

where SBM represents the saliency map of the surrounding region, SCol and

SDep are the color and depth contrast saliency maps, and SIP is the saliency

map of the point of interest. These four features are combined through the

fusion function to generate the stereoscopic saliency map Sinput.

The attention map based on Boolean Map theory

The attention map reflects the surrounding region based on a topological

analysis of a Boolean map. These maps are sensitive to the boundaries of

objects, but they may not outline an entire object. Fig.5.4 shows an example

of some saliency maps based on this Boolean map approach. Figs.5.4(a)

and (b) show the left version of the stereoscopic image. In Fig.5.4(d), the

human body is not recognized as a whole region. The reason for this is that

the colors of the body are different and the surrounding foreground of the

Boolean map does not cover the whole body. To overcome this issue, we use
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Figure 5.3: The main steps of the framework based on the multi-feature

analysis.

superpixels to replace the corresponding pixels. The superpixel-level saliency

map of the color/depth image in Fig.5.4(e) demonstrates the improvement

over Fig.5.4(d). Fig.5.4(f) is based on the superpixel-level saliency map and

is close to the ground truth shown in Fig.5.4(c).

The input image I in the Lab color space is represented by four channels

[L, a, b, depth]. The range of each channel is translated and scaled to [0, 255].

The superpixel value in the channel is the mean value of the pixels in this

superpixel, and the channel is processed according to the thresholds in the set

of Boolean maps B = {B1, B2, ..., Bn}. The surrounding region is calculated

for each Boolean map Bi as the attention map Ai (Huang & Pashler 2007).

Then, a linear combination of all the attention maps forms the final attention

map.

θ is a set of thresholds {θ1, θ2, ...θn}. We define the superpixel-level

Boolean map as Bi for threshold θi. A(Bi) is the attention map computed

by Bi. A linear combination of all the attention maps forms the saliency

map SBM . The stereoscopic saliency model, based on the improved Boolean
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Figure 5.4: Attention maps at pixel-level and at superpixel-level

approach, can be expressed as

SBM =
∑

i=1,i∈θi
A(Bi)w(Bi|I) (5.9)

where w is a weight value to enhance small regions and relies on Bi and I.

In practice, the weight value is the inversely proportional to the number of

pixels in the surrounding region (Cheng et al. 2015).

The contrast map of color and depth information

Human vision is sensitive to contrast in images, and saliency can be defined

as contrast or uniqueness (Cheng et al. 2011). Nearer regions tend to attract

attention, as do regions with depth discontinuity when viewing positions or

angles are changed (Aziz & Mertsching 2010).

Our observations indicate that the contribution both color and depth

contrast make to saliency relies on the differences in depth and the distance
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between neighboring regions. Therefore, our contrast model measures both

features (Cheng et al. 2015):

Contrast(i, j) = (
D(i, j)

1 + k ∗ L(i, j)) ∗ ωj (5.10)

where ωj is the number of pixels in superpixel j, and k is a control value for

the spatial information (k = 3 in our implementation). D(i, j) is the Eu-

clidean distance between the vectored superpixels i and j in the color/depth

space, normalized to the range [0, 1]. L(i, j) is the Euclidean distance be-

tween the position of superpixel i and j, normalized to the range [0, 1]. As

mentioned above, the saliency of a superpixel t can be defined by a measure

of its distinctiveness as

SCol/Dep(t) =
∑

i�=t,i∈R
Contrast(t, i) (5.11)

where R is the range and SCol/Dep(t) is the color/depth saliency value of

superpixel t in the range R. We can compute the local and global saliency

for different ranges, as shown in Fig.5.5.

Figure 5.5: Global and local range.

By using Eq.(5.11) to process the color and depth maps, the color contrast

SCol and depth contrast SDep saliency features can be identified, as shown in

Fig.5.6.

The IP feature

The IP can be used for saliency analysis because it can reflect the distribution

of the GP (Nauge et al. 2012), which can be used to form the ground truth
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Figure 5.6: Global and local saliency maps.

of the saliency map. We propose an IP feature extraction approach.

Figure 5.7: A saliency map based on IP, and a ground-truth saliency map

based on the GP

We use scale-invariant feature transform (SIFT) to obtain the IPs. SIFT

is widely used in scale-invariant feature detection and is suitable for different

quality images. The IP feature describes the probability of the GP of the

color image that is not affected by noise caused by low-quality depth maps.

For each pixel p, the surrounding IPs are sorted according to distance,

from near to far. We use each IP as the center of a Gaussian filter with

σ, which is equal to 1 degree of visual angle. A set of Gaussian filter maps

G = {G1, G2, ..., Gn} are computed, with n as the number of IPs. Pixel
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saliency SIP (p) can also be represented by these Gaussian filter maps.

SIP (p) =
∑

Gn(p) (5.12)

If an object has complex surfaces or a background has complex textures,

IPs may fall more into either object regions or background regions. We

observe that if there are many IPs around the current pixel, pixel saliency

may be over-strengthened. To avoid this issue, we use η to restrict the number

Gaussian filter maps that are computed for the current pixels saliency to a

suitable number. If n > η, we use η to compute the Gaussian filter maps,

otherwise we use n. Fig.5.7 provides an example of a pixel-level saliency map

based on IPs, demonstrating that using IPs enables the saliency map to be

acquired directly.

Pixel-level features

The IP feature map is directly computed from the input images as a pixel-

level feature map. The other features are based on multi-scale segmentation

and are superpixel-level feature maps. By controlling the number of the

superpixels in the SLIC segmentation (the scale), the input color map and

depth map become multi-scale maps. However, before the four features are

fused, we need to conduct multi-scale fusion to obtain pixel-level feature

maps. We adopted the method in (Lu et al. 2016) to fuse the segmentation

feature values in different scales. This method considers the multi-scale value

and its textural information based on the textural features of the pixel. Its

corresponding superpixel is used as a weight value to average the multi-scale

value. This multi-scale fusion process produces pixel-level feature maps of

the attention map based on the Boolean map, the color contrast map, and

the depth contrast map.

Fusion strategy for the four features

The four pixel-level feature maps can then be fused to generate the saliency

map. Stereoscopic images may contain noisy feature; therefore, using a
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Figure 5.8: Samples of four features and combined saliency maps.

simple linear combination of constant values is not a good fusion strategy.

Rather, each feature is given a weight based on the importance of the feature

maps. Moreover, the common salient regions across each of the four features

are enhanced by the fusion process. For simplicity, we use Fi, i = {1, 2, 3, 4}
to represent one feature in {SBM , SCol, SDep, SIP}. The fusion strategy is

computed as

Fusion(F1, F2, F3, F4) = (1− v) ∗ (
∑
i

ui · Fi) + v ∗ ·
∏

Fi (5.13)

The first term (1− v) ∗ (∑i ui ·Fi) is a linear combination of the four feature

maps weighted according to the importance of the feature maps. The second

term v ∗ ·∏Fi is the common saliency region, which can be extracted from

the four feature maps. The first and second terms are normalized to [0, 1].

v is a weight to balance the first term and the second term (v = 0.5 in our

implementation). u is a weight to measure the importance of one feature and

can be computed by

ui =
∑
j �=i

|Fi − Fij| (5.14)

where i, j are any two features in {SBM , SCol, SDep, SIP}; Fij is the mean of
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two feature maps i, j. Fig.5.8 provides an example of the four feature maps

and the resulting fused saliency map.

Figure 5.9: Samples of the proposed saliency model.

The final output of this framework (the fused saliency map based on

surrounding regions, contrast, and points of interest) is then used as input

for the proposed saliency model, which contains the pop-out effect, com-

fort zone, and background effect modules, to produce the final stereoscopic

saliency map. Fig.5.9 illustrates an example of the proposed saliency model

process. The disparity map computes three maps using the PE, CZ, and

BE modules. The multi-feature saliency map Sinput as defined in Eq.5.8

is computed by the left image and the disparity maps of the four features

(SBM , SCol, SDep, SIP ). Then, all combinations of the maps (C1, C2, ..., C7)

are computed and the possible stereoscopic saliency maps (SC1, SC2, ..., SC7).

By comparing the expectation Ei(Ci, SCi), i = {1, 2, ..., 7} between Ci and
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SCi, we choose the Sbest with the least expectation as our final stereoscopic

saliency map. Additionally, by substituting the saliency models Sinput, our

proposed stereoscopic saliency model can be combined with the other 2D or

stereoscopic saliency models for stereoscopic saliency analysis.

5.4 Experiments

We evaluated the performance of our proposed saliency model through a

series of experiments with two eye-tracking datasets (Wang et al. 2013)(Lang,

Nguyen, Katti, Yadati, Kankanhalli & Yan 2012). The two datasets provide

eye fixation information as ground truths. The evaluation methodology and

experimental setup are explained first, followed by the experimental results

for each of the components. All depth map are supplied by datasets, which

is generated by the different depth-capture sensors. This section concludes

with a performance comparison of the proposed method against several state-

of-the-art methods.

5.4.1 Experimental setup

All images were first resized to a width of 600 pixels. The IP map was

computed directly from the images, while the SLIC algorithm was used to

segment the color and depth images for the attention map, the color contrast

map, and the depth contrast map. We set the number of segments to a

scale = {600, 800, 1000, 1200}. In Eq.(5.2), we set α to 0.5, as per (Cheng

et al. 2015). All distances were normalized to [0, 1] and the range R was

empirically set to 0.3, and the global range was set to 1. In the IP feature,

the suitable number η was empirically set to 20.

We choose two public datasets to evaluate whether our proposed saliency

model is suitable for different stereoscopic capture devices. One is published

in the study by (Wang et al. 2013) and includes 18 stereoscopic images of

various types (e.g. indoor scenes, outdoor scenes, and scenes containing

various numbers of objects). Ten images are chosen from the Middlebury
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dataset 2005/2006 (Hirschmüller & Scharstein 2007). The other eight images

have been recorded by the authors with a Panasonic AG-3DA1 3D camera.

To avoid 3D fatigue (Hoffman et al. 2008) resulting from conflict in the depth

field (for example, one object is seen by the right eye but is missed by the

left eye), the degree of vergence in human vision within the stereoscopic

3D viewing environment is considered in this eye-tracking experiment. The

disparity of the stereoscopic images is suitable for the human comfort viewing

zone and has better accuracy than the dataset (Wang et al. 2013). The

conflict in different depth fields will not be detected by viewers during the

eye-tracking experiments. The eye-tracker is used to record the gaze points,

which are processed by a Gaussian kernel to generate the fixation density

maps as the ground-truth maps.

The second eye-tracking dataset is published in (Lang, Nguyen, Katti,

Yadati, Kankanhalli & Yan 2012). This dataset is an eye-tracking dataset

and has 600 3D images that include outdoor and indoor scenes containing

different numbers and sizes of objects, and different degrees of interaction

or activity are depicted in the scene. The stereoscopic images are generated

by Kinect-1. The stereoscopic image pairs are produced by pre-processing,

calibration and post-processing. The eye tracking data from 80 participants

(age range 20 to 33 years old) are captured by the eye-tracker in both the

2D and 3D free-viewing experiments. Human fixation maps are constructed

from the fixations of viewers to globally represent the spatial distribution of

human fixations. A Gaussian kernel is used to obtain the continuous fixation

density maps as the ground-truth maps. This dataset supplies 2D and 3D

fixation maps; to facilitate comparison, we use a 3D fixation map as the

stereoscopic 3D ground-truth map.

To quantitatively evaluate the performance of our proposed saliency model,

we applied similar measuring methods to those in (Wang et al. 2013). The

performance of the proposed model was measured by comparing the com-

puted saliency map with the ground-truth map supplied by the dataset. Be-

cause there are two images (left and right) for any stereoscopic image pair,
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we used the saliency map of the left image for comparison, similar to the

study in (Wang et al. 2013). The area under the receiver operating char-

acteristics curve (AUC) and the correlation coefficient (CC) were used to

evaluate the quantitative performance of the proposed stereo saliency detec-

tion model. The AUC was computed from the comparison between the actual

fixation density map and the predicted saliency map, while CC was calcu-

lated directly from the comparison between the fixation density map and the

predicted saliency map. We adopted these three measures to quantitatively

compare the eye-tracking ground truth and predicted saliency map.

5.4.2 Performance of the features and components

We began by evaluating the performance of the multi-feature saliency model

in the dataset (Wang et al. 2013), including the attention map (SBM), the

contrast map of color information SCol, the contrast map of the depth infor-

mation SDep, the IP features SIP , and the multi-feature saliency map Fusion.

Then, we compared the three mechanism modules: the pop-out effect (PE),

comfort zone (CZ), and background effect (BE), which were directly com-

bined with the multi-feature saliency model. All results are shown in Tables

I and II.

As these tables show, directly combining the three mechanism modules

into the saliency map Fusion does not produce good results because PE, CZ,

and BE cannot be used independently to make salience predictions about

stereoscopic images. However, when selecting the best combination of the

three mechanisms, our proposed model performed better. Fig.5.10 provides

comparative examples.

5.4.3 Comparison with the state-of-the-art methods

We compared our model with three methods that represent state-of-the-arts

in each category of stereoscopic saliency modeling: 2D saliency models, DSM-

based models, and multi-feature models saliency models. We evaluated the
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Table 5.1: Comparison between four features and two components in the

dataset (Wang et al. 2013)

Component combination AUC(→ 1) CC(→ 1)

SBM 0.694 0.235

SCol 0.721 0.347

SDep 0.726 0.389

SIP 0.633 0.219

Fusion 0.757 0.455

PE 0.739 0.399

CZ 0.721 0.346

BE 0.694 0.29

Our Model 0.872 0.68

Table 5.2: Comparison between each component in the dataset (Lang,

Nguyen, Katti, Yadati, Kankanhalli & Yan 2012)

Component combination AUC(→ 1) CC(→ 1)

SBM 0.72 0.251

SCol 0.778 0.305

SDep 0.73 0.266

SIP 0.726 0.294

Fusion 0.833 0.358

PE 0.804 0.319

CZ 0.798 0.306

BE 0.772 0.282

Our Model 0.871 0.430

102



CHAPTER 5. MODELING ASYMMETRY AND TAIL DEPENDENCE
BY USING PARTIAL REGULAR VINE

Figure 5.10: Examples of the components of the proposed model

proposed model in the dataset (Wang et al. 2013). The 2D saliency mod-

els are IT (Itti et al. 1998), AIM (Bruce & Tsotsos 2005b), SR (Hou &

Zhang 2007), and GBVS (Harel et al. 2006) (denoted as 2D models in Ta-

ble III). The DSM-based models combine these 2D models with the depth

saliency models proposed in (Huynh-Thu et al. 2011) (denoted as 2D×Depth

(Chamaret)) and in (Wang et al. 2013) (denoted as 2D + Depth Contrast and

2D +DSM). The multi-feature saliency models are SDSI (Fang et al. 2013),

GNLNS (Iatsun et al. 2015), and SCB (Jiang et al. 2015). The AUC and CC

values for these three models were taken from the original paper. From Table

III, it can be seen that directly using depth information as a weighted value

(such as 2D × Depth (Chamaret)) may not obtain significant improvements

in AUC and CC because the combined method may not consider the char-

acteristics of the depth information. In fact, the performance may even be

worse. For example, neither 2D × Depth (Chamaret) nor 2D + Depth Con-

trast improved the performance of GBVS in terms of AUC and CC. Thus,

simply combining a 2D saliency model with a depth saliency model may not

achieve good performance. Our proposed saliency detection model demon-

strated the best performance of all the models, as shown by one example

image in Fig. 11. IT, IT × Depth (Chamaret), and IT + Depth Contrast

mainly detected the contours of the salient area. AIM and SR included some

background areas in the salient area. Whereas, our stereoscopic saliency de-

tection model accurately estimated the saliency region with respect to the
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ground-truth map in the eye-tracking data.

Fig.11 stereo comfort zone based on human stereo vision. DSM represents

the depth saliency map in (Wang et al. 2013).

The second experiment with the dataset in (Lang, Nguyen, Katti, Ya-

dati, Kankanhalli & Yan 2012) relied on 3D fixation maps as the ground

truths. We used the DSM from (Lang, Nguyen, Katti, Yadati, Kankan-

halli & Yan 2012) as the comparative depth saliency model. This model

uses global-context depth priors to improve the performance of 2D saliency

models. We were unable to locate the code for the DSM in (Lang, Nguyen,

Katti, Yadati, Kankanhalli & Yan 2012) and, therefore, are only able to

compare our results with the best methods listed in the original paper. The

2D saliency models selected for comparison were IT(Itti et al. 1998), AIM

(Bruce & Tsotsos 2005b), FT(Achanta et al. 2009), GBVS(Harel et al. 2006),

ICL(Hou & Zhang 2009), LSK(Seo & Milanfar 2009), LRR(Lang, Liu, Yu

& Yan 2012). The stereoscopic saliency map was achieved by simply using

the summation “+” or point-wise multiplication “×” as the fusion of the

depth and 2D models. Performance was quantitatively evaluated using AUC

and CC, and the experimental results are shown in Table IV. Note that the

AUC and CC values of existing models were taken from the original paper

(Lang, Nguyen, Katti, Yadati, Kankanhalli & Yan 2012). From this table,

we see that our proposed models performance exceeded the other 15 stereo

saliency detection models. This is because our proposed model chooses the

most suitable mechanism depending on the content, and uses it to increase
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Table 5.3: Comparison between the proposed framework and others. DSM represents the depth saliency map in

(Wang et al. 2013)

Model AUC(→ 1) CC(→ 1)

2D Model

IT 0.538 0.137

AIM 0.638 0.326

SR 0.63 0.291

GBVS 0.809 0.54

2D × Depth (Chamaret)

IT × depth 0.54 0.137

AIM × depth 0.636 0.299

SR × depth 0.634 0.292

GBVS × depth 0.771 0.515

2D + Depth Contrast

IT + Depth Contrast 0.596 0.211

AIM + Depth Contrast 0.644 0.343

SR + Depth Contrast 0.662 0.307

GBVS + Depth Contrast 0.799 0.53

2D + DSM

Model 1 0.656 0.356

Model 2 0.675 0.424

Model 3 0.67 0.41

Multi-feature Models
SDSI(Fang et al. 2013) 0.703 0.55

GNLNS(Iatsun et al. 2015) 0.77 0.65

SCB(Jiang et al. 2015) 0.818 0.491

Our Model 0.872 0.68
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the accuracy of the saliency prediction.

Comparing with the models in Chapter 3 and Chapter 4, the CC value is

improved significantly in this model. The reason is that Chapter 5 model can

cover all kinds of scene type, which the model in Chapter 3 and 4 can not ex-

plain very well. No only the Chapter 5 model considers the background effect,

but also it considers the different combination of three mechanisms, including

the pop-out effect, comfort zone, and background effect. Comparing with the

model in Chapter 4, the AUC value is not improved significantly in datasets

(Wang et al. 2013). The reason is the stereo contrast model and stereo focus

model can explain the most of the stereo image in this datasets. Even if the

Chapter 5 model considers the background effect, the performance is still not

improved significantly. In summary, both experiments demonstrate that our

proposed model successfully processes the stereoscopic images captured by

various devices with good performance compared to other models.

5.5 Conclusions

In this chapter, we thoroughly exploit the depth information for stereoscopic

saliency analysis and present a computational model for stereoscopic visual

saliency prediction. Our model is based on three mechanisms: the pop-out

effect, the comfort zone, and the background effect. Three modules within

the model describe each of these three mechanisms, and a control function

is used to adjust the weight of each. The best resulting stereoscopic saliency

map is chosen through a selection strategy. This approach overcomes the

issues of the proposed models in Chapter 3 and Chapter 4. Meanwhile,

it is implemented within a framework based on multi-feature analysis that

considers the surrounding regions, contrast, and points of interest. The ex-

perimental results show that our model performs better than other saliency

models in terms of AUC and CC.
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Table 5.4: Comparison between 3D saliency detection models.

Component

combination

AUC(→ 1) CC(→ 1)

IT+DSM 0.849 0.375

IT×DSM 0.854 0.398

GBVS+DSM 0.851 0.39

GBVS×DSM 0.855 0.413

AIM+DSM 0.85 0.342

AIM×DSM 0.85 0.391

FT+DSM 0.797 0.315

FT×DSM 0.745 0.268

ICL+DSM 0.846 0.385

ICL×DSM 0.808 0.325

LSK+DSM 0.845 0.379

LSK×DSM 0.824 0.351

LRR+DSM 0.856 0.385

LRR×DSM 0.846 0.395

Our Model 0.871 0.43
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In conclusion, this thesis presented three computational models for stereo-

scopic saliency detection.

Chapter 3 demonstrated a preliminary saliency detection model for stereo-

scopic images. This model uses depth information to leverage stereo saliency

analysis in three respects. At a low-level, local-global features are used to

analyse saliency by considering the colour and depth contrast in local and

global ranges. At the mid-level, the surrounding map, based on a Boolean

map, is obtained as a weight value to enhance the local-global contrast

features. Lastly, by analysing the saliency probability distribution in the

depth information, a stereocenter prior enhancement is used to form the

final saliency.

Chapter 4 presented a stereo visual saliency prediction based on stereo

contrast and stereo focus. Stereo contrast, as a product of colour and depth

contrast and the pop-out effect, describes the contrast in objects. Stereo

focus is based on the focus mechanism of human stereoscopic vision and

describes the region of human focus. Two saliency maps, one generated

from the stereo contrast information and the other generated from stereo

focus information, were integrated using Bayesian integration. Experimental
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results on two eye-tracking databases show that the model is able to process

stereoscopic images from different stereoscopic capture devices to achieve

better performance than existing methods.

Chapter 5 presented a computational model for stereoscopic visual saliency

prediction based on three mechanisms in the human vision system: the pop-

out effect, comfort zones and the background effect. Three modules each de-

scribe one of these three mechanisms, and a control function is used to adjust

the weight of each. The best resulting stereoscopic saliency map is chosen

through a selection strategy. Further, the model is implemented within a

framework based on multi-feature analysis that considers the surrounding

regions, contrast and points of interest. Experimental results again show

that this model performs better than other saliency models in terms of AUC

and CC.

6.2 Future work

Stereoscopic saliency detection is still young, and there is much to be studied.

Future research endeavours will focus on several potential directions, both

theory-driven and application-driven. These tasks include:

(i). New saliency detection models: Three stereoscopic saliency detec-

tion modules have been implemented based on three different mecha-

nisms of human vision. However, these models still do not fully explain

the saliency in natural scenes. Further study of new and more advanced

stereoscopic saliency detection models is required.

(ii). Applications in the subjective evaluation for stereoscopic im-

ages: Exploring whether the three stereoscopic saliency detection mod-

els presented can be used as tools to solve an important problem the

subjective evaluation of stereoscopic images is another promising av-

enue of future research. We can use the stereoscopic saliency model as

a measure to determine whether the image meets the characteristics of

cognitive perception.
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(iii). Applications in multi-view display systems: Automatic parallax

adjustment is an important problem in multi-view display systems.

The proposed saliency detection models might be used as a cue for

automatic parallel adjustment, which forms a further avenue of future

study.
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