The impact of Stress and Anxiety on the neurocognitive performance of Australian Nurses: An electroencephalographic and psychometric assessment

Ty Lees
BMedSci (Hons)

July 2018

Principal Supervisor: Associate Professor Sara Lal (UTS)
Co-supervisors: Professor Phillip Newton (WSU)
Doctor Najah Nassif (UTS)

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Science) at the University of Technology Sydney.
I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature: ________________________ Date: ________________________

Ty Lees

This research was supported by an Australian Government Research Training Program Scholarship.
II. Acknowledgements

Firstly, I would like to thank my principal supervisor, Associate Professor Sara Lal; for without her I would not have had the opportunity to complete my PhD or experience the world of academia and the associated highs and lows. Truthfully, your guidance and support has been invaluable during the course of my candidature and without it and your enthusiasm for research, my path would have been much more difficult, and less successful. I must also thank my co-supervisors, Professor Phillip Newton and Dr Najah Nassif, your feedback, input, and often alternate perspectives into all aspects of my research was incredibly helpful and often helped resolve issues I was challenged by.

Before I continue, I have to express my deepest gratitude to my partner, Maisie Cao, who has been my time away from my experiments, papers and thesis. Your innumerable kindnesses, sacrifices, company, complete selflessness and support has allowed me to complete this work, and I am immensely indebted to you.

Next, I want to thank Dr Rami Khushaba, for his tutelage in analysis and Matlab coding, as well as his patience in answering my multitude of questions; and Dr Budi Jap for providing me the software utilised in processing my data, and instruction in its usage. Further, I must also thank my friends and colleagues in the Neuroscience Research Unit at UTS; your presence to discuss ideas, and words of encouragement were most appreciated. In particular, I want to thank George Kalatzis and Shamona Maharaj, for without their kindness in sharing data, this project would not be as nearly complete

My earnest thanks go to all of my participants, be they strangers, friends or colleagues, without you this research would not have been possible. Additionally, the NSW Nurse
& Midwives association, particularly the staff at NurseUncut, also have my gratitude for advertising my project.

To my family and friends, thank you. Your support, words of wisdom, understanding, and willingness to participate in my research or facilitate recruitment where you could, all helped immeasurably.

Additionally, I need to acknowledge the support I was provided by the Australian government in the form of the Australian Postgraduate Award, which later became the Australian Government Research Training Program.

Finally, I would like to thank my reviewers for their time in reading my thesis, and for the feedback that they provided. It helped shaped a stronger and more robust piece of work.
III. Publications and Presentations

Publications relevant to thesis

Journal Articles

Conference Abstracts

Invited Presentations

1. Lees, T., Stress and Cognitive Performance in Nurses: An example of research in the NRU. Oral Presentation: Warfighter Effectiveness Research Centre (WERC) United States Airforce Academy Brownbag 2015, Colorado Springs, USA.

Conference Presentations

Annual meeting of the Society for Psychophysiological Research 2018, Quebec City, Canada

Other Publications

Journal Articles

Reports

Invited Presentations

Conference Presentations

(EEG) and psychometric assessment: a comparative study. Oral presentation: 37th Annual Scientific Meeting of the Australasian Neuroscience Society 2017, Sydney, Australia

IV. Table of Contents

I. Declaration .. i
II. Acknowledgements .. ii
III. Publications and Presentations ... iv
IV. Table of Contents ... ix
V. List of Figures ... xiii
VI. List of Tables .. xv
VII. List of Equations .. xxi
VIII. List of Abbreviations .. xxii
IX. Abstract .. xxiii

Chapter 1 – Introduction ... 1
 1.1 Health Professionals ... 1
 1.1.1 Classification .. 2
 1.1.2 Health Professionals in Society .. 3
 1.1.3 Stress and Anxiety in the Health Professions ... 4
 1.2 Stress ... 6
 1.2.1 Eustress and Distress .. 7
 1.2.2 Acute and Chronic Stress .. 8
 1.2.3 Occupational Stress ... 10
 1.2.4 Physiological Basis of Stress .. 11
 1.2.5 Coping with Stress .. 16
 1.2.6 Stress and Cognitive Performance .. 17
 1.3 Anxiety .. 23
 1.3.1 Physiological basis of Anxiety ... 24
 1.3.2 Anxiety and Cognitive Performance ... 24
 1.4 Cognition ... 31
 1.4.1 Cognitive Performance ... 31
 1.4.2 Measurements of Cognitive Performance ... 31
 1.4.3 Electroencephalographic manifestations of cognitive impairment 34
 1.5 Basis for Research ... 41
 1.6 Aims .. 43
 1.7 Hypotheses .. 43
 1.8 Significance of Research ... 44
Chapter 2 – General Methodology ... 45
 2.1 Participant Recruitment .. 45
 2.2 Ethics approval .. 45
 2.3 Participant Selection Criteria .. 46
 2.3.1 General requirements ... 46
 2.3.2 Requirements for Nurses ... 48
 2.4 Experimental Protocol .. 48
 2.4.1 Blood Pressure Measurements ... 48
 2.4.2 Pre- Study Questionnaires .. 49
 2.4.3 Electroencephalography .. 52
 2.4.4 Cognitive Testing .. 55
 2.4.5 Post study Questionnaires ... 60
 2.5 Data Processing ... 64
 2.5.1 Questionnaire & Physiological data ... 64
 2.5.2 Processing of Electroencephalogram data .. 65
 2.6 Statistical Analysis .. 65
 2.6.1 Power analysis & Sample size estimation .. 66
 2.6.2 Dependent & Independent Sample T test ... 66
 2.6.3 Pearson’s Correlation ... 67
 2.6.4 Multiple Regression Analysis ... 67
 2.6.5 Principal Component Analysis: .. 68

Chapter 3 – Associations between Stress, Anxiety and Cognitive performance (using a limited EEG montage) ... 70
 3.1 Introduction ... 70
 3.2 Materials and Methods ... 72
 3.2.1 Study Participants ... 72
 3.2.2 Experimental Protocol .. 72
 3.2.3 Electroencephalogram data collection .. 73
 3.2.4 Electroencephalography Data processing .. 77
 3.3 Results ... 78
 3.3.1 Demographics and Comparisons .. 78
 3.3.2 Cognitive Performance .. 81
 3.3.3 Stress ... 89
 3.3.4 Anxiety ... 111
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Analysis</td>
<td>227</td>
</tr>
<tr>
<td>5.3 Results</td>
<td>229</td>
</tr>
<tr>
<td>5.3.1 Global Cognitive Performance</td>
<td>229</td>
</tr>
<tr>
<td>5.3.2 Attention</td>
<td>246</td>
</tr>
<tr>
<td>5.3.3 Memory</td>
<td>253</td>
</tr>
<tr>
<td>5.3.4 Judgement</td>
<td>263</td>
</tr>
<tr>
<td>5.4 Discussion</td>
<td>271</td>
</tr>
<tr>
<td>5.4.1 Prediction of Global cognitive performance</td>
<td>272</td>
</tr>
<tr>
<td>5.4.2 Prediction of Attention domain performance</td>
<td>273</td>
</tr>
<tr>
<td>5.4.3 Prediction of Memory domain performance</td>
<td>275</td>
</tr>
<tr>
<td>5.4.4 Prediction of Judgment domain performance</td>
<td>276</td>
</tr>
<tr>
<td>5.5 Limitations, Future Directions & Conclusions</td>
<td>278</td>
</tr>
<tr>
<td>5.5.1 Limitations</td>
<td>278</td>
</tr>
<tr>
<td>5.5.2 Future directions</td>
<td>278</td>
</tr>
<tr>
<td>5.5.3 Conclusions</td>
<td>279</td>
</tr>
<tr>
<td>Chapter 6 – Conclusions</td>
<td>281</td>
</tr>
<tr>
<td>X. References</td>
<td>285</td>
</tr>
<tr>
<td>XI. Appendices</td>
<td>315</td>
</tr>
<tr>
<td>1. Recruitment Posters</td>
<td>315</td>
</tr>
<tr>
<td>1.1 Non-health professionals</td>
<td>315</td>
</tr>
<tr>
<td>1.2 Nurses</td>
<td>316</td>
</tr>
<tr>
<td>2. Consent Form</td>
<td>317</td>
</tr>
<tr>
<td>3. Emergency Protocol</td>
<td>318</td>
</tr>
</tbody>
</table>
V. List of Figures

Figure 1.1 – Stress; a conceptual framework ... 7
Figure 1.2 – The sympathetic nervous system .. 12
Figure 1.3 – The hypothalamic pituitary adrenal axis ... 13
Figure 1.4 – Regulation of the Hypothalamic pituitary adrenal axis by other brain structures ... 15
Figure 1.5 – Diagrammatic representation of the relationships between concepts that were investigated in the current research .. 42
Figure 2.1 – Automated method for measuring brachial blood pressure 49
Figure 2.2 – Laboratory and electroencephalogram set-up of the present research 53
Figure 2.3 – The Stroop Test .. 55
Figure 2.4 – Diagrammatic representation of the experimental protocol 63
Figure 3.1 – Flexcomp Infiniti electroencephalogram encoder and electrodes 74
Figure 3.2 – A top-down view of the relevant electrode placements of the International 10-20 System ... 75
Figure 3.3 – A two lead bipolar electroencephalogram recording 76
Figure 3.4 – The average time domain electroencephalography values of both sample groups for the two experimental phases ... 85
Figure 3.5 – The average frequency domain electroencephalography power values of both sample groups for the two experimental phases ... 87
Figure 4.1 – Experimental equipment and set up .. 143
Figure 4.2 – 32 channel electroencephalogram electrode locations 144
Figure 4.3 – A 32 channel unipolar electroencephalogram recording 145
Figure 4.4 – The average values of delta electroencephalographic variables across the two experimental phases for both sample groups ... 156
Figure 4.5 – The average values of theta electroencephalographic variables across the two experimental phases for both sample groups ... 157
Figure 4.6 – The average values of alpha electroencephalographic variables across the two experimental phases for both sample groups ... 160
Figure 4.7 – The average values of beta electroencephalographic variables across the two experimental phases for both sample groups ... 161
Figure 4.8 – The average values of gamma electroencephalographic variables across the two experimental phases for both sample groups ... 162
Figure 5.1 - Normalised LASSO weights for the global cognitive performance (as measured by the Cognistat) of the non-health professional group ... 235
Figure 5.2 – Normalised LASSO weights for the global cognitive performance (as measured by the MMSE) of the nurse group ... 239
Figure 5.3 – Normalised LASSO weights for the global cognitive performance (as measured by the Cognistat) of the nurse group ... 244

Figure 5.4 – Normalised LASSO weights for the Attention domain performance of nurse group .. 251

Figure 5.5 – Normalised LASSO weights for the Memory domain performance of the non-health professional group ... 255

Figure 5.6 – Normalised LASSO weights for the Memory domain performance of the nurse group .. 260

Figure 5.7 – Normalised LASSO weights for the Judgement domain performance of the non-health professional group ... 266

Figure 5.8 – Normalised LASSO weights for the Judgement domain performance of the nurse group .. 269
VI. List of Tables

Table 1.1 – Summary of research studies examining stress, and the impacts it has on the brain and cognitive performance ... 22
Table 1.2 – Summary of research studies that examined the impact of anxiety on cognitive performance .. 30
Table 1.3 – Summary of a number of research studies examining the spectral electroencephalographic manifestations of cognitive impairment 40
Table 2.1 – Blood pressure inclusion and exclusion thresholds .. 47
Table 2.2 – Cognistat cognitive profile and respective impairment threshold scores 59
Table 3.1 – Demographic data and intergroup comparisons of the two study sample groups ... 79
Table 3.2 – The differences in pre and post study measures of blood pressure and fatigue for both sample groups ... 80
Table 3.3 – The global and domain specific cognitive performance scores of the two study sample groups .. 82
Table 3.4 – The Stroop test performance outcomes of both study sample groups 83
Table 3.5 – The associations between age and Stroop test performance in the two study sample groups .. 84
Table 3.6 – The top 5 contributing electroencephalography variables per principal component in the non-health professional group .. 88
Table 3.7 – The top 5 contributing electroencephalography variables per principal component in the nurse group .. 89
Table 3.8 – The self-reported stress scores of the two study sample groups 90
Table 3.9 – The associations between stress and demographic variables of the non-health professional group .. 91
Table 3.10 – The associations between stress and self-reported negative mental state scores of the non-health professional group .. 92
Table 3.11 – The associations between stress and self-reported coping strategy utilisation of the non-health professional group ... 93
Table 3.12 – The associations between stress and Stroop test performance outcomes of the non-health professional group .. 94
Table 3.13 – The associations between stress (as measured by LAQ P2) and cognitive performance variables of the non-health professional group 95
Table 3.14 – The associations between stress (as measured by DASS-S) and cognitive performance variables of the non-health professional group 96
Table 3.15 – The associations between stress (as measured by LAQ P2) and electroencephalography variables of the non-health professional group 97
Table 3.16 – Regression analysis for stress (LAQ-P2) and significantly correlated electroencephalography variables in the non-health professional group 98
Table 3.17 – The associations between stress (as measured by DASS-S) and
electroencephalography variables of the non-health professional group.................99
Table 3.18 – Regression analysis for stress (DASS-S) and significantly correlated
electroencephalography variables in the non-health professional group...............100
Table 3.19 – The associations between stress (as measured by LAQ P2) and
demographic variables of the nurse group...101
Table 3.20 – The associations between stress (as measured by LAQ P2) and self-
reported negative mental state scores of the nurse group.....................................102
Table 3.21 – The associations between stress and self-reported coping strategy
utilisation of the nurse group..103
Table 3.22 – The associations between stress (as measured by LAQ P2) and Stroop test
performance outcomes of the nurse group..104
Table 3.23 – The associations between stress (as measured by LAQ P2) and cognitive
performance variables of the nurse group..105
Table 3.24 – The associations between stress (as measured by DASS-S) and cognitive
performance variables of the nurse group..106
Table 3.25 – The associations between stress (as measured by LAQ P2) and
electroencephalography variables of the nurse group...107
Table 3.26 – The associations between stress (as measured by DASS-S) and
electroencephalography variables of the nurse group...109
Table 3.27 – Regression analysis for stress (DASS-S) and significantly correlated
electroencephalography variables in the nurse group...110
Table 3.28 – The self-reported anxiety scores of the two study sample groups.......111
Table 3.29 – The associations between anxiety (as measured by DASS-A) and
demographic variables of the non-health professional group...............................112
Table 3.30 – The associations between anxiety (as measured by DASS-A) and self-
reported stress scores of the non-health professional group...............................112
Table 3.31 - The associations between anxiety and self-reported coping strategy
utilisation of the non-health professional group...113
Table 3.32 – The associations between anxiety (as measured by DASS-A) and Stroop
test performance outcomes of the non-health professional group.......................113
Table 3.33 – The associations between anxiety (as measured by DASS-A) and cognitive
performance variables of the non-health professional group...............................114
Table 3.34 – The associations between anxiety (as measured by DASS-A) and
electroencephalography variables of the non-health professional group..............115
Table 3.35 – The associations between anxiety (as measured by DASS-A) and
demographic variables of the nurse group...116
Table 3.36 – The associations between anxiety and self-reported stress scores of the
nurse group...116
Table 3.37 – The associations between anxiety and self-reported coping strategy
utilisation of the nurse group..117
Table 3.38 – The associations between anxiety and Stroop test performance outcomes of the nurse group..117
Table 3.39 – The associations between anxiety and cognitive performance variables of the nurse group..118
Table 3.40 – The associations between anxiety and electroencephalography variables of the nurse group..119
Table 3.41 – Regression analysis for anxiety and significantly correlated electroencephalography variables in the nurse sample group...120
Table 4.1 – Demographic data and intergroup comparison of the two study sample groups ..149
Table 4.2 – Differences in pre and post study measures of blood pressure and fatigue for both sample groups ...150
Table 4.3 – The global and domain specific cognitive performance scores of the two study sample groups ..152
Table 4.4 – The Stroop test performance variables of both study sample groups 153
Table 4.5 – The associations between age and Stroop test performance in both sample groups ..154
Table 4.6 – The top 5 contributing electroencephalography variables per principal component in the non-health professional group ..164
Table 4.7 – The top 5 contributing electroencephalography variables per principal component in the nurse group ...165
Table 4.8 – The self-reported stress scores of the two study sample groups 166
Table 4.9 – The associations between stress (as measured by LAQ P2) and demographic variables of the non-health professional group ..167
Table 4.10 – The associations between stress and self-reported negative mental state scores of the non-health professional group ..168
Table 4.11 – The associations between stress and self-reported coping strategy utilisation of the non-health professional group ..169
Table 4.12 – The associations between stress and Stroop test performance outcomes of the non-health professional group ..170
Table 4.13 – The associations between stress (as measured by LAQ P2) and cognitive performance variables of the non-health professional group ..171
Table 4.14 – The associations between stress (as measured by DASS-S) and cognitive performance variables of the non-health professional group ..172
Table 4.15 – The associations between stress (as measured by LAQ P2) and electroencephalography variables of the non-health professional group ...174
Table 4.16 – Regression analysis for stress (LAQ P2) and significantly correlated electroencephalography variables in the non-health professional group ...176
Table 4.17 – The associations between stress (as measured by DASS-S) and electroencephalography variables of the non-health professional group ...178
Table 4.18 – Regression analysis for stress (DASS-S) and significantly correlated electroencephalography variables in the non-health professional group ... 179
Table 4.19 – The associations between stress and demographic variables in the nurse group ... 180
Table 4.20 – The associations between stress and self-reported negative mental state scores in the nurse group ... 181
Table 4.21 – The associations between stress and self-reported coping strategy utilisation of the nurse group .. 181
Table 4.22 – The associations between stress (as measured by LAQ P2) and Stroop test performance outcomes of the nurse group ... 182
Table 4.23 – The associations between stress (as measured by LAQ P2) and cognitive performance variables of the nurse group ... 183
Table 4.24 – The associations between stress (as measured by DASS-S) and cognitive performance variables of the nurse group ... 184
Table 4.25 – The associations between stress (as measured by LAQ P2) and electroencephalography variables in the nurse group .. 185
Table 4.26 – Regression analysis for stress (LAQ P2) and significantly correlated electroencephalography variables in the nurse group .. 186
Table 4.27 – The associations between stress (as measured by DASS-S) and electroencephalography variables in the nurse group .. 187
Table 4.28 – Regression analysis for stress (LAQ P2) and significantly correlated electroencephalography variables in the nurse group .. 188
Table 4.29 – The self-reported anxiety scores of the two study sample groups 190
Table 4.30 – The associations between anxiety and demographic variables of the non-health professional group ... 191
Table 4.31 – The associations between anxiety (as measured by DASS-A) and self-reported stress scores of the non-health professional group .. 192
Table 4.32 – The associations between stress and self-reported coping strategy utilisation of the non-health professional group ... 192
Table 4.33 – The associations between anxiety and Stroop test performance outcomes of the non-health professional group ... 192
Table 4.34 – The associations between anxiety and cognitive performance variables of the non-health professional group ... 193
Table 4.35 – The associations between anxiety and electroencephalography variables of the non-health professional group ... 194
Table 4.36 – Regression analysis for anxiety and significantly correlated electroencephalography variables in the non-health professional group 195
Table 4.37 – The associations between anxiety and demographic variables of the nurse group .. 195
Table 4.38 – The associations between anxiety and self-reported stress scores of the nurse group .. 196
Table 4.39 - The associations between anxiety and self-reported coping strategy utilisation of the nurse group ... 200
Table 4.40 – The associations between anxiety and Stroop test performance outcomes of the nurse sample group ... 201
Table 4.41 – The associations between anxiety and cognitive performance variables of the nurse group ... 202
Table 4.42 – The associations between anxiety and electroencephalography variables in the nurse group ... 205
Table 4.43 – Regression analysis for anxiety and significantly correlated electroencephalography variables in the nurse group ... 206
Table 5.1 – The associations between global cognitive performance (as measured by MMSE) and electroencephalography variables of the non-health professional group 231
Table 5.2 – Regression analysis for global cognitive performance (as measured by the MMSE) and significantly correlated electroencephalography variables in the non-health professional group 232
Table 5.3 – The associations between global cognitive performance (as measured by the Cognistat) and electroencephalography variables of the non-health professional group ... 234
Table 5.4 – Regression analysis for global cognitive performance (as measured by the Cognistat) and significantly correlated electroencephalography variables in the non-health professional group ... 236
Table 5.5 – The associations between global cognitive performance (as measured by MMSE) and electroencephalography variables of the nurse group ... 238
Table 5.6 – Regression analysis for global cognitive performance (as measured by the MMSE) and significantly correlated electroencephalography variables in the nurse group ... 240
Table 5.7 – The associations between global cognitive performance (as measured by the Cognistat) and electroencephalography variables of the nurse sample group ... 242
Table 5.8 – Regression analysis for global cognitive performance (as measured by the Cognistat) and significantly correlated electroencephalography variables in the nurse group ... 245
Table 5.9 – The associations between Attention domain performance and electroencephalography variables of the non-health professional group ... 247
Table 5.10 – Regression analysis for Attention domain performance and significantly correlated electroencephalography variables in the non-health professional group ... 248
Table 5.11 – The associations between Attention domain performance and electroencephalography variables of the nurse group ... 250
Table 5.12 – Regression analysis for Attention domain performance and significantly correlated electroencephalography variables in the nurse group ... 252
Table 5.13 – The associations between Memory domain performance and electroencephalography variables of the non-health professional group ... 254
Table 5.14 – Regression analysis for Memory domain performance and significantly correlated EEG variables in the non-health professional group..256
Table 5.15 – The associations between Memory domain performance and electroencephalography variables of the nurse group..259
Table 5.16 – Regression analysis for Memory domain and significantly correlated electroencephalography variables in the nurse group..262
Table 5.17 – The associations between Judgment domain performance and electroencephalography variables of the non-health professional group.................................264
Table 5.18 – Regression analysis for Judgement domain performance and significantly correlated electroencephalography variables in the non-health professional group.....267
Table 5.19 – The associations between Judgement domain performance and electroencephalography variables of the nurse group..268
Table 5.20 – Regression analysis for Judgement domain performance and significantly correlated electroencephalography variables in the nurse group..................................270
VII. List of Equations

Equation 4.1 – Modified Z-score statistic ... 146
Equation 4.2 – Median absolute deviation ... 147
Equation 5.1 – Least absolute shrinkage and selection operator (LASSO) equation ... 228
VIII. List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Auricular</td>
<td>IIR – Infinite Impulse Response</td>
</tr>
<tr>
<td>ACTH – Adrenocorticotropic hormone</td>
<td>LAQ – Lifestyle Appraisal Questionnaire</td>
</tr>
<tr>
<td>AD – Alzheimer’s Disease</td>
<td>LASSO – Least Absolute Shrinkage Selection Operator</td>
</tr>
<tr>
<td>AIN – Assistant in Nursing</td>
<td>mmHg – Millimetres mercury</td>
</tr>
<tr>
<td>AUD – Australian Dollars</td>
<td>MCI – Mild Cognitive Impairment</td>
</tr>
<tr>
<td>AVP – Arginine vasopressin</td>
<td>MMSE – Mini-mental State Exam</td>
</tr>
<tr>
<td>BMI – Body Mass Index</td>
<td>MRI – Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>BP – Blood pressure</td>
<td>NHP – Non-health Professional</td>
</tr>
<tr>
<td>C – Central</td>
<td>OCD – Obsessive Compulsive Disorder</td>
</tr>
<tr>
<td>CRH – Corticotropin releasing hormone</td>
<td>O – Occipital</td>
</tr>
<tr>
<td>DASS – Depression, Anxiety, Stress, Scale</td>
<td>PCA – Principal Component Analysis</td>
</tr>
<tr>
<td>EEG – Electroencephalography</td>
<td>PD – Panic Disorder</td>
</tr>
<tr>
<td>EN – Enrolled Nurse</td>
<td>RN – Registered Nurse</td>
</tr>
<tr>
<td>EOG - Electrooculogram</td>
<td>SNS – Sympathetic Nervous System</td>
</tr>
<tr>
<td>ERP – Event Related Potential</td>
<td>SSI – Standard Shiftwork Index</td>
</tr>
<tr>
<td>F – Frontal</td>
<td>T – Temporal</td>
</tr>
<tr>
<td>Fp – Frontal Pole</td>
<td>UTS – University of Technology</td>
</tr>
<tr>
<td>GAD – Generalised Anxiety Disorder</td>
<td>Sydney</td>
</tr>
<tr>
<td>HPA – Hypothalamic Pituitary Adrenal Axis</td>
<td>WCCL – Ways of Coping Checklist</td>
</tr>
<tr>
<td>HR – Heart Rate</td>
<td></td>
</tr>
<tr>
<td>HREC – Human research ethics committee</td>
<td></td>
</tr>
</tbody>
</table>
IX. Abstract

Stress and anxiety both have demonstrable impact, causing neuronal damage and death (Sapolsky, 1996, Conrad, 2006), functional connectivity changes (Bishop, 2009, Andreescu et al., 2014), and various cognitive impairments (de Quervain et al., 2000, Savage et al., 2000, Wetzel et al., 2006, Henderson et al., 2012, Nieuwenhuys et al., 2015). However, despite demonstrated quality of care reductions (Sveinsdóttir et al., 2006, Berland et al., 2008) and calls for further research (LeBlanc, 2009, Lees and Lal, 2017), a limited amount of research investigating the impact of stress and anxiety on the cognitive performance of health professionals has been conducted (LeBlanc, 2009). Therefore, the aim of the present study was to examine the relationships between stress, anxiety and cognitive performance in health professionals via comprehensive psychometric and electroencephalography (EEG) assessment; as well as assess the predictive capability of EEG in measuring cognitive performance.

Presently, this doctoral research reports on results obtained by analysing data from 118 nurses and 144 non-health professionals. The experimental protocol commenced by capturing participant demographic data, such as, blood pressure, heart rate, as well as hip and waist measurements, followed by the completion of pre-study questionnaires including the Lifestyle Appraisal questionnaire (Craig et al., 1996), the Depression, Anxiety, Stress scale (Lovibond and Lovibond, 1995b), and the Fatigue State Question (Lal and Craig, 2002). Following this, a two lead bipolar or 32 lead monopolar EEG was captured during a resting baseline and a Stroop test based active phase. After the electroencephalogram recording, psychometric cognitive performance was assessed by the Mini-Mental State Examination (Folstein et al., 1975) and the Cognistat (Mueller et al., 2007). Participants then completed the revised Ways of Coping Checklist (Vitaliano et al., 1985), and the Fatigue State Question, again for the latter. Nurse participants also
completed parts of the Standard Shiftwork Index (Barton et al., 1995). Lastly, participant’s blood pressure was again recorded and the experiment concluded.

The results indicate that both non-health professionals and nurses experience stress and anxiety. In both groups, a stress level within the normal range was significantly associated ($p < 0.05$) with increased memory performance and delta activity, while theta and beta activity increases were similarly implicated for the nurse group only. However, with an increase in stress levels, stress was associated with increased judgement performance and fronto-temporal and parietal gamma activity, as well as reduced fronto-temporal delta activity in non-health professionals. Additionally, impaired memory performance as well as fronto-central delta, fronto-temporal and parietal gamma, and fronto-central and temporal beta activity increases were associated with this increased stress in nurses.

With respect to anxiety, it was associated with increased lifestyle risk factors, impaired global, attention, and memory domain performance, as well as delta, alpha and gamma activity changes in non-health professionals. Comparatively, in nurses anxiety was associated with improved Stroop test performance, global cognitive performance and delta and gamma activity, as well as impaired memory performance. Lastly, it was found that global cognitive performance could be predicted by a combination of fast wave EEG activity variables ($R^2 \geq 0.440; p \leq 0.013$). Similarly, unique combinations of EEG variables from the 5 investigated frequency bands predicted, in varying degrees, attention ($R^2 \geq 0.204; p \leq 0.014$), memory ($R^2 \geq 0.443, p \leq 0.010$) and judgement ($R^2 \geq 0.407; p \leq 0.001$) domain performance.

Collectively, these findings provide an insight into the cognitive impact of stress and anxiety, and determine a unique impact profile of stress and anxiety for both non-health
professionals and nurses. Additionally, they demonstrate the multifaceted nature of the relationship between stress, anxiety and cognitive performance, where both improvements and impairments are observed. Further understanding the impact of stress and anxiety on cognitive performance may enable the development and implementation of management and intervention strategies to preserve the cognitive health of health professionals, and in turn, ensure quality of patient care and reduce adverse medical event incidence. Further, it may be possible to use EEG activity to predict early cognitive impairment, which has strong implications for developing diagnostic measures for cognitive impaired states such as dementia and Alzheimer’s disease.