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Abstract

This thesis aims to improve our understanding of the structure of quantum entangle-
ment and the limits of information processing with quantum systems. It presents new
results relevant to three threads of quantum information: the theory of quantum en-
tanglement, the communication capabilities of quantum channels, and the quantum
zero-error information theory.

In the first part, we investigate the fundamental features of quantum entangle-
ment and develop quantitative approaches to better exploit the power of entangle-
ment. First, we introduce a computable and additive entanglement measure to quan-
tify the amount of entanglement, which also plays an important role as the improved
semidefinite programming (SDP) upper bound of distillable entanglement. Second,
we show that the Rains bound is neither additive nor equal to the asymptotic relative
entropy of entanglement. Third, we establish SDP lower bounds for the entangle-
ment cost and demonstrate the irreversibility of asymptotic entanglement manipu-
lation under positive-partial-transpose-preserving quantum operations, resolving a
major open problem in quantum information theory.

In the second part, we develop a framework of semidefinite programs to eval-
uate the classical and quantum communication capabilities of quantum channels in
both the non-asymptotic and asymptotic regimes. In particular, we establish the first
general SDP strong converse bound on the classical capacity of an arbitrary quantum
channel and give in particular the best known upper bound on the classical capac-
ity of the amplitude damping channel. We further establish a finite resource anal-
ysis of classical communication over quantum erasure channels, including the first
second-order expansion of classical capacity beyond entanglement-breaking chan-
nels. For quantum communication, we establish the best SDP-computable strong
converse bound and refine it as the so-called max-Rains information.

In the third part, we investigate the quantum zero-error information theory. In
contrast to the conventional Shannon theory, there is a very different-looking in-
formation theory when errors are required to be precisely zero, where the commu-
nication problem reduces to the analysis of the so-called confusability graph (non-
commutative graph) of a classical channel (quantum channel). We develop an acti-
vated communication model and explore its novel properties. Notably, we separate
the quantum Lovász number and the entanglement-assisted zero-error capacity, re-
solving an intriguing open problem in the area of zero-error information.
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Chapter 1

Introduction

Information theory, the theory of information processing and transmission, is one of
the cornerstones of the last century. In a single paper [Sha48], Shannon initiated the
study of information theory as an abstract discipline and led a revolution in com-
munication theory by proving two fundamental theorems, the noiseless and noisy
coding theorems. Without information theory, one could not imagine today’s highly
information-based society, where information and communication have become cen-
tral to our modern world.

Quantum information theory, a generalization of Shannon information theory, is
the theory of the ultimate performance of information processing and transmission
with quantum systems. On one hand, the information processing and transmission re-
alized by physical systems are ultimately governed by the laws of quantum physics,
another great theme of the 20th century. On the other hand, the miraculous features
of quantum mechanics led to the revolution of the classical information technologies
and further enabled various applications which are currently not feasible on conven-
tional platforms. Quantum entanglement, one of the most fundamental concepts of
quantum physics [HHHH09], plays a key role in the advantages gained by consider-
ing applications of quantum mechanics. For instance, quantum entanglement can be
applied to boost the communication rate as well as to secure the tasks of computation
and communication via quantum cryptography [GRTZ02, SBPC+09].

The era of quantum computing also relies on faithful quantum information pro-
cessors and stable quantum networks. With the aim to construct next generation of
networks and computers, the study of quantum information focuses on the capabili-
ties and limitations of computation and information processing in a quantum world.
Its main goal is to resolve the following:

• How can quantum information be compressed and manipulated?

1



2 1. Introduction

• How much classical/quantum/private information can be transmitted faith-
fully using quantum channels?

• How to detect, quantify, understand, distribute and use entanglement?

There are two ways to explore the above major topics. One is to consider these
information processing tasks under the asymptotic regime with the simplifying as-
sumption that available resources are unbounded, which reveals the ultimate nature
of information processing. Another one is the non-asymptotic regime, which is also
known as the finite resource information theory. This regime is motivated by the real-
istic thought that the resource is finite. Although the industry and academia have
invested a lot to realize the small-sized quantum processors, we still have to meet the
experimental and theoretical challenges that there are certain limitations to control
the large-size quantum systems coherently and accurately. Hence, it is of great prac-
tical relevance and theoretical value to study quantum information processing in a
scenario involving only a small and medium number of bits or qubits.

In order to investigate quantum information processing under both the asymp-
totic and non-asymptotic regime, we require new efficient technical tool-kits. Semidef-
inite optimization (also known as semidefinite programming) [VB96, Tod01, BV04], a
relatively new field of optimization with both theoretical and practical interests, has
become an ideal and powerful tool-kit for the theory of quantum information. It is
concerned with choosing a symmetric matrix to optimize a linear function subject to
linear constraints and a further crucial constraint that the matrix has to be positive
semidefinite. Its elegant duality theory and its connections to various information
measures lead us to a better exploration of quantum information with both analytical
and numerical solutions.

This thesis aims to contribute to the development of quantum Shannon theory,
entanglement theory, and zero-error information theory, with focuses on the structure
of quantum entanglement and the limits of elementary information processing tasks
in a quantum world. In the following, I will overview my research in the depicted
areas.

1.1 Overview

The research during my PhD study explores the fundamental properties of quan-
tum entanglement and establishes efficiently computable approximations for elemen-
tary tasks in quantum information theory by using semidefinite optimization [VB96,
Tod01, BV04], matrix analysis [HJ12, Bha09], and information measures [OP04, Tom16].
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Figure 1.1: Structure of this thesis

After the introduction and preliminaries in the first two chapters, this thesis is di-
vided into three halves: Chapters 3-4 discuss quantum entanglement, Chapters 5 and
6 focus on quantum Shannon theory, and Chapter 7 studies the quantum zero-error
information. Here, we give a brief overview of the contents of the individual chapters
and briefly discuss our contributions. (We refer to the corresponding chapters for a
more extensive introduction and literature on the corresponding topic).

Chapter 2 - Preliminaries

This chapter introduces the mathematical basics necessary for dealing with quantum
information: state vectors, density operators, superoperators, distance measures, and
so on. We then give an overview of quantum entanglement and introduce the frame-
work of local and nonlocal bipartite quantum operations. After that, we introduce the
basics of semidefinite optimization as well as some other useful toolkits for quantum
information such as smoothed entropies.

Chapter 3 - Entanglement distillation and quantification

Quantum entanglement plays a crucial role in quantum physics and is a key ingre-
dient in many quantum information processing tasks. The concept of entanglement
as a resource motivates us to develop a quantitative theory to explore the structure
and the power of entanglement. This chapter focuses on the quantification and dis-
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tillation of quantum entanglement. First, we introduce a computable and additive
entanglement measure to quantify the amount of entanglement in quantum states.
This entanglement measure also plays an important role as an improved SDP upper
bound of the distillable entanglement—the rate at which Bell states can be distilled
from the given states through local operations and classical communication (LOCC).
Second, we study deterministic entanglement distillation and provide characteriza-
tions and estimates of the distillation rates in both the one-shot and asymptotic set-
tings. Third, we show that the Rains bound (the best known upper bound on distill-
able entanglement) is neither additive nor equal to the asymptotic relative entropy of
entanglement.

Chapter 4 - Irreversibility of asymptotic entanglement manipulation

The irreversibility is crucial to every resource theory and various approaches have
been considered to enlarge the class of free operations to ensure the reversible in-
terconversion of quantum entanglement. A natural candidate is the class of quan-
tum operations that completely preserve positivity of partial transpose (PPT). In this
chapter, we demonstrate that PPT operations do not lead to a reversible entangle-
ment theory, resolving a longstanding open problem in quantum information theory
[APE03, HOH02, Ple05b]. This means that even if we relax the free operations from
LOCC operations to PPT operations, the asymptotic transformation between quan-
tum states is still irreversible. Our key contribution is an efficiently computable lower
bound for the entanglement cost, which quantifies the amount of Bell states required
to reconstruct a specific state in the asymptotic regime.

Chapter 5 - Classical communication with quantum systems

This chapter studies the fundamental limits of classical communication over quan-
tum channels in both the asymptotic and non-asymptotic regime. First, we con-
tribute a framework of semidefinite programs (SDPs) to estimate the coding rate
and success probability for classical communication over quantum channels, with
or without entanglement assistance. Second, we establish the first general SDP upper
bound on the classical capacity of a quantum channel and give the best known upper
bound for the classical capacity of the amplitude damping channel. Third, we in-
troduce the constant-bounded subchannels and use them to derive a meta-converse
on the amount of information that can be transmitted over a single use of a quan-
tum channel. In particular, we establish a finite resource analysis of quantum era-
sure channels, including the first second-order expansion of classical capacity beyond
entanglement-breaking channels.
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Chapter 6 - Quantum communication with quantum systems

This chapter investigates the capabilities of a noisy quantum channel to transmit
quantum information in both the non-asymptotic and asymptotic regime. First, we
provide improved SDP converse bounds in the context of quantum communication
with finite resources. Second, we establish an SDP strong converse bound on the
quantum capacity, which means the fidelity of any sequence of codes with a rate
exceeding this bound will vanish exponentially fast as the number of channel uses
increases. Third, we refine our SDP strong converse bound as the so-called max-Rains
information and show that it improves the partial transposition bound given by Holevo
and Werner [HW01]. We further compare it with other well-known bounds on quan-
tum capacity.

Chapter 7 - Quantum zero-error information theory

This chapter studies the zero-error communication via quantum channels from the
perspective of non-commutative graphs. The celebrated Lovász number [Lov79]
and its quantum generalization [DSW13] were proved to be upper bounds on the
zero-error capacity even assisted by entanglement. However, it remained unknown
whether the quantum Lovász number is always achievable via the assistance of quan-
tum entanglement [LMM+12, DSW13, CLMW11]. The first main result of this chapter
resolves this intriguing open problem by separating the quantum Lovász number and
the entanglement-assisted zero-error capacity via an explicit construction of the non-
commutative graph. After that, we further introduce an activated communication
model and discuss its properties.

During the time of my PhD study at UTS, I had the pleasure to collaborate with
many excellent researchers. Parts of this thesis are based on material contained in the
following papers.

• X. Wang and R. Duan, Improved semidefinite programming upper bound on distillable entan-
glement, Physical Review A 94, 050301 (Rapid communication), 2016, [WD16b].
(Chapter 3)

• X. Wang and R. Duan, Nonadditivity of Rains bound for distillable entanglement, Physical
Review A 95, 062322, 2017, [WD17b].
(Chapter 3)

• X. Wang and R. Duan, Irreversibility of Asymptotic Entanglement Manipulation Under
Quantum Operations Completely Preserving Positivity of Partial Transpose, Physical Review
Letters 119, 180506, 2017, [WD17a].
(Chapter 4)
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• X. Wang, W. Xie, and R. Duan, Semidefinite programming strong converse bounds for classi-
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Chapter 2

Preliminaries

2.1 Basics of linear algebra

A Hilbert space H is a complex vector space equipped with an inner product (·, ·) :
H×H → C. We use symbols such as HA (or HA′) and HB (or HB′) to denote Hilbert
spaces associated with Alice and Bob, respectively. In this thesis we restrict ourselves
to finite-dimensional Hilbert spaces. We denote L (A) as the set of linear operators
acting on Hilbert space HA. We denote P (A) as the subset of positive semidefinite
operators acting on HA and write X ≥ 0 if X ∈ P (A).

Given two quantum systems A and B, we consider them jointly by defining the
composite quantum system AB. Its Hilbert space is the tensor product of the Hilbert
spaces of its parts, i.e., HAB = HA ⊗HB. Note that for a linear operator M, we define
|M| =

√
M† M, and the trace norm of M is given by ‖M‖1 = Tr |M|, where M† is

the conjugate transpose of M. The operator norm ‖M‖∞ is defined as the maximum
eigenvalue of |M|. Trace norm and operator norm are dual to each other, in the sense
that ‖M‖∞ = max‖C‖1≤1 Tr MC.

An overview of the basic notations in this thesis can be found in Table 2.1. The
expert reader may directly proceed to Chapter 3.

2.2 The formalism of quantum information

Here we present the essential formalism of quantum information. We start by briefly
recalling the necessary concepts from linear algebra and then introduce the basic ele-
ments of quantum information.

8
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General

C, R, N complex, real, and natural numbers
log logarithm with base 2
〈·|, |·〉 bra and ket
dA dimension of the Hilbert space A
1A, idA identity operator and identity map on A
Tr, TrA trace and partial trace
|S| cardinality of the set S

Operators

L (A) set of bounded linear operators acting on HA
P (A) set of positive semidefinite operators acting on HA
S (A) set of density operators acting on HA
S (A ⊗ B) set of density operators acting on HA ⊗HB
S≤ (A) set of subnormalized density operators acting on HA
supp (X) support of the operator X
rank (X) rank of the operator X
X  Y support of X is contained in the support of Y
XT transpose of the operator X
X† conjugate transpose of the operator X
XTB

AB Partial transpose on system B of XAB
XA ⊗ YB tensor product of operators A and B
XA ⊕ XB direct sum of operators A and B
λmax (X) largest eigenvalue of a Hermitian operator X

Norms

‖X‖1 trace norm of X ∈ Herm (A)
‖X‖∞ spectral norm of X ∈ Herm (A)
‖E‖♦ diamond norm of E : L (A) → L (B)

Table 2.1: Overview of notational conventions

2.2.1 Quantum states

A quantum state on HA is an operator ρA ∈ P (A) with Tr ρA = 1. The set of quantum
states on HA is denoted by S (A). The set of subnormalized states on HA is denoted
by S≤ (A) := {ρA ∈ P (A) : Tr ρA ≤ 1}. A state is called pure if it is a projector, i.e.
ρ = |ψ〉〈ψ| for a vector |ψ〉. If a state ρ is not pure, we call it mixed.

2.2.2 Quantum channels and measurements

In this subsection, we briefly introduce the unitary evolution, quantum channels, and
quantum measurements.
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Unitary evolution

The evolution of any closed quantum system is described by a unitary evolution U
that maps

ρ → UρU†, (2.1)

where U†U = 1.

Quantum channels

The dynamical evolution of an open quantum system with Hilbert space H is given
by a quantum channel N , which is defined to be a linear completely positive (CP)
and trace-preserving (TP) map from L (A′) to L (B). We also call N quantum chan-
nel. The class of physical mappings should at least always map positive operators to
positive operators. The complete positivity of a map ensures that this remains true if
the quantum system is regarded as a part of a larger system.

There are several equivalent representations of a quantum channel:

1. Choi-Kraus representation [Kra71, Cho75]: A linear map N from L (A′) to
L (B) is CP if and only if there exists a set of linear operators {Ek} from HA′ to
HB such that

N (ρ) = ∑
k

EkρE†
k , ∀ρ ∈ S (

A′) , (2.2)

where Ek is also referred to as a Kraus operator. Furthermore, N is TP if and
only if

∑
k

E†
k Ek = 1. (2.3)

2. Stinespring Representation [Sti55]: A linear map N from L (A′) to L (B) is
CPTP if and only if there exists a Hilbert space HE and an isometry V such that

N (ρA′) = TrE VρA′V†, ∀ρA′ ∈ S (
A′) . (2.4)

Such V is called a Stinespring dilation of N .

3. Choi-Jamiołkowski representation [Cho75, Jam72]: For a linear map N from
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L (A′) to L (B), its Choi-Jamiołkowski matrix is given by

JN = ∑
ij
|iA〉〈jA| ⊗ N (|iA′ 〉〈jA′ |) , (2.5)

where {|iA〉} and {|iA′ 〉} are orthonormal bases for isomorphic Hilbert spaces
HA and HA′ , respectively. The map N is CP if and only if

JN ≥ 0, (2.6)

and N is TP if and only if

TrB JN = 1A. (2.7)

This Choi representation allows us to represent a quantum channel by a positive
semidefinite operator obeying certain linear constraints.

Inverse Choi-Jamiołkowski transformation

For a given quantum channel NA→B and input state ρA, we have

NA→B (ρA) = TrA JN
(

ρT
A ⊗ 1B

)
(2.8)

= TrA JTA
N (ρA ⊗ 1B) , (2.9)

where TA means the partial transpose on system A, i.e., (|iA jB〉〈kAlB|)TA = |kAjB〉〈iAlB|,
and {|iA〉}, {|jB〉} are orthonormal bases for Hilbert spaces HA and HB, respectively.

Measurements

To realize the advantages quantum technology promises, we actually have to under-
stand how to extract classical information from quantum states. Such a process is
called quantum measurement.

A quantum measurement is a CPTP map from a quantum system to a classical reg-
ister containing the measurement outcome and a system with the state after mea-
surement. It can be described by a collection of Choi-Kraus operators {Ej}n

j=1, where
the indices j ∈ {1, ..., n} indicate the outcomes of the states. If the system is ini-
tially prepared in the state ρ ∈ S (A), outcome j will be observed with probability
pj = Tr E†

j Ejρ and the resulting state is ρj =
1
pj

EjρE†
j . The concise CPTP map of the
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measurement here is given by

M (ρ) =
n

∑
j=1

pj|j〉〈j| ⊗ ρj. (2.10)

A generalized quantum measurement is defined in terms of a positive operator-valued
measure (POVM). A POVM is a family of positive semidefinite matrices {Mj}n

j=1 such
that ∑n

j=1 Mj = 1. The probability of getting outcome j is Tr Mjρ. A POVM fully char-
acterizes the probability distribution the measurement induces on the classical regis-
ter. The POVM is very useful when we are only interested in the classical outcomes.

2.2.3 Bipartite quantum states

Entangled states

The set of quantum states on HA ⊗HB is denoted by S (A ⊗ B). We call a bipartite
quantum state separable if it can be written as convex combination of tensor product
states. The set of separable states on system A ⊗ B is denoted as SEP (A : B). If
ρ /∈ SEP (A : B), ρ is called entangled.

The most important entangled state is arguably the Bell state

|Φ〉 = 1
2
(|00〉+ |11〉) , (2.11)

which is deemed to be the currency of quantum information processing. As its gen-
eralization, we denote

Φ (d) =
1
d

d−1

∑
i,j=0

|iAiB〉〈jA jB| (2.12)

as the maximally entangled state on Hilbert space HA ⊗HB, where d is the dimension
of HA and HB, {|i〉A} and {|i〉B} are the standard, orthonormal bases for HA and
HB respectively. Moreover, the identity operator on Hilbert space HA is denoted as
1A = ∑d−1

i=0 |iA〉〈iA|.

Positive partial transpose (PPT)

A positive semidefinite operator EAB ∈ P (A ⊗ B) is said to be PPT if ETB
AB ≥ 0, where

TB means the partial transpose on system B. The set of all PPT states on system A ⊗ B
is denoted as

PPT (A : B) :=
{

ρ ∈ S (A ⊗ B) : ρTB ≥ 0
}

. (2.13)
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One of the most useful methods for detecting entanglement is the positive partial
transpose, or Peres-Horodecki, criterion [HHH96, Per96]:

SEP (A : B) � PPT (A : B) . (2.14)

In addition, the Rains set [ADVW02], a superset of PPT (A : B), is defined as

PPT′ (A : B) :=
{

M ∈ P (A ⊗ B) :
∥∥∥MTB

∥∥∥
1
≤ 1

}
. (2.15)

2.3 Bipartite quantum operations

In this section, we introduce the hierarchy of local and non-local quantum bipartite
operations. The charaterizations of different classes of quantum bipartite operations
are also summarized.

2.3.1 Local operations and classical communication

Local operations (Unassisted code)

For two distant quantum systems held by Alice and Bob, a bipartite operation is
called a local operation (LO) if it corresponds to the product of separate operations
implemented by Alice and Bob, i.e., Π = DB→B′ ⊗ EA→A′ . We also call such bipartite
operation the unassisted code (UA).

Local operations and classical communication (LOCC)

When a quantum system is distributed to spatially separated parties, it is natural to
consider how the system evolves when the parties perform local quantum operations
with classical communication.

If one-way classical communication is allowed from Alice to Bob (or Bob to Alice),
the corresponding bipartite operation is called 1-LOCC. A 1-LOCC operation (A → B)
Λ can be mathematically described by

Λ (ρAB) = ∑
i,j

(
EA,i ⊗ FB,i,j

)
ρAB

(
EA,i ⊗ FB,i,j

)† , (2.16)

where ∑i E†
A,iEA,i = 1 and ∑j F†

B,i,jFB,i,j = 1 for all i.
Or, equivalently,

Λ = ∑
j
E j

A→A′ ⊗ F j
B→B′ , (2.17)
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where {E j
A→A′ }j is a set of CP maps such that ∑j E j

A→A′ is trace preserving, and

{F j
B→B′ }j is a set of CPTP maps.

Figure 2.1: Local operations and classical communication

If both parties are allowed to communicate with each other with unlimited rounds,
the corresponding bipartite operation is called LOCC. A LOCC operation can be de-
composed into sequences of 1-LOCC operations and the round of communication can
be finite or infinite. The mathematical structure of the LOCC operation is complicated
and more details can be found in [CLM+14].

Separable operations

Considering that the structure of LOCC operations is exceedingly complex, leaving
many important physical problems unsolved, the sets of separable and PPT oper-
ations were introduced to explore the fundamental limits of the resource theory of
entanglement. A bipartite quantum operation ΠAB→A′B′ is said to be a SEP operation
if its Choi-Jamiołkowski matrix

JΠ = ∑
i,j,m,k

|iA jB〉〈mAkB| ⊗ Π (|iA jB〉〈mAkB|) (2.18)

is separable under the partition of AA′ : BB′, where {|iA〉} and {|jB〉} are orthonor-
mal bases for Hilbert spaces A and B, respectively. Separable operations were first
studied in [Rai97, VP98] and the distillation of entanglement using separable opera-
tions was studied in [Rai97].

PPT operations

A bipartite quantum operation ΠAB→A′B′ is said to be a PPT operation if its Choi-
Jamiołkowski matrix JΠ is positive under partial transpose under the partition of
AA′ : BB′. The entanglement theory under PPT operations was first studied in
[Rai99, Rai01]. A well-known fact is that the classes of PPT, separable (SEP) and
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LOCC operations obey the following strict inclusions [HHHH09]:

1-LOCC � LOCC � SEP � PPT. (2.19)

The most intriguing is the non-equivalence LOCC �= SEP which follows from the
non-locality without entanglement [BDF+99].

Quantum supermap (or superchannel)

A bipartite quantum channel ΠAB→A′B′ is called a superchannel (or supermap) if it
maps all quantum channels to quantum channels. Quantum superchannels describe
all possible transformations between elementary quantum objects. Interesting, the
mathematical structure of quantum superchannels is closely related to semi-causal
quantum operations [CDP08]: a CPTP map ΠAB→A′B′ is a superchannel if and only if
Π is no-signalling from B to A (see Section 2.3.3 for more details).

PPT codes

If a PPT operation ΠAB→A′B′ is also a superchannel, such ΠAB→A′B′ is called PPT
code since it can seem as a general code to simulate a new physical channel from
NA′→B. A PPT operation ΠAB→A′B′ is a PPT code if and only if it is also B to A no-
signalling (cf. Eq. (2.20)). We note the PPT codes [LM15] could be applied to study
the communication capability of a quantum channel (see e.g., Part. II).

2.3.2 Non-local operations

Local operation with shared entanglement (Entanglement-assisted code)

A local operation with shared entanglement corresponds to a bipartite operation of the
form Π = DBB̂→B′ EAÂ→A′ΨÂB̂, where ΨÂB̂ can be any entangled state shared be-
tween Alice and Bob. We also call a local operation with shared entanglement an
entanglement-assisted code. See Figure 2.2 for details.

No-signalling operations (codes)

Generally speaking, a bipartite quantum operation is no-signalling (NS) if it cannot
be used by spatially separated parties to violate relativistic causality. In more spe-
cific language, a bipartite operation ΠAB→A′B′ is non-signalling from Bob to Alice if
the marginal state of Alice’s output is given by some fixed operation applied to the
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ΨÂB̂A B
Â B̂

A′ B′

ΠE D

Figure 2.2: A bipartite operation ΠAB→A′B′ is an entanglement-assisted code (or local
operation with shared entanglement) if can be implemented by a shared entangled
state ΨÂB̂ and local operations EAÂ→A and DBB̂→B.

marginal state of Alice’s input. Its equivalent condition is

TrB′ JΠ = TrBB′ JΠ ⊗ 1B

dB
, (2.20)

where JΠ is the Choi-Jamiołkowski matrix of JΠ. Smilarily, ΠAB→A′B′ is non-signalling
from Alice to Bob if

TrA′ JΠ = TrAA′ JΠ ⊗ 1A

dA
, (2.21)

Furthermore, ΠAB→A′B′ is a no-signalling operation if it is no-signalling from Alice to
Bob and vice versa. We also call a bipartite no-signalling operation a non-signalling
code. It is worth noting that the set of NS-assisted codes includes all the operations
that can be implemented via local operations and shared entanglement.

A B

A′ B′

Π

Figure 2.3: A bipartite operation Π (AiBi → AoBo) is a no-signalling operations (or
NS-assisted) code if Alice and Bob cannot use Π to communicate (or equivalently, the
Choi-Jamiołkowski matrix of Π satisfies the above Eqs. (2.20), (2.21)).
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Relationship between different classes of bipartite operations

In the following Figure 2.3.2, we briefly summarize the relationship between the dif-
ferent classes of bipartite operations we introduced in this section.

Figure 2.4: Hierarchy of quantum bipartite operations

NS∩PPT operations (codes)

From the Figure 2.3.2, one can see that the set of local operations is a subset of the
set of bipartite operations that are NS and PPT. We can use these NS∩PPT operations
to simplify the behavior of local operations since both NS and PPT operations have
mathematically tractable structures.

In the following two tables, we summarize the mathematical characterizations of
the three main kinds of codes we will study in Part II of this thesis.

Constraint Mathematical charaterization

CP JΠ ≥ 0
TP TrAo Bo JΠ = 1Ai Bi

A �→ B TrAo JΠ = 1Ai /dAi ⊗ TrAo Ai JΠ
B �→ A TrBo JΠ = 1Bi /dBi ⊗ TrBo Bi JΠ

PPT J
TBi Bo
Π ≥ 0

Table 2.2: Mathematical charaterizations of the constraints of bipartite operations

2.3.3 Channel composition

Definition 2.1. A CPTP map Π : L (Ai ⊗ Bi) → L (Ao ⊗ Bo) is called a superchannel
if it sends all CPTP map N : L (Ao) → L (Bi) to another CPTP map M : L (Ai) →
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Codes Corresponding constraints

NS operations (codes) CP, TP, A �→ B, B �→ A
NS∩PPT operations (codes) CP, TP, A �→ B, B �→ A, PPT
PPT operations CP, TP, PPT
PPT codes CP, TP, PPT, B �→ A

Table 2.3: Different kinds of bipartite operations and codes

Ai Ao Bi Bo

F

E
N

D

F

E D

Π
CoCo

Ai Bo

E D

Ao Bi
N

E DΠ

M

Figure 2.5: Simulation of a channel M (Ai → Bo) from a channel N (Ao → Bi) and a
deterministic super-operator (general code) Π (AiBi → AoBo).

L (Bo). We also call such Π a general code throughout this thesis.

The following proposition guarantees that if Π is B to A no-signalling, then the
composition of a bipartite quantum operation Π : L (Ai ⊗ Bi) → L (Ao ⊗ Bo) and
any quantum channel N : L (Ao) → L (Bi) is physical.

Lemma 2.2 ([CDP08]). A bipartite quantum operation Π : L (Ai ⊗ Bi) → L (Ao ⊗ Bo) is
a deterministic supermap if and only if Π is B to A no-signalling. (See an alternative proof
and more related discussions in [DW16].)

Now, let M (Ai → Bo) denote the resulting composition channel of the determin-
istic bipartite quantum operation ΠAi Bi→Ao Bo and the quantum channel NAo→Bi . We
write M = Π ◦ N for simplicity. An interesting fact is that we can characterize the
effective channel M via the Choi-Jamiołkowski matrices of N and Π, in the similar
spirit of the above inverse Choi-Jamiołkowski transformation.

As Π is a deterministic super-operator, there exist quantum channels EAi→AoCi and
DBiC→Bo and FCi→Co such that [CDP08]

MAi→Bo = DBiCo→Bo ◦ FCi→Co ◦ NAo→Bi ◦ EAi→AoCi . (2.22)

And the bipartite operation is given by

ΠAi Bi→Ao Bo = DBiCo→Bo ◦ FCi→Co ◦ EAi→AoCi . (2.23)
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Based on this, we can apply the inverse Choi-Jamiołkowski transformation to get
the following lemma.

Lemma 2.3. [LM15] Given a deterministic super-operator ΠAi Bi→Ao Bo and a quantum chan-
nel NAo→Bi , the effective channel MAi→Bo composed via Π ◦ N is characterized by

JM = TrAo Bi

(
JT
N ⊗ 1Ai Bo

)
JΠ. (2.24)

We give a proof sketch here. One could first use inverse Choi-Jamiołkowski trans-
formation and Eq. (2.23) to show

JΠ = TrCiCo

(
JTCo
D ⊗ 1Ai AoCi

) (
J

TCi
F ⊗ 1Ai Ao Bi Bo

)
(JE ⊗ 1Bi BoCo) . (2.25)

Furthermore, one could use similar steps to get

M (ρAi) = DBiCo→Bo ◦ FCi→Co ◦ NAo→Bi ◦ EAi→AoCi (ρAi) (2.26)

= TrAi

(
TrAo Bi

(
JT
N ⊗ 1Ai Bo

)
JΠ

) (
ρT

Ai
⊗ 1Bo

)
, (2.27)

which means that the Choi-Jamiołkowski matrix of M is given by

JM = TrAo Bi

(
JT
N ⊗ 1Ai Bo

)
JΠ. (2.28)

2.4 Semidefinite optimization

2.4.1 Basics of semidefinite programming

Semidefinite programming is a relatively new subfield of convex optimization con-
cerned with the optimization of a linear objective function over the intersection of the
cone of positive semidefinite matrices with an affine space (see, e.g., [WSV00, Tod01,
LV16, BV04] for more details). Though the related research on semidefinite program-
ming has been studied as far back as the 1940s [Boh48], the interest has grown vastly
during the last twenty years. In the last decades, semidefinite programs (SDPs) have
become an important tool for engineering, combinatorial optimization, complexity
theory, and information theory (see e.g., [Lov79, GLS93, GW95]).

In the study of quantum information, the convexity and the semidefinite prop-
erties arise naturally. As a result, many useful tools from convex optimization can
be used to deepen our understanding of quantum information. In the following, we
briefly introduce the basics of semidefinite programming. This subsection is based
on John Watrous’ book [Wat18] and we restrict the definitions to positive operators.
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Definition 2.4. A semidefinite program (SDP) is defined by a triplet {Ψ, C, D}, where
C ≥ 0 and D ≥ 0 and Ψ is a CP map.

Primal problem

maximize: Tr CX

subject to: Ψ (X) ≤ D,

X ≥ 0.

Dual problem

minimize: Tr DY

subject to: Ψ∗ (Y) ≥ C,

Y ≥ 0.

where Ψ∗ is the dual map to Ψ (Tr YΨ (X) = Tr XΨ∗ (Y)).

Either problem is called feasible if there exists a valid variable satisfying the cor-
responding constraint. If there exists a X ≥ 0 such that D − Ψ (X) is positive definite,
then the primal problem is said to be strictly feasible. And the dual is strictly feasible
if there is a Y ≥ 0 such that Ψ∗ (Y)− C is positive definite.

For these two problems, we define their optimal attained values

α = sup{Tr (CX) : Ψ (X) ≤ D, X ≥ 0},

β = inf{Tr (DY) : Ψ∗ (Y) ≥ C, Y ≥ 0},
(2.29)

where α = −∞ if the primal problem is not feasible and β = +∞ if the dual problem
is not feasible.

2.4.2 Duality of semidefinite programming

The duality between primal and dual problems is one of the most important proper-
ties of semidefinite programming.

Weak duality

For any semidefinite program, it holds that α ≤ β. This convenient relation allows us
to immediately bound the optimal attained values of the primal problem by picking
a valid variable of the dual problem, and vice versa.

Strong duality

For any semidefinite program that satisfies the following Slater’s conditions, we have

α = β. (2.30)

This strong duality is remarkable as it allows us to determine the optimal attained
values of many SDPs by picking valid variables of the prime and dual problems.
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Theorem 2.5 (Slater’s conditions). For a semidefinite program {Ψ, C, D} and α, β defined
as in Eq. (2.29), the following holds:

• if the primal problem is feasible and the dual is strictly feasible, then strong duality
holds and there exists a valid choice X for the dual problem with α = Tr CX;

• if the dual problem is feasible and the primal is strictly feasible, then strong duality
holds and there exists a valid choice Y for the dual problem with β = Tr DY;

• if both problems are strictly feasible, then strong duality holds and there exist valid
choices of X, Y such that α = β = Tr CX = Tr DY.

Finally, there are many optimization problems that are not immediately repre-
sented by SDP but can be refined in that form. Examples include the fidelity between
two states, the trace distance, the infinity norm, as well as most of the smooth en-
tropies. We take the spectral norm as an example here. Let us take Ψ (·) = Tr (·) , C =

ρ, D = 1, then

‖ρ‖∞ = max{Tr ρX : Tr X ≤ 1, X ≥ 0}
= min{y : ρ ≤ y1}.

Minimax theorem

A minimax theorem is a theorem providing conditions that guarantee that the ex-
change between the minimization and maximization of a minimax problem will not
change the optimal value. The first theorem in this sense is von Neumann’s minimax
theorem [vN28], which is considered the starting point of game theory.

The following Sion’s minimax theorem [Sio58] is a generalization of John von
Neumann’s minimax theorem.

Lemma 2.6 (Sion’s minimax theorem [Sio58]). Let X ,Y be convex compact sets and f :
X × Y → R be a continuous function that satisfies the following properties: f (·, y) : X →
R is convex for fixed y, and f (x, ·) : Y → R is concave for fixed x. Then it holds that [Sio58]

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y) . (2.31)

2.4.3 Applications of semidefinite programming in quantum information

In the following, we briefly review the applications of semidefinite programming in
quantum information and computation.

• Hierarchies for nonlocal correlations (see e.g., [NPA07, NPA08]).
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• Quantum query complexity (see e.g., [Rei11, HLS07, LMR+11]).

• Quantum communication complexity (see e.g., [GKRdW09]).

• Quantum computational complexity (see e.g., [KW00, JJUW11])

• Quantum steering (see e.g., [CS17, KSC+15, PW15]).

• Quantum coin-flipping (see e.g., [ABDR03, NST15]).

• Quantum state discrimination (see e.g., [Eld03, YDY14]).

• Quantum program language (see e.g., [LY17, YYW17]).

We note that semidefinite programming also has applications in quantum error cor-
rection (e.g., [KSL08, FSW07]), nonlocal games (e.g., [CSUU08, Weh06, KRT10]) and
many other topics in the area of quantum information.

2.5 Symmetries

In this subsection, we first briefly introduce the basics about complex representa-
tions of finite and compact groups, and then introduce the useful Schur’s lemma.
A group homomorphism from group G to group H is a map φ : G → H such
that φ (gg′) = φ (g) φ (g′) for all g, g′ ∈ G. A representation of the group G is
a group homomorphism φ : G → GL (V), where V = Cn. Two representations
φ1 : G → GL (V1) and φ2 : G → GL (V2) are said to be equivalent if there ex-
ists an isomorphism M : V1 → V2 such that φ1 (g) M = Mφ2 (g) for all g ∈ G.
Such M is called an intertwiner (or intertwining operator). It turns out that for finite
groups every representation is equivalent to a unitary representation. A representa-
tion φ : G → GL (V) is called reducible, if there exists a decomposition V = V1 ⊕ V2

such that φ (g) = φ1 (g) ⊕ φ2 (g) for all g ∈ G, and otherwise it is irreducible. A
useful fact is that every representation of a finite group can be expressed as a direct
sum of irreducible representations. A detailed introduction of representation theory
can be found in [FH04, Ste12].

Schur’s lemma

Schur’s lemma [Sch05] is an elementary but useful statement in the representation
theory, which has many applications in quantum information theory (see e.g., [Hay17b]).
It shows that homomorphisms between irreducible representations of a group G have
a very simple structure.
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Lemma 2.7 (Schur’s Lemma). Let V1 and V2 be two irreducible representations of a group
G. If M : V1 → V2 is an intertwiner operator, then the following hold.

i) Either M = 0 or M is an isomorphism.

ii) If V = W (as representations), then M = λ1 for some λ ∈ C.

The introduction of other powerful tools such as Schur-Weyl duality from repre-
sentation theory can be found in [Chr06, Har05, Hay17a].

Covariant channel

Definition 2.8. Let G be a finite group, and for every g ∈ G, let g → UA (g) and
g → VB (g) be unitary representations acting on the input and output spaces of the
channel, respectively. Then a quantum channel NA→B is G-covariant if

NA→B

(
UA (g) ρAU†

A (g)
)
= VB (g)NA→B (ρA)V†

B (g)

for all ρA ∈ S (A). We also introduce the average state ρA = 1
|G| ∑g UA (g) ρAU†

A (g).

2.6 Distance measures

On one hand, a fundamental question in quantum information theory is to distin-
guish different quantum states (or operations). A natural intuition is that if two states
ρ and σ are too close, it will be difficult to distinguish them. Thus, we need distance
measures to quantify the distinguishability. On the other hand, we are interested in
optimizing the quantum information-processing protocols to simulate an ideal one.
One way to quantify the efficiency is to show that the output state ρ of the actual
protocol is very close to the output state σ of the ideal protocol. Therefore, we need
distance measures to quantify how well the actual quantum protocol works.

2.6.1 Distance between states

In this subsection, we introduce two basic distance measures to quantify the closeness
between two quantum states.

Trace distance

Given two states ρ, σ ∈ S (A), the trace distance between ρ and σ is given by

‖ρ − σ‖1 = max{Tr X (ρ − σ) : −1 ≤ X ≤ 1}. (2.32)
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where ‖ · ‖1 is the trace norm. This distance measure is operational in the sense that it
quantifies the probability of distinguishing two states with an optimal measurement.

1
2
‖ρ − σ‖1 = max

0≤M≤1
Tr M (ρ − σ) . (2.33)

To see this, suppose that the spectral decomposition of ρ − σ is as follows:

ρ − σ = ∑
i

λi|i〉〈i|, (2.34)

where {|i〉} is an orthonormal basis of eigenvectors and {λi} is a set of real eigenval-
ues. Let us further choose P+ = ∑λi≥0 λi|i〉〈i| and P− = ∑λi<0 λi|i〉〈i|. From Eq. (2.32),
one can see that ‖ρ − σ‖1 = Tr (P+ − P−) = 2 Tr P+. Furthermore,

1
2
‖ρ − σ‖1 = Tr P+ = max

0≤M≤1
Tr M (ρ − σ) . (2.35)

A useful fact is that a measurement with one outcome that is likely causes a little
disturbance (measured by trace distance) to the quantum state that we measure. Win-
ter [Win99] originally proved the following “gentle measurement” lemma and later
Ogawa and Nagaoka [ON07] subsequently improved this bound to 2

√
ε.

Lemma 2.9 (Gentle measurement). For a quantum state ρ and an operator 0 ≤ X ≤ 1

satisfying that 1 − Tr ρX ≤ ε ≤ 1, it holds that

‖ρ −
√

Xρ
√

X‖1 ≤ 2
√

ε. (2.36)

Fidelity

Another useful distance measure is the fidelity [Bur69, Uhl76]. For two states ρ and
σ, the fidelity between them is defined as

F (ρ, σ) = ‖√ρ
√

σ‖1. (2.37)

A useful fact is that the fidelity between ρ and σ can be computed via semidefinite
programming [Wat13]:

F (ρ, σ) = sup

{
1
2

Tr
(

X + X†
)

:

[
ρ X

X† σ

]
≥ 0

}
(2.38)

= inf

{
1
2

Tr (ρY + σZ) :

[
Y −1

−1 Z

]
≥ 0

}
. (2.39)
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Purified distance and the ε-ball of a quantum state

The purified distance [TCR10] between two subnormalized states is defined as

P (ρ, σ) = C (ρ ⊕ [1 − Tr ρ] , σ ⊕ [1 − Tr σ]) , (2.40)

where C (ρ, σ) :=
√

1 − F (ρ, σ) [Ras06, GLN05, Ras02, Ras03]. The purified distance
have nice properties and is very useful when it is applied to define the smooth min-
and max-entropies.

Definition 2.10. The ε-ball of a state ρ defined as

Bε (ρ) = {ρ̃ ∈ S≤ (A) : P (ρ, ρ̃) ≤ ε}. (2.41)

Relations between Trace Distance and Fidelity

It is naturally to think that the trace distance should be small if the fidelity is high
because the trace distance vanishes when the fidelity is one and vice versa. The next
lemma explains the above intuition by establishing important relationships between
the trace distance and fidelity.

Lemma 2.11. ([FvdG99]) Given two quantum states ρ and σ, it holds that

1 −
√

F (ρ, σ) ≤ 1
2
‖ρ − σ‖1 ≤

√
1 − F (ρ, σ). (2.42)

Lemma 2.12 (Uhlmann’s Theorem [Uhl76]). Let ρA, σA ∈ S (A). Let ρAB ∈ S (A ⊗ B)
be a purification of ρA and σAC ∈ S (A ⊗ C) be a purification of σA. There exists an isometry
V : C → B such that,

F (|τ〉〈τ|AB, |ρ〉〈ρ|AB) = F (ρA, σA) ,

where |τ〉AB = (1A ⊗ V) |σ〉AC.

2.6.2 Distance between channels

For quantum channels, we use the completely bounded (cb) norm (or the diamond
norm) to measure the bias in distinguishing two such mappings [Kit97, Pau02].

Definition 2.13. For a linear map E : L (A) → L (B), the diamond norm of ε is
defined as

‖E‖♦ = sup
k∈N

‖E ⊗ idk‖1, (2.43)

where idk denotes the identity map on states of a k-dimensional quantum system, and
‖N‖1 = supσ ‖N (σ) ‖1 with σ ∈ S≤ (A).
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The supremum in Definition 2.13 is reached for k = dA [Kit97, Pau02]. We call two
quantum channels ε-close if they are ε-close in the metric induced by the diamond
norm.

The diamond norm is known to be efficiently computable by SDP in [Wat13]. To
be specific, for a linear map E : L (A) → L (B), it holds that

‖E‖♦ = max
1
2

Tr (JEX) +
1
2

Tr
(

JEX†
)

s.t.

(
ρ0 ⊗ 1B X

X† ρ1 ⊗ 1B

)
≥ 0

= min
1
2
‖TrB Y0‖∞ +

1
2
‖TrB Y1‖∞

s.t.

(
Y0 −JE
−JE Y1

)
≥ 0, Y0, Y1 ≥ 0.

(2.44)

As a special case, for two given quantum channels N1,N2 : L (A) → L (B), the
diamond norm of their difference is given by

‖N1 −N2‖♦ =max{Tr (JN1 − JN2) X : ρA ∈ S (A) , 0 ≤ X ≤ ρA ⊗ 1B}
=min{t : TrB Y ≤ t1A, Y ≥ JN1 − JN2 , Y ≥ 0}.

(2.45)

2.7 Entropies

2.7.1 Entropy of a single system

A fundamental concept in classical and quantum information theory is entropy. The
Shannon entropy [Sha48] has played an important role in information theory in the
independent and identically distributed (i.i.d.) limit: the asymptotic limit in which an
average of the resource is counted over many independent repetitions. The Shannon
entropy of a probability distribution p (x) of a classical system X is defined as

H (X) = − log ∑
x

p (x) log p (x) . (2.46)

For the quantum information theory in the i.i.d. limit, the von Neumann entropy is
the most important measure. It is defined as the Shannon entropy of the spectrum of
a quantum state, or equivalently,

S (ρ) = −Tr ρ log ρ. (2.47)

It is worth noting that the von Neumann entropy has the property of continuity,
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which is guaranteed by the following Fannes inequality [Fan73].

Lemma 2.14 (Fannes inequality [Fan73]). Given two quantum states ρ1, ρ2 ∈ D (HA),
such that dA = d and ‖ρ1 − ρ2‖1 = ε ≤ e−1, it holds that

|S (ρ1)− S (ρ2) | ≤ ε log (d)− ε log ε. (2.48)

A sharp version of this Fannes inequality was introduced in [Aud07]:

|S (ρ1)− S (ρ2) | ≤ ε

2
log (d − 1) + H2

( ε

2

)
, (2.49)

where H2 (x) = −x log x − (1 − x) log (1 − x) is the binary entropy.

2.7.2 Relative entropies

In order to describe the relative amount of uncertainty a state contains with respect
to another state, the relative entropy was introduced.

Definition 2.15. For ρ ∈ S (A) and σ ∈ P (A) the relative entropy between ρ and σ is
defined as

D (ρ‖σ) :=

{
Tr ρ (log ρ − log σ) if ρ  σ

+∞ otherwise .
(2.50)

And the quantum information variance is defined by

V (ρ‖σ) := Tr ρ (log ρ − log σ)2 − D (ρ‖σ)2 . (2.51)

The quantum relative entropy has a flavor of distance measure, as it is nonneg-
ative and D (ρ‖σ) = 0 if and only if ρ = σ. It has the monotonicity under quan-
tum channels [Lin75]: for quantum states ρ, σ ∈ S (A) and any quantum channel
E : L (A) → L (B), it holds that

D (E (ρ) ‖E (σ)) ≤ D (ρ‖σ) . (2.52)

This is also known as the data processing inequality of the relative entropy, which states
that processing of information cannot increase the relative entropy. It is worthing
noting that the quantum relative entropy is not a metric on the set of quantum states
since it is not symmetric under the exchange of its arguments. But the quantum
relative entropy can be related to the trace distance in the following way:
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Lemma 2.16 (Pinsker’s inequality [OP04]). . For quantum states ρ and σ, it holds that

D (ρ‖σ) ≥ 1
2 ln 2

‖ρ − σ‖1. (2.53)

Min- and max-relative entropies

Moreover, Rényi introduced a family of entropies as a generalization of the Shannon
entropy [Rén60] and there are various generalizations of the Rényi entropies. In the
Rényi entropy framework (see e.g., [Tom16]), two very useful information measures
are the min-relative entropy and the max-relative entropy [Dat09]:

Dmin (ρ‖σ) = − log ‖√ρ
√

σ‖2
1 (2.54)

Dmax (ρ‖σ) = min{λ : ρ ≤ 2λσ}. (2.55)

These two relative entropies both have interesting operational significances and obey
the data processing inequality under quantum channels:

Dmax (E (ρ) ‖E (σ)) ≤ Dmax (ρ‖σ) (2.56)

Dmin (E (ρ) ‖E (σ)) ≤ Dmin (ρ‖σ) . (2.57)

In particular, for bipartite states ρAB, σAB ∈ S (A ⊗ B), it holds that

Dmax (ρA‖σA) ≤ Dmax (ρAB‖σAB)

Dmin (ρA‖σA) ≤ Dmin (ρAB‖σAB) .

Sandwiched Rényi relative entropy

A more general type of relative entropy with important applications in quantum in-
formation theory is the sandwiched Rényi relative entropy.

Definition 2.17. For any ρ ∈ S (A), σ ∈ P (A) and α ∈ (0, 1) ∪ (1, ∞), the sand-
wiched Rényi relative entropy is defined as [MLDS+13, WWY14],

D̃α (ρ‖σ) :=
1

α − 1
log Tr

((
σ

1−α
2α ρσ

1−α
2α

)α)
, (2.58)

if supp (ρ) ⊂ supp (σ) and it is equal to +∞ otherwise.

Conditional entropies

In classical information theory, the conditional entropy H (Y|X) quantifies the amount
of information needed to describe the outcome of a random variable Y given that the
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value of another random variable X is known. The conditional quantum entropy is a
generalization of the classical conditional entropy:

Definition 2.18. The conditional entropy of a state ρAB is defined by

H (A|B)ρ := S (ρAB)− S (ρB) = −D (ρAB‖1A ⊗ ρB) , (2.59)

where ρB is the reduced state ρB = TrA ρAB.

Note that H (A|B)ρ can be negative for some bipartite state ρAB [CA97]. In the
operational task of state merging, the conditional entropy quantifies the optimal en-
tanglement cost when there is free classical communication [HOW05].

Definition 2.19. The coherent information [SN96] of a bipartite state ρAB is defined by

I (A〉B)ρ := −H (A|B)ρ = S (ρB)− S (ρAB) . (2.60)

In entanglement theory, the widely used quantum Rényi entropies are the condi-
tional min- and max-entropies.

Definition 2.20. The conditional min-entropy [KRS09, Tom12] of a bipartite state
ρAB ∈ S (A ⊗ B) is defined by

Hmin (A|B)ρ := − inf
σB∈D(B)

Dmax (ρAB‖1A ⊗ σB) . (2.61)

The conditional max-entropy is defined as the dual of the conditional min-entropy
in the sense that

Hmax (A|B)ρ = −Hmin (A|C)ρ , (2.62)

where ρABC is a purification of ρAB.

2.7.3 Smoothed entropies

The smooth entropy framework [Ren05, Tom12] has many applications in quantum
information theory [Wil17, Hay17c, Wat18] and quantum resource theories [CG18].
For example, in the single instance regime, the smoothed max-relative entropy char-
acterizes the resource costs of many information-theoretic tasks (see, e.g., [BD11b,
ZLY+18, FWTB18]) while the smoothed min-relative entropy characterizes the amount
of resource that can be generated in many information-theoretic tasks (see, e.g., [Hay17d,
WR12, TBR16, BD11a, FWTD17, RFWA18]).
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To be specific, the smoothed the min-relative entropy and the max-relative en-
tropy are introduced as follows:

Dε
min (ρ‖σ) = max

ρ̂≈ερ
Dmin (ρ̂‖σ) , (2.63)

Dε
max (ρ‖σ) = min

ρ̂≈ερ
Dmax (ρ̂‖σ) , (2.64)

where ρ̂ ≈ε ρ is equivalent to ρ̂ ∈ Bε (ρ).
Another important smoothed quantity is the hypothesis testing relative entropy

[WR12, BD10]:

Dε
H (ρ0‖ρ1) :=− log βε (ρ0‖ρ1) (2.65)

=− log min{Tr Qρ1 : 1 − Tr Qρ0 ≤ ε, 0 ≤ Q ≤ 1}, (2.66)

where βε (ρ0‖ρ1) is the minimum type-II error for the test while the type-I error is no
greater than ε. The dual SDP of Dε

H (ρ0‖ρ1) is given by

− log max{−Tr X + (1 − ε) t : X + ρ1 − tρ0 ≥ 0, X, t ≥ 0}. (2.67)

Note that βε is a fundamental quantity in quantum theory [Hel76, HP91, NO00]. It
is worth noting that Dε

H (·‖·) interpolates between smoothed min- and max-relative
entropies [DKF+12].

The three smoothed relative entropy measures presented above all satisfy the data
processing inequality. Furthermore, they also obey the asymptotic equipartition prop-
erty (AEP) in the i.i.d. limit:

lim
ε→0

lim
n→∞

1
n

Dε
H
(
ρ⊗n‖σ⊗n) = D (ρ‖σ) , (2.68)

lim
ε→0

lim
n→∞

1
n

Dε
max

(
ρ⊗n‖σ⊗n) = D (ρ‖σ) . (2.69)

Moreover, there are second-order expansion of quantum hypothesis testing rela-
tive entropy and max-relative entropy [TH13, Li14]:

Dε
H
(
ρ⊗n‖σ⊗n) = nD (ρ‖σ) +

√
nV (ρ‖σ)Φ−1 (ε) + O (log n) , (2.70)

Dε
max

(
ρ⊗n‖σ⊗n) = nD (ρ‖σ)−

√
nV (ρ‖σ)Φ−1 (ε2)+ O (log n) , (2.71)

where Φ (x) =
∫ x
−∞

e−t2/2√
2π

dt is the cumulative distribution function of a standard nor-
mal random variable.
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Chapter 3

Entanglement distillation and

quantification

3.1 Introduction

3.1.1 Background

In 1935, Einstein, Podolsky and Rosen (EPR) and Schrödinger first recognized a spooky
feature of quantum mechanics [EPR35, Sch35]: the existence of global states of a
composite system which cannot be written as a product of the states of individual
subsystems. This phenomenon, known as entanglement, was originally called “Ver-
schränkung” by Schrödinger [Sch35]. The EPR paradox argued that quantum me-
chanics as a physical theory is incomplete. In 1964, Bell dealt directly with the EPR
thought experiment and showed that entanglement is incompatible with a certain
local classical inequality which can be verified experimentally [Bel64].

With the development of quantum information science, quantum entanglement
has been recognized as an essential resource for quantum computation and commu-
nication. The study of quantum entanglement is one of the most active and impor-
tant areas in quantum information theory. A series of remarkable efforts have been
devoted to this area (for reviews see, e.g., Refs. [PV07, HHHH09]).

Entanglement distillation

The maximally entangled state plays a role as the currency in quantum information
since it has become a key ingredient in many quantum information processing tasks
(e.g., teleportation [BBC+93], superdense coding [BW92], and quantum cryptography
[BB84, Eke91]). Then a natural question arises: how many maximally entangled states can
we obtain from a source of less entangled states using physically-motivated operations?

32
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Figure 3.1: Entanglement distillation and formation

Imagine that Alice and Bob share a large supply of identically prepared states,
and they want to convert these states to high fidelity Bell pairs. One ideal strategy is
to use local operations and classical communication. We further define the distillable
entanglement ED of ρ to be the optimal rate r of converting ρ⊗n to rn Bell pairs with
an arbitrarily high fidelity in the limit of large n by LOCC. The concise definition of
entanglement of distillation by LOCC is given in as follows [PV07]:

ED (ρAB) = sup{r : lim
n→∞

[ inf
Λ∈LOCC

‖Λ
(
ρ⊗n

AB
)− Φ (2rn) ‖1] = 0}, (3.1)

where Λ ranges over LOCC operations and Φ (d) = 1/d ∑d
i,j=1 |ii〉〈jj| represents the

standard d ⊗ d maximally entangled state. This can also be generalized to define
the Ω-assisted distillable entanglement ED,Ω by replacing LOCC with Ω operations
(Ω ∈ {1-LOCC, SEP, PPT}):

ED,Ω (ρAB) = sup{r : lim
n→∞

[ inf
Λ∈Ω

‖Λ
(
ρ⊗n

AB
)− Φ (2rn) ‖1] = 0}, (3.2)

Entanglement distillation is also essential for quantum cryptography and quan-
tum error correction. For given bipartite pure state ψAB [BBPS96], it is known that

ED (ψAB) = S (TrA ψAB) . (3.3)

But for general quantum states, how to evaluate this fundamental quantity remains
a formidable question.

Entanglement formation

The reverse task of entanglement distillation is called entanglement dilution. At this
time, Alice and Bob share a large supply of Bell pairs and they are to convert rn
Bell pairs to n high fidelity copies of the desired state ρ⊗n using suitable operations.
The entanglement cost EC,Ω of a given bipartite state ρ quantifies the optimal rate r of
converting rn Bell pairs to ρ⊗n with an arbitrarily high fidelity in the limit of large n.
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The concise definition of entanglement cost using Ω operations is given as follows:

EC,Ω (ρAB) = inf{r : lim
n→∞

inf
Λ∈Ω

‖ρ⊗n
AB − Λ (Φ (2rn)) ‖1 = 0}, (3.4)

where Ω ∈ {1-LOCC, LOCC, SEP, PPT} and we write EC,LOCC = EC for simplifi-
cation. For entanglement cost under LOCC operations, Hayden, Horodecki and
Terhal [HHT01] proved that EC equals to the regularized entanglement of forma-
tion [BDSW96]:

EC (ρAB) = lim
k→∞

EF

(
ρ⊗k

AB

)
k

, (3.5)

where

EF (ρAB) := inf

{
∑

i
piS (TrA |ψi〉〈ψi|) : ρAB = ∑

i
pi|ψi〉〈ψi|

}
. (3.6)

In particular, for any bipartite pure state ψAB [BBPS96], it is known that

EC (ψAB) = ED (ψAB) = S (TrA ψAB) , (3.7)

from which we can see the reversibility between the asymptotic transformation be-
tween any pure states. However, little is known about the entanglement cost of gen-
eral quantum states. More details and properties of the entanglement cost as well as
the irreversibility of general quantum states will be discussed in the Chapter 4.

Entanglement monotone

As entanglement is a key resource, it is well motivated to develop quantifiers to mea-
sure it. In the past two decades, many entanglement measures have been proposed
and studied [PV07, HHHH09]. To be a function to quantify entanglement, entangle-
ment monotone is one of the most essential features. Motivated by the fact that it is
not possible to create entanglement via LOCC, therefore the first property for an en-
tanglement measure E is that E should be monotonically decreasing under LOCC
operations.

There are different kinds of monotonicity considered in the literature. The sim-
plest one states that E should be monotonic under LOCC operations; i.e.,

E (ρAB) ≥ E (Λ (ρAB))

should hold for every state ρ and every deterministic LOCC operation Λ. This is
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arguably the most important requirement for an entanglement measure. A direct
consequence of this inequality is the invariance of E under local unitaries.

There is another form of monotonicity which is known as full monotonicity. Any
(non-negative) function E (·) over bipartite states is said to be a full entanglement mono-
tone if it does not increase on average under general LOCC operations [Ple05a], i.e.,

E (ρ) ≥ ∑
i

piE (ρi) , (3.8)

where the state ρi is obtained with probability pi in the LOCC protocol applied to ρ.

3.1.2 Outline

In this chapter, we focus on the study of different aspects of quantum entanglement
and develop quantitative approaches to better exploit the power of entanglement.
In section 3.2, we review and discuss the model of entanglement distillation under
PPT operations introduced in [Rai01]. In section 3.3, we introduce a new computable
and additive entanglement measure to quantify the amount of entanglement in the
quantum states. Meanwhile, this entanglement measure also plays an important
role as an improved semidefinite programming (SDP) upper bound of the distillable
entanglement—the rate at which gold standard ebit states can be produced from the
given states through local operations and classical communication. In section 3.4, we
study deterministic entanglement distillation and provide characterizations and esti-
mates of the distillation rates. In section 3.5, we show that the Rains bound (the best
known upper bound on distillable entanglement) is neither additive nor equal to the
asymptotic relative entropy of entanglement.

3.2 Distillation under PPT operations

Rains first studied entanglement distillation assisted with PPT operations and ob-
tained an upper bound on the distillable entanglement [Rai99, Rai99, Rai01]. Consid-
ering entanglement manipulation under PPT operations provides us with a mathe-
matically tractable framework to deepen our understanding of it.

Fidelity of PPT distillation

Definition 3.1. In deriving this bound, Rains introduced the “fidelity of k-state PPT
distillation” by

FPPT (ρAB, k) := max{Tr Φ (k)Π (ρAB) : Π ∈ PPT} (3.9)
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which is the optimal entanglement fidelity of k ⊗ k maximally entangled states one
can obtain from ρAB by PPT operations (cf. Section 2.3.1).

In [Rai01], Rains simplified FPPT (ρAB, k) to

FPPT (ρAB, k) = max Tr ρABQAB,

s.t. 0 ≤ QAB ≤ 1,

− 1
k
1 ≤ QTB

AB ≤ 1
k
1.

(3.10)

One-shot ε-infidelity PPT distillable entanglement

Definition 3.2. For any bipartite quantum state ρAB, the one-shot ε-infidelity PPT
distillable entanglement is defined as

E(1)
D,PPT (ρAB, ε) := log max {k : FPPT (ρAB, k) ≥ 1 − ε} . (3.11)

Using this SDP of fidelity of distillation in Eq. (3.10), it is easy to obtain

E(1)
D,PPT (ρAB, ε) = − log min{η : 0 ≤ Q ≤ 1, Tr ρABQ ≥ 1 − ε, ‖QTB‖∞ ≤ η}. (3.12)

As mentioned in Section 2.7.2, the hypothesis testing relative entropy can be used
to characterize the amount of standard entanglement that can be distilled from the
quantum state: for any bipartite state ρAB and infidelity tolerance ε ∈ (0, 1),

E(1)
D,PPT (ρAB, ε) = min

‖CTB‖1
≤1

Dε
H (ρAB‖C) . (3.13)

Note that C need not be positive semidefinite.

Via the norm duality between the trace norm and the operator norm, it holds that

E(1)
D,PPT (ρAB, ε) = − log min{‖QTB‖∞ : 0 ≤ Q ≤ 1, Tr ρABQ ≥ 1 − ε}

= − log min
Q

max
‖C‖1≤1

{Tr QTB C : 0 ≤ Q ≤ 1, Tr ρABQ ≥ 1 − ε}

= − log min
Q

max
‖C‖1≤1

{Tr QCTB : 0 ≤ Q ≤ 1, Tr ρABQ ≥ 1 − ε}

= − log max
‖C‖1≤1

min
Q

{Tr QCTB : 0 ≤ Q ≤ 1, Tr ρABQ ≥ 1 − ε}

= − log max
‖CTB‖1≤1

min
Q

{Tr QC : 0 ≤ Q ≤ 1, Tr ρABQ ≥ 1 − ε}

= min
‖CTB‖1≤1

Dε
H (ρAB‖C)

(3.14)
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In the fourth line, we apply the Sion minimax theorem [Sio58]. In the fifth line, we
substitute C with CTB .

We refer to [FWTD17] for more details about the non-asymptotic study of entan-
glement distillation. Moreover, the refinement of E(1)

D,PPT (ρAB, ε) also can be used to
easily recover the Rains bound [Rai01] via the quantum Stein’s lemma [HP91, ON99].

PPT distillable entanglement

Definition 3.3. For any bipartite quantum state ρAB, the asymptotic PPT distillable
entanglement can be equivalently defined as

ED,PPT (ρAB) := sup{r : lim
n→∞

FPPT
(
ρ⊗n

AB, 2nr) = 1}. (3.15)

The logarithmic negativity of a state ρAB mentioned above is defined as [VW02,
Ple05a]

EN (ρAB) = log ‖ρTB
AB‖1. (3.16)

As shown in Refs. [Rai01, VW02], the significance of EN is highlighted in the follow-
ing

ED (ρAB) ≤ ED,PPT (ρAB) ≤ EN (ρAB) .

3.3 Improved SDP upper bound on distillable entanglement

We are now ready to introduce an SDP upper bound EW on ED,PPT and thus also on
ED, as follows:

EW (ρAB) := log W (ρAB) ,

where W (ρAB) is given by the following SDP:

W (ρAB) = max Tr ρTB
ABRAB,

s.t. − 1 ≤ RAB ≤ 1, RTB
AB ≥ 0.

(3.17)

Noticing that the constraint −1 ≤ RAB ≤ 1 can be rewritten as ‖RAB‖∞ ≤ 1, we can
use Lagrange multiplier approach to obtain the dual SDP as follows:

W (ρAB) = min Tr (UAB + VAB) ,

s.t. UAB, VAB ≥ 0,

(UAB − VAB)
TB ≥ ρAB.

(3.18)
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It is worth noting that the optimal values of the primal and the dual SDPs above coin-
cide. This is a consequence of strong duality. By Slater’s Theorem, one simply needs
to show that there exists positive definite UAB and VAB such that (UAB − VAB)

TB >

ρAB, which holds for UAB = 3VAB = 31. Introducing a new variable operator
XAB = (UAB − VAB)

TB , we can further simplify the dual SDP to

W (ρAB) = min ‖XTB
AB‖1,

s.t. XAB ≥ ρAB.
(3.19)

The function EW (·) has the following remarkable properties which will be dis-
cussed in greater detail shortly:

i) Additivity (cf. Proposition 3.4):

EW (ρAB ⊗ σA′B′) = EW (ρAB) + EW (σA′B′) . (3.20)

ii) Upper bound on PPT distillable entanglement (cf. Theorem 3.5):

ED,PPT (ρAB) ≤ EW (ρAB) , ∀ρAB. (3.21)

iii) Detecting genuine PPT distillable entanglement: EW (ρAB) > 0 if and only if
ρAB is PPT distillable (cf. Proposition 3.6).

iv) Full entanglement monotone under general LOCC (or PPT) operations (cf. The-
orem 3.12):

EW (ρAB) ≥ ∑
i

piEW (ρi) . (3.22)

v) Improved bound over logarithmic negativity (cf. Proposition 3.6):

EW (ρAB) ≤ EN (ρAB) , ∀ρAB, (3.23)

and the inequality can be strict.

vi) An interpretation as the max-Rains relative entropy (cf. Proposition 3.10):

EW (ρ) = min
σ∈PPT’

Dmax (ρ‖σ) . (3.24)

Additivity of EW

Property i) is equivalent to the multiplicativity of the function W (·) under tensor
products and can be proven directly by using the primal and dual SDPs of W (·).
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Proposition 3.4. For any two bipartite states ρAB and σA′B′ , we have

W (ρAB ⊗ σA′B′) = W (ρAB)W (σA′B′) (3.25)

Proof. To see the super-multiplicativity, suppose that the optimal solutions to the pri-
mal SDP (3.17) of W (ρAB) and W (σA′B′) are RAB and SA′B′ , respectively.

We need to show that RAB ⊗ SA′B′ is a feasible solution to the primal SDP (3.17) of
W (ρAB ⊗ σA′B′). That will imply

W (ρAB ⊗ σA′B′) ≥ Tr
(

ρTB
AB ⊗ σ

TB′
A′B′

)
(RAB ⊗ SA′B′) = W (ρAB)W (σA′B′) . (3.26)

The proof is quite straightforward. Indeed from ‖RAB‖∞ ≤ 1 and ‖SA′B′ ‖∞ ≤ 1, the
inequality

‖RAB ⊗ SA′B′ ‖∞ ≤ 1 (3.27)

follows immediately. Also the positivity of RTB
AB ⊗ STB′

A′B′ is obvious. Hence we are
done.

The sub-multiplicativity of W (·) can be proven similarly by employing dual SDP
(3.19) of W (ρAB). ��

Upper bound on distillable entanglement

Property ii) requires some effort and is presented in the following

Theorem 3.5. For any state ρAB,

ED,PPT (ρAB) ≤ EW (ρAB) . (3.28)

Proof. Suppose ED,PPT (ρAB) = r. Then

lim
n→∞

FPPT
(
ρ⊗n

AB, 2nr) = 1.

For a given k, suppose that the optimal solution to the SDP (3.10) of FPPT (ρAB, k)
is QAB. Let RAB = kQTB

AB. Then from the constraints of SDP (3.10), we have that
−1 ≤ RAB = kQTB

AB ≤ 1. It is also clear that RTB
AB ≥ 0. So RAB is a feasible solution to

the primal SDP (3.17) of W (ρAB). Therefore,

W (ρAB) ≥ Tr ρTB
ABRAB = k Tr ρABQAB = kFPPT (ρAB, k) .
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Hence,
lim
n→∞

W
(
ρ⊗n

AB
)
/2nr ≥ lim

n→∞
FPPT

(
ρ⊗n

AB, 2nr) = 1.

Noticing that W (ρ) is multiplicative, we have

lim
n→∞

W
(
ρ⊗n

AB
)
/2nr = lim

n→∞
(W (ρAB))

n/2nr ≥ 1.

Therefore, W (ρAB) ≥ 2r, and we are done. ��

Detect entanglement

Property iii) suggests an interesting equivalent relation between EW and EΓ in the
sense that EW can be used to detect whether a state is genuinely distillable under PPT
operations.

Proposition 3.6. For a state ρAB, EW (ρAB) > 0 if and only if ED,PPT (ρAB) > 0.

Proof. We only need to show that W (ρAB) > 1 is equivalent to ρAB is an non-positive
partial transpose (NPPT) state. The rest proof then can be completed by combining
this fact with an interesting result from [EVWW01]: any NPPT state is PPT distillable.

Firstly, if ρAB is PPT, then W (ρAB) ≤ ‖ρTB
AB‖1 = 1. Assume now ρAB is NPPT, we

will show that W (ρAB) > 1. Let P− be the projection on the subspace spanned by the
eigenvectors with negative eigenvalues of ρTB

AB, and let λ = ‖PTB− ‖∞. Introduce

RAB = 1AB − 1
max{λ, 0.5}P−.

It is clear that RTB
AB ≥ 0 by construction. Furthermore, we can easily verify that

−1 ≤ 1− 2P− ≤ RAB ≤ 1. (3.29)

So RAB is a feasible solution to the primal SDP (3.17) of W (ρAB). Noticing that
ρAB is NPPT, we have that

W (ρAB) ≥ Tr ρTB
ABRAB = 1 − Tr P−ρTB

AB
max{λ, 0.5} > 1,

where we have used the property that Tr P−ρTB
AB < 0. ��
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Comparison with logarithmic negativity:

Now we discuss property iv). Before that, let us recall that ‖ρTB
AB‖1 can be reformu-

lated as

‖ρTB
AB‖1 = max Tr ρTB

ABRAB

s.t. ‖RAB‖∞ ≤ 1.
(3.30)

Proposition 3.7. For any state ρAB, EW (ρAB) ≤ EN (ρAB) , and the inequality can be
strict. Moreover, EW (ρAB) = EN (ρAB) if and only if SDP (3.30) has an optimal solution
with positive partial transpose.

Proof. The definition of EN is given in Eq. (3.16). Noting that ρAB is a feasible solution
to the dual SDP (3.19) of W (ρAB), we have EW (ρAB) ≤ log ‖ρTB

AB‖1 = EN (ρAB).
To see the above inequality can be strict, we focus on a class of two-qubit states

σ
(r)
AB = r|v0〉〈v0| + (1 − r) |v1〉〈v1| (0 < r < 1), where |v0〉 = 1/

√
2 (|10〉 − |11〉) and

|v1〉 = 1/
√

3 (|00〉+ |10〉+ |11〉). The fact that EW

(
σ(r)

)
can be strictly smaller than

EN

(
σ(r)

)
is shown in Figure 3.2.

To prove the second part of the theorem, let us assume that the optimal solution to
SDP (3.30) of ‖ρTB

AB‖1 is RAB. If RTB
AB ≥ 0, then it is also a feasible solution to the primal

SDP (3.17) of W (ρAB). That immediately implies EW (ρAB) = EN (ρAB). Conversely,
assume that EW (ρAB) = EN (ρAB), then the optimal solution RAB to SDP (3.17) of
W (ρAB) is also the optimal solution to the SDP (3.30) for ‖ρTB

AB‖1 and it holds that
RTB

AB ≥ 0. Therefore, EW (ρAB) = EN (ρAB) if and only if SDP (3.30) for ‖ρTB
AB‖1 has a

PPT optimal solution. ��
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Figure 3.2: Comparsion between EW and EN for the class of states σ(r).
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We further compare EW to ED,PPT and EN using a class of 3 ⊗ 3 states defined by

ρ(α) =
2

∑
m=0

|ψm〉〈ψm|/3 (0 < α ≤ 0.5)

with |ψ0〉 =
√

α|01〉+√
1 − α|10〉, |ψ1〉 =

√
α|02〉+√

1 − α|20〉 and |ψ2〉 =
√

α|12〉+√
1 − α|21〉.

Proposition 3.8. For the class of states ρ(α), we have that

ED,PPT

(
ρ(α)

)
≤ EW

(
ρ(α)

)
< EN

(
ρ(α)

)
.

In particular,

ED,PPT

(
ρ(0.5)

)
= EW

(
ρ(0.5)

)
= log

3
2
< log

5
3
= EN

(
ρ(0.5)

)
.

Proof. The first step is to show that

EN

(
ρ(α)

)
= log ‖

(
ρ(α)

)TB ‖1 = log
(

1 + 4/3
√

α (1 − α)

)
. (3.31)

Secondly, we can choose XAB = ρ(α) +
√

α (1 − α)/3 (|00〉〈00|+ |11〉〈11|+ |22〉〈22|)
as a feasible solution to the dual SDP (3.19). By a routine calculation, we have

EW

(
ρ(α)

)
= log W

(
ρ(α)

)
≤ log ‖XTB

AB‖1 (3.32)

= log
(

1 +
√

α (1 − α)

)
< EN

(
ρ(α)

)
. (3.33)

For α = 0.5, choose k0 = 3/2 and Q = ∑2
m=0

(|ψm〉〈ψm|+ 1/3|ψ̂m〉〈ψ̂m|
)

with

|ψ̂0〉 = 1√
2
(|01〉 − |10〉) , (3.34)

|ψ̂1〉 = 1√
2
(|02〉 − |20〉) , (3.35)

|ψ̂2〉 = 1√
2
(|12〉 − |21〉) . (3.36)

Noticing that ‖QTB‖∞ = 2/3, we have −1/k01 ≤ QTB ≤ 1/k01. Thus Q is a feasible
solution to the SDP (3.10) of FPPT

(
ρ(0.5), k0

)
, which has an optimal value 1 due to

1 ≥ FPPT

(
ρ(0.5), k0

)
≥ Tr ρ(0.5)Q = 1. Applying the definition of ED,PPT, we have

ED,PPT

(
ρ(0.5)

)
≥ log k0 = log 3/2. (3.37)
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Finally, combining Eqs. (3.31), (3.32), and (3.37), we obtain the desired chain of
inequalities. ��

Remark 3.9. It is worth noting that ρ(0.5) is in the subspace span{|01〉+ |10〉, |02〉+
|20〉, |12〉+ |21〉}, which is not locally unitarily equivalent to the anti-symmetric sub-
space span{|01〉− |10〉, |02〉− |20〉, |12〉− |21〉}. For the corresponding 3⊗ 3 antisym-
metric state σ = 1

3

(|ψ̂0〉〈ψ̂0|+ |ψ̂1〉〈ψ̂1|+ |ψ̂2〉〈ψ̂2|
)
, it holds that EΓ (σ) = EW (σ) =

EN (σ) = log (5/3).

3.3.1 max-Rains relative entropy

Proposition 3.10 (max-Rains relative entropy). For any bipartite state ρ ∈ S (A ⊗ B), it
holds that

EW (ρ) = min
σ∈PPT’

Dmax (ρ‖σ) . (3.38)

Consequently, we also call EW the max-Rains relative entropy.

Proof. The following equality chain holds

EW (ρ) = log min
{∥∥XTB

∥∥
1 : ρ ≤ X

}
= log min

{
μ : ρ ≤ X,

∥∥XTB
∥∥

1 ≤ μ
}

= log min
{

μ : ρ ≤ μσ,
∥∥μσTB

∥∥
1 ≤ μ

}
= log min

{
μ : ρ ≤ μσ,

∥∥σTB
∥∥

1 ≤ 1
}

= min
σ∈PPT′ Dmax (ρ‖σ) .

(3.39)

The first line follows from Eq. (3.19). In the second line, we introduce a new variable
μ. In the third line, we substitute X with μσ. The last line follows from the definition
of Dmax. ��

Remark 3.11. This implies that EW can be considered as the max-Rains relative en-
tropy, which also indicates that EW is always larger than the Rains bound, i.e.,

EW (ρ) ≥ R (ρ) . (3.40)

We note that the advantage of EW is that it can be represented as in both SDP prob-
lem and max-relative entropy form, which can lead to both theoretical and numer-
ical insights for entanglement distillation as well as quantum communication (e.g.,
[WFD17, DBW17, BW18]). We will introduce the channel version of EW to study the
quantum capacity of a general quantum channel in Chapter 6.
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EW is an entanglement monotone

We are going to prove that EW is entanglement monotone in the sense of Eq. (3.8)
both under general LOCC operations as well as the more general PPT operations.

Theorem 3.12. The function EW (·) is an entanglement monotone both under general LOCC
and PPT operations.

Proof. Noting that PPT operations include LOCC as a subset, we only need to prove
the case of PPT operations. Let us consider a general PPT operation N = ∑i Ni that
maps bipartite state ρ to Ni (ρ) / Tr (Ni (ρ)) with probability TrNi (ρ), where Ni is
CP and PPT operation.

Refer to the dual SDP (3.19) of W (ρAB), we suppose that XAB is the optimal so-
lution. It is easy to see that Ni (XAB) ≥ Ni (ρ), then Ni (XAB) is feasible to the dual
SDP (3.19) of W (Ni (ρ)). Therefore,

W (Ni (ρ)) ≤ ‖ (Ni (XAB))
TB ‖1 = Tr |N TB

i

(
XTB

AB

)
|,

where N TB
i (σ) =

(N (
σTB

))TB . By the fact that N TB
i is CP [Rai99, Rai01], we have

W (Ni (ρ)) ≤ Tr |N TB
i

(
XTB

AB

)
| ≤ TrN TB

i

(
|XTB

AB|
)

. Furthermore,

∑
i

piEW (ρi) ≤ log ∑
i

piW (ρi) = log ∑
i

W (Ni (ρ))

≤ log ∑
i

TrN TB
i

(
|XTB

AB|
)

= log ∑
i

Tr[Ni

(
|XTB

AB|TB
)
]TB

= log TrN
(
|XTB

AB|TB
)
= EW (ρ) .

Thus, we obtain the monotonicity of EW under general PPT operations in the
sense of Eq. (3.8). Similar to the logarithmic negativity, EW is also a full entangle-
ment monotone that is not convex. ��

3.4 Deterministic Distillable Entanglement

The deterministic entanglement distillation concerns about how to distill maximally
entangled states exactly. The bipartite pure state case is completely solved in Refs.
[MW08, DFJY05]. We will show that PPT deterministic distillable entanglement of
a state ρ depends only on the support supp (ρ), which is defined to be the space
spanned by the eigenvectors with positive eigenvalues of ρ. We will study the de-
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terministic distillable entanglement in both one-shot and asymptotic settings in this
section.

3.4.1 One-copy deterministic distillable entanglement

The one-copy Ω-assisted deterministic distillable entanglement of ρAB is defined by

E(1)
0,Ω (ρAB) := max {log k : FΩ (ρAB, k) = 1, k > 0} , (3.41)

where Ω ∈ {LOCC, SEP, PPT}. Clearly E(1)
0,Ω (ρ) ≥ 0 since FΩ (ρ, 1) = 1 trivially holds.

For LOCC operations, one-copy Ω deterministic distillable entanglement is still
intractable. But for PPT operations, we could use the fidelity of PPT distillation to
give a concrete characterization of the one-copy deterministic distillable entangle-
ment. Replacing k and QAB in SDP (3.10) by Tr ρABRAB and RAB/ Tr ρABRAB, respec-
tively, we can further simplify E(1)

0,D,PPT (ρAB) as follows:

E(1)
0,D,PPT (ρAB) = max log Tr ρABRAB,

s.t. 0 ≤ RAB ≤ (Tr ρABRAB)1AB,

|RTB
AB| ≤ 1AB.

(3.42)

Proposition 3.13. For bipartite state ρAB, it holds that E(1)
0,D,PPT (ρAB) = − log W0 (ρAB),

where

W0 (ρAB) = min ‖RTB
AB‖∞,

s.t. PAB ≤ RAB ≤ 1AB,
(3.43)

and PAB is the projection onto supp (ρAB).

Proof. The first constraint in SDP (3.42) implies that Tr ρABRAB ≥ ‖RAB‖∞. So any
feasible RAB should be of the form xPAB + SAB, where x ≥ 0, PAB is the projection
onto supp (ρAB), and 0 ≤ SAB ≤ x (1− P)AB. Replacing SAB/x + PAB by RAB and
noticing E(1)

Γ,0 (ρAB) = log W0 (ρAB), we have

E(1)
0,D,PPT (ρAB) = max − log ‖RTB

AB‖∞,

s.t. PAB ≤ RAB ≤ 1AB.
(3.44)

��

In particular, E(1)
0,D,PPT (ρAB) ≥ − log ‖PTB

AB‖∞ when RAB = PAB. For bipartite pure
entangled states this lower bound gives the exact value of the PPT deterministic distil-
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lable entanglement [MW08, DFJY05]. However, this is not the case for general mixed
bipartite states.

3.4.2 Asymptotic deterministic distillable entanglement

The asymptotic deterministic distillable entanglement quantifies the rate of determin-
istic distillation in the asymptotic limit of large number of i.i.d. prepared states. Thus,
it is in the form of regularization.

Definition 3.14. Given bipartite state ρAB, its asymptotic deterministic distillable en-
tanglement under Ω operations is defined by

E0,Ω (ρ) := sup
n≥1

E(1)
0,Ω

(
ρ⊗n)/n = lim

n≥1
E(1)

0,Ω

(
ρ⊗n)/n, (3.45)

where Ω ∈ {LOCC, SEP, PPT}.

This deterministic distillable entanglement is computationally intractable due to
regularization. However, using the technique of SDP, we will introduce an efficiently
computable upper bound to evaluate this quantity.

For a bipartite quantum state ρ, we introduce

EM (ρ) = − log M (ρ) = − log max Tr PABVAB,

s.t. Tr |VTB
AB| = 1, VAB ≥ 0,

(3.46)

where PAB is the projection onto the support of ρ. And M (ρ) is also given by the
following SDP:

M (ρ) = max Tr PABZAB,

s.t. Tr (XAB + YAB) = 1,

ZAB ≤ (XAB − YAB)
TB ,

XAB, YAB, ZAB ≥ 0,

(3.47)

And its dual SDP is given by

M (ρ) = min{‖RTB
AB‖∞ : RAB ≥ PAB}. (3.48)

The optimal values of the primal and the dual SDPs above coincide by strong duality.
For any two bipartite states ρAB and σA′B′ , by utilizing semidefinite programming

duality, it is not difficult to prove that

EM (ρAB ⊗ σA′B′) = EM (ρAB) + EM (σA′B′) .
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Furthermore, for any state bipartite ρ, EM (ρ) = 0 if and only if supp (ρ) contains
the support of a PPT state σ, i.e. supp (σ) ⊆ supp (ρ). Too see this, if there exists PPT
state σ such that supp (σ) ⊆ supp (ρ), then EM (ρ) = 0. On the other hand, if any
state σ satisfies supp (σ) ⊆ supp (ρ) is NPPT. Let the optimal solution to SDP (3.46)
be V, where V ≥ 0 and Tr |VTB | = 1. It is clear that Tr V ≤ 1. Thus, we have Tr V = 1
when EM (ρ) = 0. Hence, V is a PPT state and supp (V) ⊆ supp (ρ). This leads to a
contradiction.

We show that EM is the best upper bound on the deterministic distillable entan-
glement of bipartite states. The bipartite pure state case is completely solved in Refs.
[MW08, DFJY05]. For a general bipartite state, the PPT-assisted deterministic distil-
lation rates depend only on the support of this state.

Theorem 3.15. For any bipartite state ρ ∈ S (A ⊗ B),

E0,D,PPT (ρ) ≤ EM (ρ) ≤ EW (ρ) .

Proof. To prove E0,D,PPT (ρ) ≤ − log M (ρ), let us first suppose that the optimal solu-
tion to SDP (3.43) of W0 (ρ) is R0. It is clear that R0 is also a feasible solution to SDP
(3.48) of M (ρ). Thus, it holds that

W0 (ρ) = ‖R0
TB‖∞ ≥ M (ρ) , (3.49)

Applying the additivity of M (ρ), we have

W0
(
ρ⊗n) ≥ M

(
ρ⊗n) = M (ρ)n . (3.50)

Hence, we have

E0,D,PPT (ρ) = lim
n→∞

− 1
n

log W0
(
ρ⊗n) (3.51)

≤ lim
n→∞

− 1
n

log M (ρ)n = EM (ρ) . (3.52)

Finally, to prove EM (ρ) ≤ EW (ρ), suppose that the optimal solution to SDP (3.48)
is R, then we have R ≥ P ≥ 0. Let R1 = R/‖RTB‖∞ and it is easy to see the posi-
tivity of R1 and the fact that |RTB

1 | ≤ 1, which means that R1 is a feasible solution to
SDP (3.17). Therefore, EW (ρ) ≥ log Tr ρR1 ≥ log Tr ρP/‖RTB‖∞ = − log ‖RTB‖∞ =

EM (ρ). ��

Remark 3.16. For any bipartite state ρ ∈ S (A ⊗ B), if the support of ρ contains a
PPT state σ, then EM (ρ) = 0 and we have that E0,D,PPT (ρ) = 0. Thus ρ is bound
entanglement for exact distillation under both LOCC or PPT operations.
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We further show the estimation of Theorem 3.15 in the following figure by a class
of 3 ⊗ 3 states in [WD16b] defined by

ρ(α) =
1
3

2

∑
m=0

(
X† ⊗ X

)m |ψ0〉〈ψ0|
(

X ⊗ X†
)m

,

where |ψ0〉 =
√

α|00〉+√
1 − α|11〉 (0 < α ≤ 0.5) and X = ∑2

j=0 |j ⊕ 1〉〈j|. An inter-

esting fact is that EM

(
ρ(α)

)
is tight for E0,D,PPT

(
ρ(α)

)
when 0 < α ≤ 1/5, which is

proved in the following Proposition.

0 0.1 0.2 0.3 0.4 0.5

  from 0 to 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

E
nt

an
gl

em
en

t (
eb

its
)

Figure 3.3: This plot presents the estimation of ED,PPT

(
ρ(α)

)
and E0,D,PPT

(
ρ(α)

)
. The

dot line depicts EW

(
ρ(α)

)
, the dash line depicts E(1)

0,D,PPT

(
ρ(α)

)
and the solid line

depicts EM

(
ρ(α)

)
.

Proposition 3.17. For any bipartite state ρ ∈ S (A ⊗ B) with support projection P, suppose
that the eigenvector |ψ〉 of PTB with the eigenvalue ‖PTB‖∞ is a product state, then

E0,D,PPT (ρ) = EM (ρ) = − log ‖PTB‖∞ ≤ ED,PPT (ρ) . (3.53)

Proof. From Eq. (3.44), it is easy to show that E0,D,PPT (ρ) ≥ − log ‖PTB‖∞. If |ψ〉〈ψ|
is PPT, then we can choose V = |ψ〉〈ψ| and it is easy to see V is a feasible solution to
SDP (3.46) of M (ρ). Thus,

EM (ρ) ≤ − log Tr PTB |ψ〉〈ψ| = − log ‖PTB‖∞. (3.54)
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��
For any pure state |φ〉〈φ|, suppose that |φ〉 has the Schmidt decomposition |φ〉 =

∑m
i=1 λi|ii〉 with λ2

1 ≥ ... ≥ λ2
m and ∑m

i=1 λ2
i = 1. Then |φ〉〈φ|TB = ∑m

i=1 λ2
i |ii〉〈ii| +

∑i �=j λiλj|ji〉〈ij|. Thus, ‖PTB‖∞ = λ2
1 and the corresponding eigenvector is |11〉〈11|.

Hence, by Proposition 3.17, E0,D,PPT (|φ〉〈φ|) = EM (|φ〉〈φ|) = − log ‖|φ〉〈φ|TB‖∞. This
rate can be achieved by LOCC [DFJY05].

Example 3.18. For the ρ(α), when 0 < α ≤ 1/5, we have that

E0,D,PPT

(
ρ(α)

)
= EM

(
ρ(α)

)
= − log (1 − α) . (3.55)

Let us choose U = X† ⊗ X with X = ∑2
j=0 |j ⊕ 1〉〈j|. The projection onto supp

(
ρ(α)

)
is

Pα =
2

∑
m=0

Um|ψ0〉〈ψ0|
(

U†
)m

. (3.56)

Therefore,

PTB
α = 2

√
α (1 − α)|v1〉〈v1| −

√
α (1 − α) (|v2〉〈v2|+ |v3〉〈v3|)

+
2

∑
m=0

Um[(1 − α) |11〉〈11|+ α|00〉〈00|]
(

U†
)m

,

where

|v1〉 = 1√
3
(|01〉+ |10〉+ |22〉) , (3.57)

|v2〉 = 1√
6
|01〉+ 1√

6
|10〉 −

√
2
3
|22〉 (3.58)

|v3〉 = 1√
2
(|01〉 − |10〉) . (3.59)

When 0 < α ≤ 1/5, we always have 1− α ≥ 2
√

α (1 − α). Therefore, ‖PTB
α ‖∞ = 1− α

and the corresponding eigenvector is |11〉〈11|. Applying Proposition 3.17, the proof
is done.

3.5 Nonadditivity of Rains bound

Rains bound is arguably the best known upper bound on the distillable entanglement
and was conjectured to be additive and coincide with the asymptotic relative entropy
of entanglement [ADVW02, PV07]. In this section, we disprove both conjectures by
explicitly constructing a special class of mixed two-qubit states.
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3.5.1 Rains bound on distillable entanglement

To evaluate ED efficiently, one possible way is to find computable upper bounds.
A well-known upper bound of the distillable entanglement is the relative entropy of
entanglement [VPRK97, VPJK97], i.e., for a given bipartite state ρ,

ER (ρ) := min
σ∈SEP(A:B)

D (ρ‖σ) . (3.60)

The asymptotic relative entropy of entanglement is given by

E∞
R (ρ) := inf

n≥1

1
n

ER
(
ρ⊗n) . (3.61)

Similarly, for a given bipartite state ρ, the PPT relative entropy of entanglement is
defined by

ER,PPT (ρ) : = min
σ∈PPT(A:B)

D (ρ‖σ) (3.62)

= min{D (ρ‖σ) : σ, σTB ≥ 0, Tr σ = 1}, (3.63)

the optimal solution σAB is called the closest PPT state of ρ. The asymptotic PPT
relative entropy of entanglement is given by

E∞
R,PPT (ρ) = inf

n≥1

1
n

ER,PPT
(
ρ⊗n) . (3.64)

An improved bound is the Rains bound [Rai01], which is arguably the best known
upper bound of distillable entanglement and refined in [ADVW02] as a convex opti-
mization problem as

R (ρAB) : = min
τAB∈PPT′(A:B)

D (ρAB‖τAB) (3.65)

= min{D (ρAB‖τAB) : τAB ≥ 0, Tr |τTB
AB| ≤ 1}. (3.66)

In the following Table. 3.1, we introduce the entanglement measures that we will
use in this thesis.

As Rains bound is proved to be equal to the asymptotic PPT relative entropy of en-
tanglement for Werner states [AEJ+01] and orthogonally invariant states [ADVW02],
one open problem is to determine whether these two quantities always coincide
[PV07]. It is also significant to determine whether Rains bound is additive or not.
In [ADVW02], it was conjectured that Rains bound might be additive for arbitrary
quantum states.
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Measures Acronym Definition

Distillable entanglement ED sup{r : lim
n→∞

inf
Λ∈LOCC

‖Λ
(
ρ⊗n) , Φ (2rn) ‖1 = 0}

PPT distillable entanglement ED,PPT sup{r : lim
n→∞

inf
Λ∈PPT

‖Λ
(
ρ⊗n) , Φ (2rn) ‖1 = 0}

Entanglement cost EC inf{r : lim
n→∞

inf
Λ∈LOCC

‖ρ⊗n − Λ (Φ (2rn)) ‖1 = 0}
PPT entanglement cost EC,PPT inf{r : lim

n→∞
inf

Λ∈PPT
‖ρ⊗n − Λ (Φ (2rn)) ‖1 = 0}

Entanglement of formation EF inf
ρ=∑i pi |ψ〉〈ψ|i

∑i piS (TrA |ψ〉〈ψ|i)
REE ER min

σ∈SEP(A:B)
D (ρ‖σ)

AREE E∞
R inf

n≥1
1
n ER

(
ρ⊗n)

PPT REE ER,PPT min
σ∈PPT(A:B)

D (ρ‖σ)

PPT AREE E∞
R,PPT inf

n≥1
1
n ER,PPT

(
ρ⊗n)

Rains bound R min
σ∈PPT′(A:B)

D (ρ‖σ)

Regularized Rains bound R∞ inf
n≥1

1
n R

(
ρ⊗n)

Max-Rains bound EW (Rmax) min
σ∈PPT′(A:B)

Dmax (ρ‖σ)

Logarithmic negativity EN log ‖ρTB‖1

Squashed entanglement Esq inf{ 1
2 I (A; B|E)ρ : ρAB = TrE ρABE}

Table 3.1: Partial zoo of entanglement measures

For a general bipartite state ρ, it holds that ER,PPT (ρ) ≥ R (ρ). However, ER,PPT (ρ)

equals to R (ρ) for every two-qubit state ρ [MI08] or the bipartite state with one qubit
subsystem [GGF14]. In particular, a two-qubit full-rank state σAB is the closest sepa-
rable state of any state ρ in the following form [MI08, FG11]:

ρAB = σAB − xG (σAB) , (3.67)

and
G (σ) = ∑

i,j
Gi,j|vi〉〈vi|AB (|φ〉〈φ|AB)

TB |vj〉〈vj|AB, (3.68)

with span (|φ〉AB) is the kernel (or null space) of σTB
AB and Gi,j = λi when λi = λj and

Gi,j =
(
λi − λj

)
/
(
ln λi − ln λj

)
when λi �= λj, where λi and |vi〉AB are the eigenval-

ues and eigenvectors of σAB, respectively.

The numerical estimation of the PPT relative entropy of entanglement with re-
spect to the PPT states was introduced in Refs. [ZFG10, GZFG15], i.e., can be es-
timated by a Matlab program. Suppose that the estimation of ER,PPT (ρ) in Refs.
[ZFG10, GZFG15] is E+

R (ρ), and the inequality E+
R (ρ) = D (ρ‖σ) ≥ ER,PPT (ρ) holds

since the algorithm indeed provides a feasible PPT state σ which is almost opti-
mal. This algorithm is implemented by CVX [GB08] (a Matlab software for disci-
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plined convex programming) and QETLAB [Nat16]. In low dimensions, this algo-
rithm provides an estimation E+

R (ρ) with an absolute error smaller than 10−3, i.e.
ER,PPT (ρ) + 10−3 ≥ E+

R (ρ) ≥ ER,PPT (ρ).

3.5.2 Nonadditivity of Rains bound

We first introduce a class of two-qubit states ρr whose closest separable states can be
derived by the result in [MI08]. Thus, the Rains bound of ρr is exactly given. Then
we apply the algorithm in Refs. [ZFG10, GZFG15] to demonstrate the gap between
1
2 R

(
ρ⊗2) and R (ρ).

Theorem 3.19. There exists a two-qubit state ρ such that

R
(
ρ⊗2) < 2R (ρ) . (3.69)

Meanwhile,
E∞

R,PPT (ρ) < R (ρ) . (3.70)

Proof. Firstly, we construct two-qubit states ρr and σr satisfying Eq. (3.67). Then we
have R (ρr) = D (ρr‖σr). Suppose that

σr =
1
4
|00〉〈00|+ 1

8
|11〉〈11|+ r|01〉〈01|

+

(
5
8
− r

)
|10〉〈10|+ 1

4
√

2
(|01〉〈10|+ |10〉〈01|) .

(3.71)

The positivity of σr requires that 5−√
17

16 ≤ r ≤ 5+
√

17
16 . Assume that r ≥ 5/8 − r and

we can further choose 0.3125 ≤ r ≤ 0.57 for simplicity.

Meanwhile, let us choose

ρr =
1
8
|00〉〈00|+ x|01〉〈01|+ 7 − 8x

8
|10〉〈10|

+
32r2 − (6 + 32x) r + 10x + 1

4
√

2
(|01〉〈10|+ |10〉〈01|)

(3.72)

with

x = r +
32r2 − 10r + 1

256r2 − 160r + 33
+

(16r − 5) y−1

32 ln (5/8 − y)− 32 ln (5/8 + y)
, (3.73)

y =
(
4r2 − 5r/2 + 33/64

)1/2
. (3.74)

It is clear that Tr ρr = 1 and we set 0.3125 ≤ r ≤ 0.5480 to ensure the positivity of ρr.
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One can readily verify that ρr = σr − 3G (σr) /2. Therefore, σr is the closest sepa-
rable state (CSS) for ρr and we have that

R (ρr) = ER,PPT (ρr) = D (ρr‖σr) . (3.75)

Figure 3.4: This plot demonstrates the difference between 2R (ρr) and E+
R
(
ρ⊗2

r
)

for
0.45 ≤ r ≤ 0.548. The dashed line depicts E+

R
(
ρ⊗2

r
)

while the solid line depicts
2R (ρr).

In particular, let us first choose r0 = 0.547, the Rains bound of ρr0 is given by

R (ρr0) = ER,PPT (ρr0) = D (ρr0‖σr0) � 0.3891999. (3.76)

Furthermore, applying the algorithm in Refs. [ZFG10, GZFG15], we can find a PPT
state σ0 such that

E+
R
(
ρ⊗2

r0

)
= D

(
ρ⊗2

r0
‖σ0

) � 0.7683307. (3.77)

The numerical value of relative entropy here is calculated based on the Matlab func-
tion “logm” [Mat13, AMHR13] and the function “Entropy” in QETLAB [Nat16]. In
this case, the accuracy is guaranteed by the fact ‖elogm(σr0) − σr0‖1 ≤ 10−16 and
‖elogm(σ0) − σ0‖1 ≤ 10−14. Noting that the difference between 2R (ρr0) and E+

R
(
ρ⊗2

r0

)
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is already 1.00691 × 10−2, we have that

R
(
ρ⊗2

r0

) ≤ ER,PPT
(
ρ⊗2

r0

) ≤ E+
R
(
ρ⊗2

r0

)
< 2R (ρr0) . (3.78)

It is also easy to observe that

E∞
R,PPT (ρr0) ≤

1
2

ER,PPT
(
ρ⊗2

r0

)
< R (ρr0) . (3.79)

When 0.45 ≤ r ≤ 0.548, we demonstrate the gap between 2R (ρr) and E+
R
(
ρ⊗2

r
)

in
Figure 3.4. ��

Since Rains bound is not additive, the asymptotic Rains bound [Hay17c] can pro-
vide better upper bound on the distillable entanglement, i.e.,

ED,PPT (ρ) ≤ R∞ (ρ) = inf
n≥1

1
n

R
(
ρ⊗n) ≤ R (ρ) , (3.80)

and the last inequality can be strict.

Corollary 3.20. There exists bipartite quantum state ρ such that

R∞ (ρ) < R (ρ) . (3.81)

As a consequence, the asymptotic Rains bound can provide a strictly better upper bound on
ED than the Rains bound.

3.6 Discussion

3.6.1 Summary

In this chapter, we have introduced an SDP-computable entanglement measure to
evaluate the distillable entanglement and explored the deterministic entanglement
distillation. This quantity enjoys additional good properties such as additivity and
monotonicity under both general LOCC (or PPT) operations. We have also demon-
strated the Rains bound is neither additive nor equal to the asymptotic relative en-
tropy of entanglement by explicitly constructing a special class of mixed two-qubit
states.

The main results in this chapter are summarized in the following box.
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Summary of Chapter 3

(i) An additive SDP-computable entanglement measure:

ED,PPT (ρ) ≤ EW (ρ) = Rmax (ρ) : = min
σ∈PPT′ Dmax (ρ‖σ) = min

X≥ρ
log ‖XTB‖1.

(ii) Rains bound is not additive: ∃ρ, R
(
ρ⊗2) < 2R (ρ).

(iii) Rains bound and its regularization can be strictly smaller than the asymptotic
PPT relative entropy of entanglement:

∃ ρ, such that R∞ (ρ) ≤ R (ρ) < E∞
R,PPT (ρ) . (3.82)

(iv) Deterministic distillable entanglement:

E0,D,PPT (ρ) ≤ EM (ρ) = min
X≥P

log ‖XTB‖∞, (3.83)

where P is the projection onto supp (ρ).

3.6.2 Outlook

In spite of a series of remarkable recent progress in the theory of entanglement (for
reviews see, e.g., [PV07, Chr06, HHHH09, BŻ17]), many fundamental questions still
remain open. It is of interest to determine whether the PPT distillable entanglement
is given by R∞. Moreover, how to develop a resource theory of entanglement under
one-way LOCC operations remains a challenging problem.

It is of great interest to explore the connections between non-local games [RV13,
PV16] and fundamental entanglement measures [PV07] (e.g., distillable entangle-
ment and entanglement cost). For example, a device-independent certification proto-
col of one-shot distillable entanglement was recently introduced in [AFB17].

A further direction is the distillation of secret key from quantum states [DW03].
It is important to develop both analytic and numerical methods to evaluate the rate
of secret-key distillation [HHHO05, SBPC+09] as well as the quantum key repeater
rate [BCHW15] to extract private bits. Note that one-shot upper bounds for secret
key were given in [WTB17]. However, due to the optimization over separable states,
it is not clear whether the quantities are efficiently computable.

More generally, one may apply semidefinite optimization and the techniques in
this chapter to investigate resource distillation and quantification in other quantum
resource theories (e.g., [CG18, Reg18, SAP17, VHGE14, RBL18, GA15, GMN+15]).



Chapter 4

Irreversibility of Asymptotic

Entanglement Manipulation

4.1 Introduction

4.1.1 Background

In quantum information science, the resource theory of entanglement studies the
transformation properties of entanglement under restricted classes of allowed op-
erations. The irreversibility is crucial to this resource theory and it was sometimes ar-
gued to be the difference between entanglement and thermodynamics, as the Carnot
cycle is reversible. When local operations and classical communication (LOCC) is
available, the manipulation of entanglement is irreversible in the finite-copy regime.
More precisely, the amount of pure entanglement that can be distilled from a finite
number of copies of a state ρ is usually strictly smaller than the amount of pure entan-
glement needed to prepare the same number of copies of ρ [BDSW96]. Surprisingly,
in the asymptotic limit of an arbitrarily large number of copies of the bipartite pure
states, this process is known to be reversible [BBPS96]. But for mixed states, this
asymptotic reversibility does not hold any more [VC01b, VC01a, VDC02, VWW04,
CdOF11]. In particular, one requires a positive rate of pure state entanglement to gen-
erate the bound entanglement by LOCC [VC01b, YHHSR05], while it is well known
that no pure state can be distilled from it [HHH98].

Various approaches have been considered to enlarge the class of operations to
ensure reversible interconversion of entanglement in the asymptotic regime. A natu-
ral candidate is the class of quantum operations that completely preserve positivity
of partial transpose (PPT) [Rai01], which include all quantum operations that can
be implemented by LOCC. A remarkable result is that any state with a nonpositive

56
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Figure 4.1: Illustration of entanglement irreversibility

partial transpose (NPT) is distillable under this class of operations [EVWW01]. This
suggests the possibility of reversibility under PPT operations, and there are examples
of mixed states which can be reversibly converted into pure states in the asymptotic
setting, e.g., the class of antisymmetric states of arbitrary dimension [APE03]. How-
ever, the reversibility under PPT operations remained unsolved for over more than
ten years [APE03, PV07, VWW04, BP10] and it was considered one of the major open
problems in quantum information theory [Ple05b].

4.1.2 Outline

One approach to study the reversibility problem is to consider the transformations be-
tween the given state and Bell state, which naturally raise two fundamental entangle-
ment measures: distillable entanglement and entanglement cost [BBPS96, BDSW96]
(cf. 3.1.1). To be specific, the problem of reversibility under PPT operations is to de-
termine whether distillable entanglement always coincides with entanglement cost
under PPT operations, i.e.,

EC,PPT (ρ)
?
= ED,PPT (ρ) , ∀ρ ∈ S (A ⊗ B) . (4.1)

If EC,PPT = ED,PPT, then the transformation between any states under PPT operations
is reversible. But this problem is still very difficult since for the general mixed states
it is highly nontrivial to evaluate these two measures, both of which are given by a
limiting procedure.

In this chapter, we resolve the open problem mentioned above by proving the
irreversibility via the approach of semidefinite optimization.

Section 4.2 establishes an SDP lower bound for the entanglement cost under PPT
operations. Using this new established lower bound, Section 4.3 further demonstrates
the irreversibility of entanglement distillation under PPT operations via the standard
rank-two state supported on the anti-symmetric subspace. As a byproduct, we also
show that for this class of states, both the Rains bound and its regularization are
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strictly less than the asymptotic relative entropy of entanglement. So, in general,
there is no unique entanglement measure for the manipulation of entanglement by
PPT operations.

4.2 Lower bounds for entanglement cost

We note that the following entanglement measures we are going to use are summa-
rized in Table 3.1 of entanglement measures.

4.2.1 Entanglement cost

Let us first recall the definition of entanglement cost using Ω operations:

EC,Ω (ρAB) = inf{r : lim
n→∞

inf
Λ∈Ω

‖ρ⊗n
AB − Λ (Φ (2rn)) ‖1 = 0}, (4.2)

where Ω ∈ {1-LOCC, LOCC, SEP, PPT}. The entanglement cost quantifies the amount
of Bell states required to reconstruct the desired state using suitable operations. There
are two known important lower bounds for entanglement cost, the squashed entan-
glement [CW04] and the asymptotic relative entropy of entanglement [AEJ+01].

Squashed entanglement

Definition 4.1. Given a bipartite state ρAB, Christandl and Winter [CW04] defined
the squashed entanglement of ρAB as

Esq (A; B)ρ =:
1
2

inf
ρABE

{I (A : B|E)ρ : ρAB = TrE ρABE}, (4.3)

where I (A : B|E) := S (ρAE) + S (ρBE) − S (ρE) − S (ρABE) is the conditional quan-
tum mutual information of the extended state ρABE. Alternatively, it can be repre-
sented as

Esq (A; B)ρ =
1
2

inf
ME→E′

I
(

A : B|E′) , (4.4)

where the infimum is taken over all squashing channels ME→E′ taking the E system
of the purification φ

ρ
ABE to a system E′ of arbitrary dimension.

The squashed entanglement in Eq. (4.4) can be interpreted as the environment E
holding some purifying system of ρAB, and then squashing the correlations between
A and B as much as possible by applying a channel ME→E′ that minimizes the con-
ditional mutual information I (A; B|E′). It has various nice properties such as mono-
tonicity under LOCC operations, additivity under tensor product, continuity, and
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normalization for the private state [CW04] (see also [Wil16] for approximate normal-
ization of Esq for private states). Importantly, the squashed entanglement lies be-
tween the distillable entanglement and entanglement cost [CW04]: for any bipartite
state ρ ∈ S (A ⊗ B), it holds that

ED (ρ) ≤ KD (ρ) ≤ Esq (ρ) ≤ EC (ρ) , (4.5)

where KD (ρ) is the optimal number of private bits that can be generated from ρ via
LOCC operations in the i.i.d. limit.

Asymptotic PPT relative entropy of entanglement

Let us recall the definition of the asymptotic PPT relative entropy of entanglement
(PPT AREE): given a biparitite state ρ, its PPT AREE is given by

E∞
R,PPT (ρ) = inf

n≥1
ER,PPT

(
ρ⊗n) /n. (4.6)

A useful fact is that E∞
R,PPT lies between the PPT distillable entanglement and the

PPT entanglement cost [Hay17c]: for any bipartite state ρ ∈ S (A ⊗ B), it holds that

ED,PPT (ρ) ≤ E∞
R,PPT (ρ) ≤ EC,PPT (ρ) . (4.7)

4.2.2 Lower bounds for entanglement cost

The main difficulty of the problems above is that the regularized quantities are usu-
ally extremely difficult to determine or estimate. To figure out whether Rains bound
always coincides with E∞

R , one necessarily has to evaluate E∞
R (ρ) of an explicit state

ρ. The problem of irreversibility under PPT operations is more intractable: one not
only has to evaluate the PPT distillable entanglement, but also needs to determine
the PPT entanglement cost.

Since computing the entanglement cost of a bipartite state is very difficult, we
introduce an efficiently computable lower bound for evaluating entanglement cost.

Our key tool is an efficiently computable additive lower bound for the asymptotic
REE. In the one-copy case, we need to do some relaxations of the minimization of
D (ρ‖σ) with respect to PPT states. By applying properties of the quantum relative
entropy, we can relax the problem to minimizing − log Tr Pσ over all PPT state σ,
where P is the projection onto supp (ρ). Noting that this is SDP-computable, we can
use SDP techniques to obtain the following bound

Eη (ρ) = max{− log ‖YTB‖∞ : −Y ≤ PTB ≤ Y}. (4.8)
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Interestingly, Eη (·) is additive under tensor product, i.e.,

Eη (ρ1 ⊗ ρ2) = Eη (ρ1) + Eη (ρ2) ,

so we can overcome the difficulty of estimating the regularized relative entropy of
entanglement. The additivity of Eη (·) can be proved by utilizing the duality theory of
semidefinite programming. A complete proof of the additivity of Eη (·) is presented
in the following Lemma. 4.3.

Proposition 4.2. For any bipartite state ρ,

E∞
R,PPT (ρ) ≥ Eη (ρ) . (4.9)

Proof. Firstly, let us introduce a CPTP map by N (τ) = PτP + (1− P) τ (1− P).
Then we have that

D (ρ‖σ) ≥ D (N (ρ) ‖N (σ))

= D (ρ‖PσP/Tr PσP)− log Tr Pσ

≥ − log Tr Pσ,

(4.10)

where the first inequality is from the monotonicity of quantum relative entropy [Lin75,
Uhl77] and the second inequality is due to the non-negativity of quantum relative en-
tropy. (After we finished the proof, we found that this step already appeared in the
Lemma 10 of [Dat09].)

Then, we can transform the original optimization problem to an SDP problem:

min
σ∈PPT(A:B)

D (ρ‖σ) ≥ min
σ∈PPT(A:B)

− log Tr Pσ. (4.11)

Secondly, utilizing the weak duality of SDP, we can see that

max
σ∈PPT(A:B)

Tr Pσ ≤ min {t : YTB ≤ t1, PTB ≤ Y} (4.12)

≤ min {t : −t1 ≤ YTB ≤ t1,−Y ≤ PTB ≤ Y} (4.13)

= min {‖YTB‖∞ : −Y ≤ PTB ≤ Y}. (4.14)

Thus,

ER,PPT (ρ) ≥ − log max
σ∈PPT(A:B)

Tr Pσ ≥ Eη (ρ) . (4.15)
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Finally, noting that Eη (ρ) is additive, we have that

ER,PPT
∞ (ρ) = inf

n≥1
ER

(
ρ⊗n) /n

≥ inf
n≥1

Eη

(
ρ⊗n) /n = Eη (ρ) .

��

The additivity of Eη

To see the additivity of Eη (ρ), we reformulate it as Eη (ρ) = − log η (ρ), where

η (ρ) = min t

s.t. − YAB ≤ PTB
AB ≤ YAB,

− t1 ≤ YTB
AB ≤ t1,

(4.16)

where PAB is the projection onto supp (ρ).
The dual SDP of η (ρ) is given by

η (ρ) = max Tr PAB (VAB − FAB)
TB ,

s.t. VAB + FAB ≤ (WAB − XAB)
TB ,

Tr (WAB + XAB) ≤ 1,

VAB, FAB, WAB, XAB ≥ 0.

(4.17)

The optimal values of the primal and the dual SDPs above coincide by strong duality.

Lemma 4.3. For any two bipartite states ρ1 and ρ2, we have that

Eη (ρ1 ⊗ ρ2) = Eη (ρ1) + Eη (ρ2) .

Proof. On one hand, suppose that the optimal solution to SDP (4.16) of η (ρ1) and
η (ρ2) are {t1, Y1} and {t2, Y2}, respectively. It is easy to see that

Y1 ⊗ Y2 + PTB
1 ⊗ PTB′

2 =
1
2
[
(

Y1 + PTB
1

)
⊗

(
Y2 + PTB′

2

)
+

(
Y1 − PTB

1

)
⊗

(
Y2 − PTB′

2

)
] ≥ 0,

Y1 ⊗ Y2 − PTB
1 ⊗ PTB′

2 =
1
2
[
(

Y1 + PTB
1

)
⊗

(
Y2 − PTB′

2

)
+

(
Y1 − PTB

1

)
⊗

(
Y2 + PTB′

2

)
] ≥ 0.

Then, we have that −Y1 ⊗ Y2 ≤ PTB
1 ⊗ PTB′

2 ≤ Y1 ⊗ Y2. Moreover,

‖YTB
1 ⊗ YTB′

2 ‖∞ ≤ ‖YTB
1 ‖∞‖YTB′

2 ‖∞ ≤ t1t2,
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which means that

−t1t21 ≤ YTB
1 ⊗ YTB′

2 ≤ t1t21. (4.18)

Therefore, {t1t2, Y1 ⊗ Y2} is a feasible solution to the SDP (4.16) of η (ρ1 ⊗ ρ2), which
means that

η (ρ1 ⊗ ρ2) ≤ t1t2 = η (ρ1) η (ρ2) . (4.19)

On the other hand, suppose that the optimal solutions to SDP (4.17) of η (ρ1) and
η (ρ2) are {V1, F1, W1, X1} and {V2, F2, W2, X2}, respectively. Assume that

V = V1 ⊗ V2 + F1 ⊗ F2, (4.20)

F = V1 ⊗ F2 + F1 ⊗ V2, (4.21)

W = W1 ⊗ W2 + X1 ⊗ X2, (4.22)

X = W1 ⊗ X2 + X1 ⊗ W2. (4.23)

It is easy to see that

V + F = (V1 + F1)⊗ (V2 + F2) (4.24)

≤ (W1 − X1)
TB ⊗ (W2 − X2)

TB′ = (W − X)TBB′ (4.25)

and Tr (W + X) = Tr (W1 + X1) ⊗ (W2 + X2) ≤ 1. Thus, {V, F, W, X} is a feasible
solution to the SDP (4.17) of η (ρ1 ⊗ ρ2). This means that

η (ρ1 ⊗ ρ2) ≥ Tr (P1 ⊗ P2) (V − F)TBB′ (4.26)

= Tr (P1 ⊗ P2)
(
(V1 − F1)

TB ⊗ (V2 − F2)
TB′

)
(4.27)

= η (ρ1) η (ρ2) . (4.28)

Hence, combining Eq. (4.19) and Eq. (4.26), we have that

η (ρ1 ⊗ ρ2) = η (ρ1) η (ρ2) , (4.29)

which directly leads to Eη (ρ1 ⊗ ρ2) = Eη (ρ1) + Eη (ρ2). ��
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Lower bound for the regularized Rains bound

Let us recall the upper bound EM (see Eq. (3.46)) on the deterministic distillable en-
tanglement: for a bipartite quantum state ρ,

EM (ρ) = − log M (ρ) = − log max Tr PABVAB,

s.t. Tr |VTB
AB| = 1, VAB ≥ 0,

(4.30)

Proposition 4.4. For any bipartite state ρ ∈ S (A ⊗ B),

EM (ρ) ≤ R∞ (ρ) ≤ EC,PPT (ρ) .

Proof. Via similar techniques in Proposition 4.2, one can show that

EM (ρ) ≤ R (ρ) . (4.31)

Noting that EM (·) is additive, we have that

EM (ρ) ≤ inf
n≥1

1
n

R
(
ρ⊗n) = R∞ (ρ) .

Finally, it is clear that

EM (ρ) ≤ R∞ (ρ) ≤ E∞
R,PPT (ρ) ≤ EC,PPT (ρ) ,

where the last inequality is from [Hay17c]. ��

Remark 4.5. As an application of this lower bound, one can also give an SDP lower
bound for the entanglement cost of quantum channels [BBCW13], i.e. the rate of entan-
glement (ebits) needed to asymptotically simulate a quantum channel N with free
classical communication.

4.3 Irreversibility of PPT entanglement manipulation

In this section, we focus on the following standard rank-two states supported on the
three by three anti-symmetric subspace:

ρv =
1
2
(|v1〉〈v1|+ |v2〉〈v2|) , (4.32)
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where

|v1〉 = 1/
√

2 (|01〉 − |10〉) , (4.33)

|v2〉 = 1/
√

2 (|02〉 − |20〉) . (4.34)

The projection onto supp (ρv) is Pv = |v1〉〈v1| + |v2〉〈v2|. The authors of [CD09]
showed that this state can be transformed into some 2 ⊗ 2 pure entangled state by a
suitable separable operation while no finite-round LOCC protocol can do that.

Our main result of this section is as follows.

Theorem 4.6. For the state ρv, we have

ED,PPT (ρv) = R∞ (ρv) < E∞
R,PPT (ρv) = EC,PPT (ρv) . (4.35)

To see this, we first prove E∞
R,PPT (ρv) = EC,PPT (ρv) = 1 in Proposition 4.7 and

then show ED,PPT (ρv) = R∞ (ρv) = log
(

1 + 1/
√

2
)

in Proposition 4.8.

This result indicates that the asymptotic entanglement manipulation of ρv un-
der PPT operations is irreversible, thus resolving a long-standing open problem in
quantum information theory [APE03, HOH02, Ple05b]. Furthermore, it also answers
another open problem in [PV07] by showing a nonzero gap between the regularized
Rains bound and the PPT AREE of ρv.

4.3.1 PPT entanglement cost of ρv

Applying the lower bound Eη (ρ), we are now ready to show that the PPT entangle-
ment cost of ρv is still one ebit.

Proposition 4.7.

EC,PPT (ρv) = E∞
R,PPT (ρv) = 1. (4.36)

Proof. Firstly, let us choose a projector

Q = |01〉〈01|+ |10〉〈10|+ |02〉〈02|+ |20〉〈20|. (4.37)

Then we can easily prove that

Eη (ρv) ≤ E∞
R,PPT (ρv) ≤ 1 (4.38)

by choosing a PPT state τ = Q/4 such that S (ρv‖τ) = 1.
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Secondly, we are going to prove Eη (ρv) ≥ 1. To see this, suppose that

Y =
1
2
(Q + |00〉〈00|+ (|11〉+ |22〉) (〈11|+ 〈22|)) . (4.39)

Noting that

Y − PTB
AB =

1
2
(|00〉+ |11〉+ |22〉) (〈00|+ 〈11|+ 〈22|) ,

it is clear that PTB
AB ≤ YAB. Moreover,

Y + PTB
AB = Q +

1
2
(|00〉 − |11〉 − |22〉) (〈00| − 〈11| − 〈22|) , (4.40)

which means that PTB
AB ≥ −Y.

Then YAB is a feasible solution to the SDP (4.8) of Eη (ρv). Thus,

Eη (ρv) ≥ − log ‖YTB‖∞ = − log 1/2 = 1, (4.41)

and we can conclude that

Eη (ρv) = E∞
R,PPT (ρv) = 1. (4.42)

Finally, it is clear that one Bell pair is sufficiently to prepare an exact copy of ρ by
LOCC. Combining with the above lower bounds, we have that

1 = Eη (ρv) ≤ E∞
R,PPT (ρv) ≤ EC,PPT (ρv) ≤ EC (ρ) ≤ 1. (4.43)

��

It is worth pointing out that our approach to evaluating the PPT entanglement
cost is to combine the lower bound Eη and the upper bound EC. This result provides
a new proof of the entanglement cost of the rank-two 3 ⊗ 3 antisymmetric state in
[Yur03]. Moreover, our result is stronger as it shows that the entanglement cost under
PPT operations of this state is still one ebit.

4.3.2 PPT distillable entanglement of ρv

We are going to evaluate the PPT distillable entanglement of ρv via the Rains bound
and the SDP characterization of the one-copy PPT deterministic distillable entangle-
ment in Eq. (3.42).
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Proposition 4.8.

ED,PPT (ρv) = R∞ (ρv) = log
(

1 + 1/
√

2
)

. (4.44)

Proof. Firstly, we need to introduce upper and lower SDP bounds to evaluate the
entanglement of cost and the regularized Rains bound. The logarithmic negativity
[VW02, Ple05a] is an upper bound on PPT distillable entanglement, i.e., EN (ρ) =

log ‖ρTB‖1.

Let us recall the one-copy PPT deterministic distillable entanglement:

E(1)
0,D,PPT (ρ) = max − log ‖RTB

AB‖∞,

s.t. PAB ≤ RAB ≤ 1AB.
(4.45)

where PAB is the projection onto supp (ρ), the support of ρ. Note that supp (ρ) is de-
fined to be the subspace spanned by the eigenvectors of ρ with positive eigenvalues.
Clearly E(1)

0,D,PPT (ρ) is efficiently computable via SDP, and for a general bipartite state
ρ we have

E(1)
0,D,PPT (ρ) ≤ ED (ρ) ≤ R∞ (ρ) ≤ EN (ρ) ,

which is very helpful to determine the exact values of PPT distillable entanglement
for some states.

Now one can calculate that ‖ρTB
v ‖1 = 1 + 1/

√
2. Then we have

R∞ (ρv) ≤ EN (ρv) ≤ log
(

1 + 1/
√

2
)

. (4.46)

On the other hand, let

RAB =
(

3 − 2
√

2
)
(|r1〉〈r1|+ |r2〉〈r2|) + PAB

with |r1〉 = (|01〉+ |10〉) /
√

2 and |r2〉 = (|02〉+ |20〉) /
√

2. It is easy to check
that PAB ≤ RAB ≤ 1, which means that RAB is a feasible solution to SDP (4.45) of
E(1)

0,D,PPT (ρv). Therefore,

E(1)
0,D,PPT (ρv) ≥ − log ‖RTB

AB‖∞ = log
(

1 + 1/
√

2
)

. (4.47)

Finally, combining Eq. (4.46) and Eq. (4.47), we have that

ED,PPT (ρv) = R∞ (ρv) = log
(

1 + 1/
√

2
)

. (4.48)

��
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4.3.3 General irreversibility under PPT operations

We have shown the irreversibility of the asymptotic entanglement manipulation of ρv

under PPT operations. One can use similar technique to prove the irreversibility for
any ρ with spectral decomposition

ρ = p|u1〉〈u1|+ (1 − p) |u2〉〈u2| (0 < p < 1) ,

where |u1〉 = (|01〉 − |10〉) /
√

2, |u2〉 = (|ab〉 − |ba〉) /
√

2. Interestingly, it holds that
ED,PPT (ρ) < 1 = EC,PPT (ρ). (See [WD17a] for a detailed proof). More generally,
we can provide a sufficient condition for the irreversibility under PPT operations and
construct a general class of such states.

It was shown in Chapter 3 that

ED,PPT (ρ) ≤ EW (ρ) ≤ EN (ρ) ,

and the second equality can be strict. It is straightforward to see that if EW (ρ) <

Eη (ρ), then ED,PPT (ρ) < EC,PPT (ρ) .

Indeed, we can obtain a more specific condition if we use logarithmic negativity
EN instead of EW . That is, for a bipartite state ρ, if there is a Hermitian matrix Y such
that PTB

AB ± Y ≥ 0 and ‖ρTB‖1 < ‖YTB‖−1
∞ , we have ED,PPT (ρ) < EC,PPT (ρ).

We further show the irreversibility in asymptotic manipulations of entanglement
under PPT operations by a class of 3 ⊗ 3 states defined by

ρ(α) = (|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|) /2, (4.49)

where |ψ1〉 =
√

α|01〉 −√
1 − α|10〉 and |ψ2〉 =

√
α|02〉 −√

1 − α|20〉 with 0.42 ≤ α ≤
0.5. Then the projection onto the range of ρ(α) is PAB = |ψ1〉〈ψ1|+ |ψ2〉〈ψ2|. One can
easily calculate that

EW

(
ρ(α)

)
≤ log ‖

(
ρ(α)

)TB ‖1 = log
(

1 +
√

2α (1 − α)

)
.

We then construct a feasible solution to the dual SDP (4.8) of Eη

(
ρ(α)

)
, i.e.,

Y = α (|01〉〈01|+ |02〉〈02|) + (1 − α) (|10〉〈10|+ |20〉〈20|)
+

√
α (1 − α) (|00〉〈00|+ |11〉〈11|+ |22〉〈22|+ |11〉〈22|+ |22〉〈11|) .

(4.50)

It can be checked that −Y ≤ PTB
AB ≤ Y and ‖YTB‖∞ ≤ 1 − α. Thus, Eη

(
ρ(α)

)
≥

− log (1 − α).
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When 0.42 ≤ α ≤ 0.5, it is easy to check that

− log (1 − α) > log
(

1 +
√

2α (1 − α)

)
. (4.51)

Therefore,

ED,PPT

(
ρ(α)

)
≤ EW

(
ρ(α)

)
< Eη

(
ρ(α)

)
≤ EC,PPT

(
ρ(α)

)
. (4.52)

4.4 Discussion

4.4.1 Summary

In this chapter, we have explored semidefinite programs to evaluate the entanglement
cost of bipartite entanglement, demonstrated irreversibility of entanglement theory
under PPT operations, and established separations between fundamental entangle-
ment measures.

The important results in this chapter are summarized in the following box.

Summary of Chapter 4

(i) Lower bound for the entanglement cost of a bipartite state ρ ∈ S (A ⊗ B):

EC (ρ) ≥ EC,PPT (ρ) ≥ Eη (ρ) = min t

s.t. − Y ≤ PTB ≤ Y,

− t1 ≤ YTB ≤ t1,

(4.53)

where P is the projection onto supp (ρ).

(ii) Rains bound can be strictly larger than the asymptotic PPT relative entropy
of entanglement:

∃ ρ ∈ S (A ⊗ B) , such that R (ρ) > E∞
R,PPT (ρ) . (4.54)

(iii) Asymptotic entanglement manipulation under PPT operations is irreversible:

∃ ρ ∈ S (A ⊗ B) , such that EC,PPT (ρ) > ED,PPT (ρ) . (4.55)

4.4.2 Outlook

The lower bound Eη for entanglement cost is in general not tight and could be some-
times smaller than distillable entanglement. How to further refine the lower bound
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Eη remains an interesting problem. It will also be interesting to study the entangle-
ment cost from the view of non-local games, see e.g., [AFY17].

By considering all asymptotically non-entangling transformations, a reversible
theory of entanglement was obtained in Refs. [BP08, BP10]. Given the fact that the
entanglement theory under PPT operations is not reversible, a very interesting ques-
tion remains open: what is the smallest class of operations that permits a reversible
entanglement theory?

Moreover, can we develop a non-asymptotic resource theory to efficiently evalu-
ate the entanglement dilution with finite resources? For example, see [BD11b] for the
study about the quantification of one-shot entanglement cost.

Finally, we end this part on entanglement theory with the following zoo of en-
tanglement measures. The contributions of Chapters 3-4 are highlighted. The irre-
versibility of entanglement under PPT operations can be seen via the gap between
E∞

R,PPT and R∞.

EF

�=
ER

�=
E∞

R

�=
E∞

R,PPT

�=
ED,PPT

�=
ED

�=
EC

�=

EC,PPT

�=

�=

�=
Esq

�=

KD

�=

�=
ER,PPT

�=�=
R
�=

R∞
?

�=

EW (Rmax)

�=
EN

�=

Figure 4.2: Zoo of entanglement measures. An arrow EA −→ EB indicates that
EA (ρ) ≥ EB (ρ) for any bipartite state ρ. EA EB indicates that EA and EB are not
comparable. The detailed definitions of these entanglement measures can be found
in Table 3.1.
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Chapter 5

Classical communication via

quantum channels

5.1 Introduction

The reliable transmission of classical information with quantum systems is central to
the theory of quantum information. A natural question that arises is what are the
maximum communication rates achievable over noisy communication channels? In
1948, Shannon stressed the nature of communication in his seminal work “A Mathe-
matical Theory of Communication” [Sha48]:

C. E. Shannon: “The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.”

En Dn

N
N

N

A1

A2

An

B1

B2

Bn

...
k ∈ {1, · · · , m} k′ ∈ {1, · · · , m}

Figure 5.1: The sender (Alice) encodes the messages with an encoding operation En
and then sends them trough the channel N⊗n to the receiver (Bob). Bob collects these
registers and then applies a decoding operation Dn to extract the messages Alice sent.

The core of this view is the channel formalism, where any noisy communication line
is depicted as a stochastic map connecting input signals selected by the sender of the

71
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message (Alice), to their corresponding output counterparts accessible to the receiver
of the messages (Bob).

Besides the mathematical theory of communication, Rolf Landauer stressed the
fact that information is physical [Lan96]: “Information is inevitably tied to a physi-
cal representation and therefore to restrictions and possibilities related to the laws of
physics and the parts available in the universe.” This view answers why we need an
information theory based on quantum mechanics. It is worth noting that the quan-
tum information theory not only extends but also completes the classical information
theory (for reviews, see, e.g., [BS98, Wil17, Hay17c, CGLM14]).

5.1.1 Background

Any physical process can be represented as a quantum channel. The goal of build-
ing a classical communication system is to simulate a noiseless channel by using the
actual noisy channel. In particular, the sender is able to apply any local physical op-
eration to encode the messages to input to the channel. And the receiver may apply
any local physical operation to decode the outputs of the channel.

The classical capacity of a noisy quantum channel is the highest rate at which
it can convey classical information reliably over asymptotically many uses of the
channel. (We refer to Eq. (5.7) for a formal definition.) The Holevo-Schumacher-
Westmoreland (HSW) theorem [Hol73, Hol98b, SW97] gives a full characterization of
the classical capacity of quantum channels.

Theorem 5.1 (Classical capacaity (HSW theorem)). Given a quantum channel N , its
classical capacity is given by the regularized Holevo capacity:

C (N ) := sup
n≥1

χ (N⊗n)

n
, (5.1)

where χ (N ) is the Holevo capacity of the channel N , defined as

χ (N ) := max
{(pi ,ρi)}

S

(
∑

i
piN (ρi)

)
− ∑

i
piS (N (ρi)) , (5.2)

and {(pi, ρi)}i is an ensemble of quantum states on A.

For certain classes of quantum channels (depolarizing channel [Kin03], erasure
channel [BDS97], unital qubit channel [Kin02], etc. [AHW00, DHS04, Fuk05, KWW12]),
the classical capacity of the channel is equal to the Holevo capacity, since their Holevo
capacities are all additive. However, for a general quantum channel, our understand-
ing of the classical capacity is still limited. The work of Hastings [Has09] shows that
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the Holevo capacity is generally not additive, thus the regularization in Eq. (5.1)
is necessary in general. Since the complexity of computing the single-letter Holevo
capacity of a channel is NP-complete [BS07], the regularized Holevo capacity of a
general quantum channel is notoriously difficult to calculate and it is not even clear
whether this regularized quantity is computable in the Turing sense. (See [SSMR16]
for approaches to approximating Holevo information of a quantum channel.) Even
for basic quantum channels such as the qubit amplitude damping channel, the clas-
sical capacity remains unknown.

Strong converse vs. weak converse

The converse part of the HSW theorem states that if the communication rate exceeds
the capacity, then the error probability of any coding scheme cannot approach zero in
the limit of many channel uses. This kind of “weak” converse suggests the possibility
for one to increase communication rates by allowing an increased error probability.
A strong converse property leaves no such room for the trade-off; i.e., the error prob-
ability necessarily converges to one in the limit of many channel uses whenever the
rate exceeds the capacity of the channel. For classical channels, the strong converse
property for the classical capacity was established by Wolfowitz [Wol78]. For quan-
tum channels, the strong converse property for the classical capacity has been con-
firmed for several classes of channels [ON99, Win99, KW09, WW13, WWY14]. Win-
ter [Win99] and Ogawa and Nagaoka [ON99] independently established the strong
converse property for the classical capacity of classical-quantum channels. Koenig
and Wehner [KW09] proved the strong converse property for particular covariant
quantum channels. Recently, for the entanglement-breaking and Hadamard chan-
nels, the strong converse property was proved by Wilde, Winter and Yang [WWY14].
Moreover, the strong converse properties for the pure-loss bosonic channel and the
quantum erasure channel were proved in [WW13] and [WW14], respectively. Un-
fortunately, for a general quantum channel, less is known about the strong converse
property of the classical capacity, and it remains open whether this property holds
for all quantum channels.

Strong converse bound

A strong converse bound for the classical capacity is a quantity such that the suc-
cess probability of transmitting classical messages vanishes exponentially fast as the
number of channel uses increases if the rate of communication exceeds this quantity,
which forbids the trade-off between rate and error in the limit of many channel uses.
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Figure 5.2: Strong vs. weak converse.

Non-asymptotic classical communication

Another fundamental problem, of both theoretical and practical interest, is the trade-
off between the channel uses, communication rate and error probability in the non-
asymptotic (or finite blocklength) regime. In a realistic setting, the number of channel
uses is necessarily limited in quantum information processing. Therefore one has to
make a trade-off between the transmission rate and error tolerance. Note that one
only needs to study one-shot communication over the channel since it can correspond
to a finite blocklength and one can also study the asymptotic capacity via the finite
blocklength approach. The study of finite blocklength regime has recently garnered
great interest in classical information theory (see e.g., [PPV10, Hay09, Mat12]) as well
as in quantum information theory (see e.g., [MW14a, WR12, RR11, TH13, BCR11,
LM15, TT15, BDL16, Tom16, TBR16]). For classical channels, Polyanskiy, Poor, and
Verdú [PPV10] derived the finite blocklength converse bound via hypothesis test-
ing and Matthews [Mat12] provided an alternative proof of this converse bound via
classical no-signalling codes. For classical-quantum channels, the one-shot converse
and achievability bounds were given in [MD09, WR12, RR11]. Recently, the one-
shot converse bounds for entanglement-assisted and unassisted codes were given in
[MW14a], which generalizes the hypothesis testing approach in [PPV10] to quantum
channels.

5.1.2 Outline

To gain insights into the generally intractable problem of evaluating the capacities
of quantum channels, a natural approach is to study the performance of extra free
resources in the coding scheme. This scheme can be seemed as a deterministic super-
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operator performed jointly by the sender Alice and the receiver Bob to assist the com-
munication, which we call general code (see Section 2.3 for details).

In this chapter, we derive a framework to evaluate the communication capabilities
in both non-asymptotic and asymptotic regimes. In section 5.2, we show that the op-
timal coding success probability and one-shot ε-error classical capacity assisted with
NS (and PPT) codes can be characterized by SDPs. We also show that the Matthews-
Wehner meta-converse bound for entanglement-assisted classical communication can
be achieved by activated, no-signalling assisted codes, suitably generalizing a result
for classical channels. In section 5.3, we derive a new meta-converse for unassisted
classical communication with application to a finite resource analysis of classical com-
munication over quantum erasure channels. In section 5.4, we derive two SDP strong
converse bounds for the classical capacity of a general quantum channel. We show
an improved upper bound for the amplitude damping channel and discuss other po-
tential upper bounds on classical capacity.

5.2 One-shot communication capability

5.2.1 Task of information processing

The aim of classical communication is to transmit classical messages from one side to
another side via a noisy channel, which is equivalent to simulate a noiseless classical
channel via suitable encoders and decoders.

Based on the previous results on channel composition [CDP08, DW16], one can
simulate a channel M with the channel N and code Π, where Π is a bipartite CPTP
operation from AiBi to AoBo which is B to A no-signalling. We say such Π is an
Ω-assisted code if it can be implemented by local operations with Ω-assistance.

In the following, we eliminate Ω for the case of unassisted codes and write Ω =

E and Ω = NS for entanglement-assisted and no-signalling-assisted (NS-assisted)
codes, respectively. We refer to Section 2.3 for more details about the mathematical
description of these codes.

A A′ B B′

E
N

DE D

Π

Figure 5.3: General code scheme
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Suppose Alice wants to send the classical message labelled by {1, . . . , m} to Bob
using the composite channel M = Π ◦ N , where Π is a deterministic super-operator
that generalizes the usual encoding scheme E and decoding scheme D. After the
action of E and N , the message results in quantum state at Bob’s side. Bob then
performs a POVM with m outcomes on the resulting quantum state. The POVM is a
component of the operation D. Since the results of the POVM and the input messages
are both classical, it is natural to assume that M is with classical registers throughout
this chapter, that is, Δ ◦M ◦ Δ = M for some completely dephasing channel Δ.

Definition 5.2. Given a quantum channel NA→B and a fixed Ω-assisted code Π with
size m, the optimal average success probability of N to transmit m messages is de-
fined as

ps (N , Π, m) :=
1
m

m

∑
k=1

TrM (|k〉〈k|) |k〉〈k|, (5.3)

where Ω ∈ {UA, E, NS, NS ∩ PPT}.
Furthermore, the optimal average success probability of N to transmit m mes-

sages assisted with Ω-class code is defined as

psucc,Ω (N , m) :=
1
m

sup
m

∑
k=1

TrM (|k〉〈k|) |k〉〈k|,

s.t. M = Π ◦ N is the effective channel,

Π ∈ Ω,

(5.4)

where the maximum is over the codes in class Ω.

With this in hand, we now say that a triplet (r, n, ε) is achievable on the channel
N with Ω-assisted codes if

1
n

log m ≥ r, and psucc,Ω
(N⊗n, m

) ≥ 1 − ε. (5.5)

We are interested in the following boundary of the non-asymptotic achievable region:

C(1)
Ω (N , ε) := sup{log m : psucc,Ω (N , m) ≥ 1 − ε}. (5.6)

We also define psucc,Ω (N , ρA, m) and C(1)
Ω (N , ρA, ε) as the same optimization but only

using codes with a fixed average input ρA. The Ω-assisted capacity of a quantum
channel is

CΩ (N ) = lim
ε→0

lim
n→∞

1
n

C(1)
Ω

(N⊗n, ε
)

, (5.7)

where Ω ∈ {UA, E, NS, NS∩PPT}. Throughout the thesis, we omit Ω when Ω = UA.
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The HSW theorem (cf. Theorem 5.1) tells us that for unassisted codes, it holds that

C (N ) = lim
n→∞

1
n

χ
(N⊗n) . (5.8)

Moreover, the entanglement-assisted classical capacity has a single-letter formula
[BSST02]:

CE (N ) = max
ρA

I (ρA;N ) , (5.9)

where I (ρA;N ) := S (ρA) + S (N (ρA))− S
(
(id ⊗N ) φρA

)
, and φρA is a purification

of ρA.

5.2.2 Semidefinite programs for optimal success probability

We are now able to derive the one-shot characterization of classical communication
assisted with NS (or NS∩PPT) codes. See Section 2.3 for details about general codes.

Let us recall that the NS and PPT codes can be characterized in a mathemati-
cally tractable way: a bipartite operation Π (AiBi → AoBo) is no-signalling and PPT-
preserving if and only if its Choi-Jamiołkowski matrix ZAi Bi Ao Bo satisfies:

ZAi Bi Ao Bo ≥ 0, (CP)

TrAo Bo ZAi Bi Ao Bo = 1Ai Bi , (TP)

Z
TBi Bo
Ai Bi Ao Bo

≥ 0, (PPT)

TrAo ZAi Bi Ao Bo =
1Ai

dAi

⊗ TrAo Ai ZAi Bi Ao Bo , (A �→ B)

TrBo ZAi Bi Ao Bo =
1Bi

dBi

⊗ TrBo Bi ZAi Bi Ao Bo , (B �→ A)

(5.10)

where the five lines correspond respectively to Π being completely positive, trace-
preserving, PPT-preserving, no-signalling from A to B, no-signalling from B to A,
respectively.

Theorem 5.3. For a given quantum channel N , the optimal success probability of N to
transmit m messages assisted by NS∩PPT codes is given by

ps,NS∩PPT (N , m) = max Tr JN FAB

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1,

TrA FAB = 1B/m, 0 ≤ FTB
AB ≤ ρA ⊗ 1B (PPT) .

(5.11)

Similarly, when assisted by NS codes, one can remove the PPT constraint to obtain the optimal
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success probability as follows:

ps,NS (N , m) = max Tr JN FAB

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1,

TrA FAB = 1B/m.

(5.12)

Proof. In this proof, we first use the Choi-Jamiołkowski representations of quantum
channels to refine the average success probability and then exploit symmetry to sim-
plify the optimization over all possible codes. Finally, we impose the no-signalling
and PPT-preserving constraints to obtain the semidefinite program of the optimal
average success probability.

Without loss of generality, we assume that Ai and Bo are classical registers with
size m, i.e., the inputs and outputs are {|k〉Ai}m

k=1 and {|k′〉Bi}m
k′=1, respectively. For

some NS∩PPT code Π, the Choi-Jamiołkowski matrix of M = Π ◦ N is given by
JM = ∑ij |i〉〈j|Ai ⊗M

(
|i〉〈j|A′

i

)
, where A′

i is isomorphic to Ai. Then, we can simplify
f (N , Π, m) to

ps (N , Π, m) =
1
m

m

∑
k=1

Tr
(
M

(
|k〉〈k|A′

i

)
|k〉〈k|Bo

)
=

1
m

Tr

(
m

∑
i,j=1

(
|i〉〈j|Ai ⊗M

(
|i〉〈j|A′

i

)) m

∑
k=1

|kk〉〈kk|Ai Bo

)

=
1
m

Tr JM
m

∑
k=1

|kk〉〈kk|Ai Bo .

(5.13)

Then, denoting DAi Bo = ∑m
k=1 |kk〉〈kk|Ai Bo , we have

ps,NS∩PPT (N , m) = max
M=Π◦N

1
m

Tr (JMDAi Bo) ,

where M = Π ◦ N and Π is any feasible NS∩PPT bipartite operation. (See Figure
6.2 for the implementation of M.) Noting that JM = TrAo Bi

(
JT
N ⊗ 1Ai Bo

)
ZAi Ao Bi Bo , we

can further simplify f (N , m) as

ps,NS∩PPT (N , m) = max Tr
(

JT
N ⊗ 1Ai Bo

)
ZAi Ao Bi Bo (1Ao Bi ⊗ DAi Bo) /m,

s.t. ZAi Ao Bi Bo satisfies Eq. (5.10)
(5.14)

The next step is to simplify f (N , m) by exploiting symmetry. For any permuta-
tion τ ∈ Sm, where Sm is the symmetric group of degree m, if ZAi Ao Bi Bo is feasible
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(satisfying the constraints in Eq. (5.10)), then it is not difficult to check that

Z′
Ai Ao Bi Bo

= (τAi ⊗ τBo ⊗ 1Ao Bi) ZAi Ao Bi Bo (τAi ⊗ τBo ⊗ 1Ao Bi)
† (5.15)

is also feasible. And any convex combination λZ′+(1 − λ) Z′′ (0 ≤ λ ≤ 1) of two op-
erators satisfying Eq. (5.10) can also be checked to be feasible. Therefore, if ZAi Ao Bi Bo

is feasible, so is

Z̃Ai Ao Bi Bo

= PAi Bo (ZAi Ao Bi Bo)

=
1

m! ∑
τAi ,τBo∈Sm

(τAi ⊗ τBo ⊗ 1Ao Bi) ZAi Ao Bi Bo (τAi ⊗ τBo ⊗ 1Ao Bi)
† ,

(5.16)

where PAi Bo is a twirling operation on AiBo.

Noticing that PAi Bo (DAi Bo) = DAi Bo , we have

TrAi Bo ZAi Bi Ao Bo (1Ao Bi ⊗ DAi Bo) (5.17)

=TrAi Bo ZAi Bi Ao Bo (1Ao Bi ⊗PAi Bo (DAi Bo)) (5.18)

=TrAi Bo Z̃Ai Ao Bi Bo (1Ao Bi ⊗ DAi Bo) . (5.19)

Thus, it is easy to see that the optimal success probability equals to

ps,NS∩PPT (N , m) = max Tr
(

JT
N ⊗ 1Ai Bo

)
Z̃Ai Ao Bi Bo (1Ao Bi ⊗ DAi Bo) /m

s.t. Z̃Ai Ao Bi Bo satisfies Eq. (5.10) .

By Schur’s lemma, Z̃Ai Ao Bi Bo can be rewritten as

Z̃Ai Ao Bi Bo = FAo Bi ⊗ DAi Bo + EAo Bi ⊗ (1− DAi Bo) ,

for some operators EAo Bi and FAo Bi . Thus, the objective function can be simplified to
Tr JT

N F. Also, the CP and PPT constraints are equivalent to

EAo Bi ≥ 0, FAo Bi ≥ 0, E
TBi
Ao Bi

≥ 0, F
TBi
Ao Bi

≥ 0. (5.20)

Furthermore, the B �→ A constraint is equivalent to TrBo Z̃Ai Ao Bi Bo = TrBo Bi Z̃Ai Ao Bi Bo ⊗
1Bi /dBi , i.e.

FAo Bi + (m − 1) EAo Bi = TrBi (FAo Bi + (m − 1) EAo Bi)⊗
1Bi

dBi

=: ρAo ⊗ 1Bi . (5.21)
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and the TP constraint holds if and only if TrAo Bo ZAi Ao Bi Bo = 1Ai Bi , i.e.,

TrAo (FAo Bi + (m − 1) EAo Bi) = 1Bi , (5.22)

which is equivalent to

Tr ρAo = Tr (FAo Bi + (m − 1) EAo Bi) /dBi = Tr1Bi /dBi = 1. (5.23)

As Π is no-signalling from A to B, we have TrAo Z̃Ai Ao Bi Bo = TrAo Ai Z̃Ai Ao Bi Bo ⊗
1Ai
m ,

i.e.,

TrAo FAo Bi ⊗ DAi Bo + TrAo EAo Bi ⊗ (1− DAi Bo)

=TrAo (FAo Bi + (m − 1) EAo Bi)⊗
1Ai Bo

m
= 1Ai Bi Bo /m.

(5.24)

Since DAi Bo and 1− DAi Bo are orthogonal positive operators, we have

TrAo FAo Bi = TrAo EAo Bi = 1Bi /m. (5.25)

Finally, combining Eq. (5.20), (5.21), (5.23), (5.25), we have that

ps,NS∩PPT (N , m) = max Tr JN FAo Bi

s.t. 0 ≤ FAo Bi ≤ ρAo ⊗ 1Bi , Tr ρAo = 1,

TrAo FAo Bi = 1Bi /m,

0 ≤ F
TBi
Ao Bi

≤ ρAo ⊗ 1Bi (PPT) .

(5.26)

This gives the SDP in Theorem 5.3, where we assume that Ao = A and Bi = B for
simplification. ��

Remark: The dual SDP for ps,NS∩PPT (N , m) is given by

ps,NS∩PPT (N , m) = min t + Tr SB/m

s.t. JN ≤ XAB + 1A ⊗ SB + (WAB − YAB)
TB ,

TrB (XAB + WAB) ≤ t1A,

XAB, YAB, WAB ≥ 0.

(5.27)

To remove the PPT constraint, set YAB = WAB = 0. It is worth noting that the strong
duality holds here since the Slater’s condition can be easily checked. Indeed, choos-
ing XAB = YAB = WAB = ‖JN ‖∞1AB, SB = 1B and t = 3dB‖JN ‖∞ in SDP (5.27), we
have (XAB, YAB, WAB, SB, t) is in the relative interior of the feasible region.
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It is worthing noting that fNS (N , m) can be obtained by removing the PPT con-
straint and it corresponds with the optimal NS-assisted channel fidelity in [LM15].

5.2.3 Semidefinite programs for coding rates

For given 0 ≤ ε < 1, the one-shot ε-error classical capacity assisted by Ω-class codes is
defined as

C(1)
Ω (N , ε) := sup{log λ : 1 − psucc,Ω (N , λ) ≤ ε}. (5.28)

We now derive the one-shot ε-error classical capacity assisted by NS or NS∩PPT
codes as follows.

Theorem 5.4. For given channel N and error threshold ε, the one-shot ε-error NS∩PPT-
assisted and NS-assisted capacities are given by

C(1)
NS∩PPT (N , ε) = − log min η

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1, TrA FAB = η1B,

Tr JN FAB ≥ 1 − ε, 0 ≤ FTB
AB ≤ ρA ⊗ 1B (PPT) ,

(5.29)

and

C(1)
NS (N , ε) = − log minη

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1,

TrA FAB = η1B, Tr JN FAB ≥ 1 − ε,

(5.30)

respectively.

Proof. When assisted by NS∩PPT codes, by Eq. (5.28), we have that

C(1)
NS∩PPT (N , ε) = log max λ s.t. ps,NS∩PPT (N , λ) ≥ 1 − ε. (5.31)

To simplify Eq. (5.31), we suppose that

Υ (N , ε) = − log min η

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1, TrA FAB = η1B,

Tr JN FAB ≥ 1 − ε, 0 ≤ FTB
AB ≤ ρA ⊗ 1B (PPT) .

(5.32)

On one hand, for given ε, suppose that the optimal solution to the SDP (5.32) of
Υ (N , ε) is {ρ, F, η}. Then, it is clear that {ρ, F} is a feasible solution of the SDP (5.11)
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of ps,NS∩PPT
(N , η−1), which means that

ps,NS∩PPT

(
N , η−1

)
≥ Tr JN F ≥ 1 − ε. (5.33)

Therefore,
C(1)

NS∩PPT (N , ε) ≥ log η−1 = Υ (N , ε) . (5.34)

On the other hand, for given ε, suppose that the value of C(1)
NS∩PPT (N , ε) is log λ

and the optimal solution of ps,NS∩PPT (N , λ) is {ρ, F}. It is easy to check that {ρ, F, λ−1}
satisfies the constraints in SDP (5.32) of Υ (N , ε). Therefore,

Υ (N , ε) ≥ − log λ−1 = C(1)
NS∩PPT (N , ε) . (5.35)

Hence, combining Eqs. (5.32), (5.34) and (5.35), it is clear that

C(1)
NS∩PPT (N , ε) = Υ (N , ε) = − log min η

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B,

Tr ρA = 1, TrA FAB = η1B,

Tr JN FAB ≥ 1 − ε,

0 ≤ FTB
AB ≤ ρA ⊗ 1B (PPT) .

(5.36)

And one can obtain C(1)
NS (N , ε) by removing the PPT constraint. ��

Considering the hierarchy of quantum codes in Figure 2.3.2, we know that NS
codes are potentially stronger than the entanglement-assisted codes, which means
C(1)

NS (N , ε) can provide converse bounds of classical communication with entangle-
ment assistance. Moreover, NS∩PPT codes are more powerful than the unassisted
codes, and this implies that C(1) (N , ε) ≤ C(1)

NS∩PPT (N , ε). Therefore, we have the
following corollary:

Corollary 5.5. For a given channel N and error threshold ε,

C(1)
E (N , ε) ≤ C(1)

NS (N , ε) ,

C(1) (N , ε) ≤ C(1)
NS∩PPT (N , ε) .

In the asymptotic regime, it is worth noting that the entanglement-assisted clas-
sical capacity of a quantum channel is equal to the NS-assisted classical capacity
[LY16, WXD18]: for any quantum channel N ,

lim
ε→0

lim
n→∞

1
n

C(1)
NS

(N⊗n, ε
)
= CE (N ) .
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Classical-quantum channel

For classical-quantum channels, the one-shot ε-error NS-assisted (or NS∩PPT-assisted)
capacity can be further simplified based on the structure of the channel.

Proposition 5.6. For the classical-quantum channel that acts as N : x → ρx, the Choi
matrix of N is given by JN = ∑x |x〉〈x| ⊗ ρx. Then, the SDP (5.30) of C(1)

NS (N , ε) and the
SDP (5.29) of C(1)

NS∩PPT (N , ε) can be simplified to

C(1)
NS (N , ε) = C(1)

NS∩PPT (N , ε) = log max ∑ sx

s.t. 0 ≤ Qx ≤ sx1B, ∀x,

∑
x

Qx = 1B,

∑
x

Tr Qxρx ≥ ∑
x
(1 − ε) sx.

(5.37)

Proof. When JN = ∑x |x〉〈x| ⊗ ρx, the SDP (5.30) easily simplifies to

C(1)
NS (N , ε) = − log min η

s.t. 0 ≤ Fx ≤ px1B, ∀x,

∑
x

px = 1,

∑
x

Fx/η = 1B,

∑
x

Tr Fxρx ≥ (1 − ε) .

(5.38)

By assuming that Qx = Fx/η and sx = px/η, the above SDP simplifies to

C(1)
NS (N , ε) = log max ∑ sx

s.t. 0 ≤ Qx ≤ sx1B, ∀x,

∑
x

Qx = 1B,

∑
x

Tr Qxρx ≥ (1 − ε)∑ sx,

(5.39)

where we use the fact ∑ sx = ∑ px/η = 1/η. One can use similar to method to
simplify C(1)

NS∩PPT (N , ε) as well. ��

Reduction to Polyanskiy-Poor-Verdú converse bound

For classical channels, Polyanskiy, Poor, and Verdú [PPV10] derived the finite block-
length converse via hypothesis testing. In [Mat12], an alternative proof of PPV con-
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verse was provided by considering the assistance of the classical no-signalling cor-
relations. Here, we are going to show that both C(1)

NS (N , ε) and C(1)
NS∩PPT (N , ε) will

reduce to the PPV converse.

Let us first recall the linear program for the PPV converse bound of a classical
channel N (y|x) [PPV10, Mat12]:

RPPV (N , ε) = max ∑
x

sx

s.t. Qxy ≤ sx, ∀x, y,

∑
x

Qxy ≤ 1, ∀y,

∑
x,y

N (y|x) Qxy ≥ (1 − ε)∑
x

sx.

(5.40)

For classical channels, we can further simplify the SDP (5.37) to a linear program
which coincides with the Polyanskiy-Poor-Verdú converse bound.

Proposition 5.7. For a classical channel N (y|x),

C(1)
NS (N , ε) = C(1)

NS∩PPT (N , ε) = RPPV (N , ε) . (5.41)

Proof. The idea is to further simplify the SDP (5.37) via the structure of classical chan-
nels. For input x, the corresponding outputs can be seemed as ρx = ∑y N (y|x) |y〉〈y|.
Then, Qx should be diagonal for any x, i.e., Qx = ∑y Qxy. Thus, SDP (5.37) can be
easily simplified to

C(1)
NS (N , ε) = C(1)

NS∩PPT (N , ε) = log max ∑
x

sx

s.t. Qxy ≤ sx, ∀x, y,

∑
x

Qxy = 1, ∀y,

∑
x

∑
y
N (y|x) Qxy ≥ (1 − ε)∑

x
sx.

(5.42)

Using the similar technique in [Mat12], the constraint ∑x Qxy = 1 can be relaxed to

∑x Qxy ≤ 1 in this case, which means that the linear program (5.42) is equal to the
linear program (5.40). ��

5.2.4 Matthews-Wehner converse via activated NS codes

For classical communication over quantum channels with entanglement assistance,
Matthews and Wehner [MW14a] proved a meta-converse bound in terms of the hy-
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pothesis testing relative entropy which generalizes Polyanskiy, Poor and Verdú’s ap-
proach [PPV10] to quantum channels. Given a quantum channel NA′→B, they proved
[MW14a] that

C(1)
E (N , ε) ≤ R (N , ε) := max

ρA′
min

σB
Dε

H (N (φA′A) ‖ρA′ ⊗ σB) , (5.43)

where φAA′ =
(
1A ⊗ ρ1/2

A′

)
Φ̃AA′

(
1A ⊗ ρ1/2

A′

)
is a purification of ρA′ and Φ̃AA′ =

∑ij |iAiA′ 〉〈jA jA′ | denotes the unnormalized maximally entangled state. In the above
expression, Dε

H (·‖·) is the quantum hypothesis testing relative entropy [WR12, BD10].
We refer to Section 2.7.3 for details.

The hypothesis testing relative entropy bound in Eq. (5.43) is an SDP and it holds
that

R (N , ε) = − log min λ

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1,

TrA FAB ≤ λ1B, Tr JN FAB ≥ 1 − ε.

(5.44)

Here JN is the Choi-Jamiołkowski matrix of N .

For classical channels, the hypothesis testing relative entropy bound is exactly
equal to the one-shot classical capacity assisted by no-signalling (NS) codes [Mat12].
For quantum channels the one-shot ε-error capacity assisted by NS codes is given by
[WXD18]

C(1)
NS (N , ε) = − log min η

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1,

TrA FAB = η1B, Tr JN FAB ≥ 1 − ε.

(5.45)

Note that the only difference between the SDPs (5.44) and (5.45) is the partial trace
constraint of FAB. However, unlike in the classical special case, the SDPs in (5.44)
and (5.45) are not equal in general [WXD18].

In this section, we are going to show that this gap can be closed by considering
activated, NS-assisted codes. The concept of activated capacity follows the idea of
potential capacities of quantum channels introduced by Winter and Yang [WY15].
The model is described as follows. For a quantum channel N assisted by NS codes,
we can first borrow a noiseless classical channel Im whose capacity is log m, then we
can use N ⊗ Im coherently to transmit classical messages. After the communication
finishes, we just pay back the capacity of Im. This kind of communication method
was also studied in zero-error information theory [ADR+17, DW15].
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Definition 5.8. For any quantum channel N , we define

C(1)
NS,a (N , ε) := sup

m≥1

[
C(1)

NS (N ⊗ Im, ε)− log m
]

, (5.46)

where Im (ρ) = ∑m
i=1 Tr (ρ|i〉〈i|) |i〉〈i| the classical noiseless channel with capacity

log m.

The following is the main result of this section:

Theorem 5.9. For any quantum channel NA→B and error tolerance ε ∈ (0, 1), we have

C(1)
NS,a (N , ε) = R (N , ε) = max

ρA′
min

σB
Dε

H (NA→B (φA′A) ‖ρA′ ⊗ σB) . (5.47)

The proof outline is as follows. We first show that the I2 is enough to activate the
channel to achieve the bound R (N , ε) in the following Lemma 5.10, i.e.,

C(1)
NS,a (N , ε) ≥C(1)

NS (N ⊗ I2, ε)− 1 ≥ R (N , ε) . (5.48)

We then show that R (N , ε) is additive for noiseless channel in the following Lemma
5.11, i.e., R (N ⊗ Im, ε) = R (N , ε) + log m. This implies that R (N , ε) is also a con-
verse bound for the activated capacity, i.e.,

C(1)
NS,a (N , ε) = sup

m≥1

[
C(1)

NS (N ⊗ Im, ε)− log m
]
≤ sup

m≥1
[R (N ⊗ Im, ε)− log m] = R (N , ε) .

(5.49)

The theorem thus directly follows from Lemmas 5.10 and 5.11.

Lemma 5.10. We have C(1)
NS (N ⊗ I2, ε)− 1 ≥ R (N , ε).

Proof. This proof is based on a key observation that the additional one-bit noiseless
channel can provide a larger solution space to help the activated capacity achieve
the quantum hypothesis testing converse. Suppose that the optimal solution to SDP
(5.44) of R (N , ε) is {λ, ρA1 , FA1B1}. We are going to use this optimal solution to con-
struct a feasible solution of the SDP (5.45) of C(1)

NS (N ⊗ I2, ε).
Let us choose ρA1 A2 = ρA1 ⊗ 1

2 (|0〉〈0|+ |1〉〈1|)A2
and

FA1 A2B1B2 =
FA1B1

2
⊗ (|00〉〈00|+ |11〉〈11|)A2B2

+
F̃A1B1

2
⊗ (|01〉〈01|+ |10〉〈10|)A2B2

,

(5.50)

where F̃A1B1 = ρA1 ⊗ (λ1B1 − TrA1 FA1B1). We see that FA1 A2B1B2 ≥ 0, ρA1 A2 ≥ 0 and
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Tr ρA1 A2 = 1. Moreover, this construction ensures that

TrA1 A2 FA1 A2B1B2 = TrA1

((
FA1B2

2
+

F̃A1B1

2

)
⊗ 1B2

)
=

λ

2
1B1B2 , (5.51)

and

Tr (JN ⊗ DA2B2) FA1 A2B1B2 = Tr JN FA1B1 ⊗
1
2

Tr DA2B2 (|00〉〈00|+ |11〉〈11|) (5.52)

= Tr JN FA1B1 ≥ 1 − ε, (5.53)

where DA2B2 = ∑i=0,1 |ii〉〈ii| is the Choi-Jamiołkowski matrix of I2. Furthermore,
ρA1 ⊗ 1B1 − F̃A1B1 ≥ 0 and consequently we find that ρA1 A2 ⊗ 1B1B2 − FA1 A2B1B2 ≥ 0.
Hence,

{ 1
2 λ, ρA1 A2 , FA1 A2B1B2

}
is a feasible solution, ensuring that C(1)

NS (N ⊗ I2, ε) −
1 ≥ R (N , ε). ��

Lemma 5.11. We have R (N ⊗ Im, ε) = R (N , ε) + log m.

Proof. On one hand, it is easy to prove that R (N ⊗ Im, ε) ≥ R (N , ε) + log m. To see
the other direction, we are going to use the dual SDP of R (N , ε):

R (N , ε) = − log max [s (1 − ε)− t]

s.t. XAB + 1A ⊗ YB ≥ sJN ,

TrB XAB ≤ t1A, Tr YB ≤ 1,

XAB, YB, s ≥ 0.

(5.54)

We note that the strong duality holds here.

Suppose that the optimal solution to the dual SDP (5.54) of R (N , ε) is
{

X̂AB, ŶB, ŝ, t̂
}

.

Let us choose XAA′BB′ = 1
m X̂AB ⊗ Dm, YBB′ = 1

m ŶB ⊗ 1m, s = 1
m ŝ, t = 1

m t̂, with
Dm = ∑m−1

i=0 |ii〉〈ii|. Then it can be easily checked that

XAA′BB′ + 1AA′ ⊗ YBB′ ≥
(

X̂AB + 1A ⊗ ŶB

)
⊗ Dm

m
≥ sJN ⊗ Dm. (5.55)

The other constraints can be verified similarly. Thus, {XAA′BB′ , YBB′ , s, t} is a feasible
solution to the SDP (5.54) of R (N ⊗ Im, ε), which means that

R (N ⊗ Im, ε) ≤ − log[s (1 − ε)− t] = R (N , ε) + log m. (5.56)

��
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5.3 Non-asymptotic communication capability

5.3.1 New meta-converse for classical communication

This subsection provides a new meta-converse that upper bounds the amount of
information that can be transmitted with a single use of the channel by unassisted
codes. This meta-converse, in the spirit of the classical meta-converse by Polyanskiy,
Poor and Verdú [PPV10] as well as Nagaoka and Hayashi (see, e.g., [Nag01], [Hay06,
Section 4.6]), relates the channel coding problem to a binary composite hypothesis
test between the actual channel and a class of subchannels that are generalizations of
the useless channels for classical communication.

Recall that the only useless quantum channel for classical communication is the
constant channel N (·) = σ, which maps all states ρ on A to a constant state σ on B. As
a natural extension, we say a subchannel N is constant-bounded if it maps all states ρ

to positive semidefinite operators that are smaller than or equal to a constant state σ,
i.e.,

N (ρ) ≤ σ, ∀ρ ∈ S (A) . (5.57)

Here we denote S (A) := {ρA ≥ 0 : Tr ρA = 1} as the set of quantum states on A, and
a subchannel N is a linear completely positive (CP) map that is trace non-increasing,
i.e., TrN (ρ) ≤ 1 for all states ρ.

We also define the set of constant-bounded subchannels:

V := {M ∈ CP (A : B) : ∃ σ ∈ S (B) s.t. M (ρ) ≤ σ, ∀ρ ∈ S (A)}, (5.58)

where CP (A : B) denotes the set of all CP maps from A to B. Clearly, V is convex and
closed.

This inspires the following new one-shot converse bound:

Theorem 5.12. For any quantum channel NA′→B and error tolerance ε ∈ (0, 1), we have

C(1) (N , ε) ≤ max
ρA′

min
M∈V

Dε
H
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

(5.59)

= min
M∈V

max
ρA′

Dε
H
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

, (5.60)

where φA′A is a purification of ρA′ .

Proof. Consider an unassisted code with inputs {ρk}m
k=1 and POVM {Mk}m

k=1 whose
average input state is ρA′ = ∑m

k=1
1
m ρk, the success probability to transmit m messages
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is given by

psucc =
1
m

m

∑
k=1

TrN (ρk) Mk = Tr JN

(
m

∑
k=1

1
m

ρT
k ⊗ Mk

)

= TrNA′→B (φAA′)
(

ρT
A

)−1/2
(

m

∑
k=1

1
m

ρT
k ⊗ Mk

)(
ρT

A

)−1/2
.

(5.61)

Denote E =
(
ρT

A
)−1/2 (

∑m
k=1

1
m ρT

k ⊗ Mk
) (

ρT
A
)−1/2. Then

0 ≤ E ≤
(

ρT
A

)−1/2
(

m

∑
k=1

1
m

ρT
k ⊗ 1B

)(
ρT

A

)−1/2
= 1AB. (5.62)

For any M ∈ V , we assume that the output states of M are bounded by the state σB,
then

TrMA′→B (φAA′) E = TrMA′→B (φAA′)
(

ρT
A

)−1/2
(

m

∑
k=1

1
m

ρT
k ⊗ Mk

)(
ρT

A

)−1/2

(5.63)

= Tr JM

(
m

∑
k=1

1
m

ρT
k ⊗ Mk

)
(5.64)

=
1
m

m

∑
k=1

TrM (ρk) Mk (5.65)

≤ 1
m

m

∑
k=1

Tr σB Mk =
1
m

. (5.66)

The second line follows from the fact that JM =
(
ρT

A
)−1/2 MA′→B (φAA′)

(
ρT

A
)−1/2. In

the third line, we use the inverse Choi-Jamiołkowski transformation MA′→B (ρA′) =

TrA JM
(
ρT

A ⊗ 1B
)
. The forth line follows since any output state of M is bounded by

the state σB.

Therefore, combining Eqs. (5.61) and (5.66), we know that

TrNA′→B (φAA′) E ≥ 1 − ε, (5.67)

TrMA′→B (φAA′) E ≤ 1
m

. (5.68)

Thus,

C(1) (N , ρA′ , ε) ≤ min
M∈V

Dε
H (NA′→B (φAA′) ‖MA′→B (φAA′)) . (5.69)
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Maximizing over all average input ρA′ , we can obtain the desired result of (5.59).
Since the function βε (NA′→B (φA′A) ‖MA′→B (φA′A)) is convex in ρA′ and concave

in M [MW14a], we can exchange the maximization and minimization by applying
Sion’s minimax theorem [Sio58] and obtain the result of (5.60). ��

Remark 5.13. Noting that the operator E above also satisfies 0 ≤ ETB ≤ 1, we can
further obtain

C(1) (N , ε) ≤ max
ρA′

min
M∈V

Dε
H,PPT

(NA′→B (φA′A)
∥∥MA′→B (φA′A)

)
, (5.70)

where Dε
H,PPT (ρ0‖ρ1) := − log min{Tr Eρ1 : 1 − Tr Eρ0 ≤ ε, 0 ≤ E, ETB ≤ 1}.

If we consider maxρA′ Dε
H
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

as the “distance” be-
tween the channel N and CP map M. Then our new meta-converse can be treated
as the “distance” between the given channel N with the class of useless constant-
bounded subchannels.

To make this meta-converse bound efficiently computable, we then restrict the set
of constant-bounded subchannels V to an SDP-tractable set of CP maps. Let us define

Vβ := {M ∈ CP (A : B) : β (JM) ≤ 1}, where (5.71)

β (JM) := min
{

Tr SB : −RAB ≤ JTB
M ≤ RAB,−1A ⊗ SB ≤ RTB

AB ≤ 1A ⊗ SB

}
. (5.72)

Here JM is the Choi-Jamiołkowski matrix of M and TB means the partial transpose on
system B. The set Vβ satisfies some basic properties such as convexity and invariance
under composition with unitary maps.

Lemma 5.14. The set Vβ is a subset of V , i.e., Vβ ⊂ V .

Proof. Given a CP map M in Vβ, suppose that the optimal solution of β (JM) is
{R, SB}, we write SB = σB since β (JM) = Tr SB ≤ 1. For any input ρ, the output
M (ρ) satisfies that

MA→B (ρA) = TrA

√
ρT

A JM
√

ρT
A =

(
TrA

√
ρT

A JTB
M

√
ρT

A

)T

(5.73)

≤
(

TrA

√
ρT

AR
√

ρT
A

)T

= TrA

√
ρT

ARTB

√
ρT

A (5.74)

≤ TrA

√
ρT

A (1A ⊗ σB)
√

ρT
A = σB. (5.75)

��
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As a consequence, we have the following meta-converse.

Corollary 5.15. For any quantum channel NA′→B and error tolerance ε ∈ (0, 1), we have

C(1) (N , ε) ≤ max
ρA′

min
M∈Vβ

Dε
H
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

(5.76)

= min
M∈Vβ

max
ρA′

Dε
H
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

, (5.77)

where φA′A is a purification of ρA′ .

There are several other converses for the one-shot ε-error capacity of a general
quantum channel, e.g., the Matthews-Wehner converse [MW14a], the Datta-Hsieh
converse [DH13], and the SDP converse via no-signaling (NS) and positive-partial-
transpose-preserving (PPT) codes in Theorem 5.4. Note that the Datta-Hsieh converse
is not known to be efficiently computable. Also, our meta-converse is tighter than the
Matthews-Wehner converse in Eq. (5.43). As we will show later, our meta-converse
will lead to new results in both finite blocklength and asymptotic regime.

5.3.2 Second-order analysis for quantum erasure channel

The quantum erasure channel is denoted by Ep (ρ) = (1 − p) ρ + p|e〉〈e|, where |e〉
is orthogonal to the input Hilbert space. The classical capacity of a quantum erasure
channel is given by [BDS97]

C
(Ep

)
= (1 − p) log d, (5.78)

where d is the dimension of input space. In [WW14], the strong converse property
for the classical capacity of Ep is established.

In this section, applying our new meta-converse, we derive the second-order
expansion of quantum erasure channel in the following Theorem 5.16. This is the
first second-order expansion of classical capacity beyond classical-quantum channels
(more generally, the image-additive channels introduced in [TT15]).

Theorem 5.16. For any quantum erasure channel Ep with parameter p and input dimension
d, we have

C(1)
(
E⊗n

p , ε
)
= n (1 − p) log d +

√
np (1 − p) (log d)2 Φ−1 (ε) + O (log n) , (5.79)

where Φ is the cumulative distribution function of a standard normal random variable.
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Figure 5.4: Approximation of the non-asymptotic achievable rate region for the quan-
tum erasure channel Ep with noise parameter p = 0.2.

Proof. For the converse part, we have

C(1)
(
E⊗n

p , ε
)
≤ min

M∈V
Dε

H

(
E⊗n

p (ΦA′n An)
∥∥MA′n→Bn (ΦA′n An)

)
. (5.80)

Note that quantum erasure channels are covariant under the discrete Heisenberg-
Weyl unitary group acting on A′, and this covariance allows us to restrict the form
of the optimal input states to the maximally entangled states. See Lemma 5.31 for
details. (One can also refer to Proposition 2 of [TWW17] and find more discussions
of the generalized channel divergence in [LKDW18].)

Let us consider the subchannel M (ρ) =
1−p

d ρ+ p|e〉〈e| whose Choi-Jamiołkowski ma-
trix is given by

JM =
1 − p

d

d−1

∑
i,j=0

|ii〉〈jj|+ p
d−1

∑
i=0

|i〉〈i| ⊗ |d〉〈d|. (5.81)

It is easy to see that M is a constant-bounded subchannel since

M (ρ) ≤ 1 − p
d

1d + p|e〉〈e|, ∀ρ. (5.82)

When the number of channel uses is n, let us choose MA′n→Bn = M⊗n
A′→B. Then
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we can obtain apply Theorem 5.15 and obtain

C(1)
(
E⊗n

p , ε
)

≤ Dε
H

(
E⊗n

p (ΦA′n An)
∥∥M⊗n

A′→B (ΦA′n An)
)

= nD
(Ep (ΦA′A)

∥∥M (ΦA′A)
)
+

√
nV

(Ep (ΦA′A)
∥∥M (ΦA′A)

)
Φ−1 (ε) + O (log n)

= n (1 − p) log d +

√
np (1 − p) (log d)2 Φ−1 (ε) + O (log n) . (5.83)

In the third line, we use second-order expansion of quantum hypothesis testing rela-
tive entropy [TH13, Li14] (cf. Eq. (2.70)). The fourth line follows by direct calculation.

For the direct part, denote F1 (ρ) = ∑d−1
i=0 〈i|ρ|i〉|i〉〈i|, and F2 (ρ) = ∑d

i=0〈i|ρ|i〉|i〉〈i|,
which are both classical channels. Then Np = F2 ◦ Ep ◦ F1 is a classical erasure chan-
nel. We have

C(1)
(
E⊗n

p , ε
)
≥ C(1)

(
N⊗n

p , ε
)

(5.84)

= n (1 − p) log d +

√
np (1 − p) (log d)2 Φ−1 (ε) + O (log n) , (5.85)

where the equality comes from the result in [PPV10]. ��

5.4 Asymptotic communication via quantum channels

5.4.1 SDP strong converse bounds for the classical capacity

It is well known that evaluating the classical capacity of a general channel is ex-
tremely difficult. To the best of our knowledge, the only known nontrivial strong con-
verse bound for the classical capacity is the entanglement-assisted capacity [BSST99]
and there is also computable single-shot upper bound derived from entanglement
measures [BEHY11]. In this section, we will derive two SDP strong converse bounds
for the classical capacity of a general quantum channel. Our bounds are efficiently
computable and do not depend on any special properties of the channel. We also
show that for some classes of quantum channels, our bound can be strictly smaller
than the entanglement-assisted capacity and the previous bound in [BEHY11].

Before introducing the strong converse bounds, we first introduce an SDP to esti-
mate the optimal success probability of classical communication via multiple uses of
the channel.

Proposition 5.17. For any quantum channel N and given m,

ps,NS∩PPT (N , m) ≤ f+ (N , m) ,
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where

f+ (N , m) = min Tr ZB

s.t. − RAB ≤ JTB
N ≤ RAB,

− m1A ⊗ ZB ≤ RTB
AB ≤ m1A ⊗ ZB.

(5.86)

Furthermore, it holds that ps,NS∩PPT (N1 ⊗N2, m1m2) ≤ f+ (N1, m1) f+ (N2, m2).
Consequently,

ps,NS∩PPT
(N⊗n, mn) ≤ f+ (N , m)n . (5.87)

Proof. We utilize the duality theory of semidefinite programming in the proof. To be
specific, the dual SDP of f+ (N , m) is given by

f+ (N , m) = max Tr JN (VAB − XAB)
TB

s.t. VAB + XAB ≤ (WAB − YAB)
TB ,

TrA (WAB + YAB) ≤ 1B/m,

VAB, XAB, WAB, YAB ≥ 0.

(5.88)

It is worth noting that the optimal values of the primal and the dual SDPs above
coincide. This is a consequence of strong duality. By Slater’s condition, one simply
needs to show that there exists positive definite VAB, XAB, WAB and YAB such that
VAB + XAB < (WAB − YAB)

TB and TrA (WAB + YAB) < 1B/m, which holds for WAB =

2YAB = 5VAB = XAB = 1AB/2mdA.

In SDP (5.88), let us choose XAB = YAB = 0 and VTB
AB = WAB, then we have that

f+ (N , m) ≥ max{Tr JN WAB : WAB, WTB
AB ≥ 0, TrA WAB ≤ 1B/m}

≥ ps,NS∩PPT (N , m) ,
(5.89)

which means that the SDP (5.88) of f+ (N , m) is a relaxation of the SDP (5.11) of
ps,NS∩PPT (N , m).

To see ps,NS∩PPT (N1 ⊗N2, m1m2) ≤ f+ (N1, m1) f+ (N2, m2), we first suppose
that the optimal solution to SDP (5.86) of f+ (N1, m1) is {Z1, R1} and the optimal so-
lution to SDP (5.86) of f+ (N2, m2) is {Z2, R2}. Let us denote the Choi-Jamiołkowski
matrix of N1 and N2 by J1 and J2, respectively. It is easy to see that

R1 ⊗ R2 + JTB
1 ⊗ JTB′

2

=
1
2
[
(

R1 + JTB
1

)
⊗

(
R2 + JTB′

2

)
+

(
R1 − JTB

1

)
⊗

(
R2 − JTB′

2

)
] ≥ 0,

(5.90)
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and

R1 ⊗ R2 − JTB
1 ⊗ JTB′

2

=
1
2
[
(

R1 + JTB
1

)
⊗

(
R2 − JTB′

2

)
+

(
R1 − JTB

1

)
⊗

(
R2 + JTB′

2

)
] ≥ 0.

(5.91)

Therefore, we have that

−R1 ⊗ R2 ≤ JTB
1 ⊗ JTB′

2 ≤ R1 ⊗ R2.

Applying similar techniques, it is easy to prove that

−m1m21AA′ ⊗ Z1 ⊗ Z2 ≤ RTB
1 ⊗ RTB′

2 ≤ m1m21AA′ ⊗ Z1 ⊗ Z2.

Hence, {Z1 ⊗Z2, R1 ⊗R2} is a feasible solution to the SDP (5.86) of f+ (N1 ⊗N2, m1m2),
which means that

ps,NS∩PPT (N1 ⊗N2, m1m2) ≤ f+ (N1 ⊗N2, m1m2) (5.92)

≤ Tr Z1 ⊗ Z2 = f+ (N1, m1) f+ (N2, m2) . (5.93)

��

Now, we are able to derive the strong converse bounds of the classical capacity.

Theorem 5.18. For any quantum channel N ,

C (N ) ≤ CNS∩PPT (N ) ≤ Cβ (N ) = log β (N ) ≤ log
(

dB‖JTB
N ‖∞

)
,

where

β (N ) = min Tr SB

s.t. − RAB ≤ JTB
N ≤ RAB,−1A ⊗ SB ≤ RTB

AB ≤ 1A ⊗ SB.
(5.94)

In particular, when the communication rate exceeds Cβ (N ), the error probability goes to
one exponentially fast as the number of channel uses increases.

Proof. For n uses of the channel, we suppose that the rate of the communication is r.
By Proposition 5.17, we have that

ps,NS∩PPT
(N⊗n, 2rn) ≤ f+ (N , 2r)n . (5.95)
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Therefore, the n-shot error probability satisfies that

εn = 1 − ps,NS∩PPT
(N⊗n, 2rn) ≥ 1 − f+ (N , 2r)n . (5.96)

Suppose that the optimal solution to the SDP (5.94) of β (N ) is {S0, R0}. It is easy
to verify that {S0/ Tr S0, R0} is a feasible solution to the SDP (5.86) of f+ (N , Tr S0).
Therefore,

f+ (N , β (N )) ≤ Tr (S0/ Tr S0) = 1.

It is not difficult to see that f+ (N , m) monotonically decreases when m increases.
Thus, for any 2r > β (N ), we have f+ (N , 2r) < 1. Then, by Eq. (5.96), it is clear
that the corresponding n-shot error probability εn will go to one exponentially fast
as n increases. Hence, Cβ (N ) is a strong converse bound for the NS∩PPT-assisted
classical capacity of N .

Furthermore, let us choose RAB = ‖JTB
N ‖∞1AB and SB = ‖JTB

N ‖∞1B. It is clear that
{RAB, SB} is a feasible solution to the SDP (5.94) of β (N ), which means that

β (N ) ≤ dB‖JTB
N ‖∞. (5.97)

��
Remark Cβ has some remarkable properties. For example, it is additive for differ-

ent quantum channels N1 and N2:

Cβ (N1 ⊗N2) = Cβ (N1) + Cβ (N2) . (5.98)

This can be proved by utilizing semidefinite programming duality.
With similar techniques, we are going to show another SDP strong converse bound

for the classical capacity of a general quantum channel.

Theorem 5.19. For a quantum channel N , we derive the following strong converse bound
for the NS∩PPT assisted classical capacity, i.e.,

C (N ) ≤ CNS∩PPT (N ) ≤ Cζ (N ) = log ζ (N )

with

ζ (N ) = min Tr SB

s.t. VAB ≥ JN ,−1A ⊗ SB ≤ VTB
AB ≤ 1A ⊗ SB

(5.99)

And if the communication rate exceeds Cζ (N ), the error probability will go to one expo-
nentially fast as the number of channel uses increase.
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Proof. We first introduce the following SDP to estimate the optimal success probabil-
ity:

f̃+ (N , m) = min Tr SB

s.t. VAB ≥ JN ,

− m1A ⊗ SB ≤ VTB
AB ≤ m1A ⊗ SB.

(5.100)

Similar to Proposition 5.17, we can prove that

ps,NS∩PPT
(N⊗n, mn) ≤ f̃+ (N , m)n . (5.101)

Then, when the communication rate exceeds Cζ (N ), we can use the technique in
Theorem 5.18 to prove that the error probability will go to one exponentially fast as
the number of channel uses increase. ��

As an example, we first apply our bounds to the qudit noiseless channel. In this
case, the bounds are tight and strictly smaller than the entanglement-assisted classical
capacity.

Proposition 5.20. For the qudit noiseless channel Id (ρ) = ρ, it holds that

C (Id) = Cβ (Id) = Cζ (Id) = log d < 2 log d = CE (Id) . (5.102)

Proof. It is clear that C (Id) ≥ log d. By the fact that ‖JTB
Id
‖∞ = 1, it is easy to see

that Cβ (Id) ≤ log d‖JTB
Id
‖∞ = log d. Similarly, we also have Cζ (Id) ≤ log d. And

CE (Id) = 2 log d is due to the superdense coding [BW92]. ��

5.4.2 Amplitude damping channel

Amplitude damping is the process of asymmetric relaxation in a quantum system,
such as spontaneous emission observed in trapped ions [BLMW04]. It has been con-
sidered as a basic noise process in quantum information processing [NC10].

The amplitude damping channel is given as

N AD
γ =

1

∑
i=0

Ei · E†
i , (5.103)

where the Choi-Kraus operators Ei for the channel are

E0 = |0〉〈0|+√
1 − γ|1〉〈1|, (5.104)

E1 =
√

γ|0〉〈1| (5.105)
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and we call γ ∈ (0, 1) the amplitude damping parameter.

The Holevo capacity of this channel is given by [GF05]

C
(
N AD

γ

)
≥ max

0≤p≤1

{
H2[(1 − γ) p]− H2

(
1 +

√
1 − 4 (1 − γ) γp2

2

)}
, (5.106)

where H2 is the binary entropy. However, its classical capacity remains unknown so
far. The only known nontrivial and meaningful upper bound for the classical capacity
of the amplitude damping channel was established in [BEHY11]. As an application
of theorems 5.18 and 5.19, we show a strong converse bound for the classical capacity
of the qubit amplitude damping channel. Remarkably, our bound improves the best
previously known upper bound [BEHY11].
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Figure 5.5: The solid line depicts Cβ

(N AD
γ

)
, the dashed line depicts the previous

bound of C
(N AD

γ

)
[BEHY11], and the dotted line depicts the lower bound [GF05].

Our bound is tighter than the previous bound in [BEHY11].

Theorem 5.21. For amplitude damping channel N AD
γ ,

CNS∩PPT

(
N AD

γ

)
≤ Cζ

(
N AD

γ

)
= Cβ

(
N AD

γ

)
= log

(
1 +

√
1 − γ

)
.

As a consequence,
C
(
N AD

γ

)
≤ log

(
1 +

√
1 − γ

)
.
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Proof. Suppose that

SB =

√
1 − γ + 1 + γ

2
|0〉〈0|+

√
1 − γ + 1 − γ

2
|1〉〈1|

and
VAB = JAD

γ +
(√

1 − γ − 1 + γ
)
|v〉〈v|

with |v〉 = 1√
2
(|00〉+ |11〉).

It is clear that VAB ≥ JAD
γ . Moreover, it is easy to see that

1A ⊗ SB − VTB
AB =

√
1 − γ + 1 − γ

2
(|01〉 − |10〉) (〈01| − 〈10|) ≥ 0

and

1A ⊗ SB + VTB
AB =

(√
1 − γ + 1 + γ

)
|00〉〈00|

+
(√

1 − γ + 1 − γ
)
|11〉〈11|

+

√
1 − γ + 1 − γ

2
(|01〉〈01|+ |01〉〈10|+ |10〉〈01|)

+

√
1 − γ + 1 + 3γ

2
|10〉〈10| ≥ 0.

Therefore, {SB, VAB} is a feasible solution to SDP (5.99), which means that

Cζ

(
N AD

γ

)
≤ log Tr SB = log

(
1 +

√
1 − γ

)
. (5.107)

One can also use the dual SDP of Cβ to show that Cβ

(N AD
γ

) ≥ log
(
1 +

√
1 − γ

)
.

Hence, we have that

Cζ

(
N AD

γ

)
= log

(
1 +

√
1 − γ

)
. (5.108)

Similarly, it can also be calculated that

Cβ

(
N AD

γ

)
= log

(
1 +

√
1 − γ

)
. (5.109)

��

Remark: We compare our bound with the previous upper bound [BEHY11] and
lower bound [GF05] in Figure 5.5. It is also worth noting that our bound is strictly
smaller than the entanglement-assisted capacity when γ ≤ 0.75 as shown in the fol-
lowing Figure 5.6. It is clear that our bound provides a tighter bound to the classical
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Figure 5.6: The solid line depicts Cβ

(N AD
γ

)
while the dashed line depicts CE

(N AD
γ

)
.

It is worth noting that Cβ

(N AD
γ

)
is strictly smaller than CE

(N AD
γ

)
for any γ ≤ 0.75.

capacity than the previous bound [BEHY11].

5.4.3 A special class of quantum channels

In this chapter, we focus on a class of qutrit-to-qutrit channels which will be used
to show the separation between quantum Lovász number and entanglement-assisted
zero-error classical capacity in Chapter 7. It turns out that this class of channels also
has strong converse property for classical and private communication. To be specific,
the channel is given by Nα (ρ) = EαρE†

α + DαρD†
α with

Eα = sin α|0〉〈1|+ |1〉〈2|, Dα = cos α|2〉〈1|+ |1〉〈0|.

This qutrit-qutrit channel Nα is motivated in the similar spirit of the amplitude
damping channel, which exhibits a significant difference from the classical channels.

The first Choi-Kraus operator Eα annihilates the ground state |0〉〈0|:

Eα|0〉〈0|E†
α = 0,

and it decays the state |1〉〈1| to the ground state |0〉〈0|:

Eα|1〉〈1|E†
α = sin2 α|0〉〈0|.
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Meanwhile, Eα also transfer the state |2〉〈2| to |1〉〈1|, i.e., Eα|2〉〈2|E†
α = |1〉〈1|. On the

other hand, the choice of Dα above ensures that

E†
αEα + D†

αDα = 1,

which means that the operators Eα and Dα are valid Kraus operators for a quantum
channel.

It follows that the complementary channel of Nα is N c
α (ρ) = ∑2

i=0 Fi,αρF†
i,α with

F0,α = sin α|0〉〈1|, F1,α = |0〉〈2|+ |1〉〈0|, F2,α = cos α|1〉〈1|.

Proposition 5.22. For Nα (0 < α ≤ π/4), we have that

C (Nα) = CNS∩PPT (Nα) = Cβ (Nα) = 1.

Proof. Suppose the ZB = sin2 α|0〉〈0|+ cos2 α|2〉〈2|+ |1〉〈1| and

RAB =|01〉〈01|+ |11〉〈11|+ |21〉〈21|+ sin2 α (|10〉〈10|+ |20〉〈20|)
+ cos2 α (|02〉〈02|+ |12〉〈12|) + sin α cos α (|02〉〈20|+ |20〉〈02|) .

It is easy to check that

−RAB ≤ JTB
Nα

≤ RAB and − 1A ⊗ ZB ≤ RTB
AB ≤ 1A ⊗ ZB,

where JNα
is the Choi-Jamiołkowski matrix of Nα.

Therefore, {ZB, RAB} is a feasible solution of SDP (5.94) of β (Nα), which means
that

β (Nα) ≤ Tr ZB = 2.

Noticing that we can use input |0〉〈0| and |1〉〈1| to transmit two messages via N , we
can conclude that

C (Nα) = CNS∩PPT (Nα) = 1.

��

Remark 5.23. We note that in Chapter 7, we show that the entanglement-assisted
capacity of Nα is given by

CE (Nα) = 2.

Therefore, for Nα (0 < α ≤ π/4), our bound Cβ is strictly smaller than the entanglement-
assisted capacity. In this case, we also note that Cβ (Nα) < Cζ (Nα). However, it
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remains unknown whether Cβ is always smaller than or equal to Cζ .

Furthermore, it is easy to see that Nα is neither an entanglement-breaking channel
nor a Hadamard channel. Note also that Nα does not belong to the three classes in
[KW09], for which the strong converse for classical capacity has been established.
Thus, our results show a new class of quantum channels which satisfy the strong
converse property for classical capacity.

Moreover, we find that the strong converse property also holds for the private
classical capacity [Dev05, CWY04] of Nα. Note that private capacity requires that no
information leaked to the environment and is usually called P (N ). Recently, several
converse bounds for private communication were established in [TGW14, PLOB17,
CMH17, WTB17, Wil16].

Proposition 5.24. The private capacity of Nα is exactly one bit, i.e., P (Nα) = 1. In partic-
ular,

Q (Nα) ≤ log (1 + cos α) < 1 = P (Nα) = C (Nα) =
1
2

CE (Nα) .

Proof. On one hand, it is easy to see that P (Nα) ≤ C (Nα) = Cβ (Nα) = 1.

On the other hand, Alice can choose two input states |ψ0〉 = |1〉 and |ψ1〉 =

cos α|0〉+ sin α|2〉, then the corresponding output states Bob received are

Nα (|ψ0〉〈ψ0|) = sin α2|0〉〈0|+ cos α2|2〉〈2|,
Nα (|ψ1〉〈ψ1|) = |1〉〈1|.

It is clear that Bob can perfectly distinguish these two output states. Meanwhile, the
corresponding outputs of the complementary channel N c

α are same, i.e.,

N c
α (|ψ0〉〈ψ0|) = N c

α (|ψ1〉〈ψ1|) = sin α2|0〉〈0|+ cos α2|1〉〈1|,

which means that the environment obtain zero information during the communica-
tion.

Applying the SDP bound of the quantum capacity in [WD16a], the quantum ca-
pacity of Nα is strictly smaller than log (1 + cos α). ��

Our result establishes the strong converse property for both the classical and pri-
vate capacities of Nα. For the classical capacity, such a property was previously
only known for classical channels, identity channel, entanglement-breaking channels,
Hadamard channels and particular covariant quantum channels [WWY14, KW09].
For the private capacity, such a property was previously only known for generalized
dephasing channels and quantum erasure channels [WTB17]. Moreover, our result
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also shows a simple example of the distinction between the private and the quantum
capacities, which were discussed in [HHHO05, LLSS14].

5.4.4 New converse via channel divergence

Before introducing the new converse, we first recall the divergence radius represen-
tation of the Holevo capacity introduced in [SW01]:

χ (N ) := min
σB

max
ρA′

D
(NA′→B (ρA′)

∥∥σB
)

. (5.110)

In the same spirit of the divergence radius, we are going to introduce a channel
divergence to bound the capability of classical communication. By substituting the
relative entropy for the hypothesis testing relative entropy in our meta-converse we
define the following quantity, which we call the γ-information of the channel N .

Definition 5.25. For a quantum channel N : L (A′) → L (B), we define

γ (N ) := min
M∈V

max
ρA′

D
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

, (5.111)

where φA′A is a purification of ρA′ .

We also introduce its regularization,

γ∞ (N ) := lim sup
n→∞

1
n

γ
(N⊗n) . (5.112)

It is worth noting that one could exchange the min and max due to the fact that
the function

D
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

(5.113)

is concave in ρA′ . (The detailed proof can be found in [WFT17].) This means

γ (N ) = min
M∈V

max
ρA′

D
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

(5.114)

= max
ρA′

min
M∈V

D
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

. (5.115)

Proposition 5.26. For any channel N , we have χ (N ) ≤ γ (N ) and C (N ) ≤ Υ∞ (N ).
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Proof. We have the following chain of inequalities:

γ (N ) = max
ρA′

min
M∈V

D
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

(5.116)

= min
M∈V

max
ρA′

D
(NA′→B (φA′A)

∥∥MA′→B (φA′A)
)

(5.117)

≥ min
M∈V

max
ρA′

D
(NA′→B (ρA′)

∥∥MA′→B (ρA′)
)

(5.118)

≥ min
M∈V

max
ρA′

D
(NA′→B (ρA′)

∥∥σM
)

(5.119)

≥ min
σB

max
ρA′

D
(NA′→B (ρA′)

∥∥σB
)

(5.120)

= χ (N ) . (5.121)

The third line follows since we trace out A system. The fourth line follows since for
any M ∈ V and ρA′ , there exists a state σM independent of ρA′ such that MA′→B (ρA′) ≤
σM. Due to the dominance of relative entropy, we have the inequality. The fifth line
follows since we relax the feasible set of the minimization to a larger set.

Finally, according to the HSW theorem, we have

C (N ) = lim sup
n→∞

1
n

χ
(N⊗n) ≤ lim sup

n→∞

1
n

γ
(N⊗n) = γ∞ (N ) . (5.122)

��

Proposition 5.27. For any quantum channel N , we have that

γ (N ) ≤ CE (N ) , γ∞ (N ) ≤ CE (N ) . (5.123)

Proof. For any state σB we introduce a trivial channel M that always outputs σB via
its Choi-Jamiołkowski matrix JM = 1A ⊗ σB. Then M ∈ V and

min
σB

D (NA′→B (φAA′) ‖ρA ⊗ σB) (5.124)

= min
σB

D
(
NA′→B (φAA′) ‖ρ1/2

A (1A ⊗ σB) ρ1/2
A

)
(5.125)

≥ min
M∈V

D (NA′→B (φAA′) ‖MA′→B (φAA′)) . (5.126)

Take maximization over all input state ρA′ on both sides, we have

CE (N ) ≥ γ (N ) . (5.127)
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Furthermore, since CE (N ) is additive, we have

CE (N ) = lim sup
n→∞

1
n

CE
(N⊗n) ≥ lim sup

n→∞

1
n

γ
(N⊗n) = γ∞ (N ) . (5.128)

��

Proposition 5.28. For any channel N , we have

γ (N ) ≤ Cβ (N ) , γ∞ (N ) ≤ Cβ (N ) . (5.129)

Proof. Take M = 1
β(JN )

N , then M ∈ Vβ ⊂ V and

γ (N ) = max
ρA′

min
M∈V

D (NA′→B (φAA′) ‖MA′→B (φAA′)) (5.130)

≤ max
ρA′

D (NA′→B (φAA′) ‖NA′→B (φAA′)) + log β (JN ) (5.131)

= log β (JN ) = Cβ (N ) . (5.132)

Furthermore, since Cβ (N ) is additive, we have

γ∞ (N ) = lim sup
n→∞

1
n

γ
(N⊗n) ≤ lim sup

n→∞

1
n

Cβ

(N⊗n) = Cβ (N ) . (5.133)

��

One could focus on covariant channels which allow us to simplify the set of input
states. We call a channel covariant if for any unitary UA, there is a unitary VB such
that NA→B

(
UAρAU†

A
)
= VBNA→B (ρA)V†

B , for all ρA ∈ S (A).

For covariant channels, one could further show that the γ-information is a strong
converse bound by using symmetry and sandwiched Rényi relative entropy. In the
following, we are trying to establish the strong converse of γ-information and obtain
some partial results. Specifically, we show that γ-information is a strong converse for
covariant channels.

Let us introduce

γ̃α (N , ρA′) := min
M∈V

D̃α

(NA′→B (φA′A)
∥∥MA′→B (φA′A)

)
, (5.134)

where φAA′ is a purification of ρA′ as usual and D̃α (·‖·) is the sandwiched Rényi
relative entropy [MLDS+13, WWY14] (see Eq. (2.58) for the formal definition).

First, we can establish the following estimation of the error probability via γ̃α.
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Proposition 5.29. For any quantum channel NA′→B and unassisted code with achievable
(r, n, ε),

ε ≥ 1 − 2−n( α−1
α )(r− 1

n γ̃α(N⊗n)), (5.135)

where γ̃α (N ) := maxρA′ minM∈V D̃α

(NA′→B (φA′A)
∥∥MA′→B (φA′A)

)
.

Proof. Suppose (r, n, ε) is achieved by the average input state ρA′n . From the proof of
Theorem 5.15, we have C(1) (N⊗n, ρA′n , ε) ≤ Dε

H
(N⊗n

A′→B (φA′n An)
∥∥MA′n→Bn (φA′n An)

)
.

Suppose now that the optimal test of Dε
H
(N⊗n

A′→B (φA′n An)
∥∥MA′n→Bn (φA′n An)

)
is

{FAnBn ,1− FAnBn}. (5.136)

Then, we have

nr ≤ − log Tr FAnBnMA′n→Bn (φA′n An) , (5.137)

1 − ε ≤ Tr FAnBnN⊗n
A′→B (φA′n An) . (5.138)

Due to the monotonicity of the sandwiched Rényi relative entropy under the test
{FAnBn ,1− FAnBn}, we have

D̃α

(N⊗n
A′→B (φAn An)

∥∥MA′n→Bn (φA′n An)
)

≥δα

(
Tr FAnBnN⊗n

A′→B (φA′n An)
∥∥ Tr FAnBnMA′n→Bn (φA′n An)

)
, (5.139)

where δα (p‖q) = 1
α−1 log

(
pαq1−α + (1 − p)α (1 − q)1−α )

. Using Eqs. (5.137) and
(5.138), we thus find

min
M∈V

D̃α

(N⊗n
A′→B (φA′n An)

∥∥MA′n→Bn (φA′n An)
) ≥ δα

(
ε
∥∥∥1 − 2−nr

)
(5.140)

Maximizing over all average input state ρA′n , we conclude that

γ̃α

(N⊗n) ≥ 1
α − 1

log
(

εα
(
1 − 2−nr)1−α

+ (1 − ε)α (
2−nr)1−α

)
(5.141)

≥ 1
α − 1

log (1 − ε)α (
2−nr)1−α (5.142)

=
α

α − 1
log (1 − ε) + nr, (5.143)

which implies that ε ≥ 1 − 2−n( α−1
α )(r− 1

n Υ̃α(N⊗n)). ��

Then, for covariant channels, we could further establish the following result.
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Proposition 5.30. For any covariant channel N ,

C (N ) ≤ γ (N ) . (5.144)

Moreover, γ (N ) is a strong converse bound.

Proof. Exploring the symmetry, we can fix the average input state of γ̃α (N ) to be the
maximally mixed state. (See the following Lemma 5.31.)

Then γ̃α is subadditive, i.e., γ̃α (N⊗n) ≤ nγ̃α (N ). Thus from Eq. (5.135), we have

ε ≥ 1 − 2−n( α−1
α )(r−γ̃α(N )) . (5.145)

The quantity γ̃α (N ) is monotonically increasing in α. Following the proof of Lemma
3 in [TWW17], we can also show that

lim
α→1+

γ̃α (N ) = γ (N ) . (5.146)

Hence, for r > γ (N ), there always exists an α > 1 such that r > γ̃α (N ). Therefore, ε

will to to 1 as n goes to infinity. ��

Let us recall the definition of G-covariant channel in Definition 2.8. Let G be a
finite group, and for every g ∈ G, let g → UA (g) and g → VB (g) be unitary represen-
tation acting on the input and output spaces of the channel, respectively. Then a quan-
tum channel NA→B is G-covariant if NA→B

(
UA (g) ρAU†

A (g)
)
= VB (g)NA→B (ρA)V†

B (g)
for all ρA ∈ S (A). The average state is ρA = 1

|G| ∑g UA (g) ρA′U†
A (g).

Lemma 5.31. For any G-covariant channel NA′→B, it holds that

γ̃α (N , ρA′) ≤ γ̃α (N , ρA′) . (5.147)

Proof. The following proof is a direct adaption of Proposition 2 in [TWW17]. Consider
the state |ψ〉PAA′ = ∑g

1√
|G| |g〉 ⊗ (1A ⊗ UA′ (g)) |φρ

AA′ 〉 which purifies ρA′ . Then for



108 5. Classical communication via quantum channels

any fixed CP map MA′→B ∈ V , we have the following chain of inequalities:

D̃α

(NA′→B (ψPAA′)
∥∥MA′→B (ψPAA′)

)
≥D̃α

(
∑
g

1
|G| |g〉〈g|P ⊗NA′→B ◦ UA′ (g) (φA′A)

∥∥∥∥∑
g

1
|G| |g〉〈g|P ⊗MA′→B ◦ UA′ (g) (φA′A)

)

=D̃α

(
∑
g

1
|G| |g〉〈g|P ⊗ VB (g) ◦ NA′→B (φA′A)

∥∥∥∥∑
g

1
|G| |g〉〈g|P ⊗MA′→B ◦ UA′ (g) (φA′A)

)

=D̃α

(
∑
g

1
|G| |g〉〈g|P ⊗NA′→B (φA′A)

∥∥∥∥∑
g

1
|G| |g〉〈g|P ⊗ V†

B (g) ◦MA′→B ◦ UA′ (g) (φA′A)

)

≥D̃α

(
NA′→B (φA′A)

∥∥∥∥∑
g

1
|G|V

†
B (g) ◦MA′→B ◦ UA′ (g) (φA′A)

)
≥ min

M∈V
D̃α

(NA′→B (φA′A)
∥∥MA′→B (φA′A)

)
The second line follows from monotonicity of the sandwiched Rényi relative entropy
under the CPTP map ∑g |g〉〈g| · |g〉〈g|. The third line follows from the G-invariance
of NA′→B. The fourth line follows from unitary invariance of the sandwiched Rényi
relative entropy under ∑g |g〉〈g| ⊗ V†

B (g). The fifth line follows from monotonicity of
the sandwiched Rényi relative entropy under the partial trace over P. The last line
follows from the fact that ∑g

1
|G| V†

B (g) ◦MA′→B ◦ UA′ (g) is still an element in V .

Finally, we minimize over all maps M ∈ V . The conclusion then follows because
all purifications are related by an isometry acting on the purifying system and the
quantity Υ̃α (N , ρA′) is invariant under isometries acting on the purifying system.

��

Remark: Note that in the proof we only use the monotonicity of the sandwiched
Rényi relative entropy. The result can thus be easily generalized to other divergences
and distance measures, including the hypothesis testing divergence.

Operator radius and max-Holevo information

Definition 5.32. For a quantum channel NA′→B, its operator radius is defined by

η (N ) := {min Tr S : N (ρ) ≤ S, ∀ρ ∈ S (
A′)}. (5.148)

The logarithmic operator radius is

log η (N ) = log{min Tr S : N (ρ) ≤ S, ∀ρ ∈ S (
A′)}. (5.149)
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Definition 5.33. The max-Holevo information is defined by

χmax (N ) := min
σ

max
ρ

Dmax (N (ρ) ‖σ) . (5.150)

Lemma 5.34. The logarithmic operator radius of N can be refined as the max-Holevo infor-
mation of N , i.e.,

log η (N ) = χmax (N ) ≥ χ (N ) . (5.151)

Proof.

log η (N ) = min log{t : N (ρ) ≤ tσ, σ ≥ 0, Tr σ = 1, ∀ρ ∈ S (
A′)} (5.152)

= min
σ

min log{t : N (ρ) ≤ tσ, ∀ρ ∈ S (
A′)} (5.153)

= min
σ

max
ρ

min log{t : N (ρ) ≤ tσ} (5.154)

= min
σ

max
ρ

Dmax (N (ρ) ‖σ) . (5.155)

��

One could further use standard SDP techniques to show that the SDP strong con-
verse bound Cβ is actually an additive upper bound on the max-Holevo information.

Proposition 5.35. For any given channel N , we have

η (N ) ≤ β (N ) , (5.156)

where

β (N ) = min
{

Tr SB : −RAB ≤ JTB
N ≤ RAB,−1A ⊗ SB ≤ RTB

AB ≤ 1A ⊗ SB

}
. (5.157)

Consequently,

C (N ) ≤ lim
n→∞

1
n

χmax
(N⊗n) ≤ Cβ (N ) . (5.158)

In particular, for the amplitude damping channel with parameter γ, it holds that

Cβ

(
N AD

γ

)
= log β

(
N AD

γ

)
= log η

(
N AD

γ

)
= log

(
1 +

√
1 − γ

)
. (5.159)
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5.5 Discussion

5.5.1 Summary

We summarize the important results of this chapter in the following box.

Summary of Chapter 5

(i) Classical communication assisted by NS (and PPT) codes

ps,NS∩PPT (N , m) = max Tr JN FAB

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1,

TrA FAB = 1B/m,

0 ≤ FTB
AB ≤ ρA ⊗ 1B (PPT) .

(5.160)

C(1)
NS∩PPT (N , ε) = − log min η

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B, Tr ρA = 1,

TrA FAB = η1B, Tr JN FAB ≥ 1 − ε,

0 ≤ FTB
AB ≤ ρA ⊗ 1B (PPT).

(5.161)

(ii) An SDP strong converse bound for the classical capacity:

C (N ) ≤ CNS∩PPT (N ) ≤ Cβ (N ) = log β (N ) , (5.162)

where β (N ) = min{Tr SB : −R ≤ JTB
N ≤ R,−1A ⊗ SB ≤ RTB ≤ 1A ⊗ SB}.

(iii) Achieving Matthews-Wehner meta-converse via activated NS codes:

C(1)
NS,a (N , ε) = max

ρA′
min

σB
Dε

H (NA→B (φA′A) ‖ρA′ ⊗ σB) , (5.163)

where φA′A is a purification of ρA′ .

(iv) For the amplitude damping channel N AD
γ , it holds that log

(
1 +

√
1 − γ

)
is a

strong converse bound for C
(N AD

γ

)
, i.e.,

C
(
N AD

γ

)
≤ CNS∩PPT

(
N AD

γ

)
≤ Cβ

(
N AD

γ

)
= log

(
1 +

√
1 − γ

)
.

(v) Meta-converse via constant-bounded subchannels in Section 5.3.1.

(vi) Given quantum erasure channel Ep with parameter p and input dimension d,

C(1)
(
E⊗n

p , ε
)
= n (1 − p) log d +

√
np (1 − p) (log d)2 Φ−1 (ε) + O (log n) .
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5.5.2 Outlook

One future direction is to derive better efficiently computable evaluations of classical
communication over general quantum channels. Perhaps one could obtain tighter
converse bounds via the study of CNS∩PPT. Another direction is to further tighten the
one-shot and strong converse bounds by involving the separable constraint [HNW17].

A challenging open problem is the classical capacity of the amplitude damping
channel. As we showed in Figure. 5.5, there is still much space between the best
known upper and lower bounds. It is of great interest to further improve the bounds
from both sides. Or maybe one can try to find an approach to show the additivity of
the Holevo capacity in this case.

For the qubit depolarizing channel, the strong converse property of its classical
capacity was established in [KW09]. Then one may expect a second-order analysis
of its classical capacity. However, this problem remains open and we note that our
meta-converse in Theorem. 5.12 cannot lead to a tight second-order analysis.

Moreover, given the fact that the entanglement-assisted capacity allows a single-
letter characterization, it is natural to consider a second-order analysis of it. We note
that the second-order achievable rate was established in [DTW16], and the remaining
direction is to derive a second-order converse bound. Maybe the one-shot ε-error
NS-assisted capacity introduced in this chapter may shed some light.

Finally, we close this chapter with a brief overview of the known and open prob-
lems in the beyond i.i.d. regime of classical communication over quantum channels.

CQ EB Erasure Depolarizing AD

C [Hol98a] [Sho02a] [BDS97] [Kin03] ?
Strong converse [ON99, Win99] [WWY14] [WW14] [KW09] ?
Second-order [TT15] ? [WFT17] ? ?
Second-order (CE) ?1 ? [DTW16] [DTW16] ?

Table 5.1: Table of classical communication capabilities of basic channels
(CQ=classical quantum, EB=entanglement breaking, AD=amplitude damping).

1 One could expect that the second-order for entanglement-assisted capacity will be the same as the un-
assisted case in [TT15].



Chapter 6

Quantum communication via

quantum channels

6.1 Introduction

6.1.1 Background

Quantum communication refers to the transmission of quantum information via quan-
tum channels: the sender (Alice) has a quantum system whose state she would like
to transmit coherently to the receiver (Bob). This requires that an arbitrary quantum
state, when encoded and transmitted using a noisy channel, can be recovered by the
receiver. The reliable quantum communication via noisy quantum channels is a fun-
damental problem in quantum information theory as well as a basic technology for
quantum internet in the future.

En Dn

N
N

N

A1

A2

An

B1

B2

Bn

...
ρ ∈ S (A) ρ̂ ∈ S (A′)

Figure 6.1: The sender (Alice) encodes the states with an encoding operation En and
then sends them through the channel N⊗n to the receiver (Bob). Bob collects these
registers and then applies a decoding operation Dn which acts collectively on the
many outputs of the channels.

112
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Quantum capacity theorem

The quantum capacity of a noisy quantum channel is the optimal rate at which it can
convey quantum bits (qubits) reliably over asymptotically many uses of the channel.
(We refer to Eq. (6.6) for a formal definition.) The work in [Llo97, Sho02b, Dev05]
showed that coherent information of N is an achievable rate for quantum commu-
nication while the work in [SN96, BKN00, BNS98] showed the regularized coherent
information is also an upper bound on quantum capacity. The above works estab-
lish the following quantum capacity theorem, which is one of the most important
theorems in quantum Shannon theory.

Theorem 6.1 (Quantum capacity theorem). Given a quantum channel N , its quantum
capacity is given by the regularized coherent information:

Q (N ) = lim
n→∞

IC (N⊗n)

n
(6.1)

where the coherent information IC (N ) is given by

IC (N ) = max
ρA

S (N (ρA))− S (N c (ρA)) , (6.2)

where N c is a complementary channel of N .

In general, the regularization of coherent information is necessary since the coher-
ent information can be superadditive. The quantum capacity is notoriously difficult
to evaluate since it is characterized by a multi-letter, regularized expression and it is
not even known to be computable [CEM+15, ES15]. Even for the qubit depolarizing
channel, the quantum capacity is still unsolved. (See Section 6.4.2 for discussion.)
Our understanding of quantum capacity is quite limited and we even do not know
the threshold value of the depolarizing noise for which the quantum capacity van-
ishes.

Strong and weak converse bounds

The converse part of the LSD theorem states that if the rate exceeds the quantum
capacity, then the fidelity of any coding scheme cannot approach one in the limit
of many channel uses. A strong converse property leaves no room for the trade-
off between rate and error, i.e., the error probability vanishes in the limit of many
channel uses whenever the rate exceeds the capacity. For quantum communication,
the strong converse property was studied in [TWW17] and such property of gener-
alized dephasing channels was established. Given an arbitrary quantum channel,
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the partial transposition bound was introduced in [HW01] as an efficiently com-
putable upper bound on quantum capacity, and it was proved to be a strong con-
verse bound in [MHRW16]. Recently, the Rains information [TWW17] was estab-
lished to be a strong converse bound for quantum communication. For the setting
of weak converse, there are other known upper bounds for quantum capacity (see
e.g., [SSW08, SSWR17, GJL15, BDE+98, WPG07, SS08, LDS17] and most of them re-
quire specific settings to be computable and relatively tight.

6.1.2 Outline

In this chapter, we investigate the capabilities of quantum channels to convey quan-
tum information and show efficiently computable estimates under both finite block-
length and asymptotic regime. Section 6.2 derives one-shot semidefinite program-
ming (SDP) converse bounds on the amount of quantum information can transmit
over a single use of a quantum channel, which improve the previous bound in [TBR16].
Section 6.3 derives an SDP strong converse bound for the quantum capacity of an ar-
bitrary quantum channel, which means the fidelity of any code with a rate exceeding
this bound will vanish exponentially fast as the number of channel uses increases.
In particular, this SDP strong converse bound is always smaller than or equal to the
partial transposition bound, and it can be refined as the so-called max-Rains informa-
tion. This SDP strong converse bound is weaker than the Rains information, but it is
efficiently computable in general.

6.2 One-shot communication capability

6.2.1 Task of information processing

In this section, we investigate the finite blocklength regime of quantum communica-
tion. Given a noisy channel NA→B, the aim of quantum communication is to find the
optimal encoder and decoder to simulate a noiseless qudit channel. There are dif-
ferent metrics to quantify how well a channel acts as the ideal channel [KW04]. The
diamond norm is by no means the only way to evaluate the distance between two
channels. But in the case of quantum communication, the channel fidelity [RW05] is
a very handy figure of merit since it does not involve an optimization process, and is
equivalent to the error criteria based on the diamond norm [KW04].

Definition 6.2. For a quantum channel N from L (A′) to L (B) with dimension dA =
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R

Ai Ao Bi Bo

C

E
N

D

C

E D

Π

Ai

R

BoE D

Ao Bi
N

E DΠ

I

Figure 6.2: General code ΠAi Bi→Ao Bo is equivalently the coding scheme (E ,D) with
free extra resources C, such as entanglement or no-signalling correlations. The goal
of the whole operation is to simulate a noiseless quantum channel IAi→Bo using a
given noisy quantum channel NAo→Bi and the code Π.

dB = m, the channel fidelity of N is defined by

Fc (N ) := F (ΦBR,NA′→B (ΦA′R)) , (6.3)

where |Φ〉 = 1√
m ∑m−1

i=0 |ii〉 is the normalized maximally entangled state.

In this following, we use the channel fidelity and focus on optimizing the codes
to reliably transmit a state entangled with a reference system from Alice to Bob (also
known as entanglement distribution). To be specific, suppose Alice shares a maxi-
mally entangled state (ΦAi R) with a reference system R. The goal is to design a quan-
tum coding protocol such that this maximally entangled state can be sent to Bob with
high fidelity. To this end, Alice first performs an encoding operation EAi→Ao on sys-
tem Ai and transmits the prepared state through the channel NAo→Bi . The resulting
state turns out to be NAo→Bi ◦ EAi→Ao (ΦAi R). Then Bob performs a decoding oper-
ation DBi→Bo on system Bi, where Bo is some system of the same dimension as Ai.
The final resulting state will be ρ f inal = DBi→Bo ◦ NAo→Bi ◦ EAi→Ao (ΦAi R). The tar-
get of quantum coding is to optimize the fidelity between ρ f inal and the maximally
entangled state ΦAi R.

One could further imagine the coding protocol as a deterministic super-operator
ΠAi Bi→Ao Bo , which we refer to as general codes (see Section 2.3 for details). In the fol-
lowing, we will consider quantum communication over quantum channels assisted
with Ω codes, where Ω ∈ {UA, NS ∩ PPT, PPT}. We refer to Section 2.3 for more
details about the mathematical description of these codes.

Definition 6.3. The maximum channel fidelity of N assisted by the Ω code is defined
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by
FΩ (N , k) := sup

Π
Tr (ΦBo R · ΠAi Bi→Ao Bo ◦ NAo→Bi (ΦAi R)) , (6.4)

where ΦAi R and ΦBo R are maximally entangled states, k = dim |Ai| = dim |Bo| called
code size and the supremum is taken over the Ω codes (Ω ∈ {UA, NS ∩ PPT, PPT}).

Definition 6.4. For given quantum channel N and error tolerance ε, the one-shot
ε-error quantum capacity assisted by Ω codes is defined by

Q(1)
Ω (N , ε) := log sup {k ∈ N : FΩ (N , k) ≥ 1 − ε} , (6.5)

where Ω ∈ {UA, NS ∩ PPT, PPT}. In the following, we write Q(1)
UA (N , ε) = Q(1) (N , ε)

for simplicity.
The corresponding asymptotic quantum capacity is then defined by

QΩ (N ) = lim
ε→0

lim
n→∞

1
n

Q(1)
Ω

(N⊗n, ε
)

. (6.6)

The authors of [LM15] showed that the maximum channel fidelity assisted with
NS ∩ PPT codes is given by the following SDP:

FNS∩PPT (N , k) = max Tr JN WAB

s.t. 0 ≤ WAB ≤ ρA ⊗ 1B, Tr ρA = 1,

− k−1ρA ⊗ 1B ≤ WTB
AB ≤ k−1ρA ⊗ 1B,

TrA WAB = k−21B (NS) .

(6.7)

To obtain FPPT (N , k), one only need to remove the NS constraint.
Combining Eqs. (6.5) and (6.7), one can derive the following proposition. It is

worth noting that Eq. (6.8) is not an SDP in general, due to the non-linear term mρA

and the condition TrA WAB = m21B. But in next subsection, we will derive several
semidefinite relaxations of this optimization problem.

Proposition 6.5. For any quantum channel NA′→B with Choi-Jamiołkowski matrix JN ∈
L (A ⊗ B) and given error tolerance ε, its one-shot ε-error quantum capacity assisted with
PPT codes can be simplified as an optimization problem:

Q(1)
PPT (N , ε) = − log min m

s.t. Tr JN WAB ≥ 1 − ε, 0 ≤ WAB ≤ ρA ⊗ 1B,

Tr ρA = 1,−mρA ⊗ 1B ≤ WTB
AB ≤ mρA ⊗ 1B.

(6.8)

If the codes are also non-signalling, we can have the same optimization for NS∩PPT codes



6. Quantum communication via quantum channels 117

with an additional constraint TrA WAB = m21B.

6.2.2 SDP converse bounds for quantum communication

To better evaluate the quantum communication rate with finite resources, we intro-
duce several SDP converse bounds for quantum communication with the assistance
of PPT (and NS) codes. In Theorem 6.6, we further prove that our SDP bounds are
tighter than the one introduced in [TBR16].

Specifically, the authors of [TBR16] established that − log f (N , ε) is a converse
bound on one-shot ε-error quantum capacity, i.e., Q(1) (N , ε) ≤ − log f (N , ε) where

f (N , ε) = min Tr SA

s.t. Tr WAB JN ≥ 1 − ε, SA, ΘAB ≥ 0, Tr ρA = 1,

0 ≤ WAB ≤ ρA ⊗ 1B, SA ⊗ 1B ≥ WAB + ΘTB
AB.

(6.9)

Here, we introduce a hierarchy of SDP converse bounds on the one-shot ε-error
capacity based on the optimization (6.8). If we relax the term mρA to a single variable
SA, we obtain g (N , ε), where

g (N , ε) := min Tr SA

s.t. Tr JN WAB ≥ 1 − ε, 0 ≤ WAB ≤ ρA ⊗ 1B,

Tr ρA = 1,−SA ⊗ 1B ≤ WTB
AB ≤ SA ⊗ 1B.

(6.10)

Thus, we obtain

Q(1)
PPT (N , ε) ≤ − log g (N , ε) . (6.11)

In particular, for the NS condition TrA WAB = m21B, there are two different ways
to get relaxations. The first one is to substitute it with TrA WAB = t1B and obtain
SDP g̃ (N , ε)). The second one is to introduce a prior constant m̂ satisfying the in-
equality

Q(1)
NS∩PPT (N , ε) ≤ − log m̂ (6.12)

and then obtain SDP ĝ (N , ε). Note that the second method can provide a tighter
bound, but it requires one more step of calculation since we need to get the prior
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constant m̂. Successively refining the value of m̂ will result in a tighter bound.

g̃ (N , ε) := min Tr SA

s.t. Tr JN WAB ≥ 1 − ε, 0 ≤ WAB ≤ ρA ⊗ 1B,

Tr ρA = 1,−SA ⊗ 1B ≤ WTB
AB ≤ SA ⊗ 1B,

TrA WAB = t1B.

(6.13)

ĝ (N , ε) := min Tr SA

s.t. Tr JN WAB ≥ 1 − ε, 0 ≤ WAB ≤ ρA ⊗ 1B,

Tr ρA = 1,−SA ⊗ 1B ≤ WTB
AB ≤ SA ⊗ 1B,

TrA WAB = t1B, t ≥ m̂2.

(6.14)

Theorem 6.6. For any quantum channel N and error tolerance ε, the inequality chain holds

Q(1) (N , ε) ≤ Q(1)
NS∩PPT (N , ε)

≤ − log ĝ (N , ε) ≤ − log g̃ (N , ε) ≤ − log g (N , ε) ≤ − log f (N , ε) .

Proof. The third and fourth inequalities are easy to obtain since the minimization over
a smaller feasible set gives a larger optimal value here.

For the second inequality, suppose the optimal solution of (6.8) for Q(1)
NS∩PPT (N , ε),

is taken at {WAB, ρA, m}. Let SA = mρA, t = m2. Then we can verify that {WAB, ρA, SA, t}
is a feasible solution to the SDP (6.14) of ĝ (N , ε). So ĝ (N , ε) ≤ Tr SA = m, which
implies that Q(1)

NS∩PPT (N , ε) = − log m ≤ − log ĝ (N , ε).

For the last inequality, we only need to show that f (N , ε) ≤ g (N , ε). Suppose the
optimal solution of g (N , ε) is taken at {ρA, SA, WAB}. Let us choose ΘAB = SA ⊗1B −
WTB

AB. Since SA ⊗1B ≥ WTB
AB, it is clear that ΘAB ≥ 0 and SA ⊗1B = WAB +ΘTB

AB. Thus,
{SA, ρA, WAB, ΘAB} is a feasible solution to the SDP (6.9) of f (N , ε) which implies
f (N , ε) ≤ Tr SA = g (N , ε). ��

6.2.3 Example: amplitude damping channel

For the amplitude damping channel Nγ = ∑1
i=0 Ei ·E†

i with E0 = |0〉〈0|+√
1 − r|1〉〈1|,

E1 =
√

r|0〉〈1| (0 ≤ r ≤ 1), the differences among − log f
(N⊗2

γ , 0.01
)
, − log g

(N⊗2
γ , 0.01

)
and − log g̃

(N⊗2
γ , 0.01

)
, are presented in Figure 6.3.

When r ∈ (0.081, 0.094), it holds that

− log g̃
(N⊗2

γ , 0.01
) ≤ − log g

(N⊗2
γ , 0.01

)
< 1 < − log f

(N⊗2
γ , 0.01

)
. (6.15)

This shows that we cannot transmit a single qubit within error tolerance ε = 0.01 via
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two uses of amplitude damping channel where parameter r ∈ (0.081, 0.094). How-
ever, this result cannot be obtained via the converse bound − log f

(N⊗2
γ , 0.01

)
.

If we consider three uses of the amplitude damping channel, Figure 6.4 shows that
we cannot transmit one qubit over Nγ with infidelity 0.01 when the noise parameter
is larger than 0.2625.
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Figure 6.3: This figure demonstrates the differences between the SDP converse
bounds (i) − log f

(N⊗2
γ , 0.01

)
(blue solid), (ii) − log g

(N⊗2
γ , 0.01

)
(red dashed),

where γ ranges from 0.07 to 0.1.
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Figure 6.4: This figure demonstrates the differences among the SDP converse bounds
(i) − log f

(N⊗3
γ , 0.01

)
(blue solid), (ii) − log g

(N⊗3
γ , 0.01

)
(red dashed), where γ

ranges from 0.25 to 0.3.
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6.3 Asymptotic communication capability

We now investigate quantum communication under the asymptotic scenario. We first
present an SDP strong converse bound, denoted as QΓ, on the quantum capacity for
general channels. The proof of this strong converse bound is built on two ingredients:
a relationship between the rate and QΓ as well as the additivity of QΓ. In particular,
we also find that QΓ is a channel analog of SDP entanglement measure EW in Chap-
ter 3.

6.3.1 Quantum capacity

In this section, we introduce an SDP strong converse bound QΓ (N ) := log Γ (N ) to
evaluate the quantum capacity for a general quantum channel, where

(Primal) Γ (N ) = max Tr JN RAB

s.t. RAB, ρA ≥ 0, Tr ρA = 1,

− ρA ⊗ 1B ≤ RTB
AB ≤ ρA ⊗ 1B,

(6.16)

(Dual) Γ (N ) = min μ

s.t. YAB, VAB ≥ 0, (VAB − YAB)
TB ≥ JN ,

TrB (VAB + YAB) ≤ μ1A.

(6.17)

We summarize our strong converse bound with other well-known bounds in Ta-
ble 6.1. Among those efficiently computable strong converse bound for general chan-
nels, we prove that QΓ (N ) is better than the partial transpose bound and remark
that it is also strictly tighter than the entanglement-assisted quantum capacity in the
case of entanglement-breaking channels with non-zero classical capacity. The relation
with Rains information is also obtained.

6.3.2 An SDP strong converse bound on quantum capacity

We first establish a relationship between the one-shot PPT-assisted quantum capacity
and the bound QΓ (N ) in the following proposition.

Lemma 6.7. For any quantum channel N and error tolerance ε,

Q(1)
PPT (N , ε) ≤ QΓ (N )− log (1 − ε) . (6.18)

Proof. Suppose the optimal solution in the optimization (6.8) of Q(1)
PPT (N , ε) is taken

at {WAB, ρA, m}, then Q(1)
PPT (N , ε) = − log m. Denote RAB = 1

m WAB and we can
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verify that {RAB, ρA} is a feasible solution to the SDP (6.16). Thus

QΓ (N ) ≥ log Tr JN RAB (6.19)

= log
1
m

Tr JN WAB (6.20)

≥ log
1
m

(1 − ε) (6.21)

= Q(1)
PPT (N , ε) + log (1 − ε) . (6.22)

This concludes the proof. The dual problem can be derived via Lagrange multiplier
method. ��

Then we prove that the bound QΓ is additive under tensor products.

Lemma 6.8. For any quantum channel N1 and N2, QΓ is additive, i.e.,

QΓ (N1 ⊗N2) = QΓ (N1) + QΓ (N2) . (6.23)

Proof. We only need to show that Γ (N1 ⊗N2) = Γ (N1) Γ (N2). For the primal prob-
lem (6.16), suppose the optimal solutions of (6.16) for the channel N1 and N2 are taken
at {R1, ρ1} and {R2, ρ2}, respectively. Then we can verify that {R1 ⊗ R2, ρ1 ⊗ ρ2} is a
feasible solution of Γ (N1 ⊗N2). Thus,

Γ (N1 ⊗N2) ≥ Tr (JN1 ⊗ JN2) (R1 ⊗ R2) = Γ (N1) Γ (N2) . (6.24)

For the dual problem (6.17), suppose the optimal solutions of (6.17) for the channel
N1 and N2 are taken at {V1, Y1, μ1} and {V2, Y2, μ2}. Let us take

V = V1 ⊗ V2 + Y1 ⊗ Y2, (6.25)

Y = V1 ⊗ Y2 + Y1 ⊗ V2. (6.26)

It can be verified that {V, Y, μ1μ2} is a feasible solution of Γ (N1 ⊗N2).

Thus,

Γ (N1 ⊗N2) ≤ Γ (N1) Γ (N2) . (6.27)

��

Finally, utilizing the two lemmas above, we are now able to prove that QΓ is a
strong converse bound for the quantum capacity assisted with PPT codes.
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Theorem 6.9. For any quantum channel N ,

Q (N ) ≤ QPPT (N ) ≤ QΓ (N ) . (6.28)

Moreover, QΓ (N ) is a strong converse bound. That is, if the rate exceeds QΓ (N ), the error
probability will approach to one exponentially fast as the number of channel uses increase.

Proof. We first show that QΓ (N ) is a converse bound and then prove that it is a strong
converse. From Eq. (6.18), take regularization on both sides, we have

QPPT (N ) = lim
ε→0

lim
n→∞

1
n

Q(1)
PPT

(N⊗n, ε
)

≤ lim
ε→0

lim
n→∞

1
n
[
QΓ

(N⊗n)− log (1 − ε)
]

= QΓ (N ) .

(6.29)

In the last line, we use the additivity of QΓ in Proposition 6.8.

For the n-fold quantum channel N⊗n, suppose its achievable rate is r. From Eq.
(6.18), we have nr ≤ nQΓ (N )− log (1 − ε), which implies

ε ≥ 1 − 2n(QΓ(N )−r). (6.30)

If r > QΓ (N ), the error will exponentially converge to one as n goes to infinity. ��

Remark 6.10. For d-dimensional noiseless quantum channel Id, we can show

Q (Id) = QΓ (Id) = log d. (6.31)

6.3.3 Comparison with other converse bounds

There are several well-known converse bounds on quantum capacity. In this sub-
section, we compare them with our SDP strong converse bound QΓ. Especially, we
obtain an inequality chain among the strong converse bound QΓ, channel’s Rains in-
formation R and partial transposition bound QΘ.
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Strong converse rate Efficiently computable
QΓ (Rmax) � �

R � � (max-min)
EC � � (regularization)
QΘ � �

Emax � ?
QE � �

ε-DEG ? �

Qss ? ? (Unbounded dimension)

Table 6.1: Comparison of converse bounds on quantum capacity

Tomamichel et al. [TWW17] established that the Rains information of any quantum
channel is a strong converse rate for quantum communication. To be specific, the
Rains information of a quantum channel is defined as [TWW17]:

R (N ) := max
ρA∈S(A)

min
σAB∈PPT’

D
(NA′→B (φAA′)

∥∥σAB
)

, (6.32)

where φAA′ is a purification of ρA and the set PPT’ = {σ ∈ P (A ⊗ B) :
∥∥σTB

∥∥
1 ≤ 1}.

We note that our bound QΓ is weaker than the Rains information (cf. Corollary 6.13.)
However, R (N ) is not known to be efficiently computable for general quantum chan-
nels since it is max-min optimization problem.

An efficiently computable converse bound (abbreviated as ε-DEG) is given by the
concept of approximate degradable channel [SSWR17]. This bound usually works
very well for approximate degradable quantum channels such as low-noise qubit
depolarizing channel. See [LLS18, SWAT18] for some recent works based on this
approach. Otherwise, it will degenerate to a trivial upper bound. We can easily show
an example that QΓ can be smaller than ε-DEG bound, e.g., the channel Nr in Eq.
(6.56) with 0 < r < 0.38. Also, it is unknown whether ε-DEG bound is a strong
converse.

Another previously known efficiently computable strong converse bound for gen-
eral channels is given by the partial transposition bound,

QΘ (N ) := log ‖N ◦ T‖♦ , (6.33)

where T is the transpose map and ‖ · ‖♦ is the completely bounded trace norm, which
is known to be efficiently computable by SDP in [Wat13].

The entanglement cost of a quantum channel [BBCW13], denoted as EC, is proved
to be a strong converse bound. But it is not known to be efficiently computable for
general channels, due to its regularization. The entanglement-assisted quantum QE
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is also a strong converse for the quantum capacity [BDH+14, BCR11] and there is a re-
cently developed to efficiently compute it [FF18]. Quantum capacity with symmetric
side channels [SSW08], denoted as Qss, is also an important converse bound for gen-
eral channels. But it is not known to be computable due to the potentially unbounded
dimension of the side channel. It is also not known to be a strong converse.

Recently, Christandl and Müller-Hermes [CMH17] derived the following strong con-
verse upper bound on the quantum and private communication:

Emax (N ) = max
ρA∈S(A)

min
σAB∈SEP

Dmax
(NA′→B (φAA′)

∥∥σAB
)

, (6.34)

where SEP represents the set of separable states. This bound is known as the max-
relative entropy of entanglement of a quantum channel. For quantum communica-
tion, Emax improves the partial transposition bound for some channels but is weaker
than our bound QΓ (cf. Proposition 6.12).

Theorem 6.11. For any quantum channel N , it holds that

Q (N ) ≤ R (N ) ≤ QΓ (N ) ≤ QΘ (N ) . (6.35)

The first inequality has been proved in [TWW17]. We prove the second inequality
in Corollary 6.13 and the third inequality in Proposition 6.14.

In the following proof, we need to introduce an entanglement measure EW which
is defined in Eq. (3.17) in Chapter 3. We will see that the strong converse bound QΓ

is a channel analogue of entanglement measure EW and can be further reformulated
into a similar form as the Rains information.

Proposition 6.12. For any quantum channel N , it holds

QΓ (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′)) (6.36)

= max
ρ∈S(A)

min
σ∈PPT′(A:B)

Dmax
(NA′→B (φAA′)

∥∥σAB
)

, (6.37)

where φAA′ is a purification of ρA and the set PPT’ (A : B) =
{

σ ∈ P (A ⊗ B) :
∥∥σTB

∥∥
1 ≤ 1

}
.

As a consequence, QΓ (N ) ≤ Emax (N ).
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Proof. Consider purification φAA′ = ρ1/2
A ΦAA′ρ1/2

A

(
= ρ1/2

A′ ΦAA′ρ1/2
A′

)
, then

NA′→B (φAA′) = NA′→B

(
ρ1/2

A ΦAA′ρ1/2
A

)
(6.38)

= ρ1/2
A NA′→B (ΦAA′) ρ1/2

A (6.39)

= ρ1/2
A JN ρ1/2

A . (6.40)

Take JN = ρ−1/2
A NA′→B (φAA′) ρ−1/2

A into the definition of QΓ (N ) (6.16) and sub-
stitute

FAB = ρ−1/2
A RABρ−1/2

A , (6.41)

then we have

QΓ (N ) = log max TrNA′→B (φAA′) FAB

s.t. FAB, ρA ≥ 0, Tr ρA = 1,

− 1AB ≤ FTB
AB ≤ 1AB

(6.42)

Due to the definition of EW (3.17), we have

QΓ (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′)) . (6.43)

On the other hand, by Theorem 3.10, we have that

EW (ρ) = min
σ∈PPT′(A:B)

Dmax (ρ‖σ) . (6.44)

Therefore,

QΓ (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′)) (6.45)

= max
ρ∈S(A)

min
σ∈PPT′(A:B)

Dmax
(NA′→B (φA′A)

∥∥σAB
)

. (6.46)

Furthermore, noticing that SEP (A : B) ⊂ PPT′ (A : B), we have that

QΓ (N ) ≤ max
ρ∈S(A)

min
σ∈SEP(A:B)

Dmax
(NA′→B (φA′A)

∥∥σAB
)

(6.47)

= Emax (N ) . (6.48)

��
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Corollary 6.13. For any quantum channel N , it holds

R (N ) ≤ QΓ (N ) . (6.49)

Proof. Note that D (ρ‖σ) ≤ Dmax (ρ‖σ) [Dat09], we have

QΓ (N ) = max
ρ∈S(A)

min
σ∈PPT′(A:B)

Dmax
(NA′→B (φA′A)

∥∥σAB
)

≥ max
ρA∈S(A)

min
σ∈PPT’(A:B)

D
(NA′→B (φAA′)

∥∥σAB
)

= R (N ) .

(6.50)

��

Proposition 6.14. For any quantum channel N , it holds

QΓ (N ) ≤ QΘ (N ) . (6.51)

Proof. Assume that the optimal solution of Γ (N ) is {RAB, ρA}, then

Γ (N ) = Tr JN RAB = Tr JTB
N RTB

AB. (6.52)

Recall the SDP of the diamond norm in Eq. (6.53),

‖T ◦ N‖♦ = max
1
2

Tr
(

JTB
N XAB

)
+

1
2

Tr
(

JTB
N X†

AB

)
s.t.

(
ρ0 ⊗ 1 XAB

X†
AB ρ1 ⊗ 1

)
≥ 0.

(6.53)

Let us add two constraints ρ0 = ρ1 = ρA and XAB = X†
AB, then

‖JTB
N ‖♦ ≥ max Tr

(
JTB
N X

)
s.t.

(
ρA ⊗ 1B XAB

XAB ρA ⊗ 1B

)
≥ 0.

Noting that −ρA ⊗ 1B ≤ RTB
AB ≤ ρA ⊗ 1B, then(

ρA ⊗ 1B RTB
AB

RTB
AB ρA ⊗ 1B

)

=
1
2

(
1 1
1 1

)⊗(
ρA ⊗ 1B + RTB

AB

)
+

1
2

(
1 −1
−1 1

)⊗(
ρA ⊗ 1B − RTB

AB

)
≥ 0.

(6.54)
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Therefore, RTB
AB satisfies the constraint above, which means that

‖JTB
N ‖♦ ≥ Tr

(
JTB
N RTB

AB

)
= Γ (N ) . (6.55)

��

In Figure 6.5, we compare the converse bound QΓ with QΘ in the case of quantum
channel

Mr =
1

∑
i=0

Ei · E†
i , (0 ≤ r ≤ 0.5) , (6.56)

where

E0 = |0〉〈0|+√
r|1〉〈1|, (6.57)

E1 =
√

1 − r|0〉〈1|+ |1〉〈2|. (6.58)

In the following Figure 6.5, it is clear that QΓ can be strictly tighter than QΘ.
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Figure 6.5: This plot demonstrates the difference between converse bounds QΓ (Mr)
and QΘ (Mr). The dashed line depicts QΓ (Mr) while the solid line depicts QΘ (Mr).
The noise parameter r ranges from 0 to 0.5.
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6.4 Discussion

6.4.1 Summary

In this chapter, we contributed the semidefinite programs for estimating the quan-
tum communication capability of quantum channels in both the non-asymptotic and
asymptotic regimes. We summarize the important results of this chapter in the fol-
lowing box.

Summary of Chapter 6

(i) Semidefinite programming converse bounds for quantum communication with
finite resources:

Q(1)
PPT (N , ε) ≤ g (N , ε) = min Tr SA

s.t. Tr JN WAB ≥ 1 − ε, 0 ≤ WAB ≤ ρA ⊗ 1B,

Tr ρA = 1,−SA ⊗ 1B ≤ WTB
AB ≤ SA ⊗ 1B.

There are similar bounds for the NS∩PPT codes in Eq. (6.13) and Eq. (6.14).

(ii) Max-Rains information - an SDP strong converse bound for quantum com-
munication:

QΓ (N ) = max
ρ∈S(A)

min
σ∈PPT′ Dmax

(NA′→B (φAA′)
∥∥σAB

)
,

= max Tr JN RAB

s.t. RAB, ρA ≥ 0, Tr ρA = 1,

− ρA ⊗ 1B ≤ RTB
AB ≤ ρA ⊗ 1B.

Note that QΓ was recently proved to be a strong converse bound for the
LOCC-assisted quantum capacity of an arbitrary quantum channel in [BW18].

(iii) Relationship between several well-known bounds:

Q (N ) ≤ R (N ) ≤ QΓ (N ) ≤ QΘ (N ) . (6.59)

See Table. 6.1 for a partial overview of the upper bounds on quantum capacity.

6.4.2 Outlook

The most fundamental noise is the isotropic noise in a depolarizing channel. But the
quantum capacity of this channel is still unsolved despite substantial effort in the past
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two decades (see e.g., [DSS98, FW08, SS07, SSW08, SSWR17, LDS17, LW17]), and we
even do not know at which critical noise the capacity becomes zero. This represents a
major gap for us to fully understand the fundamental limits and power of quantum
error correction.

Moreover, from the view of strong converse, there is only a pretty strong con-
verse for the degradable channels [MW14b]. The bottleneck is that we do not know
whether the strong converse property holds for the 50% quantum erasure channel.
Due to a limited understanding on the strong converse property of quantum com-
munication, our understanding of the second-order asymptotics of quantum capacity
is also very limited, and the dephasing channel is the only one whose second-order
analysis of quantum communication has been fully established [TBR16].

Finally, we end this chapter with a table of the known and open problems in the
beyond i.i.d. regime of quantum communication.

Degradable Dephasing Erasure Depolarizing

Q (N ) [DS05] [DS05] [BDS97] ?
Strong converse ? (Pretty strong [MW14b]) [TWW17] ? ?
Second-order ? [TBR16] ? ?

Table 6.2: Table of quantum communication capabilities of basic channels
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Chapter 7

Advancing quantum zero-error

information theory

7.1 Introduction

7.1.1 Background

While the conventional information theory focuses on sending messages with asymp-
totically vanishing errors [Sha48], Shannon also investigated this problem in the zero-
error setting and described the zero-error capacity of a channel as the maximum
rate at which it can be used to transmit information with a zero probability of er-
ror [Sha56]. The so-called zero-error information theory [Sha56, KO98] concerns the
combinatorial problems in the asymptotic regime, most of which are difficult and
unsolved.

Recently the zero-error information theory has been studied in the quantum set-
ting and many new phenomena were observed. One remarkable result is the super-
activation of the zero-error classical/quantum capacities of quantum channels [DS08,
Dua09, CCH11, CS12, SS15]. Another important result is that, for some classical chan-
nels, quantum entanglement can be used to improve the zero-error capacity [CLMW10,
LMM+12], while there is no such advantage for the normal capacity [Sha48]. Fur-
thermore, there are more kinds of capacities when considering auxiliary resources,
such as the shared entanglement [DS08, CLMW10, LMM+12, DSW13, BBL+15], the
no-signalling correlations [Mat12, CLMW11, DW16, LM15], and the feedback assis-
tance [Sha56, DSW16]. All of these capacities are only partially understood, and the
zero-error information theory of quantum channels seems more complex than that of
classical channels.

To study the zero-error communication via quantum channels, the so-called “non-

131
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commutative graph theory” was introduced in [DSW13]. The non-commutative graph
(an object based on an operator system) associated with a quantum channel fully cap-
tures the zero-error communication properties of this channel [DSW13], thus playing
a similar role to confusability graph in the classical case. It is well-known that the
zero-error capacity is extremely difficult to compute for both classical and quantum
channels [BS07]. Nevertheless, the zero-error capacity of a classical channel is upper
bounded by the Lovász number [Lov79] while the zero-error capacity of a quantum
channel is upper bounded by the quantum Lovász number [DSW13]. Furthermore,
the entanglement-assisted zero-error capacity of a classical channel is also upper-
bounded by the Lovász number [Bei10, DSW13], and this result can be generalized to
quantum channels by introducing the quantum Lovász number [DSW13].

7.1.2 Outline

In this chapter, we begin with the basic notations and results of classical and quantum
zero-error information theory in Section 7.2. Then we show an approach to separate
the entanglement-assisted zero-error capacity and the quantum Lovász number in
Section 7.3, which resolves a well-known open problem in the area of zero-error in-
formation theory. Furthermore, in Section 7.4, we introduce an activated zero-error
communication model and explore its novel properties.

7.2 Zero-error capacity of a quantum channel

7.2.1 Graphs and their quantum generalizations

Confusability graph and bipartite graph

Let us begin with a classical channel N = (X, p (y|x) , Y) with X and Y are the input
and output alphabets, respectively. To transmit messages through this channel with
no probability of confusion, different messages need to be associated to different in-
puts x in a way such that the output distributions p (·|x) are disjoint. This motivates
the introduction of the confusability graph G = (X, E) of a noisy channel [Sha56],
where X is the set of vertices (inputs) and E is the set of edges. An edge x ∼ x′

exists if x and x′ can be confused via the channel, i.e., there exists some y such that
p (y|x) p (y|x′) > 0.

The independence number α (G) is defined as the maximum size of an independent
set in G, which is the maximum number of messages that can be transmitted through
the channel without any possibility of confusion. For any classical channel with con-
fusability graph G, we also denote α (N ) = α (G) as its one-shot zero-error capacity.
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Non-commutative graph

For a quantum channel N from L (A′) to L (B), with a Choi-Kraus operator sum
representation N (ρ) = ∑k EkρE†

k , its non-commutative graph [DSW13] is defined by
the operator subspace

S := K†K = span{E†
j Ek : j, k} < L (

A′) ,

where S < L (A′) means that S is a subspace of L (A′).

Taking the above classical channel N = (X, p (y|x) , Y) as an example, its Choi-
Kraus operators may be chosen as Exy =

√
p (y|x)|y〉〈x|. Thus, its non-commutative

graph is given by
K = span{Z : ∀x �∼ x′, 〈x|Z|x′〉 = 0}.

Non-commutative bipartite graph

A classical channel N = (X, p (y|x) , Y) also induces a bipartite graph (X, E, Y), where
X and Y are the input and output alphabets, respectively. And E ⊂ X ×Y is the set of
edges such that (x, y) ∈ E if and only if the probability p (y|x) is positive. It is worth
noting that bipartite graph also plays an important role in the study of zero-error
information theory [Sha56] and graph theory.

Given a quantum channel N , its non-commutative bipartite graph (or Choi-Kraus
operator space) is denoted by

K = K (N ) := span{Ek}. (7.1)

Such space can be considered as a quantum analog of the bipartite graph since it
determines the zero-error capacity of a quantum channel in the presence of noiseless
feedback [DSW16], which plays a similar role to the bipartite graph of a classical
channel [Sha56]. We denote PAB as the projection onto the support of the Choi matrix
JN of the channel, which is just the subspace (1⊗ K) |Φ〉. This indicates that we could
use the PAB to characterize the non-commutative graph K.

Classical Channel Confusability Graph Bipartite Graph

Quantum Channel Non-commutative graph Non-commutative Bipartite graph

Table 7.1: Classical graphs and their quantum analogs

Taking the classical channel N = (X, p (y|x) , Y) as an example, its non-commutative
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bipartite graph is defined by

K = span{|y〉〈x| : (x, y) is an edge in (X, E, Y)}. (7.2)

Classical-quantum graph

A classical-quantum (cq) channel N : i → ρi (1 ≤ i ≤ n) is a CPTP map with classical
inputs {i}n

i=1 and quantum outputs {ρi}n
i=1. The non-commutative bipartite graph of

a cq channel will be called a cq graph. In this case, the cq graph is given by

K = span{|ψ〉〈i| : |ψ〉 ∈ supp (ρi)}. (7.3)

7.2.2 Zero-error capacity of a quantum channel

In the quantum world, we do measurements to distinguish the output quantum states
of the channel and the one-shot zero-error capacity of a quantum channel N is defined
by the maximum number of inputs such that the receiver can perfectly distinguish
the corresponding output states. Note that the set of output states can be perfectly
distinguished if and only if they are orthogonal.

Definition 7.1. This one-shot zero-error capacity can be equivalently defined as the
independence number α (S) of the non-commutative graph [DSW13] of N , i.e., the
maximum size of a set of orthogonal unit vectors {|φm〉 : m = 1, ..., M} such that

∀m �= m′, |φm〉〈φ′
m| ∈ S⊥.

The zero-error capacity is given by regularization of α (S), i.e.,

C0 (N ) = C0 (S) = sup
n→∞

1
n

log α
(
S⊗n) , (7.4)

and the sup in Eq. (7.4) can be replaced by lim.

The entanglement-assisted independence number α̃ (S) [DSW13] is motivated by
the scenario where sender and receiver share entangled state beforehand and it quan-
tifies the maximum number of distinguishable messages that can be sent via the chan-
nel N with graph S when shared entanglement is free.

Definition 7.2. For a quantum channel with non-commutative graph S, α̃ (S) is the
maximum integer M such that there exist Hilbert spaces A0, B0 and a state σ ∈
L (A0 ⊗ B0), and CPTP maps Em : L (A0) → L (A) (m = 1, ..., N) such that the N out-
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put states ρm = (N ◦ Em ⊗ idB0) σ are orthogonal. The entanglement-assisted zero-
error capacity of S is given by regularization of α̃ (S), i.e.,

C0E (N ) = C0E (S) = sup
n→∞

1
n

log α̃
(
S⊗n) . (7.5)

Quantum Lovász number

The quantum Lovász number introduced by Duan, Severini, and Winter [DSW13] is
a quantum analogue of the celebrated Lovász number [Lov79], which upper bounds
entanglement-assisted zero-error capacity of the channel. It can be formalized by
semidefinite programming (SDP) as follows [DSW13]:

ϑ̃ (S) = max 〈Φ| (1⊗ ρ + T) |Φ〉 (7.6)

s.t. T ∈ S⊥ ⊗ L (
A′) , Tr ρ = 1,

1⊗ ρ + T ≥ 0, ρ ≥ 0,

where |Φ〉 = ∑i |i〉A|i〉A′ .
The dual SDP of ϑ̃ (S) is given by

ϑ̃ (S) = min ‖TrA Y‖∞

s.t. Y ∈ S ⊗L (
A′) , Y ≥ |Φ〉〈Φ|.

(7.7)

By strong duality, the optimal values of the primal and dual SDPs of ϑ̃ (S) coincide.
In the following, the quantum Lovász number of a channel N is naturally given by
the quantum Lovász number of its non-commutative graph S, i.e., ϑ̃ (N ) = ϑ̃ (S).

Theorem 7.3 ([DSW13]). For a quantum channel N with non-commutative graph S, ϑ̃ (S)
is an upper bound of the entanglement-assisted zero-error capacity of the channel, i.e.,

C0 (S) ≤ C0E (S) ≤ log ϑ̃ (S) . (7.8)

7.2.3 An upper bound on the independence number

In this subsection, we are going to derive an upper bound on the one-shot zero-error
capacity of a quantum channel motivated in the same sipirit of Lovász’s number
[Lov79]. But we do not know whether this bound is efficiently computable or not.

Let us denote

κ (N ) = min
σ

max
ρ

1
Tr σPN (ρ)

, (7.9)
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where PN (ρ) denotes the projection onto the support of N (ρ) and σ is a quantum
state. As an analog to the geometrical explanation on page 2 of [Lov79], the set Π =

{PN (ρ) : ∀ρ} can seem as an “umbrella,” and we hope to find the “handle” σ that
minimizes the maximum “angle” between the handle and every rib of the umbrella.

Proposition 7.4. For any quantum channel N , the independence number α (N ) is upper
bounded by κ (N ), i.e.,

α (N ) ≤ κ (N ) . (7.10)

Proof. The idea of this proof follows Lovász’s idea in [Lov79]. Suppose that α (N ) =

k, this means one could find k inputs {ρi}k−1
i=0 such that

Tr
(N (ρi)N

(
ρj
))

= 0, ∀i �= j, (7.11)

and this number k is optimal.
The above Eq. (7.11) just means there are no overlaps between the output states.

So let the projection onto N (ρi) be Pi for every i ∈ {0, 1, . . . , k − 1}, then Eq. (7.11) is
equivalent to

Tr
(

PiPj
)
= 0, ∀i �= j, (7.12)

which implies that
k−1

∑
i=0

Pi ≤ 1. (7.13)

Hence, for the optimal σ in Eq. (7.9), we have

1 ≥
k−1

∑
i=0

Tr Piσ ≥ α (N )

κ (N )
. (7.14)

��

7.3 Separating C0E and quantum Lovász number

An intriguing open problem in quantum zero-error information theory is whether
the entanglement-assisted zero-error capacity always coincides with the quantum
Lovász number for a classical or quantum channel, which is frequently mentioned
in [LMM+12, DSW13, Bei10, CLMW11, CMR+14, MSS13]. If they are equal, it will
imply that the entanglement-assisted zero-error capacity is additive, while the unas-
sisted case is not [Alo98].
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In this section, we resolve the above open problem for quantum channels. To
be specific, we construct a class of qutrit-to-qutrit channels for which the quantum
Lovász number is strictly larger than the entanglement-assisted zero-error capacity.
We utilize the one-shot NS-assisted zero-error capacity and simulation cost to deter-
mine the asymptotic NS-assisted zero-error capacity in this case, which is potentially
larger than the entanglement-assisted zero-error capacity. An interesting fact is that
this class of channels are reversible in a strong sense. To be specific, for this class of
channels, the one-shot NS-assisted zero-error capacity and simulation cost are iden-
tical. We then give a closed formula for the quantum Lovász number for this class of
channels and use it to conclude that there is a strict gap between the quantum Lovász
number and the entanglement-assisted zero-error capacity. For this class of channels,
we also find that the quantum fractional packing number is strictly larger than the
feedback-assisted or NS-assisted zero-error capacity, while these three quantities are
equal to each other for any classical channel [CLMW11].

7.3.1 Zero-error communication quantities

NS-assisted zero-error communication

The no-signalling correlations arises in the research of the relativistic causality of
quantum operations [BGNP01, ESW02, PHHH06, OCB12] and Cubitt et al. [CLMW11]
first introduced classical no-signalling correlations into the zero-error communication
via classical channels and proved that the fractional packing number of the bipartite
graph induced by the channel equals to the zero-error capacity of the channel. Re-
cently, quantum no-signalling correlations were introduced into the zero-error com-
munication via quantum channels in [DW16] and the one-shot NS-assisted zero-error
classical capability (quantified as the number of messages) was formulated as the fol-
lowing SDP:

Υ (N ) = Υ (K) = max Tr RA

s.t. 0 ≤ UAB ≤ RA ⊗ 1B,

TrA UAB = 1B,

Tr PAB (RA ⊗ 1B − UAB) = 0,

(7.15)

where PAB denotes the projection onto (1⊗ K) |Φ〉. The asymptotic NS-assisted zero-
error capacity is given by the regularization:

C0,NS (N ) = C0,NS (K) = sup
n→∞

1
n

log Υ
(
K⊗n) . (7.16)
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A remarkable feature of NS-assisted zero-error capacity is that one bit noiseless com-
munication can fully activate any classical-quantum channel to achieve its asymptotic
capacity [DW15].

NS-assisted zero-error simulation

A more general problem is the simulation of a channel, which concerns how to use a
channel N from Alice (A) to Bob (B) to simulate another channel M also from A to
B [KW04]. Shannon’s noisy channel coding theorem determines the capability of any
noisy channel N to simulate a noiseless channel [Sha48] and the reverse Shannon the-
orem was proved in [BSST02]. The quantum reverse Shannon theorem was proved re-
cently [BDH+14, BCR11], which states that any quantum channel can be simulated by
an amount of classical communication equal to its entanglement-assisted capacity as-
sisted with free entanglement. In the zero-error setting, there is a kind of reversibility
between the zero-error capacity and simulation cost in the presence of no-signalling
correlations [CLMW11]. More recently, the no-signalling-assisted (NS-assisted) zero-
error simulation cost of a quantum channel was introduced in [DW16].

The zero-error simulation cost of a quantum channel in the presence of quantum
no-signalling correlations was introduced in [DW16] and formalized as SDPs. To
be specific, for the quantum channel N with Choi-Jamiołkowski matrix JN , the NS-
assisted zero-error simulation cost of N is given by

S0,NS (N ) = −Hmin (A|B)JN := log Σ (N ) , (7.17)

where

Σ (N ) = min Tr TB,

s.t. JN ≤ 1A ⊗ TB,
(7.18)

and Hmin (A|B)JN is the conditional min-entropy (cf. Eq. (2.61)). By the fact that the
conditional min-entropy is additive [KRS09], the asymptotic NS-assisted zero-error
simulation cost is given by

S0,NS (N ) = log Σ (N ) . (7.19)

Furthermore, noting that the NS assistance is stronger than the entanglement as-
sistance, the capacities and simulation cost of a quantum channel introduced above
obey the following inequality:

C0 ≤ C0E ≤ C0,NS ≤ CE ≤ S0,NS, (7.20)
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where CE is the entanglement-assisted classical capacity [BSST02].

7.3.2 Establishing the gap

In this section, we are going to show the gap between the quantum Lovász number
and the entanglement-assisted zero-error capacity. The difficulty in comparing C0E

and the quantum Lovász number is that there are few channels whose entanglement-
assisted zero-error capacity is known. In fact, C0E is even not known to be com-
putable. The problem whether there exists a gap between them was a prominent
open problem in the area of zero-error quantum information theory.

Our approach is to construct a particular class of channels and evaluate its NS-
assisted zero-error capacity, which is potentially larger than the entanglement-assisted
case.

A qutrit-qutrit channel in the spirit of the amplitude damping noise

Let us recall the class of channels Nα which we established the strong converse prop-
erty for classical and private communication in Section 5.4.3:

Nα (ρ) = EαρE†
α + DαρD†

α (0 < α ≤ π/4) , (7.21)

where

Eα = sin α|0〉〈1|+ |1〉〈2|, (7.22)

Dα = cos α|2〉〈1|+ |1〉〈0|. (7.23)

This qutrit-qutrit channel Nα is motivated in the similar spirit of the amplitude damp-
ing channel and it exhibits a significant difference from the classical channels.

The Choi-Jamiołkowski matrix of Nα is given by

Jα =
(
1 + sin2 α

) |uα〉〈uα|+
(
1 + cos2 α

) |vα〉〈vα|,

where

|uα〉 = sin α√
1 + sin2 α

|10〉+ 1√
1 + sin2 α

|21〉, (7.24)

|vα〉 = cos α√
1 + cos2 α

|12〉+ 1√
1 + cos2 α

|01〉. (7.25)



140 7. Advancing quantum zero-error information theory

Then, the projection onto the support of Jα is

Pα = |uα〉〈uα|+ |vα〉〈vα|. (7.26)

Zero-error capacity and simulation cost of Nα

We first prove that both NS-assisted zero-error capacity and simulation cost of Nα are
exactly two bits.

Proposition 7.5. For the channel Nα (0 < α ≤ π/4),

C0,NS (Nα) = CE (Nα) = S0,NS (Nα) = 2. (7.27)

Proof. First, we show that Alice can trasmit at least 2 bits prefectly to Bob with a single
use of Nα and the NS-assistance. The approach is to construct a feasible solution of
the SDP (7.15) of the one-shot NS-assisted zero-error capacity. To be specific, suppose
that RA = 2

(
cos2 α|0〉〈0|+ |1〉〈1|+ sin2 α|2〉〈2|) and

UAB = cos2 α|01〉〈01|+ sin2 α|21〉〈21|+ |10〉〈10|+ |12〉〈12|
+ sin α (|10〉〈21|+ |21〉〈10|) + cos α (|01〉〈12|+ |12〉〈01|) .

One can simply check that RA ⊗1B −UAB ≥ 0, TrA UAB = 1B and Pα (RA ⊗ 1B − UAB) =

0. Therefore, {RA, UAB} is a feasible solution to SDP (7.15) of Υ (Nα), which means
that

C0,NS (Nα) ≥ log Υ (Nα) ≥ log Tr RA = 2. (7.28)

Second, we prove that the one-shot NS-assisted simulation cost of Nα is at amost
2 bits. We utilize the SDP (7.18) of one-shot NS-assisted simulation cost and choose

TB = 2
(
sin2 α|0〉〈0|+ |1〉〈1|+ cos2 α|2〉〈2|) . (7.29)

It can be checked that 1⊗ TB − Jα ≥ 0. Thus, TB is a feasible solution to SDP (7.18) of
Σ (Nα), which means that

S0,NS (Nα) ≤ log Σ (Nα) ≤ log Tr TB = 2. (7.30)

Finally, combining Eq. (7.28), Eq. (7.30) and Eq. (7.20), it is clear that

C0,NS (Nα) = CE (Nα) = S0,NS (Nα) = 2. (7.31)

��
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Quantum Lovász number of Nα

We then solve the exact value of the quantum Lovász number of Nα.

Proposition 7.6. For the channel Nα (0 < α ≤ π/4),

ϑ̃ (Nα) = 2 + cos2 α + cos−2 α > 4. (7.32)

Proof. We first construct a quantum state ρ and an operator T ∈ S⊥ ⊗ L (A′) such
that 1⊗ ρ + T is positive semidefinite. Then, we use the primal SDP (7.6) of ϑ̃ (Nα)

to obtain the lower bound of ϑ̃ (Nα).

To be specific, the non-commutative graph of Nα is S = span{F1, F2, F3, F4} with

F1 = |0〉〈0|+ cos2 α|1〉〈1|, (7.33)

F2 = sin2 α|1〉〈1|+ |2〉〈2|, (7.34)

F3 = |0〉〈2| and F4 = |2〉〈0|. (7.35)

(7.36)

Let us choose

ρ =
cos2 α

1 + cos2 α
|0〉〈0|+ 1

1 + cos2 α
|1〉〈1| (7.37)

and T = T1 ⊗ T2 + R, where

T1 =
1

1 + cos2 α

(
|0〉〈0| − 1

cos2 α
|1〉〈1|+ sin2 α

cos2 α
|2〉〈2|

)
, (7.38)

T2 = cos4 α|0〉〈0| − |1〉〈1|, (7.39)

R = |00〉〈11|+ |11〉〈00|. (7.40)

It is clear that ρ ≥ 0 and Tr ρ = 1. Also, it is easy to see that for any matrix M ∈ L (A′)
and j = 1, 2, 3, 4,

Tr R
(

Fj ⊗ M
)
= 0. (7.41)

Meanwhile, noticing that Tr
(
T1Fj

)
= 0 for j = 1, 2, 3, 4, we have

T = T1 ⊗ T2 + R ∈ S⊥ ⊗ L (
A′) . (7.42)
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Moreover, it is easy to see that

1⊗ ρ + T = cos2 α|00〉〈00|+ 1
cos2 α

|11〉〈11|+ |00〉〈11|

+ |11〉〈00|+ cos2 α − cos4 α

1 + cos2 α
|20〉〈20|

+
2 cos2 −1

(1 + cos2 α) cos2 α
|21〉〈21| ≥ 0.

(7.43)

Then, {ρ, T} is a feasible solution to primal SDP (7.6) of ϑ̃ (Nα). Hence, we have that

ϑ̃ (Nα) ≥ Tr[|Φ〉〈Φ| (1⊗ ρ + T)]

= Tr[|Φ〉〈Φ| (1⊗ ρ + T1 ⊗ T2 + R)]

= 2 + cos2 α + cos−2 α.

(7.44)

On the other hand, we find a feasible solution to the dual SDP (7.7) of ϑ̃ (Nα). It is
easy to see that

S⊥ = span{M1, M2, M3, M4, M5}, (7.45)

where M1 = |0〉〈1|, M2 = |1〉〈0|, M3 = |1〉〈2|, M4 = |2〉〈1| and M5 = |0〉〈0| −
cos−2 α|1〉〈1|+ tan2 α|2〉〈2|. Let us choose

Y = Y1 ⊗ (|0〉〈0|+ |1〉〈1|) + Y2 ⊗ |2〉〈2|+ 1 + cos2 α

cos2 α
Y3 (7.46)

with

Y1 =
(
1 + cos2 α

)
cos−2 α|0〉〈0|+ (

1 + cos2 α
) |1〉〈1|, (7.47)

Y2 =
(
2 − cos−2 α

) |0〉〈0|+ (
cos−2 α − sin2 α

) |1〉〈1| (7.48)

+
(
1 + cos2 α

)
cos−2 α|2〉〈2|, (7.49)

Y3 =|00〉〈22|+ |22〉〈00|. (7.50)

It is easy to see that for any matrix V ∈ L (A′) and j = 1, 2, 3, 4, 5, we have that

Tr Y3
(

Mj ⊗ V
)
= 0. (7.51)

Meanwhile, since Tr
(
Yk Mj

)
= 0 for k = 1, 2 and j = 1, 2, 3, 4, 5, we have that

Y = Y1 ⊗ (|0〉〈0|+ |1〉〈1|) + Y2 ⊗ |2〉〈2|+ 1 + cos2 α

cos2 α
Y3

∈ S ⊗L (
A′) .
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It is also easy to check that Y − |Φ〉〈Φ| ≥ 0. Thus, Y is a feasible solution to SDP (7.7)
of ϑ̃ (Nα). Furthermore, one can simply calculate that

TrA Y =
(
2 + cos2 α + cos−2 α

)
1B, (7.52)

Therefore,
ϑ̃ (Nα) ≤ ‖TrA Y‖∞ = 2 + cos2 α + cos−2 α. (7.53)

Finally, combining Eq. (7.44) and Eq. (7.53), we can conclude that

ϑ̃ (Nα) = 2 + cos2 α + cos−2 α.

��

Gap between log ϑ̃ (Nα) and C0E (Nα)

Now we are able to show a separation between log ϑ̃ (Nα) and C0E (Nα).

Theorem 7.7. For the channel Nα (0 < α ≤ π/4), the quantum Lovász number is strictly
larger than the entanglement-assisted zero-error capacity (or even with no-signalling assis-
tance), i.e.,

log ϑ̃ (Nα) > C0,NS (Nα) ≥ C0E (Nα) . (7.54)

Proof. It is easy to see this result from Proposition 7.5 and Proposition 7.6. To be
specific, we have

log ϑ̃ (Nα) = log
(
2 + cos2 α + cos−2 α

)
(7.55)

> 2 (7.56)

= C0,NS (Nα) (7.57)

≥ C0E (Nα) . (7.58)

��

Gap between quantum fractional packing number and feedback-assisted or NS-

assisted zero-error capacity

Shannon first introduced the feedback-assisted zero-error capacity [Sha56]. To be pre-
cise, his model has noiseless instantaneous feedback of the channel output back to the
sender, and it requires some arbitrarily small rate of forward noiseless communica-
tion. For any classical channel with a positive zero-error capacity, he showed that
the feedback-assisted zero-error capacity C0F of a classical channel N is given by the
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fractional packing number of its bipartite graph [Sha56]:

α∗ (Γ) = max

{
∑
x

vx s.t. ∑
x

vx p (y|x) ≤ 1∀y, 0 ≤ vx ≤ 1 ∀x

}
.

For any classical bipartite graph, the fractional packing number also gives the NS-
assisted zero-error classical capacity and simulation cost [CLMW11], i.e.,

C0,NS (K) = S0,NS (K) = log α∗ (Γ) .

The quantum generalization of fractional packing number in [DW16] was sug-
gested by Harrow as

A (K) = max{Tr RA : 0 ≤ RA, TrA PAB (RA ⊗ 1B) ≤ 1B},

= min{Tr TB s.t. 0 ≤ TB, TrB PAB (1A ⊗ TB) ≥ 1A}.
(7.59)

This quantum fractional packing number A (K) has nice mathematical properties
such as additivity under tensor product [DW16].

For any bipartite graph Γ, quantum fractional packing number also reduces to the
fractional packing number, i.e.,

A (K) = α∗ (Γ) . (7.60)

Furthermore, for a classical-quantum channel with non-commutative bipartite graph
K, it also holds that [DW16]

C0,NS (K) = logA (K) . (7.61)

However, if we consider general quantum channels, this quantum fractional pack-
ing number will exceed the NS-assisted zero-error capacity as well as the feedback-
assisted zero-error capacity. An example is the class of channels Nα and the proof is in
the following Proposition 7.9. For Nα, it is easy to see that the set of linear operators
{E†

i Ej} is linearly independent, which means that Nα is an extremal channel [Cho75].
Thus, its non-commutative bipartite graph Kα is an extremal graph [DW16], which
means that there can only be a unique channel N such that K (N ) = Kα.

For a general quantum channel, its feedback-assisted zero-error capacity depends
only on its non-commutative bipartite graph. And the feedback-assisted zero-error
capacity is always smaller than or equal to the entanglement-assisted classical capac-
ity [DSW16], i.e.,

C0F (K) ≤ CminE (K) , (7.62)
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where CminE (K) is defined by

CminE (K) := min{CE (N ) : K (N ) < K}. (7.63)

Considering the fact that C0,NS (K) ≤ CminE (K) ≤ S0,NS (K) [DSW16], it is easy to see
that CminE (Kα) is exactly two bits from Proposition 7.5.

Lemma 7.8. For non-commutative bipartite graph Kα (0 < α ≤ π/4), the quantum frac-
tional packing number is given by

A (Kα) = 2 + cos2 α + cos−2 α. (7.64)

Proof. Let us choose RA =
(
2 − sin2 α

) |0〉〈0|+ x|1〉〈1|, then

TrA Pα (RA ⊗ 1B) =
x sin2 α

1 + sin2 α
|0〉〈0|+ |1〉〈1|+ x cos2 α

1 + cos2 α
|2〉〈2|.

When x = 1 + cos−2 α, it is clear that TrA Pα (RA ⊗ 1B) ≤ 1B. Therefore, RA is a
feasible solution to the primal SDP of A (Nα), which means that

A (Nα) ≥ Tr RA = 2 + cos2 α + cos−2 α. (7.65)

Similarly, it is easy to check that TB =
(
2 − sin2 α

) |1〉〈1|+ (
1 + cos−2 α

) |2〉〈2| is a
feasible solution to the dual SDP of A (Nα). Therefore,

A (Nα) ≤ Tr TB = 2 + cos2 α + cos−2 α. (7.66)

Hence, we have that A (Nα) = 2 + cos2 α + cos−2 α. ��

Now, we are able to show the separation.

Proposition 7.9. For non-commutative bipartite graph Kα (0 < α ≤ π/4), we have that

C0F (Kα) < logA (Kα) , (7.67)

C0,NS (Kα) < logA (Kα) . (7.68)

Proof. For general non-commutative bipartite graph K, it holds that [DSW16]:

C0F (K) ≤ Cmin E (K) . (7.69)

Then, by Proposition 7.5 and Lemma 7.8, we have

C0F (Kα) ≤ Cmin E (Kα) = 2 < logA (Kα) . (7.70)
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From Proposition 7.5 and Lemma 7.8, it is also clear that C0,NS (Kα) < logA (Kα).
��

7.4 Acivated zero-error communication

In this section, we further develop the theory of quantum NS-assisted communica-
tion by introducing the activated communication model. The model is introduced in
Section 7.4.1 and it considers the additional forward noiseless channel as a catalyst
for communication. For a quantum channel N , we can “borrow” a noiseless classical
channel I , then we can use N ⊗ I to transmit information. After the communication
finishes we “pay back” the capacity of I . The communication model follows the idea
of potential capacities of quantum channels introduced by Winter and Yang [WY15].
In Section 7.4.2, we show a striking result that one bit can even fully activate any cq
channel to achieve its asymptotic NS-assisted zero-error capacity (or the fractional
packing number). In Section 7.4.3, we further show that there is no activation in the
asymptotic regime. We also exhibit a quantum channel to separate the asymptotic
NS-assisted zero-error capacity and the semidefinite packing number.

7.4.1 Activated one-shot zero-error capacity

m ∈ {1, . . . , M} m̂ ∈ {1, . . . , M}E
N

I�
D

Figure 7.1: Activated classical communication.

Definition 7.10. For a quantum channel N with non-commutative bipartite graph K,
the one-shot activated no-signalling assisted zero-error classical capacity is defined
as the following:

Ma
0,NS (N ) = Ma

0,NS (K) := sup
�≥1

[M0,NS (K ⊗ Δ�)− log �], (7.71)

where Δ� is the non-commutative graph of the noiseless channel

I� (ρ) =
�−1

∑
i=0

Tr (ρ|i〉〈i|) |i〉〈i|. (7.72)
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Definition 7.11. For a quantum channel N with non-commutative bipartite graph
K, the asymptotic activated no-signalling zero-error classical capacity is given by the
following regularization:

Ca
0,NS (N ) = Ca

0,NS (K) := sup
n≥1

1
n
Ma

0,NS
(
K⊗n) . (7.73)

To provide a feasible formulation of the activated capacity Ma
0,NS (N ), let us first

introduce a slightly revised SDP of Υ (K) as follows,

Υ̂ (K) = max Tr SA

s.t. 0 ≤ UAB ≤ SA ⊗ 1B,

TrA UAB ≤ 1B,

Tr PAB (SA ⊗ 1B − UAB) = 0.

(7.74)

The only difference between Υ̂ (K) and Υ (K) is that now TrA UAB is only required to
be less than or equal to 1B, and an equality is not necessary. However, we will see
that such a small revision is of crucial importance. The dual SDP of Υ̂ (K) is given by

Υ̂ (K) = min Tr TB

s.t. VAB ≤ 1A ⊗ TB,

TrB VAB ≥ 1A, T ≥ 0,

(1− P)AB VAB (1− P)AB ≤ 0.

(7.75)

Note that by strong duality, the values of both the primal and the dual SDPs coincide.
It is also worth noting that for any given non-commutative bipartite graph K, it holds
that

Υ̂ (K) ≥ Υ (K) . (7.76)

Now we are ready to present the main result.

Theorem 7.12. For any quantum channel N with non-commutative bipartite graph K,

Ma
0,NS (N ) = log Υ̂ (K) . (7.77)

Proof. The intuition of this theorem is that the additional noiseless channel may play
the role of a catalyst during the communication task.

To prove the achievable part, it’s important to observe that the additional noise-
less channel indeed provides a larger solution space of Υ (K ⊗ Δ�). Let us first con-
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sider the case � = 2 and assume that the optimal feasible solution of Υ̂ (K) is {SA, UAB}.
Let us choose

SAA′ = SA ⊗ (|0〉〈0|+ |1〉〈1|)A′ (7.78)

and

UAA′BB′ =UAB ⊗ (|00〉〈00|+ |11〉〈11|)A′B′ + ŪAB ⊗ (|01〉〈01|+ |10〉〈10|)A′B′ , (7.79)

where ŪAB = SA
Tr SA

⊗ (1B − TrA UAB) .

This construction ensures that

TrAA′ UAA′BB′ = TrA ((UAB + ŪAB)⊗ 1B′) = 1BB′ . (7.80)

Moreover, we have

SAA′ ⊗ 1BB′ − UAA′BB′ = (SA ⊗ 1B − UAB)⊗ (|00〉〈00|+ |11〉〈11|)A′B′ (7.81)

+ (SA ⊗ 1B − ŪAB)⊗ (|01〉〈01|+ |10〉〈10|)A′B′ , (7.82)

which directly means that

SAA′ ⊗ 1BB′ − UAA′BB′ ≥ 0. (7.83)

Furthermore, the projection onto the support of the Choi-Jamiołkowski matrix of N ⊗
I2 is PABA′B′ = PAB ⊗ DA′B′ with DA′B′ = (|00〉〈00|+ |11〉〈11|)A′B′ . Therefore, we have
that

Tr PABA′B′ (SAA′ ⊗ 1BB′ − UAA′BB′) (7.84a)

= Tr (PAB ⊗ DA′B′) [(SA ⊗ 1B − UAB)⊗ (|00〉〈00|+ |11〉〈11|)A′B′ ] (7.84b)

+ Tr (PAB ⊗ DA′B′) [(SA ⊗ 1B − ŪAB)⊗ (|01〉〈01|+ |10〉〈10|)A′B′ ] (7.84c)

= Tr PAB (SA ⊗ 1B − UAB)× Tr DA′B′ (|00〉〈00|+ |11〉〈11|)A′B′ (7.84d)

+ Tr PAB (SA ⊗ 1B − ŪAB)× Tr DA′B′ (|01〉〈01|+ |10〉〈10|)A′B′ (7.84e)

= 0, (7.84f)

where the last equality follows from

Tr PAB (SA ⊗ 1B − UAB) = 0, (7.85)

Tr DA′B′ (|01〉〈01|+ |10〉〈10|)A′B′ = 0. (7.86)
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Now we are able to conclude that {SAA′ , UAA′BB′ } is a feasible solution of Υ (K ⊗ Δ2),
which means that

sup
�≥2

Υ (K ⊗ Δ�)

�
≥ Υ (K ⊗ Δ2)

2
≥ Tr SAA′

2
= Υ̂ (K) . (7.87)

On the other hand, to prove the converse part, we will use the fact that Υ̂ (K ⊗ Δ�) =

� Υ̂ (K), which is provided in the following Lemma 7.13. This fact directly implies that

sup
�≥2

Υ (K ⊗ Δ�)

�
≤ sup

�≥2

Υ̂ (K ⊗ Δ�)

�
= Υ̂ (K) . (7.88)

Finally, by Eq. (7.87) and Eq. (7.88), we can conclude that

Ma
0,NS (N ) = Ma

0,NS (K) = log Υ̂ (K) . (7.89)

��
A simple but useful property of Υ̂ is shown as follows.

Lemma 7.13. For any non-commutative bipartite graph K, we have

Υ̂ (K ⊗ Δ�) = � Υ̂ (K) .

Proof. On one hand, it is evident from the super-multiplicativity that Υ̂ (K ⊗ Δ�) ≥
� Υ̂ (K). On the other hand, note that an optimal solution for SDP (7.75) for Δ� is
given by {1B′ , ∑�

i=1 |ii〉〈ii|A′B′ }, and we assume that the optimal solution of SDP (7.75)
for K is {TB, VAB}. It is evident that

VAB ⊗
�

∑
i=1

|ii〉〈ii|A′B′ ≤ 1AA′ ⊗ TB ⊗ 1B′ . (7.90)

Then, it can be checked that {VAB ⊗ ∑�
i=1 |ii〉〈ii|A′B′ , TB ⊗ 1B′ } is a feasible solution of

SDP(7.75) for Υ̂ (K ⊗ Δ�). Therefore,Υ̂ (K ⊗ Δ�) ≤ Tr TB ⊗ 1B′ = � Υ̂ (K). ��
We further discuss the activation via noisy quantum channels.

Proposition 7.14. Let us consider two quantum channels N1 with non-commutative bipar-
tite graphs K1 and K2, respectively. If Υ (K2)− 1 ≥ 1

Υ̂(K1)
, then

M0,NS (K1 ⊗ K2)−M0,NS (K2) ≥ Ma
0,NS (K1) . (7.91)

In other words, K2 can activate K1 if K1 is activatable. In particular, this inequality always
holds when Υ (K2) ≥ 2.
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Proof. Let us assume that the optimal solution to the SDP (7.74) of Υ̂ (K1) is {SA, UAB}
while the optimal solution to the SDP (7.15) of Υ (K2) is {SA′ , UA′B′ }.

Then we can choose

SAA′ = SA ⊗ SA′ , (7.92)

UAA′BB′ = UAB ⊗ UA′B′ + ŪAB ⊗ VA′B′ , (7.93)

where VA′B′ = (SA′ ⊗ 1B′ − UA′B′) / (Tr SA′ − 1) and ŪAB = SA/Tr SA ⊗ (1B − TrA UAB).
This construction ensures that

TrAA′ UAA′BB′ = 1BB′ . (7.94)

With some direct calculation, we have

SAA′ ⊗ 1BB′ − UAA′BB′ (7.95a)

= (SA ⊗ 1B − UAB)⊗ UA′B′ +

(
Tr SA′ − 1 − 1

Tr SA

)
SA ⊗ 1B ⊗ VA′B′ (7.95b)

+
SA

Tr SA
⊗ TrA UAB ⊗ VA′B′ . (7.95c)

Then, one can check that the constructed solutions satisfy

SAA′ ⊗ 1BB′ − UAA′BB′ ≥ 0. (7.96a)

Furthermore, we have

Tr (PAB ⊗ PA′B′) (SAA′ ⊗ 1BB′ − UAA′BB′) (7.97a)

= Tr PAB (SA ⊗ 1B − UAB)× Tr PA′B′UA′B′

+ Tr PAB[

(
Tr SA′ − 1 − 1

Tr SA

)
SA ⊗ 1B]× Tr PA′B′VA′B′

+ Tr PAB

(
SA

Tr SA
⊗ TrA UAB

)
× Tr PA′B′VA′B′ (7.97b)

= 0, (7.97c)

where the last equality follows from Tr PAB (SA ⊗ 1B − UAB) = 0 and Tr PA′B′VA′B′ =

0.

Therefore, {SAA′ , UAA′BB′ } is a feasible solution to the SDP (7.15) of Υ (K1 ⊗ K2),
which means that

Υ (K1 ⊗ K2) ≥ Υ̂ (K1)Υ (K2) . (7.98)



7. Advancing quantum zero-error information theory 151

��

If we only consider using the channel N to activate itself, we have the following
result from the above proposition.

For any quantum channel N with non-commutative bipartite graph K, if Υ (K) ≥
1+

√
5

2 , then
Υ (K ⊗ K)

Υ (K)
≥ Υ̂ (K) . (7.99)

Note that Υ (K) ≥ 1+
√

5
2 means Υ (K)− 1 − 1

Υ(K) ≥ 0. Thus the result follows directly
from Proposition 7.14.

7.4.2 Classical-quantum channel

A classical-quantum (cq) channel N : i → ρi (1 ≤ i ≤ n) is a CPTP map with classical
inputs {i}n

i=1 and quantum outputs {ρi}n
i=1. The non-commutative bipartite graph of

a cq channel will be called a cq graph. In this case, the cq graph is given by

K = span{|ψ〉〈i| : |ψ〉 ∈ supp (ρi)}. (7.100)

Given a cq channel N : i → ρi (1 ≤ i ≤ n) with cq graph K, its one-shot NS-
assisted zero-error capacity (quantified as messages) can be simplified to

Υ (K) = max ∑
i

si

s.t. 0 ≤ si, 0 ≤ Ri ≤ si (1− Pi) ,

∑
i
(siPi + Ri) = 1.

(7.101)

where Pi is the projection onto the support of ρi for 1 ≤ i ≤ n.
Moreover, it was shown in [DW16] that the asymptotic no-signalling assisted

zero-error classical capacity of a cq channel is equal to the semidefinite (fractional)
packing number.

Lemma 7.15. (Theorem 4 in [DW16]) For any cq channel N : i → ρi (1 ≤ i ≤ n) with cq
graph K,

C0,NS (N ) = logA (K) , (7.102)

with

A (K) = max ∑
i

si

s.t. 0 ≤ si, ∑
i

siPi ≤ 1.
(7.103)
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where Pi is the projection onto the support of ρi for 1 ≤ i ≤ n.

This result is a classical-quantum generalization of the fact that the fractional
packing/covering number [Sha56, SU11] of the bipartite graph (induced by the clas-
sical channel) is equal to its NS-assisted zero-error capacity [CLMW11]. Moreover,
Shannon proved that the feedback-assisted zero-error capacity of a classical channel
is also given by the fractional packing number [Sha56].

For any cq channel N with cq graph K, the one-shot activated capacity Ma
0,NS (N ) =

log Υ̂ (K) can be simplified to

Υ̂ (K) = max ∑
i

si

s.t. 0 ≤ si, 0 ≤ Ri ≤ si (1− Pi) ,

∑
i
(siPi + Ri) ≤ 1.

(7.104)

Theorem 7.16. For any classical-quantum channel N with cq graph K,

Ma
0,NS (N ) = logA (K) . (7.105)

In other words, for any cq channel, the asymptotic NS-assisted zero-error capacity (or the
semidefinite packing number) can be achieved via activated NS codes in the one-shot regime,
i.e.,

Ca
0,NS (N ) = Ma

0,NS (N ) = logA (K) . (7.106)

Proof. First, we will show A (K) ≥ Υ̂ (K). Suppose that optimal solution of the
SDP (7.104) of Υ̂ (K) is {si, Ri}. Then,

∑
i

siPi ≤ 1− ∑
i

Ri ≤ 1, (7.107)

which means that {si} is a feasible solution for A (K). So we have A (K) ≥ Υ̂ (K).

Second, let us assume the optimal solution of SDP (7.103) is {si}, let Ri = 0 for
all i. It is easy to check that {si, Ri} is a feasible solution of SDP (7.104), which means
that A (K) ≤ Υ̂ (K). Therefore, for any cq graph K, it holds that

Υ̂ (K) = A (K) . (7.108)

��

To see the existence of activation, let us consider an example here.
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Example 7.17. We begin with the simplest possible cq channel N , which has only
two inputs and two pure output states Pi = |ψi〉〈ψi|. Without loss of generality, we
assume that |ψ0〉 = α|0〉 + β|1〉 and |ψ1〉 = α|0〉 − β|1〉 with α ≥ β =

√
1 − α2. In

[DW16], it has been shown that Υ (K) = 1 and A (K) = 1
α2 . Hence, by Theorem 7.16,

we know
Υ̂ (K) =

Υ (N ⊗ Δ2)

2
=

1
α2 > Υ (K) = 1. (7.109)

Furthermore, we have

Ca
0,NS (N ) = Ma

0,NS (N ) = −2 log α > M0,NS (N ) = 0. (7.110)

7.4.3 Asymptotic zero-error capacity

As we find the activation phenomenon of zero-error communication in the one-shot
regime, it’s natural to wonder whether there exists an activation in the asymptotic
regime. In the following theorem, we prove that the answer is negative.

Theorem 7.18. For any quantum channel N with non-commutative bipartite graph K with
positive zero-error capacity, let n0 be the smallest integer such that Υ (K⊗n0) ≥ 2. Note that
n0 always exists and depends only on K. Then for any n ≥ n0, we have

2Υ̂
(

K⊗(n−n0)
)
≤ Υ

(
K⊗n) ≤ Υ̂

(
K⊗n) . (7.111)

Moreover,

Ca
0,NS (K) = sup

n≥1
log n

√
Υ̂ (K⊗n) = lim

n→∞
log n

√
Υ̂ (K⊗n) = C0,NS (K) . (7.112)

Proof. On one hand, from Eq. (7.98) in Proposition 7.14, we have

Υ
(
K⊗n) = Υ

(
K⊗(n−n0) ⊗ Kn0

)
≥ Υ̂

(
K⊗(n−n0)

)
Υ
(
K⊗n0

) ≥ 2Υ̂
(

K⊗(n−n0)
)

. (7.113)

On the other hand, it always holds that Υ (K⊗n) ≤ Υ̂ (K⊗n). Therefore, we obtain
Eq. (7.111).

Then,

lim
n→∞

log n
√

Υ̂ (K⊗n) = lim
n→∞

log n
√

Υ (K⊗n). (7.114)

To prove Eq. (7.112), the technique is based on a lemma about the existence of
limits in [Fek23]. On one hand, log Υ̂ (K⊗n) ≤ 2n log d. On the other hand, since Υ̂ (K)
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is super-multiplicative, then log Υ̂
(

K⊗(mn)
)
≥ log Υ̂ (K⊗m) + log Υ̂ (K⊗n). Therefore,

sup
n≥1

log Υ̂ (K⊗n)

n
= lim

n→∞

log Υ̂ (K⊗n)

n
= C0,NS (K) . (7.115)

��

7.4.4 Separating C0,NS and semidefinite packing nubmber

As the NS-assisted zero-error capacity of cq channel is given by the semidefinite (or
fractional) packing number A (K), an interesting question is whether this result also
holds for general quantum channels. The semidefinite packing number for a general
quantum channel was also introduced in [DW16] as follows:

A (N ) = A (K) = max Tr SA

s.t. 0 ≤ SA, TrA PAB (SA ⊗ 1B) ≤ 1B.
(7.116)

To study whether C0,NS equals to logA (N ), the difficulty is that we currently do not
know efficient methods to calculate the asymptotic no-signalling zero-error capacity.

In the following, we will exhibit an example to show that C0,NS is not equal to the
semidefinite packing number for general quantum channels.

Proposition 7.19. There exists a quantum channel N with non-commutative bipartite graph
K such that Υ̂ (K) > A (K). Consequently,

C0,NS (N ) �= logA (N ) . (7.117)

Proof. Let K correspond to the quantum channel N (ρ) = ∑2
i=0 EiρE†

i with E0 =
1√
2
|0〉〈0|+ 1√

2
|2〉〈0|, E1 =

√
50
99 |0〉〈2|+

√
1
99 |1〉〈1|+

√
49
99 |2〉〈2| and E2 =

√
98
99 |0〉〈1|.

By solving SDPs numerically [GB08], we find that

Υ̂ (N ) ≈ 1.1767 > 1.1751 > A (N ) . (7.118)

Then, it leads to
C0,NS (N ) ≥ M0,NS (N ) > logA (N ) . (7.119)

��
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7.5 Discussion

7.5.1 Summary

In this chapter, we investigated the quantum zero-error information theory from sev-
eral aspects. In particular, we have shown that there is a separation between the
quantum Lovász number and the entanglement-assisted zero-error classical capacity.

An overview of the results in this chapter is summarized in the following box.

Summary of Chapter 7

(i) An upper bound on independence number:

α (N ) ≤ κ (N ) = min
σ

max
ρ

1
Tr σPN (ρ)

, (7.120)

where PN (ρ) is the projection onto the support of N (ρ).

(ii) Separation between quantum Lovász number and C0E: ∃ non-commutative
graph S such that

C0E (S) < log ϑ̃ (S) . (7.121)

(iii) Activated NS-assisted zero-error capacity: for any quantum channel N with
non-commutative bipartite graph K,

Ma
0,NS (N ) = log Υ̂ (K) = max Tr SA

s.t. 0 ≤ UAB ≤ SA ⊗ 1B, TrA UAB ≤ 1B,

Tr PAB (SA ⊗ 1B − UAB) = 0.

(7.122)

(iv) The one-shot NS-assisted simulation cost of a general non-commutative bi-
partite graph is not multiplicative.

7.5.2 Outlook

Interestingly, for the channel Nα, the quantum fractional packing number is equal
to the quantum Lovász number. Let us recall that remarkable fact that the Lovász
number of a classical graph G has an operational interpretation [DW16] as

ϑ (G) = min{A (K) : K†K < SG},
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where the minimization is over classical-quantum graphs K and SG is non-commutative
graph associated with G. A natural and interesting question is that for the non-
commutative graph S, do we have

ϑ̃ (S) = min{A (K) : K†K < S}?

The non-commutative bipartite graph of Nα might be such an interesting example
since Proposition 7.6 and Lemma 7.8 imply that ϑ̃ (Nα) = A (Kα).

The classical zero-error information theory concerns asymptotic combinatorial
problems, most of which are difficult and unsolved. It remains unknown whether
Lovász number coincides with C0E for every classical channel. For confusability
graph G, a variant of Lovász number called Schrijver number [Sch79, MRR78] was
proved to be a tighter upper bound on the entanglement-assisted independence num-
ber than Lovász number [CMR+14] . However, it remains unknown whether Schri-
jver number will converge to Lovász number in the asymptotic setting, and a gap
between the regularized Schrijver number and Lovász number would imply a sep-
aration between C0E (G) and ϑ (G). Moreover, it is also interesting to study how to
estimate the regularization of a sequence of semidefinite programs.

Finally, we end this chapter with a table of the known and open problems in
quantum zero-error information theory.

Classical Classical-Quantum Quantum

C0 ? ? ?
C0,E ? ? ?
C0,NS [CLMW11] [DW16] ?
C0,E < log ϑ̃ ? ? ? [WD18]

Table 7.2: Zero-error capacities of different classes of channels
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[BCHW15] S. Bäuml, M. Christandl, K. Horodecki, and A. Winter. Limitations on quantum
key repeaters. Nature Communications 6: 6908 (2015).

[BCR11] M. Berta, M. Christandl, and R. Renner. The Quantum Reverse Shannon The-
orem Based on One-Shot Information Theory. Communications in Mathematical
Physics 306(3): 579–615 (2011).

[BD10] F. Buscemi and N. Datta. The Quantum Capacity of Channels With Arbitrar-
ily Correlated Noise. IEEE Transactions on Information Theory 56(3): 1447–1460
(2010).

[BD11a] F. G. S. L. Brandao and N. Datta. One-Shot Rates for Entanglement Manip-
ulation Under Non-entangling Maps. IEEE Transactions on Information Theory
57(3): 1754–1760 (2011).

[BD11b] F. Buscemi and N. Datta. Entanglement Cost in Practical Scenarios. Physical
Review Letters 106(13): 130503 (2011).

[BDE+98] D. Bruß, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Macchiavello, and J. A.
Smolin. Optimal universal and state-dependent quantum cloning. Physical Re-
view A 57(4): 2368–2378 (1998).

[BDF+99] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A.
Smolin, and W. K. Wootters. Quantum nonlocality without entanglement. Phys-
ical Review A 59(2): 1070–1091 (1999).

[BDH+14] C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter. The Quan-
tum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quan-
tum Channels. IEEE Transactions on Information Theory 60(5): 2926–2959 (2014).

[BDL16] S. Beigi, N. Datta, and F. Leditzky. Decoding quantum information via the Petz
recovery map. Journal of Mathematical Physics 57(8): 082203 (2016).

[BDS97] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin. Capacities of Quantum Era-
sure Channels. Physical Review Letters 78(16): 3217–3220 (1997).



BIBLIOGRAPHY 159

[BDSW96] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters. Mixed-state
entanglement and quantum error correction. Physical Review A 54(5): 3824–3851
(1996).

[BEHY11] F. G. S. L. Brandão, J. Eisert, M. Horodecki, and D. Yang. Entangled Inputs
Cannot Make Imperfect Quantum Channels Perfect. Physical Review Letters
106(23): 230502 (2011).

[Bei10] S. Beigi. Entanglement-assisted zero-error capacity is upper-bounded by the
Lovász theta function. Physical Review A 82(1): 010303 (2010).

[Bel64] J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika
1(3): 195–200 (1964).

[BGNP01] D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill. Causal and localiz-
able quantum operations. Physical Review A 64(5): 052309 (2001).

[Bha09] R. Bhatia. Positive definite matrices. Princeton university press (2009).

[BKN00] H. Barnum, E. Knill, and M. Nielsen. On quantum fidelities and channel capac-
ities. IEEE Transactions on Information Theory 46(4): 1317–1329 (2000).

[BLMW04] B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland. Quantum Computing
with Trapped Ion Hyperfine Qubits. Quantum Information Processing 3(1-5): 45–
59 (2004).

[BNS98] H. Barnum, M. A. Nielsen, and B. Schumacher. Information transmission
through a noisy quantum channel. Physical Review A 57(6): 4153–4175 (1998).

[Boh48] F. Bohnenblust. Joint positiveness of matrices. Technical report, UCLA , (1948).

[BP08] F. G. S. L. Brandão and M. B. Plenio. Entanglement theory and the second law
of thermodynamics. Nature Physics 4(11): 873–877 (2008).

[BP10] F. G. S. L. Brandão and M. B. Plenio. A Reversible Theory of Entanglement
and its Relation to the Second Law. Communications in Mathematical Physics
295(3): 829–851 (2010).

[BS98] C. Bennett and P. Shor. Quantum information theory. IEEE Transactions on In-
formation Theory 44(6): 2724–2742 (1998).

[BS07] S. Beigi and P. W. Shor. On the complexity of computing zero-error and Holevo
capacity of quantum channels. arXiv:0709.2090 , (2007).

[BSST99] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal. Entanglement-
Assisted Classical Capacity of Noisy Quantum Channels. Physical Review Letters
83(15): 3081–3084 (1999).

[BSST02] C. Bennett, P. Shor, J. Smolin, and A. Thapliyal. Entanglement-assisted capacity
of a quantum channel and the reverse Shannon theorem. IEEE Transactions on
Information Theory 48(10): 2637–2655 (2002).



160 BIBLIOGRAPHY

[Bur69] D. Bures. An Extension of Kakutani’s Theorem on Infinite Product Measures
to the Tensor Product of Semifinite w -Algebras. Transactions of the American
Mathematical Society 135: 199 (1969).

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press
(2004).

[BW92] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle op-
erators on Einstein-Podolsky-Rosen states. Physical Review Letters 69(20): 2881–
2884 (1992).

[BW18] M. Berta and M. M. Wilde. Amortization does not enhance the max-Rains in-
formation of a quantum channel. New Journal of Physics 20(5): 053044 (2018).
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