UNIVERSITY OF TECHNOLOGY SYDNEY Centre for Quantum Software and Information

Decomposition of Quantum Markov Chains and Its Applications

by

Ji Guan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2018

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for other degrees except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature used are quoted in the thesis.

© Copyright 2018 Ji Guan

ABSTRACT

Decomposition of Quantum Markov Chains and Its Applications

by

Ji Guan

Markov chains have been widely employed as a fundamental model in the studies of probabilistic and stochastic communicating and concurrent systems. It is wellunderstood that decomposition techniques play a crucial role in reachability analysis and model-checking of Markov chains. (Discrete-time) Quantum Markov chains have been introduced as a model of quantum communicating systems [66] and also a semantic model of quantum programs [67]. The BSCC (Bottom Strongly Connected Component) and stationary coherence decompositions of quantum Markov chains were introduced in [62, 68, 5]. This thesis presents a new decomposition technique, namely periodic decomposition, for quantum Markov chains. This decomposition further helps us find sufficient and necessary conditions for limiting states of quantum Markov chains.

To confirm the power of these decomposition techniques, we apply them to characterizing the one-shot zero-error capacity of quantum channels, finding the structure of quantum decoherence-free subsystems against quantum noises and superactivating quantum memory with entanglement via modeling the underlying quantum systems by quantum Markov chains.

Dissertation directed by Professor Mingsheng Ying and Professor Yuan Feng Centre for Quantum Software and Information Faculty of Engineering and Information Technology

Acknowledgements

I am thankful to many people for their help and support during my work on this thesis. Below, I would like to acknowledge those who participated in my supervision, research, and everyday life.

First of all, I would like to thank my direct supervisors Prof. Mingsheng Ying and Prof. Yuan Feng for guiding me through the not always serene waters of research. Without their care, encouragement and steering this thesis would never be written. Next, I thank all colleagues who contributed to the presented work in many different ways, such as joint papers, valuable discussions and finding serious flaws in early versions of my work.

Last but not least, I would like to thank my family. My beloved father and mother, who gave me life and made me who I am. My little sister of whom I am proud. Thank you all for being in my heart.

> Ji Guan Sydney, Australia, 2018.

List of Publications

Journal Papers

- J-1. Guan, J., Feng, Y. and Ying, M., 2018. Decomposition of quantum Markov chains and its applications. Journal of Computer and System Sciences, 95, pp.55-68.
- J-2. Su, Z., Guan, J. and Li, L., 2018. Efficient quantum repeater with respect to both entanglement-concentration rate and complexity of local operations and classical communication. Physical Review A, 97(1), p.012325.
- J-3. Liu, S., Zhou, L., Guan, J., He, Y., Duan, R. and Ying, M., 2017. Q|SI): a quantum programming environment. SCIENTIA SINICA Informationis 47(10), 1300-1315(2017);

Preprint

- P-1. Guan, J., Feng, Y. and Ying, M., 2017. Super-activating Quantum Memory with Entanglement. arXiv preprint arXiv:1708.00700.
- P-2. Guan, J., Feng, Y. and Ying, M., 2018. The structure of decoherence-free subsystems, arXiv preprint arXiv:1802.04904, 2018.
- P-3. Liu, S., Wang, X., Zhou, L., Guan, J., Li, Y., He, Y., Duan, R. and Ying, M., 2017. Q|SI>: a quantum programming environment. arXiv preprint arXiv:1710.09500.

Contents

	Certificate	ii
	Abstract	iii
	Acknowledgments	iv
	List of Publications	v
	Abbreviation	ix
I II	Introduction Preliminaries	1 7
1	Review of Classical Markov Chains	9
	1.1 Markov Chains	9
	1.2 Classification of States and Chains	11
	1.3 Stationary Distribution and Limit Theorem	12
2	Review of Quantum Markov Chains	14
	2.1 Definition	14
	2.2 Essential Tools	15
II	I Decomposition of Quantum Markov Chains	18
3	BSCC Decomposition and Reachability	20
	3.1 Reachability	20

	3.2	Classification of Quantum States	21
	3.3	BSCC Decomposition	23
4	C I		0.4
4	Sta	ationary Conerence Decomposition and Fixed Points	24
	4.1	Stationary Coherence Decomposition	24
	4.2	Fixed Points	26
5	Pe	riodic Decomposition and Limiting States	30
	5.1	Irreducibility and Periodicity	30
	5.2	Periodic Decomposition	39
	5.3	Limiting States	41
	5.4	Conclusion	42
	τ		
1\	/ .	Applications	44
1 \ 6	Or	Applications ne-shot Zero-error Capacity of Quantum Channels	44 46
1 1	O r 6.1	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity	4446
1 \ 6	Or 6.1 6.2	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization	 44 46 51
6	Or 6.1 6.2 6.3	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization Conclusion	 44 46 51 52
1 N 6 7	Or 6.1 6.2 6.3 Th	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization Conclusion Conclusion Decoherence-free Subsystems	 44 46 51 52 54
1 v 6 7	Or 6.1 6.2 6.3 Th	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization Conclusion Conclusion Conclusion Continuous Coherence-free Subsystems	 44 46 51 52 54
1 6 7	Or 6.1 6.2 6.3 Th 7.1	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization Conclusion Conclusion E Structure of Decoherence-free Subsystems Continuous Coherence	 44 46 51 52 54 55
1 6 7	Or 6.1 6.2 6.3 Th 7.1 7.2	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization Conclusion Conclusion E Structure of Decoherence-free Subsystems Continuous Coherence Structure Theorem	 44 46 51 52 54 55 58
1 6 7	Or 6.1 6.2 6.3 Th 7.1 7.2 7.3	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization Conclusion Conclusion Continuous Coherence Structure Theorem Matrix Product States	 44 46 51 52 54 55 58 65
7	Or 6.1 6.2 6.3 Th 7.1 7.2 7.3 7.4	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization Conclusion Conclusion Continuous Coherence Structure Theorem Matrix Product States Conclusion	 44 46 51 52 54 55 58 65 67
1 6 7 8	Or 6.1 6.2 6.3 Th 7.1 7.2 7.3 7.4 Su	Applications ne-shot Zero-error Capacity of Quantum Channels One-shot Zero-error Capacity A New Characterization Conclusion Conclusion Continuous Coherence Structure Theorem Matrix Product States Conclusion One-shot Zero-error Capacity	 44 46 51 52 54 55 58 65 67 68

vii

8.2	Super-activation for Storing Classical Information	70
8.3	Super-activation for Storing Quantum Information	73
8.4	Conclusion	77
V (Concluding Remarks	78
\mathbf{VI}	Appendix	80
Bi	bliography	83

Abbreviation

- MC Markov chain
- qMC quantum Markov chain
- gcd the greatest common divisor

BSCC - bottom strongly connected component

- CPTP completely positive and trace-preserving
- RHS right-hand side
- LHS left-hand side