
UNIVERSITY OF TECHNOLOGY SYDNEY

Centre for Quantum Software and Information

Decomposition of Quantum Markov Chains and

Its Applications

by

Ji Guan

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

2018



Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree

nor has it been submitted as a part of the requirements for other degrees except as

fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in

my research and in the preparation of the thesis itself has been fully acknowledged.

In addition, I certify that all information sources and literature used are quoted in

the thesis.

c© Copyright 2018 Ji Guan



ABSTRACT

Decomposition of Quantum Markov Chains and Its Applications

by

Ji Guan

Markov chains have been widely employed as a fundamental model in the studies

of probabilistic and stochastic communicating and concurrent systems. It is well-

understood that decomposition techniques play a crucial role in reachability analysis

and model-checking of Markov chains. (Discrete-time) Quantum Markov chains have

been introduced as a model of quantum communicating systems [66] and also a se-

mantic model of quantum programs [67]. The BSCC (Bottom Strongly Connected

Component) and stationary coherence decompositions of quantum Markov chains

were introduced in [62, 68, 5]. This thesis presents a new decomposition technique,

namely periodic decomposition, for quantum Markov chains. This decomposition

further helps us find sufficient and necessary conditions for limiting states of quan-

tum Markov chains.

To confirm the power of these decomposition techniques, we apply them to char-

acterizing the one-shot zero-error capacity of quantum channels, finding the struc-

ture of quantum decoherence-free subsystems against quantum noises and super-

activating quantum memory with entanglement via modeling the underlying quan-

tum systems by quantum Markov chains.

Dissertation directed by Professor Mingsheng Ying and Professor Yuan Feng

Centre for Quantum Software and Information

Faculty of Engineering and Information Technology
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Abbreviation

MC - Markov chain

qMC - quantum Markov chain

gcd - the greatest common divisor

BSCC - bottom strongly connected component

CPTP - completely positive and trace-preserving

RHS - right-hand side

LHS - left-hand side
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Part I

Introduction
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Classical Markov Chains

A Markov chain (MC), named after the Russian mathematician Andrey Markov (

June 14, 1856-July 20, 1922), is a discrete-time Markov process with finite states[27].

A Markov process is a stochastic process in which the current state is sufficient to

predict the future state (i.e. the state after the current state), while the past (i.e.

the previous history of the current state) is irrelevant. It can be regarded as a step-

by-step process. At each step, a Markov chain can jump from one state to another

state or maintain the current state. We say that the changes of states of the chain

are transitions. The probabilities associated with state changes are called transition

probabilities. In summary, a Markov chain is characterized by a finite state space

and a transition probability matrix consisting of all transition probabilities.

In 1906 Markov provided the basic definition of what was later to be called a

Markov chain. Kolmogorov gave a generalization to countably infinitely state spaces

in 1936. Markov chains are related to two important topics of physics in the early

twentieth century, namely Brownian motion and ergodic hypothesis, but Markov

appeared to have pursued this out of the extension of the law of large numbers to

dependent events. Then, he applied his findings for the first time to the first 20,000

letters of Pushkin’s Eugene Onegin in 1913. See [23] for more details.

Markov chains have many applications modeling practical systems in a wide

range of topics such as chemistry [39], information sciences [52], economics [28], so-

cial sciences [1] and music [46]. Specifically, in the field of Internet, the PageRank of

a website used by Google is defined by a Markov chain to order search results [50].

The PageRank of a page i is the probability to be at i in the stationary distribution

of the Markov chain on all pages of the results. Also, Markov chains have been

used to analyze web navigation behavior of users. They can model a user’s web link

transition on a particular website and make forecasts regarding future exploration
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and to personalize the web page for him or her. Furthermore, some researchers have

extensively employed Markov chains as a fundamental model of probabilistic and

stochastic communicating and concurrent systems. In particular, various algorith-

mic analysis and model checking techniques have been developed for them in the

last three decades (see for example [3], Chapter 10).

Quantum Markov Chains

A quantum Markov chain (qMC) is a quantum generalization of a Markov chain,

where the state space is a Hilbert space and the transition probability matrix is

replaced by a super-operator which is a mathematical formalization of the discrete-

time evolution of (open) quantum systems. Quantum Markov chains provide a

potential paradigm for modeling the development of quantum systems.

Continuous-time quantum Markov processes have been intensively studied in

mathematical physics for many years, and achieved several discoveries of fundamen-

tal importance [18, 19, 44, 22]. Recently, they also have been applied to quantum

control setting, such as stabilizing quantum systems [60, 30, 59] and preparing quan-

tum states [61, 54, 58] . Discrete-time quantum Markov chains were introduced in

[67, 70, 68] as a semantic model targeting verification and termination analysis of

quantum programs.

A particular class of quantum Markov chains in closed systems, called quantum

walks, has been successfully employed in the design of quantum algorithms (see

[2, 31] for a survey of this line of research). In open quantum systems (noises

allowed), a similar model, called open quantum random walks, has been introduced,

on lattices as well as on finite graphs [11].

This thesis focuses on the decompositions of (discrete-time) quantum Markov

chains and targets applications to quantum information theory, especially informa-
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tion preserving. We start with introducing existing decompositions of quantum

Markov chains, namely the BSCC and stationary coherence decompositions. Then

we add a new decomposition technique, called periodic decomposition. Furthermore,

the characterization of limiting states of quantum Markov chains has been found.

More importantly, all these mathematical tools have been applied in quantum in-

formation theory as follows.

Zero-error capacity is defined as the least upper bound of the rates at which

one can send classical messages correctly via a quantum channel. The periodic

decomposition of quantum Markov chains together with the BSCC decomposition

provides us with a new angle to look at the structure of quantum channels. In

particular, it gives a new characterization of one-shot zero-error capacity for general

quantum channels.

Decoherence-free subsystems have been successfully formed as a tool to preserve

fragile quantum information against noises. With the help of the BSCC and station-

ary coherence decompositions, we develop a structure theory for decoherence-free

subsystems. Based on it, we present an effective algorithm to construct a set of

maximal decoherence-free subsystems in the sense that any other such subsystem

is a subspace of one of them. Applying these techniques in quantum many-body

systems, we propose a simple and numerically robust method to determine if two

irreducible tensors are repeated, an essential step in deciding if they are equivalent

in generating matrix product states.

As a particular case of decoherence-free subsystems, noiseless subsystems can di-

rectly protect quantum states without any correction. Because of this property, they

were employed to design a general (hybrid) quantum memory cell model that can

store both quantum and classical information. Applying the stationary coherence

and periodic decomposition techniques, we find an interesting new phenomenon that
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a pair of purely classical memory cells (cannot store quantum information alone)

can be used to preserve quantum states, whereas two null memory cells (quan-

tum and classical information both cannot be stored in each of them) can only be

employed together to encode classical information. These findings reveal the super-

activation of memory cells. Furthermore, necessary and sufficient conditions for this

phenomenon are discovered so that the super-activation can be simply checked by

examining certain eigenvalues of the quantum memory cell without computing the

noiseless subsystems explicitly. In particular, it is found that entangled and sepa-

rable stationary states are responsible for the super-activation of storing quantum

and classical information, respectively.

Thesis Organization

This thesis is organized as follows:

Part II: Preliminaries

• Chapter 1: We review some basic notions and properties of classical Markov

chains. This will help readers understand the latter generalization to the

quantum world.

• Chapter 2: We show how to generalize classical Markov chains to the quantum

case and provide some useful tools in the analysis of quantum Markov chains,

such as eigenvalues and matrix representations.

Part III: Decomposition of Quantum Markov Chains

• Chapter 3: The reachability of quantum Markov chains will be given. It further

deduces the BSCC decomposition developed in [68, 62].

• Chapter 4: This chapter presents the stationary coherence decomposition of
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quantum Markov chains from [5]. Such decomposition reveals the structure of

fixed points of quantum Markov chains.

• Chapter 5: We extend the notions of irreducibility and periodicity for classical

Markov chains to quantum Markov chains, and show that they coincide with

the corresponding notions presented in the literature from different perspec-

tives. We then carefully examine limiting states of irreducible and aperiodic

quantum Markov chains, and a periodic decomposition of irreducible quantum

Markov chains is presented.

Part IV: Applications

• Chapter 6: A new characterization of one-shot zero-error capacity of quantum

channels will be given in terms of the BSCC and periodic decompositions.

• Chapter 7: We obtain the structure of decoherence-free subsystems by the

BSCC and stationary coherence decompositions.

• Chapter 8: Applying the stationary coherence and periodic decompositions,

we show that entanglement can super-activate quantum memory.

Part V: Concluding Remarks

A summary of the thesis contents and its contributions are given in the final

part. Recommendation for future works is given as well.
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Part II

Preliminaries
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In this part, we will first review basic definitions of classical Markov chains and

present some important results of classical Markov chains. Then we move to the

quantum case by introducing quantum Markov chains. Meanwhile, we list some

useful tools from previous literature for our later use.
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Chapter 1

Review of Classical Markov Chains

Classical Markov chains (simply referred as Markov chains) have been intensely and

completely studied in the last century. In this chapter, we are going to review the

basic notions and properties of Markov chains, which helps the reader to understand

the generalization to the quantum world in the next chapter. We start by presenting

the definition of Markov chains in Section 1.1. Then different kinds of states and

chains are shown in Section 1.2. In the last section, we will discuss stationary and

limiting distributions of Markov chains.

1.1 Markov Chains

In brief, a Markov chain is a random process with the property that, conditional

on its current value, the future is independent of the past. Formally,

Definition 1: A Markov chain is a discrete-time stochastic process (Xn, n ≥ 0)

such that each random variable Xn takes values in a discrete and finite set S (the

state space) and satisfies

P (Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0) = P (Xn+1 = j|Xn = i)

for all n ≥ 0 and all states i, j, i0, · · · , in−1 ∈ S.

The evolution of a chain is described by its transition probabilities, P (Xn+1 =

j|Xn = i); it can be quite complicated in general since these probabilities depend

on three arguments n, i and j. We shall restrict our attention to the case when they

do not depend on n but only upon i and j.
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Definition 2: The chain (Xn, n ≥ 0) is called homogeneous if

P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i)

for all n, i, j. The transition matrix P = (pij) is the |S| × |S| matrix of transition

probabilities

pij = P (Xn+1 = j|Xn = i).

Henceforth, all classical Markov chains are assumed homogeneous. Therefore, a

Markov chain can be simply formed as a tuple (S, P ), where S is a finite state set

and P is a transition matrix over S.

Definition 3: The n-step transition probability is p
(n)
ij = P (Xn = j|X0 = i) for

all i, j ∈ S.

The adjacency relation between states is important to the analysis of Markov

chains, so we introduce as follows.

Definition 4: Given a Markov chain (S, P ) and any states i, j ∈ S, we say that

j is adjacent to i, written i → j, if pij > 0. Furthermore, j is reachable from i if

there exists a n ≥ 0 such that p
(n)
ij > 0.

Definition 5: Given a Markov chain (S, P ), for two states i and j, we say that

they communicate if i is reachable from j and j is reachable from i.

Now, let us group states together according to reachability.

Definition 6: A class C of states is a non-empty set of states such that

• For any two distinct states in C, they communicate;

• Any state i ∈ C cannot communicate with any state j 6∈ C.
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1.2 Classification of States and Chains

In this section, we give different types of states and show a Markov chain can be

divided into disjoint subsets in which the states belong to the same type.

Firstly, sometimes we shall be interested in the epochs of time at which return

to the starting state is possible.

Definition 7: For any state i, let d(i) = gcd{n ≥ 1 : p
(n)
ii > 0}, where gcd stands

for the greatest common divisor.

• If p
(n)
ii = 0 for all n ≥ 1, then we say state i has no period or it has period 0;

• If d(i) = 1, then we say state i is aperiodic or it has period 1;

• If d(i) ≥ 2, then we say state i is periodic with period d(i).

When all states of a Markov chain have the same period d > 0 , we say that the

chain is d-periodic if d ≥ 2 or aperiodic if d = 1.

If a Markov chain is d-periodic, it means that the chain starting from a state i

cannot return to i at these time epochs that have no the divisor d. In the above

definition, we have defined the period of a Markov chain, and another relevant

question is whether or not the chain starting from state i will eventually come back

to i. With this in mind, we make the following definition.

Definition 8: A state i ∈ S is recurrent if it is reachable from all states that are

reachable from i. A transient state is a state that is not recurrent. When all states

are recurrent (transient), we say that the chain is recurrent (transient).

Lemma 1: For a Markov chain, either all states in a class are transient or all are

recurrent. Furthermore, all states in the same class have the same period.

From the above lemma, we can directly say that a class is recurrent or transient

with the period of its states. We can also observe that any state cannot be in two
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different classes at the same time. So we can partition the state space into several

classes:

Theorem 1: For a Markov chain (S, P ), the state space can be uniquely parti-

tioned into finite classes.

If a Markov chain has only one class, then the chain is called an irreducible

Markov chain; formally

Definition 9: A Markov chain (S, P ) is irreducible if S is a class.

In an irreducible Markov chain, there is always a path from states i to j if i 6= j.

All states in an irreducible Markov chain are recurrent.

1.3 Stationary Distribution and Limit Theorem

Stationary and limiting distributions play essential roles in stabilizing Markov

chains. This section presents the characterizations of both regarding irreducibility

and periodicity.

Definition 10: A distribution π∗ is called stationary if it satisfies the equation

π∗ = π∗P,

where π∗P is the product of π∗ (vector) and P (matrix).

It is easy to see that any Markov chain admits at least one stationary distribution.

In particular, an irreducible Markov chain has only one stationary distribution.

Lemma 2: For a Markov chain (S, P ), it is irreducible if and only if it has only

one stationary distribution and the distribution is faithful, i.e. all elements are

non-zero.

The following theorem discusses when the chain has the stationary distribution

as the limiting one.
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Theorem 2: An irreducible and aperiodic Markov chain (S, P ) has a unique sta-

tionary distribution π∗. This distribution is also a limiting distribution in the sense

lim
n→∞

π
(n)
i = π∗i , for all i ∈ S and π(0)

where π(0) is the initial distribution and π(n) = π(0)P n at any finite time n.
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Chapter 2

Review of Quantum Markov Chains

In this chapter, we review some basic notions and results of quantum Markov chains;

for details we refer to [49].

2.1 Definition

Recall that a (classical) Markov chain is a random process in which the future

behavior depends only on the present, and a matrix of transition probabilities models

the evolution of such a process. Note that the evolution of an open quantum system

can be modeled mathematically by a super-operator, i.e., a completely positive and

trace-preserving (CPTP) linear map, acting on its state Hilbert space of the system.

This naturally motivates us to present the following:

Definition 11 ([68]): A quantum Markov chain is a pair (H, E), where H is a

Hilbert space, and E is a super-operator on H.

In this thesis, we only consider finite-dimensional quantum Markov chains, i.e.

dim(H) < ∞. For any two Hilbert spaces H and H′, let L(H,H′) be the set of

all linear operators from H to H′. Simply, we also let L(H) = L(H,H) and D(H)

denote the set of density operators in H. Then a state of a quantum Markov chain

(H, E) is an operator ρ ∈ D(H). Recall that the support of a density operator ρ,

denoted supp(ρ), is the subspace of H linearly spanned by the eigenvectors of ρ

corresponding to non-zero eigenvalues. The image of a subspace X of H under a
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super-operator E is defined to be

E(X ) :=
∨
|φ〉∈X

supp(E(|φ〉〈φ|)).

Here |φ〉 denotes a pure state in X . The join of a family {Xk} of subspaces of H

is defined by
∨
k Xk = lin.span(

⋃
k Xk), and for a set of vectors Y , lin.span(Y) =

{
∑k

i=1 λivi | k ∈ N, vi ∈ Y , λi ∈ C} is the space spanned by vectors in X .

For any linear map E on L(H), if dim(H) = n, then it admits up to n2 distinct

(complex) eigenvalues a satisfying

E(A) = aA

for some A ∈ L(H), A 6= 0. We write λ(E) for the set of all eigenvalues of E . The

spectral radius of E is defined as %(E) := sup{|λ| : λ ∈ spec(E)}. In particular, if E

is a CPTP map, then %(E) = 1.

Definition 12 ([68]): For a quantum Markov chain G = (H, E), a state ρ ∈ D(H)

is called stationary if E(ρ) = ρ; that is, ρ is a fixed point of E . Furthermore, ρ is

said to be minimal if there is no stationary state σ such that supp(σ) ( supp(ρ).

We collect all fixed points of E as fix(E) = {X ∈ L(H)|E(X) = X}.

2.2 Essential Tools

In this section, we present some useful tools in analysis of quantum Markov

chains, which will be frequently used in the latter discussion.

Let E be a super-operator with Kraus operators {Ei}, i.e. E(·) =
∑

iEi · E
†
i .

Then its matrix representation [67] is defined to be M =
∑

iEi ⊗ E∗i where E∗

stands for the (entry-wise) complex conjugate of E. Assume that M = SJS−1 is

the Jordan decomposition of M , where

J =
K∑
k=1

λkPk +Nk,
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Ndk
k = 0 for some dk > 0, NkPk = PkNk = Nk, PkPl = δklPk, tr(Pk) = dk, and∑
k Pk = I. Let

J∞ :=
∑
k:λk=1

Pk, (2.1)

Jφ :=
∑

k:|λk|=1

Pk. (2.2)

Then we write:

• E∞ for the super-operator with the matrix representation SJ∞S
−1.

• Eφ for the super-operator with the matrix representation SJφS
−1.

E∞ and Eφ admit the following interesting characterizations.

Lemma 3 ([66, Proposition 6.3]): For any quantum Markov chain G = (H, E),

(1) there exists an increasing sequence of integers ni such that Eφ = limi→∞ Eni ;

(2) E∞ = limN→∞
1
N

∑N
n=1 En.

Meanwhile, we collect some other results in the previous literature for later use.

Lemma 4 ([70]): For any quantum Markov chain G = (H, E), real number p > 0,

ρ ∈ D(H), and X ,Y being subspaces of H, we have

(1) supp(pρ) = supp(ρ);

(2) E(supp(ρ)) = supp(E(ρ));

(3) if X ⊆ Y , then E(X ) ⊆ E(Y);

(4) E(X
∨
Y) = E(X )

∨
E(Y).

Lemma 5 ([51]): If F is a CP map with F(·) =
∑

i Fi · F
†
i and

∑
i F
†
i Fi ≤ I,

then for any Hermitian matrix A,

‖F(A)‖1 ≤ ‖A‖1.
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Lemma 6 ([29]): Let S(H) denote the set of all subspaces of H. Then for any

ρ ∈ D(H),

inf
X∈S(H)\{0}

tr(PXρ) = λmin(ρ)

where 0 is the zero-dimensional subspace and λmin(ρ) is the minimum eigenvalue of

ρ.
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Part III

Decomposition of Quantum

Markov Chains
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In this part, the three-level decomposition of quantum Markov chains will be

given, namely the BSCC, stationary coherence and periodic decompositions. They

have strong connections with the essential properties of quantum Markov chains:

reachability, fixed points and limiting states, respectively.
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Chapter 3

BSCC Decomposition and Reachability

Reachability analysis plays an essential role in verification and model-checking of

both classical and probabilistic systems. In [55], the reachability of quantum systems

was firstly studied by physicists. And then reachability of quantum Markov chains

was considered by [70] and it was used in termination checking of concurrent quan-

tum programs. Recently, [68] studied three kinds of long-term behaviors, namely

reachability, repeated reachability and persistence of quantum Markov chains by

introducing the notion of bottom strongly connected component(BSCC) and the

related decomposition of quantum Markov chains. Meanwhile, they designed algo-

rithms for computing the reachability, repeated reachability and persistence proba-

bilities of a quantum Markov chain and analyzed their complexities.

In this chapter, we first introduce the reachability of quantum Markov chains

in Section 3.1, which defines adjacency relation between quantum states. Then

we use it to classify quantum states, and such a classification is called a BSCC in

Section 3.2. In the last section, we present the BSCC decomposition of quantum

Markov chains. All these results come from [68].

3.1 Reachability

As we know in Chapter 1, the adjacency relation between states plays an irre-

placeable role in the analysis of Markov chains. Actually, we can similarly define a

quantum version.

Definition 13 ([68]): Let G = (H, E) be a quantum Markov chain, and let ρ and
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σ be two quantum states.

• σ is adjacent to ρ, written ρ→ σ if supp(σ) ⊆ supp(E(ρ));

• σ is reachable from ρ, if there is a path from ρ to σ, i.e. there is a sequence

ρ→ ρ1 → · · · → ρm → σ.

Therefore, starting from a state ρ, we can collect all reachable states together as

a reachable space.

Definition 14 ([70]): Let G = (H, E) be a quantum Markov chain. For any

ρ ∈ D(H), the reachable space of ρ is defined to be

RG(ρ) :=
∞∨
i=0

supp(E i(ρ)),

where E i stands for the composition of i copies of E , that is, E0 = I, the identity

super-operator on H, and E i = E i−1 ◦ E for i ≥ 1.

Intuitively, as its name suggests, RG(ρ) consists of all states that can be reached

from the initial state ρ in the iterative evolution of the system modeled by G. Sur-

prisingly, this subspace can be computed in finite steps.

Lemma 7 ([70]): Let G = (H, E) be a quantum Markov chain and n = dim(H).

Then for any state ρ ∈ D(H), we have

RG(ρ) =
n−1∨
i=0

supp(E i(ρ)).

The above lemma indicates that all reachable states can be actually reached

within n steps if dim(H) = n.

3.2 Classification of Quantum States

As in the classical case, the reachability can be used to group quantum states,

and this will simplify the studies of quantum Markov chains in the latter discussion.
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A central concept in analysis of quantum Markov chains is the strongly connected

component. Before giving its definition, let us first introduce an auxiliary notation.

Let X be a subspace of a Hilbert spaceH, and E be a super-operator onH. Then the

restriction of E on X is defined to be a super-operator E|X with E|X (ρ) = PXE(ρ)PX

for all ρ ∈ D(X ), where PX is the projector onto X ; sometimes, we also use EX to

replace E|X when there is no confusion.

Definition 15 ([68]): Let G = (H, E) be a quantum Markov chain. A subspace

X of H is called strongly connected in G if for any |φ〉, |ψ〉 ∈ X , we have |φ〉 ∈

RGX (|ψ〉〈ψ|) and |ψ〉 ∈ RGX (|φ〉〈φ|), where GX denotes the quantum Markov chain

(X , E|X ); that is, |φ〉 and |ψ〉 can be reached from each other.

Let SC(G) be the set of all strongly connected subspaces of H in G. It is easy to

see that the partial order (SC(G),⊆) is inductive. Then Zorn’s lemma asserts that

it has maximal elements. Each maximal element of (SC(G),⊆) is called a strongly

connected component (SCC) of G.

Definition 16 ([68]): Let G = (H, E) be a quantum Markov chain. Then a sub-

space X of H is called a bottom strongly connected component (BSCC) of G if it is

a SCC and invariant in G. Here X is said to be invariant in G if E(X ) ⊆ X .

The following characterization of BSCCs establishes a connection between BSCCs

and minimal stationary states.

Lemma 8 ([68]): A subspace X is a BSCC of quantum Markov chain G = (H, E)

if and only if there exists a minimal stationary state ρ∗ of E such that supp(ρ∗) = X .

Another important subspace, called a transient subspace, is necessary when we

consider to decompose the state space H into BSCCs.

Definition 17 ([68]): Let G = (H, E) be a quantum Markov chain. A subspace
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X of H is called a transient subspace if for any ρ ∈ D(H),

lim
n→∞

tr(PXEn(ρ)) = 0. (3.1)

Intuitively, equation (3.1) means that the system will eventually go out of X no

matter where it starts. Further, a transient subspace must be orthogonal to any

BSCC, which is similar to the relation of transient state set and recurrent state set

in classical Markov chains, i.e., a state must be precisely in one of them.

3.3 BSCC Decomposition

In the last section, we obtain two different subspaces according to reachability:

BSCCs and transient subspaces. These two types of components motivate us to

decompose the Hilbert state space as follows.

Theorem 3 (BSCC Decomposition, [68]): For any quantum Markov chain G =

(H, E), we have:

H = B0

⊕
· · ·
⊕
Bn−1

⊕
TE (3.2)

where
⊕

denotes direct sum, Bi′s are mutually orthogonal BSCCs of G and TE is

the largest transient subspace in G.

Unlike classical case, the BSCC decomposition is not unique, but we can conclude

a relation between different decompositions.

Lemma 9 ([68]): Let G = (H, E) be a quantum Markov chain. If we have two

different BSCC decompositions

H = B0

⊕
· · ·
⊕
Bn−1

⊕
TE = C0

⊕
· · ·
⊕
Cm−1

⊕
TE (3.3)

where Bi’s and Ci’s are arranged, respectively, by the increasing order of the dimen-

sions, then m = n, and dim(Bi)=dim(Ci) for all 0 ≤ i ≤ n− 1.

The algorithm to implement the BSCC decomposition can also be found in [68].
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Chapter 4

Stationary Coherence Decomposition and Fixed

Points

In many fields, equilibria or stability are fundamental concepts that can be described

regarding fixed points. In particular, fixed points of quantum Markov chains are

important for stabilizing quantum subsystems and preparing quantum states [59,

61, 54]. The structure of them also gives us more effective ways to protect quantum

information [9, 13]. Such a structure can be fully characterized by a decomposition,

called stationary coherence decomposition.

In this chapter, our aim is to introduce the stationary coherence decomposition

and show how this finds out all fixed points for a given quantum Markov chain; For

more details, please see [5].

4.1 Stationary Coherence Decomposition

Stationary coherence, introduced in [5], is a key relation to classify BSCCs.

Definition 18 ([5]): Two mutually orthogonal BSCCs B1 and B2 in a quantum

Markov chain G = (H, E) have a stationary coherence if there is a BSCC B3 ⊆

B1

⊕
B2 with B3 6= B1,B2.

Stationary coherence is a genuinely quantum feature of quantum Markov chains,

without a counterpart in classical Markov chains. We can group BSCCs by station-

ary coherences.

Theorem 4 (Stationary Coherence Decomposition, [5]): For any quantum Markov
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chain G = (H, E), we have a unique orthogonal decomposition:

H =
⊕
l

Xl
⊕
TE (4.1)

where:

(1) TE is the largest transient subspace of G.

(2) Each Xl is either a BSCC or can be further decomposed into mutually orthog-

onal BSCCs:

Xl = Bl,0
⊕
· · ·
⊕
Bl,nl−1 (4.2)

such that

• all BSCCs Bl,j (0 ≤ j < nl) have the same dimension; and

• there are stationary coherences between any two of them.

(3) There are no stationary coherences between BSCCs in Xi and Xj if i 6= j.

In the last chapter, we have seen that unlike classical Markov chains, the BSCC

decomposition is not unique in general for quantum Markov chains. By Theorem

4, we see that the stationary coherence between BSCCs is responsible for this non-

uniqueness.

For practical applications, an algorithm to implement the two-level decomposi-

tion is crucial. Actually, we have already an algorithm to compute the BSCC de-

composition in [68]. So, a key to computing the two-level composition is to identify

the BSCCs having stationary coherences. This problem is solved by the following:

Lemma 10: Let B1 and B2 be two mutually orthogonal BSCCs of a quantum

Markov chain (H, E) and F = {X ∈ L(B1

⊕
B2)|E(X) = X}. Then there is a

stationary coherence between B1 and B2 if and only if dim(F) > 2.
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Proof. By Lemma 8, B ⊆ H is a BSCC if and only if there is a minimal stationary

state ρ such that supp(ρ) = B. If B1 and B2 are two mutually orthogonal BSCCs,

let ρ1 ∈ D(B1) and ρ2 ∈ D(B2) be corresponding minimal stationary states. Then

there is a stationary coherence if and only if there is at least one stationary state ρ3

which is not a linear combination of ρ1 and ρ2. The lemma then follows from [66,

Corollary 6.5]. 2

We further observe that the stationary coherence is transitive in the sense that

if there are stationary coherences between B1 and B2 and between B2 and B3, then

there is a stationary coherence between B1 and B3 as well.

No algorithm for computing the stationary coherence decomposition has been

given in the previous literature. We developed an algorithm for this purpose. It

can be combined with the BSCC decomposition algorithm in [68] to compute the

stationary coherence decomposition of quantum Markov chains. This combination

is presented as Algorithm 1. The time complexity of Algorithm 1 is O(n8), where

dim(H) = n.

4.2 Fixed Points

To characterize fix(E), the main step is to study the Krause operators {Ek}k of

E according to the stationary coherence.

Lemma 11 ([5]): Given a quantum Markov chain G = (H, E), let B1 and B2 be

two orthogonal BSCCs. Then there is a stationary coherence if and only if there

is a unitary matrix U such that Ek,1 = UEk,2U
† for all k, where {Ek,i}k are the

restriction of Kraus operators {Ek}k of E onto Bi for i = 1, 2, i.e. Ek,i = PBiEkPBi .

Furthermore, B1 ' B2.

The above lemma tells us that in some basis, all mutually orthogonal BSCCs

with stationary coherences are identical. Through this observation, we can get a
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Algorithm 1 SCdecompose(G)

Input: A quantum Markov chain G = (H, E).

Output: The two-level decomposition of H in the form of Eqs.(4.1) and (4.2).⊕n
i=1 Bi

⊕
TE ← the BSCC decomposition of G = (H, E)

I ← {1, 2, · · · , n}

m← 1

for each i ∈ {1, 2, · · · , n} do

if i ∈ I then

xm ← {i}

for each j > i and j ∈ I do

F ← {X ∈ B(Bi
⊕
Bj)|E(X) = X}

if dim(F) > 2 then

xm ← xm ∪ {j}

I ← I\{j}

end if

end for

Xm ←
⊕

k∈xm Bk

m← m+ 1

end if

end for

return TE ,Xi, {Bk}k∈xi for 1 ≤ i ≤ m− 1
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structure of fix(E) as follows.

Theorem 5 (fixed-point decomposition,[5]): Let E be a super-operator onH. Then

there is a unique orthogonal decomposition of H

H =
L⊕
l=1

Xl ⊕ TE (4.3)

where:

(1) TE is the largest transient subspace;

(2) each Xl is either a BSCC or can be further decomposed into mutually orthog-

onal BSCCs with stationary coherences between any two of them:

Xl =

ml⊕
p=1

Bl,p ' Cml ⊗ Bl, Bl ' Bl,p ∀p (4.4)

so that the Kraus operators {Ek} of E have a block form

Ek '



I1 ⊗ Ek,1

. . .

IL ⊗ Ek,L

Tk

0 Kk


(4.5)

in the corresponding basis, for some operators Ek,l ∈ L(Bl), Kk ∈ L(K),

and Tk ∈ L(K,K⊥). Here Il is the identity operator on Cml and El(·) =∑
k Ek,l ·E

†
k,l has only one stationary state in D(Bl) and the state is full-rank

on Bl. Furthermore,

fix(E) '
⊕
l

[L(Cml)⊗ ρl]⊕ 0K

where ρl is the unique stationary state of El, and 0K is the zero operator on K.

(3) there is no stationary coherence between any BSCCs Bl,p and Bl′,p′ whenever

l 6= l′.
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This decomposition is unique and called the fixed-point decomposition of H and

can be computed by applying the structure of C∗-algebra generated by the Kraus

operators of E ; see [33, 25, 63] for details.
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Chapter 5

Periodic Decomposition and Limiting States

A two-level decomposition of quantum Markov chains was developed in the previous

chapters. In this chapter, we propose another decomposition technique, namely

periodic decomposition, which can be combined with the two-level decomposition to

form a three-level decomposition further. Such a three-level decomposition provides

us with a handy tool for a finer algorithmic analysis of quantum Markov chains.

Meanwhile, we give several characterizations of limiting states of quantum Markov

chains concerning aperiodicity, irreducibility, and eigenvalues. These results are

based on our recent paper [25].

5.1 Irreducibility and Periodicity

In this section, we first extend the notion of irreducibility for quantum Markov

chains, which turns out to be equivalent to the irreducibility defined in the previous

literature. Recall from classical probability theory that an irreducible Markov chain

starting from a state can reach any other state in a finite number of steps. With

the help of the reachable space introduced in Definition 14, we have:

Definition 19: A quantum Markov chain G = (H, E) is called irreducible if for

any ρ ∈ D(H), RG(ρ) = H.

From Lemma 7, it can be easily shown that the above definition indeed coincides

with the irreducibility given in [19] for quantum stochastic processes and [66, The-

orem 6.2] for quantum channels. However, our definition presents a more natural

extension of irreducibility for classical Markov chains.
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To illustrate irreducibility, let us see two simple examples.

Example 1: Consider a natural way to encode the classical NOT gate X : 0 →

1; 1 → 0 into a quantum super-operator. Let H = lin.span{|0〉, |1〉}. The super-

operator E : D(H)→ D(H) is defined by

E(ρ) = |1〉〈0|ρ|0〉〈1|+ |0〉〈1|ρ|1〉〈0|

for any ρ ∈ D(H). It is easy to check that the quantum Markov chain (H, E) is

irreducible.

Example 2 (Amplitude-damping channel): Consider the 2-dimensional amplitude-

damping channel modeling the physical processes such as spontaneous emission. Let

H = lin.span{|0〉, |1〉}, and

E(ρ) = E0ρE
†
0 + E1ρE

†
1

where E0 = |0〉〈0|+
√

1− p|1〉〈1| and E1 =
√
p|0〉〈1| with p > 0. Then the quantum

Markov chain G = (H, E) is reducible since, say, RG(|0〉〈0|) = lin.span{|0〉}.

Let us now consider how to check whether a quantum Markov chain G = (H, E)

is irreducible. Note from the BSCC decomposition that G is irreducible if and only

if the state Hilbert space H itself is a BSCC of G. Moreover, we have the following:

Lemma 12: A quantum Markov chain G = (H, E) has a unique BSCC B if and

only if it has a unique stationary state ρ∗. Furthermore, supp(ρ∗) = B.

Proof. We see from Definition 17 that for any stationary state ρ, supp(ρ) ⊆ B.

Then the result immediately follows from Lemma 8 and Theorem 3. 2

Therefore, the uniqueness of BSCCs in G can be used to check irreducibility of

G.

Theorem 6 ([19, Theorem 13]): A quantum Markov chain G = (H, E) is irre-

ducible if and only if it has a unique stationary state ρ∗ with supp(ρ∗) = H.
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Several different versions of this theorem and its special cases are known in [66]

and [21]. However, the above version can be more conveniently used in checking

irreducibility of quantum Markov chains. Indeed, it shows that checking whether

G = (H, E) is irreducible can be done by Algorithm 1 in [68] to check whether its

state space H is a BSCC. The time complexity is O(n6), where dim(H) = n.

Next, we consider the periodicity of quantum Markov chains.

Definition 20: Let G = (H, E) be a quantum Markov chain.

(1) A state ρ ∈ D(H) is called aperiodic if

gcd{m ≥ 1 : supp(ρ) ⊆ supp(Em(ρ))} = 1.

Here, recall that gcd stands for the greatest common divisor; in particular, we

assume that gcd(∅) = 0.

(2) A subspace X of H is aperiodic if each density operator ρ with supp(ρ) ⊆ X

is aperiodic.

(3) If there exists an integer d ≥ 1 such that the whole state space H is aperiodic

in quantum Markov chain Gd = (H, Ed), then the minimum of such integers d,

denoted d(G), is called the period of G.

(4) When d(G) = 1, G is said to be aperiodic; otherwise, it is periodic.

For the special case of irreducible quantum Markov chains, periodicity was de-

fined in [21, 11] based on the notion of E-cyclic resolution:

Definition 21 ([11]): For a quantum Markov chain G = (H, E), let (P0, · · · , Pd−1)

be a resolution of identity, i.e. a family of orthogonal projectors such that
∑d−1

k=0 Pk =

I. Then (P0, · · · , Pd−1) is said to be E-cyclic if E†(Pk) = Pk�1 for k = 0, · · · , d− 1,

where � denotes subtraction modulo d and E† is the adjoint map of E ; that is, the

linear map such that tr(ME(A)) = tr(E†(M)A) for all M and A in L(H).
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The next lemma shows that the period defined in [11] and that in Definition

20 are the same for irreducible quantum Markov chains. Actually, the former can

be better understood in the Heisenberg picture, and the latter in the Schrödinger

picture.

Lemma 13: For an irreducible quantum Markov chain G = (H, E), the period

of G is equal to the maximum integer c for which there exists a E-cyclic resolution

(P0, · · · , Pc−1) of identity.

Proof. By [66, Theorem 6.6], the maximum c for which there exists a E-cyclic

resolution (P0, · · · , Pc−1) of identity is the number of the eigenvalues of E with

magnitude one. Then the result follows from Lemma 17. 2

The notion of periodicity is further illustrated by the following example.

Example 3: Let G = (H, E) with H = lin.span{|0〉, |1〉, |2〉} and for any ρ ∈

D(H),

E(ρ) = |1 + 2〉〈0|ρ|0〉〈1 + 2|+ |0 + 2〉〈1|ρ|1〉〈0 + 2|+ |1 + 0〉〈2|ρ|2〉〈1 + 0|

where |i + j〉 = (|i〉 + |j〉)/
√

2 for i, j ∈ {0, 1, 2}. Then it is easy to see that G is

irreducible and aperiodic, and has the unique stationary state

1

3
(|1 + 2〉〈1 + 2|+ |0 + 2〉〈0 + 2|+ |1 + 0〉〈1 + 0|).

The following lemma presents a useful characterization of the reachable space

starting from a state within an aperiodic subspace. It can be seen as a strengthened

version of Lemma 7 in the special case of aperiodic quantum Markov chains.

Lemma 14: Let G = (H, E) be a quantum Markov chain and X be a subspace

of H. Then the following statements are equivalent:

(1) X is an aperiodic subspace of H;
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(2) For any ρ ∈ D(H) with supp(ρ) ⊆ X , there exists an integer M(ρ) > 0 such

that supp(Em(ρ)) = RG(ρ) for all m ≥M(ρ).

Proof. (2) ⇒ (1) is obvious. So, we only need to show that (1) ⇒ (2). Fix an

arbitrary ρ with supp(ρ) ⊆ X . For each i ≥ 0, let Xi = supp(E i(ρ)). In particular,

X0 = supp(ρ). Let Tρ = {i ≥ 1 : Xi ⊇ X0}. Then from Lemma 4, we have: for any

i, j ≥ 0,

Xi+j = E i(Xj); and (5.1)

if i, j ∈ Tρ, then i+ j ∈ Tρ. (5.2)

By the assumption that X is aperiodic, we have gcd(Tρ) = 1. Then from [40], there is

a finite subset {mk}k∈K of Tρ, gcd{mk}k∈K = 1, and an integer M ′(ρ) > 0 such that

for any i ≥ M ′(ρ), there exist positive integers {ak}k∈K such that i =
∑

k∈K akmk.

Thus i ∈ Tρ from Eq. (5.2).

Now let M(ρ) = M ′(ρ) + n − 1 where n = dim(H), and take any m ≥ M(ρ).

For all 0 ≤ i ≤ n − 1, we have shown that m − i ∈ Tρ; that is, Xm−i ⊇ X0. Thus

Xm ⊇ Xi from Eq. (5.1), and Xm ⊇ RG(ρ) from Lemma 7. Therefore, Xm = RG(ρ),

as the reverse inclusion trivially holds. 2

Combining the above lemma with Definition 19, we have:

Corollary 1: Let G = (H, E) be an irreducible and aperiodic quantum Markov

chain. Then for any ρ ∈ D(H), there exists an integer M(ρ) > 0 such that

supp(Em(ρ)) = H for all m ≥M(ρ).

The above corollary shows that starting from any state ρ, an irreducible and

aperiodic quantum Markov chain can reach the whole state space after a finite

number of steps. Then it is interesting to see when the whole space can be reached

for the first time.

Definition 22: Let G = (H, E) be an irreducible and aperiodic quantum Markov
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chain. For each ρ ∈ D(H), the saturation time of ρ is defined to be

s(ρ) = inf{n ≥ 1 | supp(En(ρ)) = H}.

It is clear from Corollary 1 that the infimum in the defining equation of s(ρ) can

always be attained. Furthermore, we can show that for an irreducible and aperiodic

quantum Markov chain, the saturation time for any initial state has a universal

upper bound.

Lemma 15: Let G = (H, E) be a quantum Markov chain and X be an invariant

subspace of H. Then the following statements are equivalent:

(1) GX = (X , E|X ) is irreducible and aperiodic;

(2) There exists an integer M > 0 such that for all ρ ∈ D(X ), supp(Em(ρ)) = X

for all m ≥M .

Proof. (2)⇒ (1) is obvious. So, we only need to show that (1)⇒ (2). Let sX (ρ)

be the saturation time of ρ in GX . Then for any ρ ∈ D(X ), let

B(ρ) = {σ ∈ D(X ) | ‖ρ− σ‖1 < λ̄min(EsX (ρ)(ρ))},

where ‖ · ‖1 is the trace norm and λ̄min(ρ) is the minimum non-zero eigenvalue of ρ.

Obviously, B(ρ) is an open set. Then {B(ρ)}ρ∈D(X ) is an open cover of D(X ). As

D(X ) is compact, we can find a finite number of density operators {ρi}i∈J such that

D(X) =
⋃
i∈J

B(ρi).

In the following, we show for any ρ ∈ D(X ) and σ ∈ B(ρ), supp(Em(σ)) = X

for all m ≥ s(ρ). Then the theorem holds by taking M = maxi∈J sX (ρi). Let

Y = supp(EsX (ρ)(σ)), and PY be the projector onto Y . As X is invariant, Y ⊆ X .
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Let PȲ = IX − PY , where IX is the identity operator on X . Then

tr(PȲEsX (ρ)(ρ)) = ‖PȲEsX (ρ)(ρ)PȲ‖1

= ‖PȲ(EsX (ρ)(ρ)− EsX (ρ)(σ))PȲ‖1

≤ ‖EsX (ρ)(ρ)− EsX (ρ)(σ)‖1

≤ ‖ρ− σ‖1

< λ̄min(EsX (ρ)(ρ)).

The first two inequalities follow from Lemma 5. By Lemma 6, this is only possible

when Y = X , since X is invariant. In other words, supp(EsX (ρ)(σ)) = X . Thus

supp(EsX (ρ)−1(σ)) ⊆ supp(EsX (ρ)(σ)), and supp(EsX (ρ)(σ)) ⊆ supp(EsX (ρ)+1(σ)) from

Lemma 4. So

supp(EsX (ρ)+1(σ)) = X .

By induction, we can show that supp(Em(σ)) = X for all m ≥ sX (ρ). 2

It is worth noting that the integer M in the above theorem does not depend on

state ρ. This makes it much stronger than Lemma 14. Considering the whole state

space, we have:

Corollary 2: Let G = (H, E) be a quantum Markov chain. Then the following

statements are equivalent:

(1) G is irreducible and aperiodic;

(2) There exists an integer M > 0 such that for all ρ ∈ D(H), supp(Em(ρ)) = H

for all m ≥M .

Note that a (classical) Markov chains described by a stochastic k-by-k matrix

P is irreducible and aperiodic if and only if there exists an integer m such that

(Pm)i,j > 0 for all i and j. Then by (classical) Perron-Frobenius theory, we have

Wielandt’s inequality [65]: the minimum m ≤ k2 − 2k + 2. A quantum Wielandt’s



37

inequality was recently proved in [53]. As its direct application, we see that the

minimal M in Corollary 2 satisfies M ≤ n4 where n = dim(H). Then a limit theorem

of quantum Markov chain can be directly obtained by combining Corollary 2 and

[66, Theorem 6.7].

Theorem 7 (Limit Theorem): Let G = (H, E) be a quantum Markov chain. Then

the following statements are equivalent:

(1) G has a limiting state ρ∗ with supp(ρ∗) = H in the sense that

lim
n→∞

En(ρ) = ρ∗, ∀ρ ∈ D(H).

(2) G is irreducible and aperiodic;

(3) 1 is the only eigenvalue of E with magnitude one and the corresponding eigen-

vector ρ∗ is positive definite.

Proof. Direct from [66, Theorem 6.7], by noting that irreducibility plus aperiod-

icity are equivalent to primitivity with Corollary 2. 2

Generally, aperiodicity can be determined by the eigenvalues of E without the

assumption of irreducibility.

Lemma 16: Let G = (H, E) be a quantum Markov chain with a trivial transient

subspace; that is, TE = {0} in the decomposition in Eq. (3.2). If E has only 1 as its

eigenvalue with magnitude one, then G must be aperiodic.

Proof. As 1 is the only eigenvalue with magnitude one, Eφ = limn→∞ En. Then

for any |ψ〉 ∈ H,

lim
n→∞

En(|ψ〉〈ψ|) = ρ∗

for some stationary state ρ∗.

By the proof of Lemma 15, there exists an integer N > 0 such that for all n > N ,

supp(En(|ψ〉〈ψ|)) = supp(ρ∗).
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Then with TE = {0} and Lemma 8, there is a stationary state σ∗ such that tr(σ∗ρ∗) =

0 and supp(ρ∗+σ∗) = H. Then as supp(ρ∗), supp(σ∗) is invariant under Eφ and Eφ =

limn→∞ En is CPTP, it is easy to see that |ψ〉 ∈ supp(ρ∗). Therefore, by Definition

20, |ψ〉〈ψ| is aperiodic. Consequently, (H, E) is aperiodic from the arbitrariness of

|ψ〉. 2

The next lemma shows that the period of an irreducible quantum Markov chain

is exactly the number of eigenvalues with magnitude one.

Lemma 17: For an irreducible quantum Markov chain G = (H, E), the period of

G equals the number of eigenvalues of E with magnitude one.

Proof. Let m be the number of eigenvalues of E with magnitude one and d the

period of G. By [66, Theorem 6.6], 1 is the only element in spec(Em) with magnitude

one. As G is irreducible, Gm = (H, Em) has only a trivial transient subspace by

Theorem 6. Then from Lemma 16, Gm = (H, Em) is aperiodic, and hence d ≤ m.

We now turn to prove that d ≥ m. The case when m = 1 is trivial. Suppose m ≥

2. By [66, Theorem 6.6], there exists a E-cyclic resolution of identity (P0, · · · , Pm−1).

As Gd = (H, Ed) is aperiodic, there exists an integer N ′ > 0 such that supp(Pk) ⊆

supp(Edn(Pk)) for all n ≥ N ′. Thus for n ≥ N ′

0 < tr(PkEdn(Pk)) = tr(E†dn(Pk)Pk) = tr(Pk�dnPk) (5.3)

where � denotes subtraction modulo m. Therefore, m must be a factor of d and

m ≤ d. 2

Lemma 17 indicates that every irreducible quantum Markov chain has a period

and also offers an efficient algorithm for computing the period by counting the

number of eigenvalues of the super-operator.
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5.2 Periodic Decomposition

Theorem 8 (Periodic Decomposition): The state Hilbert spaceH of an irreducible

quantum Markov chain G = (H, E) with period d can be decomposed into the direct

sum of some orthogonal subspaces:

H = B0

⊕
· · ·
⊕
Bd−1

with the following properties:

(1) E(Bi�1) = Bi, where � denotes subtraction modulo d;

(2) (Bi, Ed|Bi) is irreducible and aperiodic; and

(3) Bi′s are mutually orthogonal subspaces of H and invariant under Ed.

Proof. Immediate from the proof of Lemma 17. 2

Now we turn to integrate it with the two-level decomposition to form a finer

decomposition of a general quantum Markov chain that might be reducible. For any

quantum Markov chain G = (H, E), we first use Theorem 3 to decompose H into

H = X0

⊕
· · ·
⊕
Xn−1

⊕
TE ,

where each Xl = Bl,0
⊕
· · ·
⊕
Bl,nl−1. It was proved in [68] that although the BSCC

decomposition of H is not unique, the number nl of BSCCs for different decompo-

sitions of Xl is the same. Furthermore, for each Bi,l, we can employ Theorem 8 to

decompose it into di,l aperiodic subspaces, where di,l is the period of Bi,l. Then the

only question that remains to answer is: is the sum
∑

i di,l of the periods of BSCCs

the same for different decompositions of Xl? The following is a key lemma to give a

positive answer to this question:

Lemma 18: Let G = (H, E) be a quantum Markov chain with the stationary

coherence decomposition:

H =
⊕
l

Xl
⊕
TE .
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Then for any l and any BSCCs X and Y contained in Xl, we have d(X) = d(Y ),

where d(·) denotes the period of E when restricting to the corresponding subspace.

Proof. Let R =
⊕

l Xl be the subspace of H spanned by all BSCCs. For any

subspace Z of H, let PZ be the projector onto Z and PZ be super-operator with

PZ(·) = PZ ·PZ . Then E|Z = PZ ◦E ◦PZ . By [5, Corollary 23], we can find a unitary

U such that

(1) PY = UPXU
† (thus PY = U ◦ PX ◦ U † where U(·) = U · U †); and

(2) for any linear operator A with A = PR(A), PR ◦ E† ◦ U(A) = U ◦ PR ◦ E†(A).

For any orthogonal projectors P0, · · · , Pd−1 such that
∑d−1

i=0 Pi = PX and E†X(Pi) =

PX ◦ E†(Pi) = Pi�1, where � denotes subtraction modulo d, let P ′0, · · · , P ′d−1 be or-

thogonal projectors with P ′i = U(Pi). Then for any i,

(E|Y )†(P ′i ) = PY ◦ E† ◦ PY ◦ U(Pi) = PY ◦ PR ◦ E† ◦ U(Pi)

= PY ◦ U ◦ PR ◦ E†(Pi) = U ◦ PX ◦ PR ◦ E†(Pi)

= U ◦ PX ◦ E†(Pi) = U(Pi�1) = P ′i�1.

Thus following from Lemma 13, d(X) ≤ d(Y ). By a symmetric argument, we can

show that d(Y ) ≤ d(X) as well. 2

Now we can easily prove the following:

Theorem 9: Let a quantum Markov chain (H, E) have two different BSCC de-

compositions:

H = B0

⊕
· · ·
⊕
Bn−1

⊕
TE

= B′0
⊕
· · ·
⊕
B′n−1

⊕
TE

and let di (resp. d′i) be the period of E restricting on Bi (resp. B′i). Then

n−1∑
i=0

di =
n−1∑
i=0

d′i.
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5.3 Limiting States

In the last section, we have considered the limiting states of irreducible and

aperiodic quantum Markov chains. In this section, let us study these for general

quantum Markov chains which may be reducible.

Lemma 19: Let G = (H, E) be a quantum Markov chain. Then the following

statements are equivalent:

(1) For any ρ ∈ D(H), limn→∞ En(ρ) exists;

(2) 1 is the only eigenvalue of E with magnitude one.

Proof. If 1 is the only eigenvalue with magnitude one, then Eφ = limn→∞ En. On

the other hand, if for any ρ ∈ D(H), limn→∞ En(ρ) exists, then

Eφ(ρ) = lim
n→∞

En(ρ) = E( lim
n→∞

En(ρ)) = E(Eφ(ρ)).

So E(Eφ) = Eφ. Note that the corresponding Jordan norm forms of E ◦ Eφ and Eφ

are respectively

JJφ =
∑

k:|λk|=1

λkPk

Jφ =
∑

k:|λk|=1

Pk.

Thus, whenever |λk| = 1 it actually holds λk = 1. 2

A special case of Lemma 19 where E is unital (that is, E(I) = I) was proved

in [45]. The following lemma further deals with the case when the limiting state is

unique.

Lemma 20: For any quantum Markov chain G = (H, E), the following statements

are equivalent:

(1) There is a limiting state ρ∗, i.e. limn→∞ En(ρ) = ρ∗ for all ρ ∈ D(H). Espe-

cially, if E is unital, then ρ∗ = I/n, where dim(H) = n;
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(2) H contains a unique BSCC B and (B, E|B) is aperiodic;

(3) 1 is the only eigenvalue of E with magnitude one and its geometric multiplicity

is 1.

Proof. (1) ⇒ (2) is easy. If H has two BSCCs, then there are two stationary

states. This contradicts the uniqueness of limiting states. As limiting states must

be stationary, by Lemma 12, supp(ρ∗) = B. From Theorem 7, (B, E|B) is aperiodic.

(2)⇒ (3) As Eφ = limi→∞ Eni , we see from Definition 17 that for any ρ ∈ D(H),

supp(Eφ(ρ)) ⊆ B. Note that (B, E|B) is irreducible and aperiodic. Thus for any

σ ∈ D(B), limn→∞ En(σ) = ρ∗ with supp(ρ∗) = B, and Eφ(σ) = ρ∗. From the fact

Eφ◦Eφ = Eφ, we have that for any ρ ∈ D(H), Eφ(ρ) = ρ∗ and ρ∗ is the only stationary

state of Eφ. By the definition of Eφ, the stationary states of E are also stationary

states of Eφ, so 1 is the only eigenvalue of E with magnitude one and its geometric

multiplicity is 1.

(3) ⇒ (1) Suppose 1 is the only eigenvalue with magnitude one. Then Eφ =

limn→∞ En, i.e., for all ρ ∈ D(H), limn→∞ E(ρ) exists. Furthermore, as limiting

states must be stationary states and 1’s geometric multiplicity is one, there is only

one stationary state ρ∗ satisfying limn→∞ E(ρ) = ρ∗ for any ρ ∈ D(H), by [66,

Corollary 6.5]. 2

A quantum Markov chain containing only one BSCC is called an ergodic quantum

Markov chain in [10] and the above result can also be obtained in the paper.

5.4 Conclusion

In this chapter, we obtained some useful characterizations of irreducibility and

periodicity for quantum Markov chains. Based on them, we developed a periodic

decomposition technique for irreducible quantum Markov chains, which is further

combined with the BSCC and stationary coherence decompositions in the previ-
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ous literature to construct a three-level decomposition of general quantum Markov

chains. This three-level decomposition provides us with a finer tool for algorithmic

analysis and model-checking of quantum systems. We also established a limit the-

orem that gives a characterization of limiting states in a quantum Markov chain

regarding periodicity, irreducibility, and eigenvalues of the super-operator.
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Part IV

Applications



45

As quantum communicating systems (usually called quantum channels), quan-

tum noises, and quantum memory cells can be characterized by a CPTP map (a

super-operator) on a Hilbert space, we can model them by quantum Markov chains.

In this part, we apply decompositions of quantum Markov chains developed in the

last part on these topics as follows.

• Chapter 6: We give a novel characterization of the one-shot zero-error capacity

of quantum channels.

• Chapter 7: We establish a structure theorem of decoherence-free subsystems of

quantum systems. Then we develop an algorithm to generate a set of maximal

decoherence-free subsystems for any given quantum system such that any other

decoherence-free subsystem is a subspace of one of them. Furthermore, we use

this structure theory in the quantum many-body system described by a family

of matrix product states generated by a tensor and find a feasible way to

numerically derive a basis for the tensor. Such a basis plays an important role

in establishing the fundamental theorems of matrix product states.

• Chapter 8: We find an interesting new phenomenon that the purely classi-

cal memory cell can be super-activated to preserve quantum states, whereas

the null memory cell can only be super-activated to encode classical informa-

tion. Furthermore, necessary and sufficient conditions for this phenomenon

are discovered so that the super-activation can be easily checked by examin-

ing certain eigenvalues of the quantum memory cell without computing the

noiseless subsystems explicitly. In particular, it is found that entangled and

separable stationary states are responsible for the super-activation of storing

quantum and classical information, respectively.
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Chapter 6

One-shot Zero-error Capacity of Quantum

Channels

The notion of the zero-error capacity of quantum channels is a straightforward but

nontrivial generalization of the corresponding notion for an essential channel intro-

duced by Shannon in [57]. It is defined as the least upper bound of the rates at

which one can send classical messages correctly via a quantum channel [47]. As

zero-error capacity is a fundamental quantity of quantum channels, it is desirable

to find an efficient algorithm to compute it. However, it was proved by Beigi and

Shor [6] that even computing one-shot zero-error capacity is QMA-complete [32].

Recently, Duan, Severini and Winter [20] found an upper bound of the zero-error

capacity of quantum channels by introducing a notion of quantum Lovász number.

In this chapter, we give a new angle to look at the structure of quantum channels

by the periodic and BSCC decompositions of quantum Markov chains developed in

the last part. In particular, it gives a novel characterization of one-shot zero-error

capacity for general quantum channels.

6.1 One-shot Zero-error Capacity

Definition 23: For a quantum channel modeled by a super-operator E , its one-

shot zero-error capacity is the maximum integer n for which there exists a set of

states {ρ0, · · · , ρn−1} such that {E(ρ0), · · · , E(ρn−1)} can be perfectly distinguished;

that is, they are mutually orthogonal.

Let us first fix several notations: for a super-operator E on a Hilbert space H,
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we write:

• α(E) for the one-shot zero-error capacity of quantum channel E ;

• β(E) the sum of the periods of all BSCCs in quantum Markov chain (H, E).

From Corollary 9, β(E) is well-defined;

• γ(E) the number of BSCCs in quantum Markov chain (H, E). The well-

definedness of γ(E) comes from Lemma 9.

We first show a technical lemma which is useful for our later discussion.

Lemma 21: For any super-operators E and F , if E ◦ F = F then α(F) ≤ γ(E).

Proof: Suppose {ρi : 1 ≤ i ≤ α(F)} is a set of states such that F(ρi) and F(ρj)

are orthogonal whenever i 6= j. From E ◦ F = F , each F(ρi) is a fixed point state

of E , and its support contains a BSCC. Hence, α(F) ≤ γ(E). 2

The next lemma collects some relations between the three quantities α(E), β(E),

and γ(E) for different variants (E∞ and Eφ defined by Eqs. (2.1) and (2.2), respec-

tively) of a super-operator E .

Lemma 22: Let E be a super-operator on H. Then

(1) α(E) ≥ β(E) ≥ γ(E);

(2) Eφ ◦ Eφ = Eφ, E∞ ◦ E∞ = E∞, and E ◦ E∞ = E∞;

(3) α(E∞) = β(E∞) = γ(E∞) ≤ tr(J∞);

(4) α(Eφ) = β(Eφ) = γ(Eφ) ≤ tr(Jφ).

Proof: (1) and (2) are easy to check, and the first part of (3) and (4) follows

immediately from (1), (2) and Lemma 21.

2
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The following example shows the two inequalities in Lemma 22 hold strictly in

general.

Example 4: Consider a quantum Markov chain G = (H, E) with state space

H = lin.span{|0〉, · · · , |3〉} and the super-operator E(·) =
∑4

i=1 Ei · E
†
i , where:

E1 =
1√
2

(|0〉〈0 + 1|+ |2〉〈2 + 3|),

E2 =
1√
2

(|0〉〈0− 1|+ |2〉〈2− 3|),

E3 =
1√
2

(|1〉〈0 + 1|+ |3〉〈2 + 3|),

E4 =
1√
2

(|1〉〈0− 1|+ |3〉〈2− 3|),

|0 ± 1〉 = (|0〉 ± |1〉)/
√

2, |2 ± 3〉 = (|2〉 ± |3〉)/
√

2. It is easy to see that the

matrix representation of E is diagonalizable and, 1 and 0 are the only eigenvalues

of E with algebraic multiplicities being 4 and 12, respectively. So E = E∞ = Eφ

and tr(Jφ) = tr(J∞) = 4. Moreover, we can easily obtain that α(E) = 2, so

α(E∞) = α(Eφ) = 2.

A more interesting relation between α(E), β(E), γ(E) is established in the fol-

lowing theorem:

Theorem 10: Let E be a super-operator on H. Then

α(E∞) = γ(E) and α(Eφ) = β(E).

Proof: Note that γ(E) ≤ 1
n

∑n
i=1 α(E i) for any n ≥ 1. Thus, γ(E) ≤ α(E∞). The

reverse inequality follows from Lemma 22 (2) and Lemma 21. So, α(E∞) = γ(E).

Let H =
⊕n−1

i=0 Bi
⊕
TE be the BSCC decomposition of H according to E where

TE is the largest transient subspace. Furthermore, by the periodic decomposition,

each Bi can be decomposed into di orthogonal subspaces Bi =
⊕di−1

j=0 Bi,j such that

for each j, E(Bi,j) = Bi,j�1 where � denotes addition modulo di. Then we have:
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Claim: for any 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ di − 1, Bi,j is a BSCC of Eφ.

It is easy to see that Bi is an invariant subspace under Eφ, and by [66, The-

orem 6.6], for any ρ ∈ D(Bi), Eφ|Bi(ρ) = limn→∞ Edin(ρ). Then by Theorem 8,

(Bi,j, Edi|Bi,j) is irreducible and aperiodic, so Bi,j is also an invariant subspace under

Eφ. By invoking Theorem 7, we obtain that for any ρ ∈ D(Bi,j)

Eφ(ρ) = lim
n→∞

Edin(ρ) = ρ∗i,j

where ρ∗i,j is the limiting state for (Bi,j, Edi|Bi,j) and supp(ρ∗i,j) = Bi,j. Therefore,

ρ∗i,j is the unique stationary state in D(Bi,j) and Bi,j is a BSCC of Eφ, following

Lemma 8.

With this claim and noting that TE is also the transient subspace of Eφ, we

immediately know that γ(Eφ) = β(E). Then α(Eφ) = β(E) follows from Lemma 22

(4). 2

By the above theorem, a way to check the uniqueness of the BSCC and periodic

decompositions can be obtained.

Lemma 23: Let E be a super-operator on H. Then

(1) γ(E) = tr(J∞) if and only if the BSCC decomposition of E is unique;

(2) β(E) = tr(Jφ) if and only if the periodic decomposition of E is unique.

Proof. It is easy to see that γ(E) = tr(J∞) if and only if there are no stationary

coherences between the BSCCs of E . Also by Theorem 4, the BSCC decomposition

of E is unique if and only if there are no stationary coherences between the BSCCs of

E . By the same argument and noting from the proof of Theorem 10 that the periodic

decomposition of E coincides with the BSCC decomposition of Eφ, we derive that

γ(Eφ) = tr(Jφ) if and only if the periodic decomposition of E is unique. Then we

complete the proof by noting γ(Eφ) = β(E). 2
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As a consequence of Lemma 23, combining with Theorem 17 and [66, Theorem

6.6], we can claim that the periodic decomposition of irreducible quantum Markov

chains is unique.

Furthermore, we consider the limit of one-shot zero-error capacity of the compo-

sition of multiple copies of channel E .

Theorem 11: Let E be a super-operator on H. Then

inf
n
α(En) = lim

n→∞
α(En) = β(E).

Proof: We first note that {α(En)} is a decreasing sequence and α(En) ≥ 1 for all

n ≥ 1. So, limn→∞ α(En) exists and infn α(En) = limn→∞ α(En). By Lemma 3, there

exists an increasing sequence {ni} such that Eφ = limi→∞ Eni . Thus limi→∞ α(Eni) =

α(Eφ) and α(Eφ) = β(E), and finally we have limn→∞ α(En) = β(E). 2

The significance of Theorem 11 can be better understood by considering the

following scenario: Suppose Alice wants to send messages to Bob by a quantum

communication over a long distance (≥ 1000 km, say, from Beijing to Sydney). Due

to fiber attenuation and operation errors accumulated over the entire communication

distance, they can not communicate with each other directly. Alice must first send

the message to some quantum repeater, and then the repeater resends it to the next

one. After n − 1 quantum repeaters, the message will be received by Bob. Then

α(En) is the zero-error capacity of this communication process. Theorem 11 shows

that provided n is large enough, β(E) can be accepted as a good approximation of

α(En).

It was shown in [20] that one-shot zero-error capacity of channel E with Kraus

operators {Ei} only depends on the so-called non-commutative confusability graph

defined as lin.span{E†iEj : i, j}. By Theorems 10 and 11, we see that limn→∞ α(En)

only depends on the non-commutative confusability graph of Eφ.
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6.2 A New Characterization

In this section, we give a new characterization of one-shot zero-error capacity

of quantum channels by β(·) and γ(·). For this purpose, we recall from [8] that

transpose channels of E is defined to be

RPX = Π ◦ E† ◦ N ,

where X is a subspace of H, PX is the projector onto X , and N is a normalization

map. That is, if the Kraus operators of E are {Ei}, then

Π(ρ) = PXρPX ,

E†(ρ) =
∑
i

E†i ρEi,

N (ρ) = E(PX )−
1
2ρE(PX )−

1
2 .

Note that the inverse in E(PX )−
1
2 is taken on the support of E(PX ). In general,RPX is

not trace-preserving, but on the subspace E(X ), RPX is a CPTP map. Furthermore,

RPX ◦ E is a CPTP map on the subspace X , and X is an invariant subspace in the

sense that RPX ◦ E(X ) ⊆ X .

Theorem 12: Let E be a super-operator on H. Then

α(E) = max
X⊆H

γX (RPX ◦ E) = max
X⊆H

βX (RPX ◦ E).

To prove Theorem 12, we need the following technical lemma.

Lemma 24: Let E be a super-operator on H and X an subspace of H. Then

α(E) ≥ α(RPX ◦ E).

Proof: RPX and E satisfy the assumption of Lemma 5, so for any states ρ, σ ∈

D(H), we have:

‖ρ− σ‖1 ≥ ‖E(ρ− σ)‖1 ≥ ‖RPX ◦ E(ρ− σ)‖1.
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By the above inequality and the definition of α(E), we conclude that α(E) ≥ α(RPX ◦

E). 2

Now we are ready to prove Theorem 12.

Proof: First, using Lemmas 22 and 24, for any subspace X of H, we obtain:

α(E) ≥ α(RPX ◦ E) ≥ βX (RPX ◦ E) ≥ γX (RPX ◦ E). (6.1)

Let n = α(E). This means that there are n orthogonal states {ρi}ni=1 such that

{E(ρi)}ni=1 are still mutually orthogonal. Let C be the convex set generated by

{ρi}ni=1 and P the projector onto the support space of C. For any ρ =
∑n

i=1 piρi

and σ =
∑n

i=1 qiρi in C, it is easy to check that for any x ≥ 0,

‖E(ρ− xσ)‖1

= ‖
n∑
i=1

(pi − xqi)E(ρi)‖1

=
n∑
i=1

|pi − xqi|

= ‖ρ− xσ‖1

and hence C is preserved by E in the sense of [8]. By [8, Theorems 1 and 2], C is

isometric to a subset of the fixed states of RPX ◦ E . Thus

α(E) ≤ γX (RPX ◦ E),

and we complete the proof by noting Eq.(6.1). 2

6.3 Conclusion

In this chapter, we found an interesting connection between one-shot zero-error

capacity of quantum channels and decompositions of quantum Markov chains.

For future studies, an immediate topic is to generalize our results on the one-shot

zero-error capacity to the case of n-shot zero-error capacity. Treating a quantum
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channel together with its state Hilbert space as a quantum generalization of Markov

chain offers a way to re-examine some fundamental problems in quantum information

theory, e.g., super-activation of quantum channels [12, 15].
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Chapter 7

The Structure of Decoherence-free Subsystems

To build large-scale quantum computers, the obstacles, such as decoherence and

noise, must be managed and overcome [49]. One of the effective methods for this pur-

pose is through decoherence-free subspaces proposed by Daniel A. Lidar in [43]. A

subspace of the system Hilbert space is said to be decoherence-free if the effect of the

noise on it is simply unitary, and thus easily correctable. For this sake, decoherence-

free subspaces are essential tools in quantum computing, where coherent control of

quantum systems is the goal[42]. On the other hand, decoherence-free subspaces

can be characterized as a particular case of quantum error-correcting codes to pre-

serve quantum information from noise [42]. Indeed, we do not even need to restrict

the decoherence-free dynamics to a subspace. E. Knill, R. Laflamme, and L. Viola

introduced the concept of noiseless subsystems, by extending higher-dimensional ir-

reducible representations of the algebra generating the dynamical symmetry in the

system-environment interaction [34]. A subsystem is a factor in the tensor product

decomposition of a subspace, and the noiseless subsystem requires the evolution on

it to be identity.

Noiseless subsystems have been fully characterized in [13, 9, 7, 37, 35]. Re-

markably, a structure theory of noiseless subsystems was established in [13], leading

to an algorithm which finds all noiseless subsystems for a given quantum opera-

tion (i.e., the evolution of an open quantum system, mathematically modeled by a

super-operator) [33, 63]. For the more general case of decoherence-free subsystems,

however, a structure theory is still lacking, although several conditions for their ex-
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istence were found in [56], and subsystems with significantly reduced noises were

carefully examined in [64]. Without such a structure theory, it is hard to compute

all decoherence-free subsystems (subspaces) or the highest-dimensional ones for a

given super-operator.

This chapter aims to develop a structure theory that shows precisely how a

super-operator determines its decoherence-free subsystems, with the structure the-

ory of noiseless subsystems as a particular case. As an application, we develop an

algorithm to generate a set of maximal decoherence-free subsystems for any given

super-operator such that any other decoherence-free subsystem is a subspace of one

of them. Furthermore, we use this structure theory in the quantum many-body sys-

tem described by a family of matrix product states generated by a tensor and find a

feasible way to numerically derive a basis for the tensor. Such a basis plays a vital

role in establishing the fundamental theorems of matrix product states [14, 17].

All the results in this chapter are based on our paper [26].

7.1 Continuous Coherence

Recall that given a quantum system S with the associated (finite-dimensional)

state Hilbert space H, the evolution of the system can be mathematically modeled

by a super-operator E on H. We say that a quantum system A is a subsystem of S

if H = (BA⊗BB)⊕ (BA⊗BB)⊥ for some co-subsystem B, where BA and BB are the

state spaces of A and B, respectively. Generally, co-subsystem B is not unique, and

one may construct other co-subsystems of A as subspaces of BB, or by combining

co-subsystems of A with orthogonal supports.

Definition 24: Let E be a super-operator on H. A subsystem BA of H is called

decoherence-free if there is a co-subsystem BB of BA (that is, BA⊗BB is a subspace
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of H) and a unitary matrix UA on BA such that ∀ρA ∈ D(BA), ∀ρB ∈ D(BB),

∃σB ∈ D(BB) : E(ρA ⊗ ρB) = UAρAU
†
A ⊗ σB. (7.1)

Furthermore, if UA = IA, the identity operator on BA, then we say that BA is

noiseless.

Co-Subsystem BB of decoherence-free subsystem BA is inessential as BB can

be traced over. Noiseless subsystems have been intensely studied in the areas of

quantum error correction [36, 7, 13, 35] and quantum memory [38], and can be

characterized by the set of fixed points of E . From Theorem 5, with an appropriately

orthogonal decomposition of the Hilbert space H =
⊕n

k=1(BAk
⊗BBk

)⊕ TE , fix(E)

admits a useful structure:

fix(E) =
n⊕
k=1

(L(BAk
)⊗ σk)⊕ 0TE (7.2)

where σk is a full-rank quantum state on BBk
. It is easy to see that for each k,

BAk
is a noiseless subsystem. Conversely, this decomposition captures all noiseless

subsystems; that is, BA is a noiseless subsystem if and only if BA ⊆ BAk
for some k.

Example 5: Given H = BA ⊗BB, and {|k〉A}3
k=0 and {|k〉B}2

k=0 are orthonormal

bases of BA and BB, respectively, let E be a super-operator on H with the Kraus

operators:

E1 = |00〉〈01|+ |10〉〈11| − |20〉〈21| − |30〉〈31|

E2 = |01〉〈00|+ |11〉〈10| − |21〉〈20| − |31〉〈30|

E3 = |00〉〈02|+ |10〉〈12| − |20〉〈22| − |30〉〈32|

where |kl〉 = |k〉A ⊗ |l〉B. It is easy to calculate the fixed-point decomposition of H

as

H =
2⊕
l=1

[Bl ⊗H′]⊕K



57

where B1 = lin.span{|0〉A, |1〉A}, B2 = lin.span{|2〉A, |3〉A},H′ = lin.span{|0〉B, |1〉B},

and K = BA ⊗ lin.span{|2〉B}. Then we can store 1-qubit quantum information in

B1 or B2.

Given a super-operator E on H, applying BSCC decomposition, we can decom-

pose H into a set of mutually orthogonal BSCCs with the largest transient subspace

TE :

H =
m⊕
p=1

Bp ⊕ TE . (7.3)

It is worth noting that each Bp is invariant under E , i.e. for any A ∈ L(Bp),

E(A) ∈ L(Bp). Thus, the Kraus operators {Ek} of E have the corresponding block

form:

Ek =



Ek,1

Ek,2

. . .

Ek,m

Tk

0 Kk


for some operators Ek,p ∈ L(Bp), Kk ∈ L(TE), and Tk ∈ L(TE , T ⊥E ). We then define

a set of associated maps {Ep,q : p, q = 1, . . . ,m} of E :

Ep,q(·) =
∑
k

Ek,p · E†k,q. (7.4)

Obviously, for any p and q, Ep,q is a linear map from L(Bq,Bp) to itself. If p 6= q,

L(Bq,Bp) can be viewed as (outer) coherences from Bq to Bp, i.e. upper off-diagonal

blocks of all matrices restricted in the decomposition Bp ⊕ Bq. Thus the coherence

between Bp and Bq is L(Bq,Bp) ⊕ L(Bp,Bq) and L(Bq) can be regarded as inner

coherences.

For all p and q, the following two properties are easy to observe:
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(1) L(Bq,Bp) is invariant under E ; that is, for all A ∈ L(Bq,Bp), E(A) ∈ L(Bq,Bp);

(2) λ(Ep,q) ⊆ λ(E), where recall that λ(E) is the set of all eigenvalues of E .

Furthermore, the coherence L(Bq,Bp) is said to be continuous if there exists

A ∈ L(Bq,Bp) such that E(A) = Ep,q(A) = eiθA for some real number θ; that is,

λ(Ep,q) has an element with magnitude one. Specially, if θ = 0, then L(Bq,Bp) is

stationary. Obviously, inner coherence L(Bq) is always stationary because a super-

operator has at least one stationary state. Stationary coherences have been intro-

duced in Chapter 4 and intensely studied in [5].

7.2 Structure Theorem

By the definition, a decoherence-free subsystem BA is a small section of the whole

state space H in which the effect of the quantum noise modeled by E is equivalent to

a unitary transformation. From Eq.(7.1), the restriction of E onto BA ⊗ BB, where

BB is the co-subsystem of BA, can be written as

EAB = UA ⊗ EB (7.5)

where UA is a unitary super-operator on BA and EB is a super-operator on BB.

By the BSCC decomposition, BB can be chosen to be irreducible. From now on,

we assume without loss of generality that the co-subsystem of a decoherence-free

subsystem is always irreducible.

First, we observe that the joint system of a decoherence-free subsystem and its

irreducible co-subsystem can be decomposed into BSCCs with continuous coher-

ences.

Theorem 13: Given a super-operator E on

H = (BA ⊗ BB)⊕ (BA ⊗ BB)⊥.



59

Let BA be a decoherence-free subsystem and UA the corresponding unitary matrix

in Eq.(7.1). If {|x〉}mx=1 is a set of mutually orthogonal eigenvectors of UA and

Bx = lin.span{|x〉} ⊗ BB, then for all 1 ≤ p, q ≤ m, Bp is a BSCC and L(Bp,Bq) is

continuous.

Proof. Note that we assume BB is irreducible. Let ρ be the unique stationary state

of EB. Then for any x, |x〉〈x| ⊗ ρ is a minimal stationary state of E , and hence Bx

is minimal. Furthermore, note that UA|x〉 = eiθx|x〉 for some θx. Thus

E(|p〉〈q| ⊗ ρ) = ei(θp−θq)|p〉〈q| ⊗ ρ

for all p and q. 2

Theorem 13 indicates that BSCCs with continuous coherences play an essential

role in determining decoherence-free subsystems. To check if two orthogonal BSCCs

have a continuous coherence, we present the following lemma.

Lemma 25: Let E be a super-operator on H with the orthogonal decomposition

presented in Eq. (7.3). Then for any 1 ≤ p, q ≤ m, L(Bp,Bq) is continuous if and

only if there is a unitary matrix U and a real number θ such that Ek,p = eiθUEk,qU
†

for all k. Furthermore, Bp ' Bq.

Proof. Assume that L(Bp,Bq) is continuous; that is, there is a matrix A ∈ L(Bp,Bq)

such that E(A) = eiθA for some real number θ. Let V = e−iθPq + I − Pq, where

Px is the projector onto Bx, and V ◦ E(A) = A with V(·) = V · V †. Moreover, it is

obvious that Bp and Bq are also orthogonal BSCCs under V ◦E by the decomposition

Eq.(7.3). Therefore, there is a stationary coherence from Bq to Bp under V ◦E . From

Lemma 11, we have Bp ' Bq, and there exists some unitary matrix U such that for

any k,

Ek,p = eiθUEk,qU
†.
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Conversely, for any p and q, let

Eq,p(·) =
∑
k

Ek,q · E†k,p =
∑
k

e−iθEk,q · UE†k,qU
†.

Its matrix representation reads

Mq,p =
∑
k

e−iθEk,q ⊗ (UEk,qU
†)∗

= e−iθ(I ⊗ U∗)

(∑
k

Ek,q ⊗ E∗k,q

)
(I ⊗ U∗†).

As λ(Mq,p) = λ(Eq,p) and
∑

k Ek,q ⊗ E∗k,q is the matrix representation of Eq,q which

is a super-operator and has 1 as one of its eigenvalues, we have e−iθ ∈ λ(Eq,p). 2

Corollary 3: Let E be a super-operator on H with the orthogonal decomposition

presented in Eq. (7.3). Then the relation {(p, q) : 1 ≤ p, q ≤ m,L(Bp,Bq) is continuous}

is an equivalence relation. That is, for any p, q, and r,

(1) (reflexivity) L(Bp,Bp) is continuous;

(2) (symmetry) if L(Bp,Bq) is continuous, then so is L(Bq,Bp);

(3) (transitivity) if L(Bp,Bq) and L(Bq,Br) are both continuous, then so is L(Bp,Br).

With Corollary 3, L(Bp,Bq) is continuous coherence if and only if so is L(Bq,Bp).

Thus in the following, we simply say that there is a continuous coherence between

Bp and Bq without referring to the direction. Then we group together BSCCs by

continuous coherences.

Theorem 14: Let E be a super-operator on H. There is a unique orthogonal

decomposition of H

H =
L⊕
l=1

Xl ⊕ TE . (7.6)

where
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(1) each Xl is either a BSCC or can be further decomposed into mutually orthog-

onal BSCCs with continuous coherences between any two of them:

Xl =

ml⊕
p=1

Bl,p ' Cml ⊗ Bl, Bl ' Bl,p ∀p (7.7)

such that the Kraus operators {Ek} of E have a corresponding block form:

Ek '



U1 ⊗ Ek,1

. . .

UL ⊗ Ek,L

Tk

0 Kk


(7.8)

for some operators Ek,l ∈ L(Bl), Kk ∈ L(TE), Tk ∈ L(TE , T ⊥E ), and unitary

matrix Ul = diag(eiθl,1 , · · · , eiθl,ml ) for some real numbers {θl,p}ml
p=1 on Cml .

Moreover, Bl is irreducible under El(·) =
∑

k Ek,l · E
†
k,l. Furthermore,

fix(E) =
⊕
l

[fix(Ul)⊗ ρl]⊕ 0TE ,

where Ul(·) = Ul · U †l .

(2) there is no continuous coherence between any BSCCs Bl,p and Bl′,p′ whenever

l 6= l′.

Proof. By the structure of noiseless subsystems, there is a unique orthogonal de-

composition of H as

H =
L′⊕
l=1

X ′l ⊕ TE

such that for any orthogonal BSCCs B1 and B2, they have stationary coherences

if and only if B1 ⊕ B2 ∈ X ′l for some l. Then we divide each {X ′l } into a finite

number of disjoint subsets by continuous coherences; that is for any l1 6= l2, if there

is a continuous coherence between any BSCCs in X ′l1 and X ′l2 , then they are in

the same subset. This can be done as the existence of continuous coherences is an
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equivalence relation by Corollary 3. Then we define {Xl}Ll=1 to be the set of the direct

sum of all elements in each subset. Therefore, H can be uniquely decomposed as

H =
⊕

l Xl⊕TE . Obviously, for any two orthogonal BSCCs Bl1 ∈ Xl1 and Bl2 ∈ Xl2 ,

L(Bl1 ,Bl2) is continuous if and only if l1 = l2.

Furthermore, for each l, Xl can be further decomposed into mutually orthogonal

BSCCs:

Xl = ⊕ml
p=1Bl,p.

By Lemma 25, in an appropriate decomposition of Xl = ⊕ml
p=1Bl,p ' Cml ⊗ Bl and

Bl ' Bl,p for all p:

Ek =



U1 ⊗ Ek,1

. . .

UL ⊗ Ek,L

Tk

0 Kk


(7.9)

and Bl is irreducible under El(·) :=
∑

k Ek,l·E
†
k,l for all l, where Ul = diag(eiθl,1 , · · · , eiθl,ml )

for a set of real numbers {θl,p}ml
p=1. From the structure of noiseless subsystems and

noting that the stationary coherence is continuous, we have

fix(E) =
⊕
l

[fix(Ul)⊗ ρl]⊕ 0TE ,

where ρl is the unique stationary state of El. 2

Corollary 4: Let E be a super-operator on H with the unique decomposition

H =
⊕
l

(Cml ⊗ Bl)⊕ TE

presented in Theorem 14. For any BSCC H′, there is a pure state |ψ〉 ∈ Cml for

some l such that H′ = lin.span{|ψ〉} ⊗ Bl.

The above theorem shows that BSCCs with continuous coherences can be used

to construct decoherence-free subsystem Cml . On the other hand, we can show
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that other decoherence-free subsystems are all subspaces of the ones constructed in

Eq.(7.7).

Theorem 15: Let E be a super-operator on H with the unique decomposition:

H =
⊕
l

(Cml ⊗ Bl)⊕ TE

presented in Theorem 14. Then a subsystem BA is decoherence-free if and only if

(1) BA ⊆ Cml for some l, and

(2) BA is the support of some stationary state of Ul(·) = Ul · U †l , where Ul is the

corresponding unitary matrix on Cml in the decomposition Eq.(7.8).

Proof. Assume that BA is decoherence-free. By Theorem 13, Theorem 14 and

Corollary 4, BA ⊆ Cml for some l. From the definition of decoherence-free subsystems

and the fact that the restriction of E onto Cml is Ul, BA is a decoherence-free subspace

under Ul and Ul(PA) = PA, where PA be the projector onto BA.

To prove the opposite direction, we observe that if BA is the support of some

stationary state of Ul, then PAUlPA = PAUl = UlPA. Thus BA is a decoherence-free

subspace under Ul. The rest of the proof is direct from Theorem 14. 2

This theorem confirms that the set of decoherence-free subsystems {Cml}l iden-

tified in Theorem 14 is optimal; that is, any other decoherence-free subsystem is a

subspace of one of them. So we only need to implement the decomposition in The-

orem 14, and all decoherence-free subsystems can be easily found by Theorem 15.

One easy way of achieving this is to first transform all continuous coherences

to stationary ones without changing any BSCC, and then use the algorithm of the

decomposition Eq.(7.2) for the fixed-point decomposition. To be specific, for any two

operators Ek,p and Ek,q in Eq. (7.8) of Theorem 14, if they are unitarily equivalent

with a phase θ, i.e. Ek,p ' eiθEk,q, then let E ′k,q = eiθEk,q and E ′k,p = Ek,p. Note
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Algorithm 2 CCdecompose(H, E)

Input: A Hilbert space H and a super-operator E with Kraus operators {Ek}dk=1

on it.

Output: The two-level decomposition of H in the form of Eqs. (7.6) and (7.7).

Call NSDecompose(H, E) to obtain decomp. in Eqs. (4.3-4.5)

L ← {1, 2, · · · , L}

for each p from 1 to L do

if p ∈ L then

for each q from p+ 1 to L with q ∈ L do

M ←
∑

k Ek,p ⊗ E∗k,q

if λ(M) has one element with magnitude one then

η ← tr(Ek,p)/tr(Ek,q)

Ek,q ← ηEk,q

L ← L \ {q}

end if

end for

end if

end for

for each k from 1 to d do

Ek ←

⊕L
l=1 Il ⊗ Ek,l Tk

0 Kk


end for

return SCdecompose(H, {Ek}dk=1)
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that E ′k,p is unitarily equivalent to E ′k,q. The continuous coherence between Bp and

Bq is transformed to be stationary, and Bp and Bq are still BSCCs under the new

super-operator. Using this technique, we can develop an algorithm (Algorithm 2)

to implement the decomposition in Theorem 14.

Now we return to see Example 5. By Theorem 14, we can confirm that the first

subsystem BA ' C4 is decoherence-free and further show that the evolution on it

is a unitary operator |0〉〈0| + |1〉〈1| − |2〉〈2| − |3〉〈3|. Thus we can store 2-qubit

information in this subsystem, which doubles the capacity of noiseless subsystems.

7.3 Matrix Product States

The traditional techniques for describing quantum many-body systems are usu-

ally not scalable due to the exponential growth of the dimension of the state space

with the number of subsystems. Matrix Product States (MPS), a special case of

tensor networks (a theoretical and numerical tool describing quantum many-body

systems), have been proved to be a useful family of quantum states for the descrip-

tion of ground states of one-dimensional quantum many-body systems [14].

Given a tensor A = {Ak ∈MD}dk=1 with a Hilbert space Bd = lin.span{|k〉}dk=1,

where MD denotes the set of all D ×D complex matrices, it generates a family of

translationally invariant MPS, namely

V (A) = {|Vn(A)〉}n∈N+ ,

where

|Vn(A)〉 =
d∑

k1,··· ,kn=1

tr(Ak1 · · ·Akn)|k1 · · · kn〉 ∈ B⊗nd .

Here, each |Vn(A)〉 corresponds to a state of n spins of physical dimension d. Let

the associated completely positive map be EA(·) =
∑d

k=1Ak · A
†
k.

By [17], we can always find a set of irreducible tensors {Aj}mj=1 with the same
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Hilbert space Bd, and a set of complex number {µj}mj=1 such that for any n ∈ N+,

|Vn(A)〉 =
m∑
j=1

µnj |Vn(Aj)〉, (7.10)

where a tensor is called irreducible if the associated map is CPTP and irreducible.

That is, for any tensor A, the generated MPS can be linearly represented by MPS

of a set of irreducible tensors. Furthermore, we can identify irreducible tensors that

are essentially the same in the following sense.

Definition 25 ([17]): We say that two irreducible tensors A = {Ak}dk=1 and B =

{Bk}dk=1 are repeated if there exist a phase θ and a unitary matrix U such that

Ak = eiθUBkU
†, ∀k.

By the definition, if A and B are repeated, then |Vn(A)〉 = einθ|Vn(B)〉 for all

n ∈ N+. Therefore, for any tensor A, we can assume without loss of generality that

the set of irreducible tensors {Aj}mj=1 in Eq. (7.10) are non-repeated. Such a set is

called a basis of A.

To determine if two irreducible tensors are repeated, an obvious way is to work

out the Jordan decomposition of all the matrices involved. However, as Jordan

decomposition is sensitive to computational errors, it is not suitable for numerical

analysis. Here we propose a more robust method to achieve this by using the results

of continuous coherences.

Theorem 16: Let A = {Ak}dk=1 and B = {Bk}dk=1 be two irreducible tensors.

Then they are repeated if and only if EA,B has an eigenvalue with magnitude one,

where EA,B =
∑d

k=1Ak ·B
†
k.

Proof. Let Ak ∈ L(BA) and Bk ∈ L(BB) for all k, and E be a super-operator on

BA ⊕ BB with Kraus operators {diag(Ak, Bk)}dk=1. Obviously, BA and BB are both

BSCCs under E . Then the result follows directly from Lemma 25. 2
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Note that many interesting results obtained for MPS rely on the basis. For ex-

ample, one of the most fundamental problems of quantum many-body systems is

to identify different tensors that give rise to the same MPS. This problem can be

reduced to deciding if the bases of two given tensors are related by a unitary trans-

formation [17]. Thus Theorem 16, which employs simple linear algebra calculation

to check if two irreducible tensors are repeated, an essential step in constructing the

bases of tensors, can help solve these problems.

7.4 Conclusion

In this chapter, with the BSCC and stationary coherence decomposition tech-

niques, we established a structure theory for decoherence-free subsystems. Conse-

quently, a method for finding a set of maximal decoherence-free subsystems has been

found. As an application in many-body quantum systems, these results gave us a

numerically robust way to find a basis for any tensor by computing the eigenvalues

of some linear maps.

For future studies, an immediate topic is to generalize our results to continuous-

time quantum systems. In [59], it was studied in the quantum control setting and

expected to obtain a linear-algebraic approach for finding all decoherence-free sub-

systems for any given continuous-time quantum system.
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Chapter 8

Super-activating Quantum Memory with

Entanglement

Quantum memory is often considered as a method of delayed usage of quantum

states and a set of quantum memory cells. The general (hybrid) quantum mem-

ory cell was first introduced in [38] and was also termed as noiseless information-

preserving structure [9]. The memory cell has separate (orthogonal) sectors, and

each sector is a noiseless subsystem, labeled by a classical “address”. Quantum

information is stored in each sector with the dimension being at least two, whereas

classical information is encoded by the choice between the different sectors. It is

reasonable to assume that in a quantum memory, the noise (characterized as a quan-

tum operation) on every memory cell is independent of each other. Moreover, the

memory cell is uniquely determined by the noise [9], so we can define a memory cell

by a quantum super-operator E . However, useful noiseless subsystems (quantum

information can be stored) are limited to the noise that contains some symmetries.

Such symmetries are often absent in real devices [64, 63], and thus the memory cell

can only preserve classical information if there are at least two sectors; in other

words, it is degenerated to be purely classical.

In this chapter, we consider two strategies of using quantum memory cells: indi-

vidually and collectively. In particular, we observe an interesting new phenomenon:

a purely classical memory cell E can be super-activated to store quantum informa-

tion; that is, collective use of memory cells can perfectly preserve quantum states

while individual memory cell cannot. We find that the memory cell E can be super-

activated if and only if there is an entangled stationary state of E⊗2. Furthermore,
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we can give a simple characterization of the super-activation regarding external

eigenvalues (with magnitude one) of E . This enables us to easily check the super-

activation property as well as the existence of entangled stationary states. Once

activated, the maximum dimension of sectors in the memory cell E may have an

exponential growth with the number of used memory cells. Moreover, we see that

a null memory cell (no information can be protected) cannot be super-activated

to store quantum information, but classical information can be preserved with the

collective use of it. This property can be characterized by internal eigenvalues.

This work has been summarized in the paper [24].

8.1 Quantum Memory

Given a quantum noise E , recall that noiseless subsystems of E can be charac-

terized by the set of its fixed points, fix(E) = {A ∈ L(H) | E(A) = A}. With an

appropriate decomposition of the Hilbert space H =
⊕n

k=1(BAk
⊗ BBk

) ⊕ TE , the

fixed points fix(E) admit the decomposition:

fix(E) =
n⊕
k=1

(L(BAk
)⊗ σk)⊕ 0TE (8.1)

where σk is a full-rank quantum state on BBk
and BAi

⊗BBi
is orthogonal to BAj

⊗BBj

if i 6= j.

Using the fixed-point decomposition of a given quantum operation E , we can

partition η(E), its multiset of eigenvalues with magnitude one, into two parts that

play essential roles in the super-activation of quantum memory cells. For each k, let

ηk(E) be the multiset of internal eigenvalues of E restricted on BAk
⊗BBk

in Eq.(7.2),

again with magnitude one, and let η̄(E) = η(E)\∪kηk(E) be the external eigenvalues

of E .

To perfectly protect quantum information, a quantum memory cell is defined

in [38, 9] as a quantum operation E to store quantum states into each noiseless
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quantum subsystem Ak if the dimension dk > 1 of BAk
. Define the shape of memory

cell E as Ω(E) = (d1, · · · , dn). As the structure of fix(E) is unique (up to the order

of k), Ω(E) is well-defined. In a sense, Ω(E) represents the capacity of the memory

cell E ; that is, how much quantum and classical information can be preserved:

• |Ω(E)|∞ = maxk dk is the largest dimension of quantum states that can be

stored;

• the length |Ω(E)| = n is the preserved classical information as the choice

between the different sectors.

If |Ω(E)|∞ = 1 and |Ω(E)| > 1, then the quantum memory cell is degenerated to

be purely classical, and quantum information cannot be preserved. Furthermore,

the memory cell is said to be null if Ω(E) = (1), i.e. E is ergodic; that is, neither

quantum nor classical information can be stored.

The quantum memory cell model encompasses the existing techniques for pre-

serving quantum and classical information: noiseless subsystems, pointer basis [71]

and decoherence-free subspaces [42]. For example, pointer bases have the shape

(1, 1, ..., 1), describing a complete set of one-dimensional k sectors (both Ak and Bk

are trivial for all k). A decoherence-free subspace has the shape (d), describing a

single k sector with a trivial Bk.

8.2 Super-activation for Storing Classical Information

Given a quantum memory cell E , if its shape is (1, · · · , 1), then quantum in-

formation cannot be stored in it. Indeed, it was shown in [64, 63] that in practice

only a tiny set of quantum memory cells admits a useful noiseless subsystem (with

the dimension being at least 2). Fortunately, this problem can be remedied by the

collective use of quantum memory cells where a super-activation of |Ω(·)|∞ can hap-

pen. Let us start with the simplest case with the shape Ω(E) = (1), i.e., a null
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memory cell. Typical examples include irreducible quantum channels and ampli-

tude damping channels. In this case, memory cell E behaves periodically in some

subspaces.

Lemma 26: Let E be a quantum memory cell with Ω(E) = (1). Then there exists

some integer d such that

(1) η(E) = {exp(2πik/d)}d−1
k=0 with each element being internal;

(2) a set of mutually orthogonal states {ρi}d−1
i=0 can be found such that E(ρi) = ρi�1,

where � denotes addition modulo d.

Proof. Please see the Appendix. 2

It is easy to check that the integer d(E) = d in the above lemma is the period of

E . However, note that d(E) is the number of internal eigenvalues. The memory cell E

cannot store quantum and classical information. But we can create new shelters for

classical information by using two quantum memory cells with the simplest shapes;

that is, |Ω(·)| can be activated for storing classical information. The following is a

simple example of such super-activation.

Example 6: Let E be a quantum memory cell on H = lin.span{|0〉, |1〉} with

E(·) = |0〉〈1| · |1〉〈0|+ |1〉〈0| · |0〉〈1|. It is easy to see that Ω(E) = (1) and Ω(E⊗2) =

(1, 1), indicating that |Ω(E)| is activated.

A general characterization of super-activation for storing classical information is

presented in the following:

Theorem 17: For any two quantum memory cells E and F with |Ω(E)| = |Ω(F)| =

1, there exists a set of mutually orthogonal quantum states {ρi}m−1
i=0 with m =

gcd{d(E), d(F)}, the greatest common divisor of d(E) and d(F), such that:

fix(E ⊗ F) =
m−1⊕
i=0

ρi ⊕ 0
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that is, Ω(E ⊗ F) = (1, · · · , 1) and |Ω(E ⊗ F)| = m. Furthermore, for each i, ρi is

separable.

Proof. As |Ω(E)| = |Ω(F)| = 1, there is only one stationary state σ and ρ for E

and F , respectively. By Lemma 26 (2), there are two sets of mutually orthogonal

states {σi}d(E)−1
i=0 and {ρi}d(F)−1

i=0 such that E(σi) = σi�1 and F(ρi) = ρi�1. For

0 ≤ i ≤ m− 1, let

σi =
1

KE

KE−1∑
j=0

σi�jm, ρi =
1

KF

KF−1∑
j=0

ρi�jm

where KE = d(E)/m and KF = d(F)/m. We claim that {(
∑

i σ
i ⊗ ρi�j)/m}m−1

j=0 is

a set of mutually orthogonal stationary state for E ⊗ F . Indeed, by Lemma 26 (1),

we have η(E) = {exp(2πik/d(E))}d(E)−1
k=0 and η(F) = {exp(2πik/d(F))}d(F)−1

k=0 , so the

multiplicity of eigenvalue one (for E ⊗F) is m. Thus for each j, (
∑m−1

i=0 σi⊗ρi�j)/m

is a minimal stationary state of E ⊗F . We finish the proof by noting that it has no

other minimal stationary states. 2

The proof of Theorem 17 gives us an explicit way to construct the memory cell

structure, namely the decomposition Eq.(8.1). Usually, entanglement is responsible

for the super-activation of many physical quantities in quantum information the-

ory, such as the zero-error capacity of quantum channels [15]. However, the above

theorem shows that it is not the case for |Ω(·)|.

For the special case where multiple copies of E are collectively used, we have:

Corollary 5: Suppose E is a null memory cell with |Ω(E)| = 1. Then

(1) |Ω(E⊗t)| = d(E)t−1 for any t ≥ 1. That is, perfect storage of classical informa-

tion can always be super-activated as long as d(E) > 1.

(2) |Ω(E⊗t)|∞ = 1 for any t ≥ 1. That is, no quantum information can be perfectly

preserved even collective use of memory cells is employed.
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(3) All stationary states of E⊗t are separable.

Proof. By the similar construction of stationary states in the proof of Theorem

17, we obtain d(E)t−1 separable and mutually orthogonal stationary states for E⊗t.

Then we compute Ω(E⊗t) = (1, · · · , 1) and |Ω(E⊗t)| = d(E)t−1 by noting that the

multiplicity of eigenvalue one (for E⊗t) is d(E)t−1. 2

Note that the period of a null memory cell represents how much classical infor-

mation can be activated. The above corollary shows that once activation happens,

the amount of preserved information can grow up continuously with the number of

the application of the memory cells.

8.3 Super-activation for Storing Quantum Information

The results presented in the last section show that two null memory cells can be

used together to super-activate the amount |Ω(E)| of stored classical information.

In this section, we are going to show how the amount |Ω(E)|∞ of stored quantum

information can be super-activated. The following theorem gives a necessary and

sufficient condition for this quantum super-activation.

Theorem 18: Let E and F be two quantum memory cells with |Ω(E)|∞ = |Ω(F)|∞ =

1. Then the following statements are equivalent:

(1) |Ω(E ⊗ F)|∞ ≥ 2;

(2) there exists an entangled stationary state for E ⊗ F ;

(3) there exist a ∈ η(E), b ∈ η(F) such that ab = 1, and a or b is external, i.e.

a ∈ η̄(E) or b ∈ η̄(F).

Proof. The implications (1) ⇒ (3) and (2) ⇒ (3) are from Theorem 17. As

|Ω(E)|∞ = |Ω(F)|∞ = 1, Ω(E) = (1, · · · , 1) and Ω(F) = (1, · · · , 1); that is there are
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only finitely many mutually orthogonal minimal stationary states {ρi} and {σj} for

E and F , respectively. If for any a ∈ η(E) and b ∈ η(F), ab = 1 can only occur when

a and b both are internal, i.e. a 6∈ η̄(E) and b 6∈ η̄(F), then it is enough to restrict

E and F onto the subspaces supp(ρi) and supp(σj) respectively, for each i and j,

when we compute fix(E ⊗ F). Furthermore, as for each ρi and σj are minimal, the

restricted memory cells Ei and Fj have the simplest shapes. Therefore, following

Theorem 17, all stationary states are separable and |Ω(E ⊗F)|∞ = 1, contradicting

the assumptions (1) or (2).

To prove (3) ⇒ (1) and (3) ⇒ (2), let A and B be eigenvectors of E and F

corresponding to eigenvalues a and b respectively, i.e. E(A) = aA and F(B) = bB.

In the following, we only prove the case that a ∈ η̄(E) and b ∈ η̄(F). Other cases

are similar.

From the decomposition Eq.(7.2) of E and F , there exist mutually orthogonal

minimal stationary states ρ1, ρ2 for E and σ1, σ2 for F such that

A ∈ lin.span{|ψ1〉〈ψ2| : |ψi〉 ∈ supp(ρi), i = 1, 2},

B ∈ lin.span{|φ1〉〈φ2| : |φi〉 ∈ supp(σi), i = 1, 2}.

Then we can find a positive number ε such that

1

K

[
ρ1 ⊗ σ1 + ρ2 ⊗ σ2 + ε(A⊗B + A† ⊗B†)

]
is a stationary state for E ⊗ F , where K is a normalization factor. Note that this

state is entangled by the positive partial transpose criteria [48], thus (2) holds.

Suppose |Ω(E ⊗ F)|∞ = 1. Then there are finitely many mutually orthogonal

minimal stationary states {ξi}mi=1 for E ⊗ F . By [66, Corollary 6.5], it contradicts

the fact that A⊗ B, ρ1 ⊗ σ1 and ρ2 ⊗ σ2 can all be linearly represented by {ξi}mi=1.

This proves (1). 2



75

Corollary 6: Given a quantum memory cell E , |Ω(E)|∞ can be super-activated

if and only if the multiset η̄(E) of external eigenvalues is not empty. Furthermore,

|Ω(E⊗t)|∞ is increasing with t.

Proof. It suffices to note that the set of eigenvalues of E is closed under complex

conjugate. Furthermore, if n > m, the noiseless subsystems of E⊗m is also the

noiseless subsystems of E⊗n, so |Ω(E⊗n)|∞ ≥ |Ω(E⊗m)|∞. 2

Note that computing η̄(E) is an easy linear algebra exercise. Thus super-activation

of a given quantum memory cell E can be checked easily without finding an entangled

stationary state or the noiseless subsystems of E⊗t.

Theorem 18 and Corollary 6 have some interesting implications. First, if we

want to super-activate |Ω(E)|∞ by collective use of E , E must have at least two

(mutually orthogonal) stationary quantum states; i.e. |Ω(E)| > 1. This means that

classical information can be stored in the memory cell E . Therefore, such super-

activation implies the preservation of classical information. This is in sharp contrast

to the super-activation in zero-error communication over quantum channels: there

exist quantum channels F1 and F2 such that both of them have vanishing zero-error

classical capacity (meaning that classical information cannot be sent without errors),

but the zero-error quantum capacity of F1 ⊗ F2 is positive (meaning that we can

use it to transmit quantum information perfectly) [16]. Secondly, if an entangled

stationary state is found, then there is at least one useful noiseless subsystem in the

whole memory cell system that can be used to store (entangled) quantum states.

So, entanglement can be served as a signal for protecting quantum information,

like the period in the super-activation of |Ω(·)|. Thirdly, the quantities |Ω(·)|∞ and

|Ω(·)| are not multiplicative, i.e. in general |Ω(E ⊗ F)|∞ 6= |Ω(E)|∞ · |Ω(F)|∞ and

|Ω(E ⊗F)| 6= |Ω(E)| · |Ω(F)|. This implies that the amount of information that can

be preserved through a quantum memory cell depends on what other memory cells
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are also available.

Mathematically, given a quantum memory cell E , the shape is entirely determined

by its magnitude 1-eigenvalues and the corresponding eigenvectors, and the super-

activation of |Ω(·)| and |Ω(E)|∞ is determined by internal and external eigenvalues

of E , respectively. This indicates that eigenvalues with magnitude one have different

roles in information storage.

Finally, we present a simple example to show that the growth of the super-

activation of |Ω(·)|∞ can be exponentially fast, and the speed of growth is inde-

pendent on external eigenvalues. Therefore, the collective use of purely classical

memory cells is an efficient method to preserve quantum information.

Example 7: Let θ1, θ2 be real numbers and 0 < θ1 ≤ θ2 < 2π. We consider

two quantum memory cells Ek(ρ) = (|0〉〈0| + eiθk |1〉〈1|)ρ(|0〉〈0| + e−iθk |1〉〈1|) +

|2〉〈2|ρ|2〉〈2| on H = lin.span{|0〉, |1〉, |2〉} for k = 1, 2. Note that for each k,

Ek(ρ) = (|0〉〈0|+eiθk |1〉〈1|)(P0+P1)ρ(P0+P1)(|0〉〈0|+e−iθk |1〉〈1|)+|2〉〈2|P2ρP2|2〉〈2|,

where Pj is the projection onto lin.span{|j〉} for j ∈ {0, 1, 2}. So, we can restrict

Ek onto lin.span{|0〉, |1〉} when we only consider |Ω(·)|∞. Then the evolution is

fully represented by unitary matrices {Uk = diag(1, eiθk)}k=1,2. It is easy to com-

pute Ω(Ek) = (1, 1, 1), and η̄(Ek) = {eiθk , e−iθk} for k = 1, 2. By Theorem 18,

|Ω(E1 ⊗ E2)|∞ > 1 if and only if θ1 = θ2 or θ1 = 2π − θ2. Now, we show that the

growth speed of the super-activation is independent on θ1, θ2 and exponential with

the number of collectively used memory cells in both cases.

(1) θ1 = θ2. Then let U = U1 = U2 and E = E1 = E2. For any strictly positive

integer t,

U⊗t ' diag[I(t
0)
, I(t

1)
eiθ, · · · , I(t

t)
eitθ]

where Ik is the identity matrix with dimension k. Then |Ω(E⊗t)|∞ >
(
t
t/2

)
if t

is even; otherwise, |Ω(E⊗t)|∞ >
(

t
(t−1)/2

)
.
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(2) θ1 = 2π − θ2, i.e. U1 = U †2 . For any strictly positive integer t, |Ω[(E1 ⊗

E2)⊗t]|∞ ≥
(
t
t/2

)2
if t is even; otherwise |Ω[(E1 ⊗ E2)⊗t]|∞ ≥

(
t

(t−1)/2

)2
.

Therefore, in the above cases, the growth speed is independent on θ1, θ2. Specif-

ically, by Stirling’s approximation,
(
t
t/2

)
and

(
t

(t−1)/2

)
both are growing up exponen-

tially with t and |Ω(E⊗t)|∞ ≤ nt with dim(H) = n, so |Ω(·)|∞ has an exponential

growth.

8.4 Conclusion

Using the stationary coherence and periodic decompositions, we proved that the

existence of entangled stationary states of a given purely classical memory cell is nec-

essary and sufficient for super-activating it to store quantum information, whereas

a null memory cell can only be super-activated to preserve classical information.

We also proposed a simple method to check whether such super-activation happens

by computing its external and internal eigenvalues, respectively. Moreover, once

activated, the preserved quantum information may have exponential growth with

the number of the used memory cells. This provides an efficient way to perfectly

preserve quantum information even when the quantum memory cell is fully classical.

At this moment, we only have a simple example showing the exponential growth

of super-activation of the amount |Ω(·)|∞ of stored quantum information. In future

research, we expect to give a general characterization of the growth speed of |Ω(·)|∞.
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Part V

Concluding Remarks
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In this thesis, we presented a new decomposition of quantum Markov chains,

namely periodic decomposition. This decomposition helped us build a limit theo-

rem for (irreducible) quantum Markov chains. More importantly, we applied it with

the formerly developed decompositions (the BSCC and stationary coherence decom-

positions) in quantum information theory, especially protecting quantum states, and

got three significant results:

• A novel characterization of the one-shot zero-error capacity of quantum chan-

nels;

• The structure of quantum decoherence-free subsystems;

• Entanglement super-activating quantum memory.

For further studies, there are several potential fields where the three-level de-

composition technique can be used:

• Reachability analysis of quantum Markov chains: The BSCC decomposition

was already used in reachability analysis of quantum Markov chains [68]. The

eventual, global, ultimately forever and infinitely often reachability of quantum

automata were carefully examined in [41]. Quantum automata is a special

kind of quantum Markov chains, where the dynamics is described by a unitary

transformation rather than a general super-operator. It seems that the three-

level decomposition presented in this thesis is useful for analysis of these more

sophisticated reachabilities of quantum Markov chains.

• Extend the decomposition techniques developed in this thesis to quantum

Markov decision processes, which were introduced in [4] for quantum machine

learning and in [69] for modeling concurrent quantum programs.
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Part VI

Appendix
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Proof of Lemma 26

Lemma 27: Let E be a quantum operation on H with the fixed-point decompo-

sition H =
⊕n

k=1(BAk
⊗ BBk

) ⊕ TE , and X an eigenvector corresponding to some

a ∈ η(E). Then X ∈ L(T ⊥E ).

Proof. By the definition, we first observe that Eφ(X) = X for all X with E(X) =

aX for some a ∈ η(E). Recall that TE is transitive, i.e. for all ρ ∈ D(H),

limn→∞ tr(PEn(ρ)) = 0, where P is the projection onto TE . Furthermore, Lemma 3

asserts that there exists an increasing sequence of integers ni such that Eφ =

limi→∞ Eni . Therefore, tr(PEφ(ρ)) = 0 for all ρ ∈ D(H). The lemma follows by

noting the structure of fix(Eφ) and that X can be linearly represented by a set of

quantum states. 2

If we only want to compute eigenvalues of E with magnitude one and correspond-

ing eigenvectors, then the restriction of E onto T ⊥E is enough to be used by lemma

27. Furthermore, the following lemma gives a characterization of these eigenvalues

when Ω(E) = (1); i.e. E is ergodic.

Lemma 28: For any quantum operation E with Ω(E) = (1), we have η(E) =

{exp(2πik/d)}d−1
k=0 for some integer d, and all elements in η(E) are internal.

Proof. As Ω(E) = (1), there is only one stationary state ρ∗ of E . By restricting

E onto X = supp(ρ∗), EX is irreducible; that is, its shape is (1) and its stationary

state is of full-rank. Then with [66, Theorem 6.6], η(E) ⊇ η(EX ) = {exp(2πik/d)}d−1
k=0

for some integer d, and the multiplicity of any eigenvalue in η(EX ) is 1. Following

Lemma 27, there are no other eigenvalues in η(E), so η(E) = η(EX ). 2

Corollary 7: Given a quantum operation E , if Ω(E) = (m) for some positive

integer m, then η(E) = {exp(2πik/d)}d−1
k=0 for some integer d, and all elements in

η(E) have multiplicity m.
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For a quantum operation E with Ω(E) = (1), i.e. E is ergodic, we can claim that

the period of E to be the number d by the above lemma. We can further get a more

interesting result:

Lemma 29: For a quantum operation E with Ω(E) = (1), there exists a set of

mutually orthogonal quantum states {ρi}d(E)−1
i=0 such that E(ρi) = ρi�1, where �

denotes addition modulo d(E).

Proof. Without loss of generality, we assume that E is irreducible. Otherwise, we

restrict E onto the support of the stationary state. Let d = d(E). By Theorem 8,

there exists a set of mutually orthogonal subspaces {Bi}d−1
i=0 such that H =

⊕
i Bi

and for each i, Bi is invariant under Ed. Then for each i, Ed|Bi , the restriction of Ed

onto Bi, has a limit state, i.e. there is a quantum state σi ∈ D(Bi) such that for all

ρ ∈ D(Bi), limn→∞ Edn|Bi(ρ) = σi. As Bi is an invariant subspace of Ed, this means

limn→∞ Edn(ρ) = σi. From [25, Theorem 7], we have E(ρ) ∈ D(Bi�1). So,

lim
n→∞

Edn(ρ) = σi ⇒ lim
n→∞

Edn+1(ρ) = E(σi)

⇒ lim
n→∞

Edn(E(ρ)) = E(σi)

⇒ lim
n→∞

Edn|Bi�1
(E(ρ)) = E(σi)

⇒ σi�1 = E(σi).

2
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