DEVELOPMENT OF EFFICIENT MEDIUM ACCESS CONTROL PROTOCOLS FOR WIRELESS BODY AREA NETWORKS

by

Sarvin Sadra
Supervisor: A/Prof Mehran Abolhasan

Thesis submitted at the University of Technology Sydney in partial fulfilment of the requirements for the degree of Master of Telecommunication Engineering

July 2018
Declaration

I certify that, to the best of my knowledge, the dissertation in this thesis has not previously been submitted for a degree nor as part of requirements for a degree except where otherwise acknowledged within the text.

All sentences quoted in this thesis from other work have been specifically indicated by clear cross-referencing. I understand that failure to do this is plagiarism.

Sarvin Sadra
Abstract

Future healthcare systems aim to provide smart, unobtrusive, unconstrained, pervasive and proactive healthcare through affordable and accessible means. A key enabler towards achieving the above is through solutions, which provide timely and continuous monitoring and analysis of physiological parameters of the body. The parameters obtained through the remote monitoring systems are used to analyse, diagnose and develop treatments. This allows for early detection of symptoms or abnormalities and in turn, prevention of illnesses.

Wireless Body Area Networks (WBANs) are an essential part of future healthcare systems with the potential to seamlessly interconnect wearable and implantable sensors. In recent years, WBANs are expected to support various types of applications with datarates from a few Kbps up to 15 Mbps and satisfy heterogeneous requirements of both medical and consumer electronics.

WBANs have captured the attention of researchers and motivated them to develop strategies that can enable them to handle various types of applications. Unfortunately, existing wireless networks cannot meet the strict Quality of Service (QoS) requirements of these networks. Hence, novel communication protocols considering the limitations of these networks need to be developed to pave the way for optimum network efficiency and data transmission reliability.
The Medium Access Control (MAC) protocols have an important role in supporting the combination of reliability, quality of service, energy efficiency and scalability. The current IEEE 802.15.6 MAC protocol based on the latest WBANs standard is not optimised to maintain a balance between the energy limitation and QoS requirements for the diverse range of applications. Consequently, new research is required to explore the above issue and develop new enhancements for the IEEE 802.15.6 standard to better manage different applications over different conditions and scenarios better.

This research focuses on developing MAC protocols to improve the performance of WBANs specifically in the saturation condition. As in saturated networks all the nodes send packets continuously, high level of collisions occurs and the medium is poorly utilised. While the high percentage of the packets of the highest user priority are dropped which carries life-critical information, other user priorities are not able to access the medium. To this extent, this research considers these challenges to improve the network performance in saturated networking condition both for the highest user priority and the other user priorities at the same time.

Two IEEE 802.15.6-based MAC protocols, Saturation Aware for the User Priorities (SAUP) and Saturation Aware for the Highest User Priority (SAH) MAC protocols have been proposed to address these shortcomings for all the user priorities and enhance the channel access for different user/application priorities in saturated networks.

The simulations were performed in the MATLAB framework. The results indicate the proposed protocols achieve better network performance as well as reducing energy consumption compared to the IEEE 802.15.6 MAC protocol. The improvements in the network performance and energy efficiency are specificity, for the user priorities other than the highest one in the proposed SAUP MAC protocol. However, SAH proposed MAC protocol focuses on the network improvements for the highest user priority comparing with IEEE 802.15.6 MAC protocol in the saturated WBANs.
Acknowledgements

I gratefully would like to thank my supervisor A/Prof Mehran Abolhasan for his continuous helpful comments and support throughout the research process by his immense knowledge and experience.

Also, I would like to express my infinite love and appreciation to my parents and my sister for their patience, motivation and encouragement during my studying period.
Publications

Contents

Declaration ... 2
Abstract .. 3
acknowledgements ... 5
Publication .. 6

List of Figures ... 12

List of Tables ... 13

1 Research Overview and Objectives 14
 1.1 Introduction to Wireless Body Area Networks 14
 1.2 Research Motivation and Objectives 17
 1.3 Research Contributions .. 18
 1.4 Thesis Outline .. 19

2 Literature Review ... 20
 2.1 Challenges in Healthcare Systems 20
 2.1.1 Increases in Aging Population 21
 2.1.2 Increases in Various Types of Diseases 22
 2.1.3 Increases in Healthcare Expenditures 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Remote Health Status Monitoring</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Overview of Wireless Body Area Networks</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Advantages of Wireless Body Area Networks in Healthcare</td>
<td>26</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Applications of Wireless Body Area Networks</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Requirements of Wireless Body Area Networks</td>
<td>29</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Network Topology in Wireless Body Area Networks</td>
<td>30</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Types of Data Traffic in Wireless Body Area Networks</td>
<td>31</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Wireless Body Area Networks Comparison to Wireless Networks</td>
<td>31</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Wireless Body Area Networks Comparison to Wireless Sensor Networks</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Overview of Medium Access Control (MAC) Protocol</td>
<td>33</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Challenges in MAC Protocol Design for WBANs</td>
<td>34</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Existing Wireless MAC Protocol Applicable for WBANs</td>
<td>36</td>
</tr>
<tr>
<td>2.5</td>
<td>IEEE 802.15.4 Standard</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Network Topologies</td>
<td>39</td>
</tr>
<tr>
<td>2.5.2</td>
<td>IEEE 802.15.4 Architecture</td>
<td>40</td>
</tr>
<tr>
<td>2.5.3</td>
<td>IEEE 802.15.4 MAC Protocol</td>
<td>41</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Superframe Structure</td>
<td>45</td>
</tr>
<tr>
<td>2.5.5</td>
<td>IEEE 802.15.4 Channel Access Mechanism</td>
<td>46</td>
</tr>
<tr>
<td>2.5.6</td>
<td>IEEE 802.15.4 CSMA/CA Mechanism</td>
<td>46</td>
</tr>
<tr>
<td>2.5.7</td>
<td>IEEE 802.15.4 CSMA/CA Algorithm</td>
<td>47</td>
</tr>
<tr>
<td>2.6</td>
<td>IEEE 802.15.6 Standard</td>
<td>49</td>
</tr>
<tr>
<td>2.6.1</td>
<td>IEEE 802.15.6 Network Topology</td>
<td>50</td>
</tr>
</tbody>
</table>
2.6.2 IEEE 802.15.6 Access and Allocation Classifications 52
2.6.3 IEEE 802.15.6 MAC Protocol ... 54
2.6.4 IEEE 802.15.6 Channel Access Mechanism 57
2.6.5 IEEE 802.15.6 CSMA/CA Mechanism ... 58
2.6.6 IEEE 802.15.6 CSMA/CA Algorithm ... 59
2.7 WSNs MAC Protocol Applicable in WBANs ... 61
 2.7.1 Sensor MAC S-MAC Protocol ... 61
 2.7.2 Timeout MAC T-MAC Protocol ... 64
 2.7.3 Berkley MAC B-MAC Protocol ... 65
 2.7.4 Wise-MAC Protocol .. 66
2.8 Review of MAC Protocols for WBANs ... 67
 2.8.1 IEEE 802.15.4 MAC protocol ... 67
 2.8.2 IEEE 802.15.6 MAC Protocol ... 69
 2.8.3 Heartbeat Driven MAC Protocol (H-MAC) 71
 2.8.4 Body-MAC Protocol ... 73
 2.8.5 Med-MAC Protocol .. 75
 2.8.6 Master-Slave MAC Protocol ... 78
 2.8.7 Battery Dynamics Driven MAC Protocol 79
 2.8.8 A Low-Duty-Cycle MAC Protocol ... 81
 2.8.9 Comparison Between the MAC Protocols Applicable in WBANs 83

3 Simulation Results and Discussion on IEEE 802.15.4 and IEEE 802.15.6 MAC Protocols 84
List of Figures

1.1 WBAN Structure for Medical and Non-Medical Applications 16

2.1 Challenges in Healthcare Systems 21

2.2 Growth of Utilising Wireless Sensors in Healthcare, Medical and Biometrics
 (World), 2002-2012 24

2.3 Sensors in Wireless Body Area Network 25

2.4 Wireless Body Area Networks Applications 28

2.5 Network Topologies in Wireless body Area Networks 30

2.6 Interaction of WBANs and Existing Wireless Networks 32

2.7 Medium Access Control Protocol and Data Transition Process 34

2.8 IEEE 802.15.4 Star and Peer-to-Peer Topology 40

2.9 Superframe Structure of IEEE 802.15.4 MAC Protocol 42

2.10 IEEE 802.15.4 CSMA/CA Algorithm 48

2.11 IEEE 802.15.6 Network topology 51

2.12 Layout of IEEE 802.15.6 Access Phases in a Beacon Period (Superframe)
 for the Beacon Mode 55

2.13 Layout of IEEE 802.15.6 Access Phases in a Superframe (Beacon Period)
 for Non-Beacon Mode 56
List of Tables

2.1 Biosensors and the Specifications of their Measured Data 27
2.2 Contention Window Bounds for CSMA/CA (WBAN User Priority Mapping) 58
2.3 Spreading Parameters and Data Parameters of IEEE 802.15.4 Frequency Bands ... 67
2.4 Comparison Between the MAC Protocols Applicable in WBANs 83
3.1 Pre-defined Parameters in IEEE802.15.4 Standard 85
3.2 Pre-defined Parameters in IEEE802.15.6 Standard 91
4.1 Nodes Specification in Simulation Set-up for SAUP MAC Protocol 99