FINITE-CONTROL-SET MODEL PREDICTIVE CONTROL OF AXIALLY LAMINATED FLUX-SWITCHING PERMANENT MAGNET MACHINE WITH EXTENDED VOLTAGE SPACE VECTORS

by

Tianshi WANG, M.Eng. (Elec.)

Submitted for the Degree of Doctor of Philosophy

at

University of Technology Sydney

2018

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by the Australian Government Research Training Program.

Signature of Student

ACKNOWLEDGEMENTS

This work was carried out at the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney.

I would like to express my sincerest appreciation to my supervisor, Prof. Jianguo Zhu Head of Discipline - SEDE Electrical Power and Energy System, for his invaluable expert technical guidance and advice throughout my research and my life.

I would like to express my appreciation to my co-supervisor Dr. Gang Lei for his expert advice. Great gratitude also goes to Dr. Youguang Guo for his suggestion and kind help. Special gratitude goes to Mr. Jiang Chen for his technical support.

Acknowledgments go to Prof. Wei Xu for his idea of ALFSPMM, Prof. Youchang Zhang for his help on MPC, and Dr. Chengcheng Liu for his contribution to the FEM analysis.

I also would like to thank all my colleagues and friends including, Dr. Mohammad Jafari, Ms. Zahra Malekjamshidi, Mr. Lingfeng Zheng, Mr. Jianwei Zhang, Ms. Tingting He, Mr. Bo Ma and Mr. Nian Li.

Finally, I would like to express my deepest gratitude to my wife Shuyang Liu, my father Yanqing Wang and my mother Xiaoyun Jiang for their love and support during my study. I also dedicate this thesis to my lovely son Lucas Wang. I appreciate your patience and support during dad's thesis writing.

TABLE OF CONTENTS

CERTIFICATION	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF SYMBOLS	vii
LIST OF FIGURES	ix
LIST OF TABLES	xiv
ABSTRACT	XV
CHAPTER 1. INTRODUCTION	
1.1 Background and Significance	1
1.2 Thesis Outline	3
REFERENCES	5

CHAPTER 2. A LITERATURE SURVEY ON ELECTRIC VEHICLES AND MOTOR DRIVES

2.1 Introduction	7
2.2 Developmental History of EVs	10
2.2.1 Early battery electric vehicles	11
2.2.2 Hybrid electric vehicles	13
2.2.3 Plug-in hybrid electric vehicle	16
2.2.4 Modern battery electric vehicle	18
2.2.5 PHEVs and BEVs in microgrids	19
2.3 Technical Requirements of EV Motor Drive	21
2.4 Electric Machines for EV Drives and Their Applications	22
2.4.1 DC machines	22
2.4.2 Induction machines	25
2.4.3 Switched reluctance machines	30
2.4.4 Permanent magnet machines	33
2.4.5 Comparison of electric machines	38
2.5 The State of the Art of PMSMs	41
2.5.1 Permanent magnets on the rotor	42
2.5.2 Permanent magnets on the stator	45

2.6 Electrical Motor Control Techniques	50
2.6.1 Six-step control	50
2.6.2 Field oriented/vector control	54
2.6.3 Direct torque control	56
2.6.4 Model predictive control	59
2.6.5 Qualitative comparison of control methods	62
2.7 Summary	63
REFERENCES	64

CHAPTER 3. ANALYSIS AND DESIGN OF AXIALLY LAMINATED FLUX SWITCHING PERMANENT MAGNET MACHINE 3.1 Introduction

3.1 Introduction	79
3.2 The Design of ALFSPMM	79
3.2.1 Comparison of different types of stator-PM machines	79
3.2.2 The proposed ALFSPMM	84
3.2.2 Comparison of conventional FSPMM and ALFSPMM	86
3.3 Prototype fabrication	90
3.3.1 Rotor	90
3.3.2 Stator	92
3.3.3 Stator windings	92
3.3.4 Final assembly	93
3.4 Models of ALFSPMM	93
3.4.1 The complete, reduced and simplified models	94
3.4.2 Rotor lamination core misalignment model	95
3.5 FEM Numerical Calculations and Experimental Measurements of ALFSPMM	96
3.5.1 Stator resistance	96
3.5.2 Magnetic flux density distribution	98
3.5.3 Flux linkages	98
3.5.4 Inductances	99
3.5.5 Back-EMF	103
3.5.6 Cogging torque	104
3.6 Load Tests	109
3.7 The Influence of the Bending Processes on Soft Magnetic Material	110
3.8 Summary	112
REFERENCES	113

CHAPTER 4. FINITE-CONTROL-SET MODEL PREDICTIVE DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTORS WITH EXTENDED SET OF VOLTAGE SPACE VECTORS

4.1 Introduction	117
4.2 Model of PMSM	118
4.3 The Conventional DTC	125
4.4 The Conventional FCS-MPDTC	126
4.5 One-step delay compensation	129
4.5.1 FCS-MPDTC with one-step delay compensation	129
4.5.2 Conventional DTC with one-step delay compensation	130
4.6 Principle of Proposed FCS-MPDTC	130
4.6.1 Definition of extended VSVs	130
4.6.2 The pre-selective scheme	131
4.6.3 Principle of the Proposed FCS-MPDTC	132
4.7 Summary	134
REFERENCES	134
CHAPTER 5. NUMERICAL SIMULATION AND EXPERIMENTAL TESTS ALFSPMM	OF
5.1 Introduction	138
5.2 Model of ALFSPMM	138
5.3 Numerical Simulations	138
5.3.1 Setup and parameters	141
5.3.2 Combined load test	143
5.4 Experimental Tests	149
5.4.1 Setup of experimental test platform	149
5.4.2 Steady state responses (unload and with load)	150
5.4.3 Start-up tests	155
5.4.4 Deceleration tests	156
5.4.5 Load tests	157
5.5 Quantitative Analysis and Comparison	159
5.5.1 Conventional DTC	159
5.5.2 Conventional FCS-MPDTC	160
5.5.3 Conventional FCS-MPDTC with one-step delay compensation	161
5.5.4 Proposed FCS-MPDTC	162
5.5.5 Proposed FCS-MPDTC with one-step delay compensation	163
5.5.6 Analysis of torque/flux ripples and inverter switching frequencies	164
5.5.7 Drive system efficiency	167
5.5.8 Discussion of the test results	169
5.6 Summary	172

CHAPTER 6. NUMERICAL SIMULATION AND EXPERIMENTAL TESTS OF PMSM

6.1 Introduction	173
6.2 Model of PMSM	173
6.3 Numerical Simulations	175
6.3.1 Setup and parameters	175
6.3.2 Combined load test	178
6.4 Experimental Tests	183
6.4.1 Setup of experimental test platform	183
6.4.2 Steady state responses (unload and with load)	184
6.4.3 Start-up tests	190
6.4.4 Deceleration tests	191
6.4.5 Load tests	192
6.5 Quantitative Analysis and Comparison	193
6.5.1 Conventional DTC	193
6.5.2 Conventional FCS-MPDTC	194
6.5.3 Conventional FCS-MPDTC with one-step delay compensation	195
6.5.4 Proposed FCS-MPDTC	197
6.5.5 Proposed FCS-MPDTC with one-step delay compensation	198
6.5.6 Analysis of torque/flux ripples and inverter switching frequencies	200
6.5.7 Drive system efficiency	203
6.5.8 Discussion of the test results	206
6.6 Experimental Tests at Same Switching Frequency	208
6.6.1 Steady state responses (unload and with load)	208
6.6.2 Dynamic performance	209
6.6.3 Drive system efficiency	211
6.7 Summary	213
CHAPTER 7. CONCLUSIONS AND FUTURE WORK	
7.1 Conclusion	214
7.2 Future Work	215
APPENDIX A. LIST OF PUBLICATIONS FROM THIS WORK	216

LIST OF SYMBOLS

*	Reference value
αβ	Stationary stator reference frame axes
dq	Rotary rotor reference frame axes
f	Frequency (Hz)
$\psi_a,\;\psi_b,\;\psi_c$	Three-phase flux linkages (Wb)
ψ_{lpha},ψ_{eta}	α - and β - axis stator flux linkages (Wb)
ψ_d,ψ_q	<i>d</i> - and <i>q</i> -axis stator flux linkages (Wb)
θ_r	Angle between two stator reference frame and rotor reference
	frame
L_d , L_q	<i>d</i> - and <i>q</i> -axis inductance (H)
ψ_f	Flux linkage generated by the rotor permanent magnet (Wb)
p	Number of the machine pole pairs
u_a, u_b, u_c	Stator voltages (V)
u_{α} , u_{β}	α - and β - axis stator voltages (V)
u_s , u_d , u_q	stator voltage vector, <i>d</i> - axis and <i>q</i> -axis stator voltage (V)
i_a, i_b, i_c	Stator currents (A)
i_{α}, i_{β}	α - and β - axis stator currents (A)
i_d, i_q	<i>d</i> - and <i>q</i> -axis stator currents (A)
R _s	Per-phase stator winding resistance (Ω)
T _e	Electromagnetic torque (Nm)
T_L	Load torque applied on the rotor shaft
$u_0 \cdots u_6$	Space voltage vectors produced by the two level inverter (V)
P _{in}	Total input power of a motor (W)
P _{em}	Electromagnetic power obtained by subtracting the mechanical
	loss from the input power (W)

ω _r	Rotor mechanical speed
ω_e	Electrical speed
$u_s^k, u_d^k, u_q^k, i_d^k, i_q^k$	Stator voltage vector, d - axis and q -axis stator voltage, d - axis
	and q -axis stator current at (k) th sampling instant
$T_e^{k+1}, \ \psi_s^{k+1}, \ i_d^{k+1},$	Predicted value of torque, flux, <i>d</i> - axis and <i>q</i> -axis stator current at
i_q^{k+1}	(k+1)th sampling instant
k_1	Weighting factor
T_s	Sampling period (s)
$\eta_{\scriptscriptstyle sys}$	Efficiency of the drive system
P_{dc}	Power output of DC power supply (W)

LIST OF FIGURES

Fig. 2.1.1 Global greenhouse gas emissions

Fig. 2.1.2 World petroleum discovery, remaining reserves and cumulative consumption

Fig. 2.2.1 HEV drive system configuration

Fig. 2.2.2 PHEV drive system configuration

Fig. 2.2.3 Basic concept of the microgrid introduced in IEEE 1547.4 Standard

Fig. 2.3.1 Desired torque-speed and power-speed curves

Fig. 2.4.1 DC machine exploded diagram

Fig. 2.3.2 DC machine structures

Fig. 2.4.3 Victor Wouk with his 1974 hybrid Buick Skylark

Fig. 2.4.4 Fiat Panda Elettra

Fig. 2.4.5 The battery pack of Fiat Panda Elettra

Fig. 2.4.6 Induction machine exploded diagram

Fig. 2.4.7 Basic induction machine topology

Fig. 2.4.8 General Motors Electrovan

Fig. 2.4.9 Volkswagen Chico

Fig. 2.4.10 Renault Next

Fig. 2.4.11 General Motors

Fig. 2.4.12 Tesla Motors Roadster

Fig. 2.4.13 Tesla Model S and its powertrain

Fig. 2.4.12 Switched reluctance machine exploded diagram

Fig. 2.4.13 Basic switched reluctance machine topologies

Fig. 2.4.14 Holden ECOmmodore and cutaway view of the motor/generator

Fig. 2.4.15 New Land Rover electric Defender

Fig. 2.4.16 Permanent magnet machine exploded diagram

Fig. 2.4.17 Toyota Prius of latest generation

Fig. 2.4.18 Honda Insight

Fig. 2.4.19 Ford Fusion Hybrid

Fig. 2.4.20 Mercedes-Benz ML 450 Hybrid

Fig. 2.4.21 Nissan Leaf

Fig. 2.4.22 BYD Qin

Fig. 2.4.23 Tesla Model 3

Fig. 2.4.23 Comparison according to the applicability in EV applications

Fig. 2.5.1 PM synchronous machine topologies

Fig. 2.5.2 Cross sectional view of (a) PM hysteresis hybrid machine (b) 4-layer

hybrid winding machine and (c) double rotor synchronous PM machine

Fig. 2.5.3 IPM machines with different rotor structures

Fig. 2.5.4 Proposed pole-shoe rotor

Fig. 2.5.5 Cross sectional view of (a) the first proposed DSPM and (b) stator doubly fed DSPM

Fig. 2.5.6 Structure of SHEDS-PM

Fig. 2.5.7 DSPM machine with 12/10 stator/rotor poles

Fig. 2.5.8 Topologies of DSPM machine:

Fig. 2.5.9 Structure of (a) 4/2 pole flux-switch alternator (b) 4/6 pole flux-switch

alternator, and (c) FSPM proposed by E. Hoang in 1997

Fig. 2.5.10 Topologies of modern FSPM

Fig. 2.6.1 Back emf waveform of BLDC and PMSM

Fig. 2.6.2 Disassembled view of a BLDC motor:

Fig. 2.6.3 Feedback signals generated by Hall elements

Fig. 2.6.4 Inverter diagram and conduction modes for six-step control

Fig. 2.6.5 Torque generation under different conduction modes

Fig. 2.6.6 Diagram of vector control drive system

Fig. 2.6.7 Diagram of direct torque control drive system

Fig. 2.6.8 Development of DTC scheme

Fig. 2.6.9 Finite control set MPC scheme

Fig.3.2.1 Flux distribution of four machines

Fig. 3.2.2 FEM predicted flux linkage and torque

Fig. 3.2.3. Cross section view of ALFSPMM

Fig. 3.2.4 3D-view of ALSFSPMM

Fig. 3.2.5 Modelling of stator and rotor cores

Fig. 3.2.6 The magnetization curves of the HiB steel sheet used in ALFSPMM

Fig. 3.2.7 Flux density contour, (a) conventional FSPMM and (b) ALSFSPMM

Fig. 3.2.8 FEM predicted performances of conventional FSPMM and

ALFSPMM

Fig. 3.3.1 Construction procedure of rotor

Fig. 3.3.2 Construction procedure of stator

Fig. 3.3.3 Construction procedure of winding and final assembly

Fig. 3.3.4 Final assembly of ALFSPMM

Fig. 3.4.1 FEM models of ALFSPMM, (a) complete model, (b) reduced model and (c) simplified model.

Fig. 3.4.2 ALFSPMM FEM model with misalignment

Fig. 3.5.1 Resistance test of ALSFSPMM

Fig. 3.5.2 Flux density contour of ALFSPMM (a) complete model, (b) reduced model and (c) simplified model

Fig. 3.5.3 Flux linkage of four models
Fig.3.5.4 Block diagram of experimental ALFSPMM inductance measurement
Fig. 3.5.5 Platform setup of experimental inductance measurement
Fig. 3.5.6 FEM predicted and measured self-inductance of ALFSPMM
Fig. 3.5.7 FEM predicted and measured mutual-inductance of ALFSPMM
Fig. 3.5.8. FEM predicted and measured back-EMF of ALFSPMM
Fig. 3.5.9 Schematic diagram of cogging torque measurement
Fig. 3.5.10 Balanced beam fixed on the motor end bracket
Fig. 3.5.11 Platform setup of cogging torque measurement
Fig. 3.5.12 Cogging torque measurement in 360 mechanical degrees
Fig. 3.5.13 FEM predicted cogging torque of ALFSPMM
Fig. 3.5.14 Measured and FEM predicted cogging torque of ALFSPMM
Fig. 3.6.1 Platform setup of load test
Fig. 3.6.2. Measured torque output versus phase current of ALFSPMM
Fig. 3.7.1 Measured magnetization properties of bended specimens before and
after annealing at 50 Hz
Fig. 3.7.2 Custom-made tools and methods used in fabrication of ALFSPMM
Fig. 4.2.1 Relationship between different reference frames
Fig. 4.2.2 PMSM equivalent circuits in (a) d-, and (b) q-axes
Fig. 4.3.1 Block diagram of PMSM DTC drive system
Fig. 4.3.2 Voltage vector and spatial sector definition
Fig. 4.4.1 Block diagram of MPC drive system
Fig. 4.4.2 One-step delay in digital control systems
Fig. 4.6.1 Basic VSVs and extended VSVs
Fig. 4.6.2 Block diagram of proposed FCS-MPDTC drive system
Fig. 4.6.3 The selection of VSVs at 1000 r/min (simulation).
Fig. 5.3.1 Block diagram of DTC drive system
Fig. 5.3.2 Block diagram of conventional FCS-MPDTC drive system
Fig. 5.3.3 Block diagram of proposed FCS-MPDTC drive system
Fig. 5.3.4 Combined load test of DTC: (a) at 400 rpm, and (b) at 800 rpm
Fig. 5.3.5 Combined load test of conventional FCS-MPDTC: (a) at 400 rpm, and
(b) at 800 rpm
Fig. 5.3.6 Combined load test of conventional FCS-MPDTC with one-step delay
compensation: (a) at 400 rpm, and (b) at 800 rpm
Fig. 5.3.7 Combined load test of proposed FCS: (a) at 400 rpm, and (b) at 800
rpm
Fig. 5.3.8 Combined load test of proposed FCS-MPDTC with one-step delay
compensation: (a) at 400 rpm, and (b) at 800 rpm
Fig. 5.4.1 Platform setup of experimental test, (1) encoder, (2) ALFSPMM and

(3) dynamometer

Fig. 5.4.2 Platform setup of experimental test, (1) power quality clamp meter, (2) dynamometer controller and (3) DC power supply

Fig. 5.4.3 Platform setup of experimental test, (1) DC power supply, (2)

dynamometer controller, (3) ALFSPMM, (4) dynamometer, (5) dSPACE control board,

(6) power quality clamp meter and (7) encoder.

Fig. 5.4.4 Steady-state response at 400 rpm (no load)

Fig. 5.4.5 Steady-state response at 400 rpm (rated load)

Fig. 5.4.6 Steady-state response at 800 rpm (no load)

Fig. 5.4.7 Steady-state response at 800 rpm (rated load)

Fig. 5.4.8 Start-up response from standstill to 800 rpm

Fig. 5.4.9 Deceleration test

Fig. 5.4.10 Load test

Fig. 5.5.1 Comparison of torque ripples in different control methods

Fig. 5.5.2 Comparison of flux ripples in different control methods

Fig. 5.5.2 Comparison of inverter switching frequencies in different control methods

Fig. 5.5.3 Drive system efficiency contour of DTC

Fig. 5.5.4 Drive system efficiency contour of conventional FCS-MPDTC

Fig. 5.5.5 Drive system efficiency contour of conventional FCS-MPDTC with one-step delay compensation

Fig. 5.5.6 Drive system efficiency contour of proposed FCS-MPDTC

Fig. 5.5.7 Drive system efficiency contour of proposed FCS-MPDTC with one-step delay compensation

Fig. 6.3.1 Block diagram of DTC drive system

Fig. 6.3.2 Block diagram of conventional FCS-MPDTC drive system

Fig. 6.3.3 Block diagram of proposed FCS-MPDTC drive system

Fig. 6.3.4 Combined load test of DTC: (a) at 400 rpm, and (b) at 1000 rpm

Fig. 6.3.5 Combined load test of conventional FCS-MPDTC: (a) at 400 rpm, and (b) at 1000 rpm

Fig. 6.3.6 Combined load test of conventional FCS-MPDTC with one-step delay compensation: (a) at 400 rpm, and (b) at 1000 rpm

Fig. 6.3.7 Combined load test of proposed FCS: (a) at 400 rpm, and (b) at 1000 rpm

Fig. 6.3.8 Combined load test of proposed FCS-MPDTC with one-step delay compensation: (a) at 400 rpm, and (b) at 1000 rpm

Fig. 6.4.1 Platform setup of experimental test, (1) DC power supply, (2) dynamometer controller, (3) PMSM, (4) dynamometer and (5) dSPACE control

board

Fig. 6.4.2 Steady-state response at 200 rpm (no load) for: (a) DTC, (b)

MPDTC-8, (c) MPDTC-8 with one-step delay compensation, (d) MPDTC-20 and

(e) MPDTC-20 with one-step delay compensation

Fig. 6.4.3 Steady-state response at 200 rpm (2 Nm load) for: (a) DTC, (b)

MPDTC-8, (c) MPDTC-8 with one-step delay compensation, (d) MPDTC-20 and

(e) MPDTC-20 with one-step delay compensation

Fig. 6.4.4 Steady-state response at 600 rpm (no load)

Fig. 6.4.5 Steady-state response at 600 rpm (2 Nm load)

Fig. 6.4.6 Steady-state response at 1000 rpm (no load)

Fig. 6.4.7 Steady-state response at 1000 rpm (2 Nm load)

Fig. 6.4.8 Start-up response from standstill to 1000 rpm

Fig. 6.4.9 Deceleration test

Fig. 6.4.10 Load test

Fig. 6.5.1 Comparison of torque ripples in different control methods

Fig. 6.5.2 Comparison of flux ripples in different control methods

Fig. 6.5.2 Comparison of inverter switching frequencies in different control methods

Fig. 6.5.3 Drive system efficiency contour of DTC

Fig. 6.5.4 Drive system efficiency contour of conventional FCS-MPDTC

Fig. 6.5.5 Drive system efficiency contour of conventional FCS-MPDTC with one-step delay compensation

Fig. 6.5.6 Drive system efficiency contour of proposed FCS-MPDTC

Fig. 6.5.7 Drive system efficiency contour of proposed FCS-MPDTC with one-step delay compensation

Fig. 6.6.1 Experimental steady-state response at rated speed and load, (a) conventional DTC, (b) conventional FCS-MPDTC and (c) proposed FCS-MPDTC

Fig. 6.6.2 Experimental start-up responses with no load from standstill to rated speed

Fig. 6.6.3 Experimental load test,

Fig. 6.6.4 Experimental decelerating responses from 1000 r/min to 200 r/min,

Fig. 6.6.5 Experimental drive system efficiency contours

LIST OF TABLES

Table 2-1. Comparison of Electrical Machines

Table 2-2. Comparison of Performance

Table 2-3 Electric Motors in Electric Vehicles

Table 2-4 Qualitative comparison of control methods

Table 3-1 Main Dimensions of Four Machines (length unit: mm)

Table 3-2 Performance of Four Machines

Table 3-3 Dimensions of Two Machines (Unit: mm)

Table 3-4 Final ALFSPMM Prototype Parameters

Table 3-5 Data Analysis of Back-emfs

Table 4-1 Switching table of classic DTC scheme for PMSM drive

Table 4-2 Modulation of Extended VSVs

Table 4-3 Pre-selective scheme

Table 5-1 Machine and Control Parameters

Table 5-2 Steady-state of DTC

Table 5-3 Steady-state of FCS-MPDTC

Table 5-4 Steady-state of FCS-MPDTC with one-step delay compensation

Table 5-5 Steady-state of proposed FCS-MPDTC

Table 5-6 Steady-state of proposed FCS-MPDTC with one-step delay compensation

Table 6-1 Machine and Control Parameters

Table 6-2 Steady-state of DTC

Table 6-3 Steady-state of FCS-MPDTC

Table 6-4 Steady-state of FCS-MPDTC with one-step delay compensation

Table 6-5 Steady-state of proposed FCS-MPDTC

Table 6-6 Steady-state of proposed FCS-MPDTC with one-step delay compensation

Table 6-7 Quantitative Comparison of Experimental Results

ABSTRACT

The Flux-switching permanent magnet machine (FSPMM) has recently attracted considerable interest for high performance drive applications due to their high torque and high power density features. The laminations of traditional FSPMMs are radially laminated, i.e. steel sheets are laminated perpendicular to the shaft axis. Due to the nonlinear magnetic path, the radial laminations can have serious partial magnetic saturation at the edges/tips of stator teeth or rotor poles. The rated frequency of FSPMMs is usually much higher than traditional rotor-inserted PM machines at a given speed. In this case, the core loss of FSPMMs becomes evident especially beyond the rated speed, which leads to decrease of output power, torque/power density and efficiency.

The reluctance motor with axially laminated rotor has received growing interest in recent years. This type of motor can achieve a higher torque density compared with segmented rotors and flux-barrier rotors. In this thesis, an axially laminated flux-switching permanent magnet machine (ALFSPMM) with HiB grain oriented silicon steel stator and rotor cores is proposed. The HiB silicon steel features high permeability and low specific core loss, and as a result, the total power loss of proposed motor is much lower than the conventional FSPMMs. The detailed fabrication procedures are presented. The theoretical characteristics of ALFSPMM are calculated by 2D finite element method (FEM). Experimental measurements of the prototype machine are presented to validate the FEM calculation.

On the machine control side, the direct torque control (DTC) is one of the most popular control algorithms. It features simple structure and fast dynamic response. However, the performance of DTC in terms of torque and flux ripples and drive system efficiency is unsatisfactory since the voltage space vector (VSV) is selected heuristically. Recently, the finite-control-set model predictive direct torque control (FCS-MPDTC) has been developed as a simple and promising control technique to overcome these problems.

The FCS-MPDTC still suffers from relatively high torque and flux ripples due to the limited number of VSVs.

This thesis proposes a novel FCS-MPDTC with an extended set of twenty modulated VSVs, which are formed by eight basic VSVs and twelve extended VSVs by modulating eight basic VSVs with fixed duty ratio. To mitigate the computational burden caused by the increased number of VSVs, a pre-selective scheme is designed for the proposed FCS-MPDTC to filter out the impractical VSVs. The drive system efficiency is also investigated. The theory and simulation are validated by experimental results on the ALFSPMM prototype.