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ABSTRACT

The Flux-switching permanent magnet machine (FSPMM) has recently attracted 

considerable interest for high performance drive applications due to their high torque 

and high power density features. The laminations of traditional FSPMMs are radially 

laminated, i.e. steel sheets are laminated perpendicular to the shaft axis. Due to the 

nonlinear magnetic path, the radial laminations can have serious partial magnetic 

saturation at the edges/tips of stator teeth or rotor poles. The rated frequency of 

FSPMMs is usually much higher than traditional rotor-inserted PM machines at a given 

speed. In this case, the core loss of FSPMMs becomes evident especially beyond the 

rated speed, which leads to decrease of output power, torque/power density and 

efficiency.

The reluctance motor with axially laminated rotor has received growing interest in 

recent years. This type of motor can achieve a higher torque density compared with 

segmented rotors and flux-barrier rotors. In this thesis, an axially laminated 

flux-switching permanent magnet machine (ALFSPMM) with HiB grain oriented 

silicon steel stator and rotor cores is proposed. The HiB silicon steel features high 

permeability and low specific core loss, and as a result, the total power loss of proposed 

motor is much lower than the conventional FSPMMs. The detailed fabrication 

procedures are presented. The theoretical characteristics of ALFSPMM are calculated 

by 2D finite element method (FEM). Experimental measurements of the prototype 

machine are presented to validate the FEM calculation. 

On the machine control side, the direct torque control (DTC) is one of the most popular 

control algorithms. It features simple structure and fast dynamic response. However, the 

performance of DTC in terms of torque and flux ripples and drive system efficiency is 

unsatisfactory since the voltage space vector (VSV) is selected heuristically. Recently, 

the finite-control-set model predictive direct torque control (FCS-MPDTC) has been

developed as a simple and promising control technique to overcome these problems.
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The FCS-MPDTC still suffers from relatively high torque and flux ripples due to the 

limited number of VSVs. 

This thesis proposes a novel FCS-MPDTC with an extended set of twenty modulated 

VSVs, which are formed by eight basic VSVs and twelve extended VSVs by 

modulating eight basic VSVs with fixed duty ratio. To mitigate the computational 

burden caused by the increased number of VSVs, a pre-selective scheme is designed for 

the proposed FCS-MPDTC to filter out the impractical VSVs. The drive system 

efficiency is also investigated. The theory and simulation are validated by experimental 

results on the ALFSPMM prototype.
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