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ABSTRACT

The Flux-switching permanent magnet machine (FSPMM) has recently attracted 

considerable interest for high performance drive applications due to their high torque 

and high power density features. The laminations of traditional FSPMMs are radially 

laminated, i.e. steel sheets are laminated perpendicular to the shaft axis. Due to the 

nonlinear magnetic path, the radial laminations can have serious partial magnetic 

saturation at the edges/tips of stator teeth or rotor poles. The rated frequency of 

FSPMMs is usually much higher than traditional rotor-inserted PM machines at a given 

speed. In this case, the core loss of FSPMMs becomes evident especially beyond the 

rated speed, which leads to decrease of output power, torque/power density and 

efficiency.

The reluctance motor with axially laminated rotor has received growing interest in 

recent years. This type of motor can achieve a higher torque density compared with 

segmented rotors and flux-barrier rotors. In this thesis, an axially laminated 

flux-switching permanent magnet machine (ALFSPMM) with HiB grain oriented 

silicon steel stator and rotor cores is proposed. The HiB silicon steel features high 

permeability and low specific core loss, and as a result, the total power loss of proposed 

motor is much lower than the conventional FSPMMs. The detailed fabrication 

procedures are presented. The theoretical characteristics of ALFSPMM are calculated 

by 2D finite element method (FEM). Experimental measurements of the prototype 

machine are presented to validate the FEM calculation. 

On the machine control side, the direct torque control (DTC) is one of the most popular 

control algorithms. It features simple structure and fast dynamic response. However, the 

performance of DTC in terms of torque and flux ripples and drive system efficiency is 

unsatisfactory since the voltage space vector (VSV) is selected heuristically. Recently, 

the finite-control-set model predictive direct torque control (FCS-MPDTC) has been

developed as a simple and promising control technique to overcome these problems.
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The FCS-MPDTC still suffers from relatively high torque and flux ripples due to the 

limited number of VSVs. 

This thesis proposes a novel FCS-MPDTC with an extended set of twenty modulated 

VSVs, which are formed by eight basic VSVs and twelve extended VSVs by 

modulating eight basic VSVs with fixed duty ratio. To mitigate the computational 

burden caused by the increased number of VSVs, a pre-selective scheme is designed for 

the proposed FCS-MPDTC to filter out the impractical VSVs. The drive system 

efficiency is also investigated. The theory and simulation are validated by experimental 

results on the ALFSPMM prototype.



Chapter 1. Introduction
 

CHAPTER 1

INTRODUCTION

1.1 Background and Significance

With the increasing concern on energy diversification, energy efficiency, and 

environmental protection, electric vehicles (EVs) are becoming more attractive and may 

be the most practical way for road transportation. 

Motor drive system is the core technology for EVs that converts the on-board electrical 

energy to the desired mechanical motion and the electric machine is the key element of 

motor drive system. The ideal electric machine for EVs application should feature high 

efficiency, high torque/power density, wide speed range, low acoustic noise, reasonable 

cost and high reliability for vehicular environment. Various types of electric machine 

had been applied to EVs, such as DC machine (DCM), induction machine (IM), switch 

reluctance machine (SRM) and permanent magnet synchronous machine (PMSM).

DCM possesses excellent controllability and low torque ripples. However the reliability 

is low, due to the usage of brushes and commutators. IM has robust rotor structures and 

low manufacturing costs, but the efficiency and power/torque density are low. SRM

presents outstanding flux weakening ability and the drawbacks are low power density, 

large torque ripples and large acoustic noise. PMSM features high torque/power density 

and high efficiency. The major weaknesses are high cost, delicate rotor structure, poor 

heat dissipation and narrow speed range.

Recently, Flux-switching permanent magnet machine (FSPMM) has been proposed to 

overcome above problems for EV drive applications and various novel topologies based 

on the principle of flux-switching have been proposed in the last decade [1.1]-[1.6]. The 

laminations of traditional FSPMMs are radially laminated, i.e. steel sheets are laminated 

perpendicular to the shaft axis. Due to the nonlinear magnetic path, the radial 

laminations can have serious partial magnetic saturation and the maximal flux density is 

usually more than 2.0 T at the edges/tips of stator teeth or rotor poles. The pole pairs in 
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FSPMMs are equal to the number of rotor poles. As a result, the rated frequency of 

FSPMMs is usually much higher than that of the traditional rotor-inserted PM machines 

at a given speed. In this case, the core loss of FSPMMs becomes evident especially 

beyond the rated speed, which leads to decrease of output power, torque/power density 

and efficiency.

The reluctance motor with axially laminated rotor has received growing interest in 

recent years. It is increasingly used in servo drive applications, even though its 

industrial manufacturing process has not been well established yet [1.7]. This type of 

motor can achieve a higher torque density compared with segmented rotors [1.9]], [1.10]

and flux-barrier rotors [1.11]. In this thesis, an axially laminated flux-switching 

permanent magnet machine (ALFSPMM) with HiB grain oriented silicon steel stator 

and rotor cores is proposed. The HiB silicon steel features high permeability and low 

specific core loss [1.12]. As a result, the total power loss of proposed motor is much 

lower than the conventional FSPMMs.

On the machine control side, the typical PMSM control methods are six-step control, 

field oriented control/vector control (FOC/VC) and direct torque control (DTC). The 

implantation of six-step control is simple and cost effective. However it is unable to 

deliver high accuracy torque/speed control. FOC/VC features excellent steady-state and 

dynamic performance and has been widely used in servo system. However FOC/VC 

requires constant precise angular position measurement to perform complex coordinate 

transformation [1.13]. The direct torque control (DTC) is one of the most popular 

control algorithms. It features simple structure and fast dynamic response. However, the 

performance of DTC in terms of torque and flux ripples and drive system efficiency is 

unsatisfactory since the voltage space vector (VSV) is selected heuristically [1.14].

Recently, the finite-control-set model predictive direct torque control (FCS-MPDTC) 

has been developed as a simple and promising control technique to overcome these 

problems [1.15]. The FCS-MPDTC still suffers from relatively high torque and flux 

ripples due to the limited number of VSVs. High sampling frequency of the control 

system is required to improve the performance. This would result in a high 

computational burden on the microprocessor hardware as well as high switching loss, 

which are undesirable in the real-time implementation.
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This thesis proposes a novel FCS-MPDTC with an extended set of twenty modulated 

VSVs, which are formed by eight basic VSVs and twelve extended VSVs by 

modulating eight basic VSVs with fixed duty ratio. By evaluating all twenty VSVs, the 

concept of duty ratio control is naturally integrated into the proposed algorithm. 

Compared to conventional FCS-MPDTC, the proposed FCS-MPDTC requires less 

computing time and features lower torque and flux ripples, lower phase current THD 

and higher system efficiency.

The major objectives of this thesis project are:

To conduct a comprehensive literature survey of the developmental history of EVs 

and  EV drives

To propose a novel FSPM machine for EV application.

To propose a novel FCS-MPDTC control scheme for the purposes of torque/flux 

ripples reduction and drive system efficiency increase.

To perform both simulation and experimental tests based on the proposed drive 

system and compare the test results to other conventional control schemes.

1.2 Thesis Outline

This thesis is organised in seven chapters, including this one as an introduction to the 

background and structure of the whole thesis.

Chapter 2 presents a comprehensive literature survey of the developmental history of 

EVs and the state of the art of permanent magnet synchronous machines (PMSMs).

Various topologies of PMSMs and classifications are introduced. A literature review of 

all the major machine control methods is presented.

Chapter 3 proposes a novel FSPM machine for EV application. The design process and 

detailed fabrication procedures are presented. The theoretical characteristics of 

ALFSPMM, such as back-EMF, self/mutual inductance and cogging torque are 
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calculated by 2D finite element method (FEM). Experimental measurements of the 

prototype machine are presented to validate the FEM calculation.

Chapter 4 proposes a novel FCS-MPDTC with an extended set of twenty modulated 

VSVs, which are formed by eight basic VSVs (used in the conventional DTC) and 

twelve extended VSVs by modulating eight basic VSVs with fixed duty ratio.

In Chapter 5, numerical simulation and experimental tests of the proposed FCS-

MPDTC are performed on the novel FSPM machine. The quantitative analysis in terms 

of torque/flux ripples and drive system efficiencies are also presented.

Chapter 6 presents the numerical simulation and experimental tests results of the 

proposed FCS-MPDTC based on a surface mounted PMSM. In addition, the drive 

system performance and efficiency are studied under the similar inverter switching 

frequency.

Chapter 7 draws conclusions from this thesis and proposes possible future works.

Lists of related references are attached at the end of each chapter.
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