DEVELOPING A THREE-DIMENSIONAL (3D) ASSESSMENT METHOD FOR CLUBFOOT

BALASANKAR GANESAN

PhD

University of Technology Sydney

This programme is jointly offered by University of Technology Sydney and The Hong Kong Polytechnic University

2018
CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no material previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text. This thesis is the result of a research candidature conducted jointly with The Hong Kong Polytechnic University as part of a collaborative degree.

(Signed)
BALASANKAR GANESAN (Name of student)
ABSTRACT

Congenital talipes equinovarus (CTEV) is one of the most common complex orthopedic deformities in newborn babies which is more in males than females (3:1). The condition is characterized by four components of foot deformities: cavus, adductus, varus and equinus (CAVE). The rate of prevalence of CTEV is 1 in per 1000 live births. The etiology, classification, assessment, and management of clubfoot remain controversial. There is no standardized assessment for clubfoot deformity. An accurate evaluation of clubfoot is very essential for quantifying the initial severity of the deformity and determining the treatment options, as well as predicting the prognosis and treatment outcomes. Although there are a number of evaluation methods have been proposed to assess the severity of clubfoot, most of the assessment methods are too subjective. These assessment systems will not provide strongly objective measured clinical evidence. Imaging modalities such as magnetic resonance imaging (MRI), and computerized tomography (CT) scanning can be used to evaluate the initial severity of the clubfoot, but these techniques are too expensive for repeated use at each weekly casting session. Reliable, valid and accurate assessments would help to reducing relapses and the burden to the children and their family in terms of hospital expenses, and other long term complications to children with clubfoot. There is a necessity to develop a valid, reliable and objective tool to evaluate clubfoot. Thus, this study has developed an effective 3D assessment system, based on 3D scanning, to measure clubfoot severity and response to casting intervention. As a secondary aim, the thermo-physiological changes in the clubfoot was observed and correlated with the response to the casting intervention. This study is an explorative study and the study design has been approved by the Human Research Ethics Committees (HREC); registration number HREC/16/SCHN/163. The study was reviewed and approved on 17 August 2016 by the Sydney Children's Hospitals Network Human Research Ethics Committee in Sydney, Australia.
To develop the 3D assessment system for clubfoot, two experiments were conducted in this study. Five samples (N=5) were used in the experiments. Two rubber clubfoot models (N=2) were ordered online from Massons Healthcare, a private limited company that imports and distributes orthotics in Australia. One child with clubfoot was selected to develop the 3D scanned clubfoot model with pre and post intervention scans (N=2). In addition, one normal foot 3D scan (N=1) was collected to compare the difference between normal foot and clubfoot. A Kinect XBOX was used as a 3D scanner to obtain the scanned images from the child with unilateral clubfoot, normal foot, and the two rubber models. The scanned 3D images were processed by using Artec 9 Studio (3D scanner software) and CATIA V5 software (3D modeling software). Based on the 3D modelling, the 3D scanned images of the clubfoot were sectioned into five anatomical areas. Then, 5 cross sections were created from 5 anatomical surface lines. From the 5 surface lines, 5 cross section areas were developed: cross section angles of the center point, maximum lateral border, maximum medial border, maximum dorsal side, and maximum plantar side of the foot. The final step in developing the new 3D measurement scale was the development of 3 angles under the components of 5 cross section areas:

A. Center of cross section angle

1. Ankle-Heel-Midfoot-Area cross section angle (AHMA Angle)
2. Heel-midfoot-metatarsal phalangeal joint area cross section angle (HMMA Angle).
3. Midfoot- metatarsal phalangeal joint -proximal phalangeal joint area cross section angle (MMPAA)

B. Maximum lateral border cross section angle

1. Lateral border of Ankle-Heel-Midfoot-Area cross section angle (LBAHMA Angle)
2. Lateral border of Heel-midfoot-metatarsal phalangeal joint area cross section angle (LBHMMA).

3. Lateral border of Midfoot- metatarsal phalangeal joint-proximal phalangeal joint area cross section angle (LBMMMPA)

C. Maximum medial border cross section angle

1. Medial border of Ankle-Heel-Midfoot-Area cross section angle (MBAHMA Angle)

2. Medial border of heel-midfoot-metatarsal phalangeal joint area cross section angle (MBHMMA).

3. Medial border of midfoot- metatarsal phalangeal joint-proximal phalangeal joint area cross section angle (MBMMPA)

D. Maximum dorsal side cross section angle

1. Dorsal side of Ankle-Heel-Midfoot-Area cross section angle (DS-AHMA Angle)

2. Dorsal side of Heel-midfoot-metatarsal phalangeal joint area cross section angle (DS-HMMA).

3. Dorsal side of Midfoot- metatarsal phalangeal joint-proximal phalangeal joint area (DS MMPA) center of cross section angle

E. Maximum planter side cross section angle

1. Plantar side of Ankle-Heel-Midfoot-Area cross section angle (PSAHMA Angle)

2. Plantar side Heel-midfoot-metatarsal phalangeal joint area cross section angle (PSHMMA).

3. Plantar side Midfoot- metatarsal phalangeal joint-proximal phalangeal joint area cross section angle (PSMMPA)

The measurement of pre and post casting intervention were compared and the results showed the differences between pre and post intervention. In addition, the severe and corrected clubfoot were compared with normal foot and the results showed the all the angles of sixth
week correction is closely reached to the range of normal foot cross section angles. The results of this study show that these measurements can be used to predict the four components of the clubfoot deformities.

In this study, infrared (IR) thermography is used to collect thermal images of the children with clubfoot (N=4) before and after casting. The study explored the thermophysiological changes between the casting interventions. In total, 120 thermal images were collected from the dorsal, plantar, medial, lateral and heel sides of the foot. FLIR and MATLAB software were used to obtain ten cutoff mean temperatures. The results showed reduced temperature after the first casting and temperature difference between the weekly castings. This novel method can be used to observe thermal changes in the clubfoot between castings to avoid complications such as pressure ulcers, swelling, pressure sores and related complications and relapses. Furthermore, this research study finding shows that IR thermography can be used as an additional diagnostic tool to evaluate and observe the thermophysiological changes in the clubfoot.

In this study, a new 3D objective analysis (objective assessment) method has been developed for analyzing clubfoot deformity. This 3D method is developed from 2D images of severe clubfoot, which was obtained from computed tomography. This method provides a new way to create a 3D model of the bones of a severe clubfoot from 2D slices as well as helps to analyze the relative position of the foot bones and objectively quantify the severity of the clubfoot.

Furthermore, a systematic review study was conducted to examine how the technical protocols in the Ponseti treatment followed in the selected 12 studies could achieve the initial correction, and better understand the outcomes of the study, including success rate, number of castings and percentage of surgical recommendations, as well as review the rate of relapse and relapse patterns of the causative factors of clubfoot for relapses. It is found that the
Ponseti method requires fewer castings and shorter duration to achieve correction, and has a lower relapse rate in comparison to other methods. However, few studies have focused and described the relapse pattern, and causes of relapse. There is still lack of information regarding the causes of relapse or recurrences of clubfoot. In addition, this study found that variations in the bracing protocol schedule.

As described above, this study results provide useful information and new objective assessment methods to quantify the severities of the clubfoot. In addition, this study used infrared imaging method and the results provided a useful information about skin temperature distribution between the castings and this infrared imaging can be used to prevent the complications from casting and relapses. The output of this research project can be extended to develop objective assessment methods for quantifying the initial severities of the clubfoot and provide new knowledge on developing 3D based objective assessment methods.
LIST OF PUBLICATIONS

Manuscripts under preparation

1. **Ganesan Balasankar**, Joanne Yip, Adel Al-Jumaily, Luximon Ameersing, Ey Batlle, Anna. A new method of computed tomography based three-dimensional evaluation for bone to bone alignment analysis in clubfoot. *In submission to Plos one*

Peer-reviewed Journal Papers

https://doi.org/10.1371/journal.pone.0178299.

Conference papers

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my PolyU Chief Supervisor Dr. Joanne Yip for the continuous support of my PhD study and related research, for her patience, motivation, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study. Without her support, guidance, feedback, my thesis and PhD study would not be completed successfully. She provided continuous support, discussion, incessant advising, continuous motivation and constructive criticism has helped to increase the quality of this work.

I would like to express my sincere gratitude and sincere appreciation to my Chief Supervisor, Dr. Adel Al Jumaily, UTS, Australia for his supervision, motivation and helpful guidance throughout the duration of this research project. He encouraged and guided me to publish my work in high impact journals. He helped me with constant discussion, incessant advising, continuous motivation and guidance on ethical procedures. Without his support, guidance, feedback, my project would not be completed successfully.

I would like to sincerely thank my previous supervisor, Dr. Luximon Ameersing, for his guidance, and support for constant advice for data analysis as well as moral support. I deeply appreciate for his willingness in providing the research details and support throughout my PhD study period.

I would also thank to Dr Paul Gibbons, Dr. Gray Kelly, Ms. Alison Chivers, and Mr. Tony for supporting me to conduct the research at the Children’s Hospital Westmead, Sydney, Australia. Especially, I would like to thank my wife Dr. Suchita Balasankar for assisting me to prepare the equipment and collect the data.
I would also express my thanks to Dr. Anna Ey, Pediatric Orthopaedic Surgeon, Spain for helping me to understand the Ponseti method, and she provided valuable research advice for this study.

I wish to express my sincere gratitude to my family. This is especially so for my wife, Dr. Suchita Balasankar. She supported me throughout my PhD study and supplied me with so much confidence and love. I couldn’t have done this without my wife’s support. Even when she was in the early stages of pregnancy, she came along to the Children’s hospital at Westmead to support me during data collection. Many thanks to God for giving me a lovely wife that gave real meaning to my life. Also, I could not forget to mention my prince Master, Vishwajeet Balasankar Ganesan. His smiles and expressions give me unmeasurable moments of happiness and has made my life so much more meaningful. He is what motivated me to work so sincerely. I am also sincerely thankful to my father Mr. Ganesan, mother Kaliammal, sister - Jaya, for their support and love. Thanks to my mother in law Mrs. Geetha Shriram Kothe for encouraging my wife to support me to complete my PhD successfully. I am also thanks to my god “Siva” and “Sai Baba” for their blessings.

I would also thank to Prof. Surya Shah, Professor A. T. Still University, Mesa Arizona for his ethical advice for my studies.

Lastly, I would also like to thank my friends Dr Yuhan Huang, UTS, Mr. Karthick Thiagarajan, UTS, and my other colleagues at ITC, PolyU for supporting me in my study period.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>I</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>V</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>VIII</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>X</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XVI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XXI</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Aims of this study</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Objectives of this study</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Project Originality and Significance</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Outline of the thesis</td>
<td>8</td>
</tr>
<tr>
<td>Chapter 2 Literature Review</td>
<td>12</td>
</tr>
<tr>
<td>2.1 Anatomy of the foot</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1 Bones of the foot</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2 Arches of the foot</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3 Ankle and foot joints</td>
<td>16</td>
</tr>
<tr>
<td>2.1.4 Joints of the foot</td>
<td>19</td>
</tr>
<tr>
<td>2.1.5 Subtalar joint</td>
<td>19</td>
</tr>
<tr>
<td>2.1.6 Talocalcaneonaviccular joint</td>
<td>21</td>
</tr>
<tr>
<td>2.1.7 Calcaneocuboid joint</td>
<td>21</td>
</tr>
<tr>
<td>2.1.8 Transverse joints, Tarsometatarsal joints, Metatarsophalangeal Joints (MTP Joints) and Interphalangeal joints (IP joints)</td>
<td>22</td>
</tr>
<tr>
<td>2.1.9 Muscles of the foot</td>
<td>22</td>
</tr>
<tr>
<td>2.2 Clubfoot</td>
<td>25</td>
</tr>
<tr>
<td>2.2.1 Introduction</td>
<td>25</td>
</tr>
</tbody>
</table>
2.2.2 Prevalence of clubfoot
2.2.3 Etiology
2.2.4 Pathoanatomy and Biomechanics of clubfoot
2.2.5 Management of clubfoot
 2.2.5.1 Ponseti method
 2.2.5.2 French functional or physiotherapist method
 2.2.5.3 Copenhagen Method
2.3 Assessment of clubfoot
 2.3.1 Development of clubfoot assessment
 2.3.2 Pirani scoring system for clubfoot assessment
 2.3.3 Dimeglio classification for clubfoot
 2.3.4 Disease Specific Index (DSI) scale
 2.3.5 Carroll clubfoot severity scale
 2.3.6 Biomechanical assessment methods for evaluating clubfoot
 2.3.7 Radiological evaluation methods of clubfoot
 2.3.8 Ultrasound in clubfoot evaluation
 2.3.9 Role of CT and MRI analysis in clubfoot severity
 2.3.10 Role of three dimensional scanning for normal feet and medical
 applications normal foot and medical applications
 2.3.11 Infrared thermography
2.4 Summary

Chapter 3 A Systematic Review on Ponseti Method in the management of
clubfoot under 2 years of age
3.1 Introduction
3.2 Study selection

3.2.1 Inclusion criteria

3.2.2 Exclusion criteria

3.2.3 Data Extraction

3.3 Results

3.4 Discussion

3.4.1 Casting techniques and numbers of casts

3.4.2 Bracing

3.4.3 Relapses and its characteristics

3.4.4 Relapsing Factors

3.4.5. Evaluation of treatment outcome and surgical recommendations

3.5 Summary

Chapter 4 Research Methodology and Study Protocol

4.1 Introduction

4.2 Exploratory study design

4.2.1 Participants/ Study population

4.2.2 Procedures (Recruitment, Consent, and Data collection)

4.2.3 Equipment/Measurement tools

4.3 Data collection procedures

4.3.1 Assessment 1

4.3.2 Assessment 2

4.4 Data analysis

4.4.1 Method of 3D image analysis

4.4.2 Methods of Cross-sections, parameters estimation and curvature analysis
4.4.3 Statistics for 3D images

4.4.4 Infrared image analysis and statistics

4.5 Summary

Chapter 5 Three-dimensional evaluation model for bone to bone relationships and clubfoot

5.1 Introduction

5.2 Method

5.2.1 Acquisition of 2D CT slice images

5.2.2 Aligning and removing noise from 2D slices

5.2.3 Three-dimensional modelling of clubfoot

5.2.3.1 Software adapted for 3D modelling of clubfoot and data analysis

5.3 Data processing and analysis

5.4 Results and discussion

5.4.1 Measuring the alignment of calcaneus, talus, cuboid bones relative to lower end of tibia

5.4.2 Measuring the alignment of metatarsal bones relative to lower end of tibia

5.4.3 Measuring the alignment of proximal, middle, and distal phalangeal bones relative to the lower end of tibia

5.5 Summary

Chapter 6 Developing a 3D assessment method for clubfoot

6.1 Introduction

6.2 Study design

6.3 Participants/Study population

6.3.1 Inclusion criteria
6.3.2 Exclusion criteria 126

6.4 Kinect XBOX as scanner/camera 128
 6.4.1 3D scanner 128
 6.4.2 Hardware Specifications for Kinect 130
 6.4.3 Artec software 130

6.5 Data collection procedures 131
 6.5.1 Experiment I 131
 6.5.2 Experiment II 133
 6.5.3 Acquisition of 3D clubfoot model 135
 6.5.4 Methods of 3D image processing by Artec studio 9 and RGB D mapping 137

6.6 Methods for developing a new assessment system for clubfoot 139
 6.6.1 Step 1: Alignment of 3D model clubfoot 139
 6.6.2 Step 2: Sectioning the clubfoot scanned 3D model 140
 6.6.3 Step 3: Methods for calculating angles between the center of the cross sections 143
 6.6.4 Results and discussion 150
 6.6.4.1 Results of pre and post casting (6 weeks) intervention, and comparison with normal foot 162

6.7 Summary 169

Chapter 7 Thermographic evaluation of clubfoot 170

7.1 Introduction 170

7.2 Study design 170

7.3 Participants/ Study population 171
 7.3.1 Inclusion criteria 171
7.3.2 Exclusion criteria

7.4 Infrared Camera

7.4.1 FLIR Software

7.5 Data collection procedures

7.6 Data processing and analysis

7.7 Results and discussion

7.7.1 demographics

7.7.2 Skin temperature distribution on foot

7.7.3 Results of statistical analysis of thermal changes on the clubfoot

7.7.3.1 Thermal changes on the dorsal side of foot after weekly casting

7.7.3.2 Thermal changes in skin of heel of clubfoot before and after casting intervention

7.7.3.3 Thermal changes in skin of lateral side of clubfoot

7.7.3.4 Thermal changes in skin of medial side of foot

7.7.3.5 Thermal changes in skin of plantar side of foot

7.8 Role of infrared thermography evaluation for clubfoot

7.9 Summary

Chapter 8 Conclusions and Recommendations for future research

8.1 Introduction

8.2 Three-dimensional modelling of clubfoot and development of 3D assessment method

8.3 Infrared thermography evaluation of clubfoot

8.4 Three-dimensional analysis of clubfoot based on CT scanning

8.5 A systematic review on Ponseti method intervention under two years of age

8.6 Proposed study protocol on clubfoot for further research
8.7 Suggestions for future work

APPENDICES

Appendix A 213
Appendix B 215
Appendix C 216

REFERENCES 234
List of Figures

<table>
<thead>
<tr>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1 Bilateral Clubfoot</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2 Flow diagram of research methodology</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.1 Anatomy of the foot – superior and medial view</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.2 Medial view of the human foot</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.3 Lateral view of the foot</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.4 Arches for the foot</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.5 Anterior and lateral view of ankle joint</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.6 Lateral view of Ankle joint and lateral ligaments</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.7 Medial view of ligaments at ankle and foot joints</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.8 Subtalar joint</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.9 Inversion and eversion of foot</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.10 Talocalcaneonaviculcar joint</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.11 Muscles on the dorsum of the foot</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.12 First layer muscles on the sole of the foot</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.13 Second layer of muscles on the sole of the foot</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.14 Third and Fourth layer of muscles on the sole of the foot</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.15 Clubfoot depicted in Egyptian paintings and mummy</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.16 Clubfoot paintings at Paris</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.17 Clubfoot- Displacement of bones</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.18 Clubfoot management in earlier periods of time</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.19 Manipulation of the clubfoot by Ponseti techniques</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.20 Ponseti casting</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.21 Percutaneous Achilles tenotomy in Ponseti techniques</td>
<td>35</td>
</tr>
</tbody>
</table>
Figure 2.22 Dobbs foot abduction brace
Figure 2.23 French Taping method
Figure 2.24 Ankle foot orthosis
Figure 2.25 Manipulation of clubfoot by Copenhagen method
Figure 2.26 Pirani Scoring system
Figure 2.27 Dimeglio clubfoot classification scale
Figure 2.28 Foot prints method for clubfoot assessment
Figure 2.29 Correlation of Bimalleolar angle measurement
Figure 2.30 Talocalcaneal angle or Kite's angle
Figure 2.31 Talocalcaneal angle or Kite's angle (Lateral)
Figure 2.32 Abnormal Talocalcaneal angle
Figure 2.33 The principal axis of inertia ossific nuclei and the cartilaginous relationship in by MRI
Figure 2.34 3D foot model
Figure 2.35 3D model used for quantifying the severity of rheumatoid arthritis
Figure 2.36 Thermography images of various medical conditions
Figure 2.37 Examples of lateral views of 3 grades of ankle sprains by IR evaluation
Figure 3.1 Flow chart of literature search and recruitment process
Figure 4.1 Flowchart of study method
Figure 4.2 Foot alignment
Figure 4.3 Cross sections
Figure 4.4 Parameter estimation and curvature
Figure 5.1 Framework for developing 3D model of clubfoot bones and analysing severe clubfoot
Figure 5.2 Process of removing noise from images and marking severe clubfoot (axial view)

Figure 5.3 Processed CT slices - red-dot landmarks for developing clubfoot model

Figure 5.4 Calculation of first metatarsal angle based on the ankle bone - tibia

Figure 5.5 Position and alignment of first metatarsal in relative to the tibia (YZ view (90,0))

Figure 5.6 Position and alignment of first metatarsal in relative to the tibia XY view (0,90)

Figure 5.7 Position and alignment of first metatarsal in relative to the tibia XZ view (0,0)

Figure 5.8 Calcaneus bone position in relative to the lower end of tibia (ankle region)

Figure 5.9 Measurement of talus angles and its position in relative to the lower end of tibia (ankle region) (YZ view)

Figure 5.10 Position of Cuboid bone angles in relative to the lower end of tibia (ankle region)

Figure 5.11 x, y, z coordinate angles and direction of first proximal phalanx in the severe clubfoot

Figure 5.12 The relationship between ankle (lower end of tibia) and first distal phalanx.

Figure 6.1 Flowchart of study design

Figure 6.2 Kinect and its components (Microsoft)

Figure 6.3 Equipments for experiment

Figure 6.4 A small bed for positioning the baby
Figure 6.5 Positioning clubfoot for scanning

Figure 6.6 Rubber model of partially corrected clubfoot

Figure 6.7 Rubber model of severe clubfoot

Figure 6.8 Algorithm for developing 3D clubfoot model and developing a new assessment method

Figure 6.9 Creating rubber clubfoot model with Artec (severe clubfoot before intervention)

Figure 6.10: Creating 3D clubfoot model with Artec (severe clubfoot from child with unilateral clubfoot at baseline)

Figure 6.11 Alignment of rubber clubfoot model

Figure 6.12 Sectioning foot with five surface lines

Figure 6.13 Cross section of 3D clubfoot of newborn child with severe unilateral clubfoot

Figure 6.14 Cross sectioning of rubber model of severe clubfoot

Figure 6.15 Alignment of center of cross sections and three centers of cross sections angles

Figure 6.16 Center of the cross section angles on rubber model of severe clubfoot

Figure 6.17 Maximum lateral border cross section angle

Figure 6.18 Maximum medial border cross section angle

Figure 6.19 Maximum dorsal side cross section angle

Figure 6.20 Maximum planter side cross section angle

Figure 6.21 Center of the angle of the cross section - child with severe clubfoot deformity

Figure 6.22 Maximum angle of the cross section at lateral border - child with severe clubfoot deformity
Figure 6.23 Maximum angle of the cross section at medial border - child with severe clubfoot

Figure 6.24 Maximum angle of the cross section of dorsal side - child with severe clubfoot deformity

Figure 6.25 Maximum cross section angle of plantar side - child with severe clubfoot deformity

Figure 6.26 Results of 3D imaging of center of the cross-section angle

Figure 6.27 Results of maximum lateral border cross section angle

Figure 6.28 Results of 3D imaging of maximum medial border cross section angle

Figure 6.29 Results of 3D imaging of maximum dorsal side cross section angle

Figure 6.30 Results of 3D imaging of maximum planter side cross section angle

Figure 6.31 Different views of 3D clubfoot model after casting intervention (Pre-casting and at 6th week of casting)

Figure 6.32 Three-Dimensional (3D) angle measurements of normal foot

Figure 6.33 Results of hindfoot severity of the clubfoot before and after casting and comparison with normal foot

Figure 6.34 Results of midfoot severity of the clubfoot before and after casting, and comparison with normal foot

Figure 6.35 Results of forefoot severity of the clubfoot before and after casting and comparison with normal foot

Figure 7.1 FLIR Camera

Figure 7.2 Different types of medical imaging modalities

Figure 7.3 Flowchart of subject recruitment and study design for thermal imaging
Figure 7.21 Estimated marginal means of temperature of plantar side of foot

Figure 7.22 Complications of improper casting - pressure sores and infection in clubfoot
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Prevalence of clubfoot</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Grading of Dimeglio clubfoot classification scale</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Disease-specific instrument scale</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Characteristics of the studies</td>
<td>73</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Parameters from 3D imaging analysis and Infrared imaging</td>
<td>100</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Calculation of angles of calcaneus, talus, cuboid bones in severe clubfoot</td>
<td>115</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Angles at metatarsal bones in relation to the tibial bone</td>
<td>118</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Angles at proximal phalanges in relation to ankle region of tibia</td>
<td>119</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Angles at middle phalanges in relation to ankle</td>
<td>121</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Angles at distal phalanges in relation to ankle</td>
<td>122</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Microsoft Kinect specifications</td>
<td>129</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Development of new 3D assessment method for clubfoot (3DAMC)</td>
<td>147</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Results of pre and post casting (6 weeks) as intervention, and comparison with normal foot</td>
<td>155</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Results of rubber clubfoot model (severe and partially corrected)</td>
<td>156</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Hindfoot measurement in 3DAMC</td>
<td>164</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Results of midfoot measurement in 3DAMC</td>
<td>166</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Results of forefoot measurement in 3DAMC</td>
<td>167</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Demographics of study participants</td>
<td>172</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Specifications of infrared camera</td>
<td>174</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Results of thermal changes on the dorsal side of foot</td>
<td>188</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>Thermal changes in skin of heel of clubfoot</td>
<td>191</td>
</tr>
<tr>
<td>Table 7.5</td>
<td>Thermal changes in skin of lateral side of clubfoot</td>
<td>194</td>
</tr>
</tbody>
</table>
Table 7.6 Thermal changes in skin of medial side of clubfoot 195

Table 7.7 Descriptive statistics of mean temperature of plantar side of foot 197