

University of Technology Sydney

Development of Lithium-Ion Battery State Estimation Techniques for Battery Management Systems

Linfeng Zheng

M.E. (Electrical Engineering), B.E. (Electrical Engineering)

School of Electrical and Data Engineering University of Technology Sydney, Australia

A thesis submitted for the Degree of

Doctor of Philosophy

July 2018

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature of Student: Signature removed prior to publication.

Date:

31/07/2018

ACKNOWLEDGEMENTS

First and foremost, I would like to express sincere gratitude to my supervisors, Professor Jianguo Zhu and Professor Guoxiu Wang, for their forward guidance, invaluable encouragement and unwavering support during my candidature. I am also thankful to Associate Professor Dylan Dah-Chuan Lu for his insightful and constructive inputs and help to improve the quality of my work. It is a great honor for me to have the opportunity to learn from and work with them.

I greatly appreciate the helpful advices and technical support from my colleagues and friends in the Centre for Green Energy and Vehicular Innovations, Centre for Clean Energy Technology, Centre for Electrical Machines and Power Electronics, University of Technology Sydney (UTS), etc. in particular Associate Professor Youguang Guo, Dr. Jane Yao, Dr. Lei Zhang, Dr. Gang Lei, and Mr. Shane Chen.

I would also like to acknowledge the National Active Distribution Network Technology Research Centre, Beijing Jiaotong University, for the prior work on battery tests. The financial supports from the Automotive Australia 2020 Cooperative Research Centre (AutoCRC), the Rail Manufacturing Cooperative Research Centre (RMCRC), and the International Research Scholarship (IRS) from UTS for this research are gratefully acknowledged.

Last but not least, I am highly obliged for the unconditional love and support given by my beloved parents and wife. Without the countless encouragement and trust from them in the past several years, I could not have achieved this.

ii

TABLE OF CONTENTS

CI	ERTI	FICA	ATE OF ORIGINAL AUTHORSHIP	.I
A	CKNO	OWL	EDGEMENTS	II
TA	BLE	OF	CONTENTSI	Π
LI	ST O	FSY	VMBOLS	Π
LI	ST O	FAI	BREVIATIONS	X
LI	ST O	F FI	GURES	Π
LI	ST O	F TA	ABLES XV	Π
Ał	BSTR	АСТ	ΓΧΙ	X
1	INT	[RO]	DUCTION	1
	1.1	Bac	kground and Significance	1
	1.2	Res	earch Objectives	4
	1.3	Out	line of Thesis	5
]	Refer	ences	5	6
2	LIT	TER/	ATURE REVIEW	9
	2.1	Intr	oduction	9
	2.2	Batt	tery Management System	9
	2.3	Stat	e of Charge Estimation1	2
	2.3.	1	Coulomb-counting method1	2
	2.3.	2	Open circuit voltage method1	3
	2.3.	3	Model-based methods 1	5
	2.3.	4	Machine learning methods	,4
	2.4	Stat	e of Health Estimation2	.7
	2.4.	1	Model-based methods	,8
	2.4.	.2	Incremental capacity analysis and differential capacity analysis based	
	met	hods		1
	2.4.	3	Machine learning methods	5
-	2.5	Stat	e of Energy Estimation3	8

	2.5	.1	Model-based methods	39
	2.5	.2	Machine learning methods	42
	2.5	.3	Characteristic mapping methods	42
	2.6	Stat	te of Power Prediction	44
	2.6	.1	Characteristic map based methods	44
	2.6	.2	Model-based methods	47
	2.6	.3	Machine learning methods	55
	2.7	Sun	nmary	57
	Refer	rences	5	58
3	MO	DDEI	L-BASED BATTERY SOC AND CAPACITY ESTIMATION	73
	3.1	Intr	oduction	73
	3.2	Lith	nium-Ion Battery Modeling	75
	3.2	.1	Electrochemical model	75
	3.2	.2	Model reduction	77
	3.2	.3	Numerical solution for PDEs	79
	3.2	.4	SOC definition in the SPM	81
	3.3	Proj	posed Estimation Approaches	82
	3.3	.1	SOC estimation	83
	3.3	.2	Capacity estimation	84
	3.3	.3	Resistance estimation	84
	3.4	Exp	perimental Test	86
	3.4	.1	Battery test bench	86
	3.4	.2	Test schedules	87
	3.5	Nur	nerical Simulation and Experimental Verification	88
	3.5	.1	Cell voltage verification	88
	3.5	.2	SOC estimation result	89
	3.5	.3	SOC and capacity co-estimation results	91
	3.5	.4	SOC, capacity and resistance co-estimation results	97
	3.6	Sun	nmary	101
	Refer	rences	5	102

D DVA BASED SOC AND CAPACITY ESTIMATION	107
oduction	107
C based IC and DV Curves	109
C and Capacity Estimation Methods with Feature Points	113
FPs in IC and DV curves	113
Proposed SOC and capacity algorithms	119
Estimation results	124
roved SOC Estimation Methods with EKF and PF	129
Battery SOC-DV model	129
Proposed SOC algorithms	134
Estimation results	
nmary	143
5	144
CORRELATION BASED SOE AND MAXIMUM Y ESTIMATION oduction	AVALIABLE 149 149
nperature, current and aging level dependencies of battery m nergy nperature, current and aging level dependencies of the relation	naximum 151 onship between 153
nosed Estimation Algorithms	153
ification and Discussion	161
SOF estimation	161
Maximum available energy estimation	101
Dynamic stress test cycles verification	104
Dynamic suces test cycles vermeation	
	100
,	
DDS	
oduction	173
nperature-Dependent DCR Based Power Prediction Method	175
	D DVA BASED SOC AND CAPACITY ESTIMATION oduction based IC and DV Curves cand Capacity Estimation Methods with Feature Points FPs in IC and DV curves Proposed SOC and capacity algorithms Estimation results roved SOC Estimation Methods with EKF and PF Battery SOC-DV model Proposed SOC algorithms Estimation results mary CORRELATION BASED SOE AND MAXIMUM Y ESTIMATION oduction uperature, current and aging level dependencies of battery n nergy preature, current and aging level dependencies of the relation CC Dosed Estimation Algorithms ification and Discussion SOE estimation Maximum available energy estimation Dynamic stress test cycles verification mary Data Capacity POWER CAPABILITY DS oduction perature-Dependent DCR Based Power Prediction Method

6.2.1	Temperature dependence of DCR176
6.2.2	Modeling of Battery DCR for Power Prediction178
6.2.3	Experimental Verification182
6.3 Sı	urface Lithium Concentration Based Power Prediction Method189
6.3.1	Battery electrochemical model and lithium concentration190
6.3.2	Proposed instantaneous available power prediction method
6.3.3	Experimental Verification198
6.4 Sı	ummary
Referenc	es
7 CONC	CLUSIONS AND FUTURE WORKS211
7.1 Co	onclusions
7.2 Fu	ture Works
APPENDI PF	X A: DV BASED SOC ESTIMATION ALGORITHMS USING EKF AND
APPENDI STRA	X B : A COMPARATIVE STUDY OF BATTERY BALANCING TEGIES FOR DIFFERENT BATTERY OPERATION PROCESSES 221
APPENDI STRA	X C : MODEL PREDICTIVE CONTROL BASED BALANCING FEGY FOR SERIES-CONNECTED BATTERY PACKS235
APPENDI	X D : LIST OF PUBLICATIONS DURING THE THESIS PROJECT249

LIST OF SYMBOLS

Ce	Lithium-ion concentration in electrolyte
\mathcal{C}_S	Lithium-ion concentration in solid electrode
Csd	Discretised lithium-ion concentration in solid electrode
Csuf	Surface lithium-ion concentration
C _{s,max}	Maximum possible solid-phase lithium-ion concentration
Cs_mean	Mean lithium-ion concentration in solid electrode
C_{s_total}	Total number of lithium-ions in solid electrode
DCR	Battery direct current resistance
De	Lithium-ion diffusion coefficient in electrolyte
D_s	Lithium-ion diffusion coefficient in solid electrode
Ea	Maximum available energy
F	Faraday's constant
Ι	Battery loading current
ID,max	Maximum discharge current
IC,min	Minimum charge current
ie	Local current in the electrolyte
io	Exchange current density
jn	Molar flux
n_p	The number of cells connected in parallel
ns	The number of cells connected in series
Pchg	Charge power capability
PC,min	Minimum charge power
Pdis	Discharge power capability
P _{D,max}	Maximum discharge power
P_{Gibbs}	Battery Gibbs power
Pinst	Battery instantaneous available power
Pres	Power dissipation in battery internal resistance
Q_0	Battery initial capacity

Q_a	Battery actual capacity
Q_N	Battery nominal capacity
R^2	Coefficients of determination
R_c	Empirical contract resistance
R_p	Radius of spherical solid particles
<i>r_{eff}</i>	Kinetic rate constant
SOC	Battery state of charge value
SOE	Battery state of energy value
Т	Absolute temperature
T _{bas}	Based temperature
U	Cell terminal voltage
Vmax	Permitted maximum cell terminal voltage
Vmin	Permitted minimum cell terminal voltage
Vocv	Open circuit voltage
η_s	Over potential
$\Phi_{\rm s}$	Electric potential in solid electrode
Φ_{e}	Electric potential in the electrolyte
ΔQ	Cumulative capacity

LIST OF ABBREVIATIONS

- ADB Active discharge balance
- AEKF Adaptive extended Kalman filter
- BMS Battery management system
- CB Charge balance
- CC Constant current
- CDB Charge-discharge balance
- CV Constant voltage
- DCR Direct current resistance
- DEKF Dual extended Kalman filter
- DST Dynamic stress test
- DV Differential voltage
- DVA Differential voltage analysis
- ECM Electrical circuit model
- EKF Extended Kalman filter
- EM Electrochemical model
- EOC End of charge
- EOD End of discharge
- EV Electric vehicle
- FL Fuzzy logic
- FP Feature point
- GHG Greenhouse gas
- HPPC Hybrid pulse power characterization
- IC Incremental capacity
- ICA Incremental capacity analysis
- KF Kalman filter
- LS Least-square
- MAE Maximum absolute error
- MAPE Mean absolute percentage error

MPC	Model predictive control
NN	Neural network
NPF	Nonlinear predictive filter
OCV	Open circuit voltage
PDB	Passive discharge balance
PDE	Partial differential equation
PF	Particle filter
PI	Proportional-integral
RE	Relative error
RMSE	Root mean square error
SEI	Solid-electrolyte interphase
SMO	Sliding-mode observer
SOC	State of charge
SOE	State of energy
SOH	State of health
SOP	State of power
SPM	Single particle model
SVM	Support vector machine
SVR	Support vector regression
UDDS	Urban dynamometer driving schedule

LIST OF FIGURES

Fig. 1.1 Evolution of the EV stock from 2011 to 2016 in different countries and their
target stock in 20202
Fig. 1.2 Global average annual net capacity additions by type2
Fig. 1.3 Comparison with different kinds of batteries in terms of energy and specific
densities
Fig. 2.1 Core functions of BMSs 10
Fig. 2.2 Relationships of battery states
Fig. 2.3 Classification of the approaches for estimating battery SOC 12
Fig. 2.4 The OCV-SOC curve of a LiMn ₂ O ₄ battery cell
Fig. 2.5 The schematic of battery model-based SOC estimation methods 15
Fig. 2.6 A characteristic map of battery discharge power capability 46
Fig. 3.1 Schematic of a lithium-ion battery electrochemical model75
Fig. 3.2 The structure of battery SOC, capacity and resistance co-estimation
algorithms
Fig. 3.3 The $\triangle OCV / \triangle SOC$ curve in different SOC
Fig. 3.4 Battery test bench
Fig. 3.5 Battery test schedules
Fig. 3.6 Cell voltage simulation result, where (a) referenced voltage and simulation
voltage and (b) voltage error
Fig. 3.7 SOC estimation results during CC charge with accurate initial SOC, where (a)
SOC estimation and (b) SOC error
Fig. 3.8 SOC estimation results during CC charge with erroneous initial SOC, where (a)
SOC estimation and (b) SOC error
Fig. 3.9 SOC estimation results during DST cycles, where (a) DST cycle current profiles,
(b) SOC estimation and (c) SOC error
Fig. 3.10SOC estimation results in the first case
Fig. 3.11 Estimated SOC and comparative SOC, where (a) at the initial estimation and
(b) at the seventh estimation

Fig. 3.1	2 SOC estimation results in the second case
Fig. 3.1	3 Co-estimation results, where (a) capacity and resistance and (b) SOC
err	or98
Fig. 3.1	4 Co-estimation results at different aging levels, where (a) capacity and
res	istance, and (b) SOC errors
Fig. 3.1	5 Co-estimation results under different temperatures, where (a) capacity and
res	istance, and (b) SOC errors 100
Fig. 4.1	Cell #3 IC curves at different cycles, where (a) from the perspective of 3-D and
(b)	from the perspective of 2-D110
Fig. 4.2	Cell #3 voltage versus SOC curves at different cycles 111
Fig. 4.3	Cell #3 SOC based IC curves at different cycles, where (a) from the perspective
of	3-D and (b) from the perspective of 2-D 112
Fig. 4.4	(a) Cell #1 SOC based IC curves and (b) Cell #2 SOC based IC curves at different
agi	ng cycles
Fig. 4.5	(a) The SOC positions of the first FP for different cells and (b) SOC variances
bet	ween each SOC position value and the average value
Fig. 4.6	(a) The SOC positions of the second FP for different cells and (b) SOC variances
bet	ween SOC position values and its fitting values 115
Fig. 4.7	(a) Cell #3 DV curves and (b) zoom figure of DV curves at different aging
сус	eles
Fig. 4.8	(a) Cell #1 DV curves and (b) Cell #2 DV curves at different aging cycles 118
Fig. 4.9	(a) The SOC positions of the third FP for different cells and (b) SOC variances
bet	ween SOC position values and the average value
Fig. 4.1	0 The SOC estimation results of Case 1 124
Fig. 4.1	1 The SOC and capacity estimated results of Case 2 125
Fig. 4.1	2 Estimated results at different aging cycles for three cells, where (a) Cell #1,
(b)	Cell #2, and (c) Cell #3 126
Fig. 4.1	3 Capacity estimated results with drift cumulative capacities, where (a) Cell
#1,	(b) Cell #2, (c) Cell #3 and (d) relative errors for these three cells 128

Fig. 4.14 (a) SOC-DV values for three cells at different aging cycles, and (b) zoom
figure of (a)
Fig. 4.15 (a) Battery cells SOC-DV values and their universal model, and (b) zoom
figure of (a)
Fig. 4.16 The DV differences between the actual values and the universal model
values at the 200th and 1800th cycles of Cell #3134
Fig. 4.17 The structures of the model-based SOC estimation methods, where (a) the
conventional one and (b) the proposed one
Fig. 4.18 SOC estimation results, where (a) with EKF and PF algorithms, (b) SOC
errors with EKF, and (c) SOC errors with PF 139
Fig. 4.19 SOC estimation MAEs at different aging levels, where (a) Cell #1, (b) Cell
#2, and (c) Cell #3141
Fig. 4.20 SOC estimation RMSEs at different aging levels, where (a) Cell #1, (b) Cell
#2, and (c) Cell #3142
Fig. 5.1 The maximum available energy with different currents at various
temperatures
Fig. 5.2 The maximum available energy with different currents at various aging
levels
Fig. 5.3 The relationships between SOE and SOC at different aging levels 155
Fig. 5.4 The relationships between SOE and SOC at different temperatures 156
Fig. 5.5 The relationships between SOE and SOC with various current rates 157
Fig. 5.6 The structure of the proposed algorithms
Fig. 5.7 SOE estimation result
Fig. 5.8 SOE estimation errors at different battery aging levels
Fig. 5.9 SOE estimation errors under various ambient temperatures
Fig. 5.10 SOE estimation errors with different discharge current rates
Fig. 5.11Battery maximum available energy estimation results
Fig. 5.12 Battery maximum available energy estimation results at different aging
levels

Fig. 5.13 Battery maximum available energy estimation results under different
ambient temperatures166
Fig. 5.14 Battery maximum available energy estimation results with different
discharge current rates167
Fig. 5.15 Estimation results with DST cycles, where (a) current profile of DST cycles,
(b) SOE estimated results, (c) SOE estimated errors and (d) maximum available
energy estimated results
Fig. 6.1 Battery DCRs at different SOCs and temperatures, where (a) charge DCRs, and
(b) discharge DCRs 177
Fig. 6.2 Battery DCR-Temperature curves of different SOCs, where (a) charge DCRs,
and (b) discharge DCRs178
Fig. 6.3 Battery logarithmic DCRs at different SOCs and temperatures, where (a) charge
logarithmic DCRs, and (b) discharge logarithmic DCRs179
Fig. 6.4 The results of battery charge DCR prediction, where (a) referenced and
predictive DCRs, and (b) REs of the predictive DCRs 183
Fig. 6.5 The results of battery discharge DCR prediction, where (a) referenced and
predictive DCRs, and (b) REs of the predictive DCRs 185
Fig. 6.6 The results of battery charge power capability prediction, where (a) referenced
and predictive powers, and (b) REs of the predictive powers 186
Fig. 6.7 The results of battery discharge power capability prediction, where (a)
referenced and predictive powers, and (b) REs of the predictive powers 188
Fig. 6.8 Schematic of a lithium-ion battery EM 190
Fig. 6.9 Lithium ion concentrations in different nodes of the negative solid particle
during battery charge process with the current rate of 1/3 C 193
Fig. 6.10 Battery instantaneous charge power prediction results at different aging
levels, wherer (a) 92 Ah, (b) 87 Ah, (c) 82.5 Ah, (d) 78.5 Ah, (e) 74 Ah, and (f) 69.5
Ah200
Fig. 6.11 MAPEs of battery instantaneous charge power prediction at different aging
levels

Fig. 6.12 Battery instantaneous charge power prediction results at various
temperatures, where (a) referenced and predictive power capabilities, and (b)
MAPEs
Fig. 6.13 Battery instantaneous discharge power prediction results at different aging
levels, where (a) 92 Ah, (b) 87 Ah, (c) 82.5 Ah, (d) 78.5 Ah, (e) 74 Ah, and (f) 69.5
Ah
Fig. 6.14 MAPEs of battery instantaneous discharge power prediction at different
aging levels
Fig. 6.15 Battery instantaneous discharge power prediction results at various
temperatures, where (a) referenced and predictive power capabilities, and (b)
MAPEs
Fig. B.1 Initial cell remaining capacities and remaining charging capacity 223
Fig. B.2 Battery operation processes
Fig. B.3 Battery balancing results when balancing performed during battery discharge
processes, where (a) battery pack capacity, (b) SOC variance at EOD and (c) SOC
variance at EOC 225
Fig. B.4 Battery balancing results when balancing performed during battery charge
processes, where (a) battery pack capacity, (b) SOC variance at EOD and (c) SOC
variance at EOC 226
Fig. B.5 Battery balancing results when balancing performed during battery rest time
after discharge, where (a) battery pack capacity, (b) SOC variance at EOD and (c)
SOC variance at EOC
Fig. B.6 Battery balancing results when balancing performed during battery rest time
after charge, where (a) battery pack capacity, (b) SOC variance at EOD and (c) SOC
variance at EOC
Fig. B.7 Battery balancing results when balancing performed during both battery charge
and discharge processes, where (a) battery pack capacity, (b) SOC variance at EOD
and (c) SOC variance at EOC
Fig. C.1 Schematic of battery balancing system

Fig.	C.2 Eight simulated cells with non-uniform initial SOCs and capacities
Fig.	C.3 Balancing results with (a) the average SOC strategy and (b) the MPC based
	strategy
Fig.	C.4 Voltage curves of the eight cells during charging and balancing processes with
	(a) the average SOC strategy and (b) the MPC based strategy 243
Fig.	C.5 The operation modes of cell equalizers with the average SOC strategy, where (a)
	Cell #2 and (b) Cell #8
Fig.	C.6 The operation modes of cell equalizers with the MPC based strategy, where (a)
	Cell #2 and (b) Cell #8

LIST OF TABLES

Table 2.1	The comparison of different SOC estimation methods regarding to their		
complexity and accuracy			
Table 2.2	The comparison of different SOH estimation methods regarding to their		
complexity and accuracy			
Table 2.3	The comparison of different SOE estimation methods regarding to their		
complexity and accuracy			
Table 2.4	The comparison of different SOP prediction methods regarding to their		
complexity and accuracy			
Table 3.1	The mean lithium-ion concentration values in the positive electrode for		
different aging levels			
Table 3.2	Capacity estimation results in the first case		
Table 3.3	Capacity estimation results in the second case		
Table 4.1	Optimal parameters of the relationship function between battery actual		
capacity and the SOC position value of the second FP 116			
Table 4.2	The parameters of EKF and PF algorithms		
Table 5.1	The maximum available energies of different SOCs and SOEs at battery's		
fresh phase			
Table 5.2	Optimal parameters of the relationship function between SOE and		
SOC			
Table 6.1	The optimal parameters of the temperature-dependent DCR model 181		
Table 6.2	The MAPEs of battery charge and discharge DCR predictions 184		
Table 6.3	The MAPEs of battery charge and discharge power capabilities		
predictions187			
Table 6.4	The governing equations for computing the lithium concentration of the		
solid particle			
Table 6.5	The optimal parameters for the positive and negative solid particles 199		
Table A.1	Pseudocodes of the systematic resampling technique		

ABSTRACT

Lithium-ion batteries are being widely used as an enabling energy storage for electric vehicles, renewable energy storage systems, and power grids, etc., as they always exhibit high energy density and long life cycle along with environmental friendliness. However, overly pessimistic or optimistic estimates of lithium-ion battery states would result in waste or abuse of battery available capabilities and may even lead to fire and explosion risks. The safety and reliability of battery utilization necessitate the accurate and reliable state estimation techniques in battery management systems (BMSs). This thesis focuses on the development of the estimation methods of lithium-ion battery states of interest, which are capable of determining internal battery status accurately.

The first phase of this thesis centers on battery electrochemical model simplification and discretization for incorporating the co-estimation algorithm of battery state of charge (SOC), capacity, and resistance based on the proportional-integral (PI) observers. A physics-based battery model that has the capability to describe the electrochemical reaction process inside the battery is first developed. Trinal PI observers are then employed to implement the co-estimation task. It takes the influence of battery aging on SOC estimation by furnishing the state equations with up-to-date capacity and resistance estimates into account, thereby improving the SOC estimation accuracy.

To achieve high estimation accuracy with low computation costs, SOC and capacity estimation approaches based on the incremental capacity analysis and differential voltage analysis are subsequently investigated. Feature points extracted from the SOC based incremental capacity/differential voltage (DV) curves are applied for developing the estimation algorithm of battery SOC and capacity. Besides, an extended Kalman filter and a particle filter are served as the state observers in an SOC estimator based on the DV model for further improving the performance of estimation.

With the credible SOC estimates, a state of energy (SOE) estimator based on a quantitative relationship between SOC and SOE is proposed in the next step, and a

moving-window energy-integral technique is then incorporated to estimate the battery maximum available energy. Through the analysis of ambient temperature, battery discharge/charge current rate, and cell aging level dependencies of SOE, the relationship between SOC and SOE can be quantified as a quadratic function for SOE estimation. The simplicity of the proposed SOE estimation method can avoid the heavy computation cost required by the conventional model-based SOE estimation methods.

Finally, two state of power capability predictors are designed for a battery to sufficiently absorb or deliver a certain amount of power within its safe operating region. A battery direct current resistance model for quantitatively describing its temperature dependence is proposed and implemented on the battery capability prediction in the first method, which is beneficial to reduce the memory-consumption and dimension of the power characteristic map embedded in BMSs for applications. Different from the conventional methods using the limits of macroscopically observed variables for power prediction, the second method investigates a physical mechanism-based power prediction method and quantifies the relationship between battery power capability and surface lithium concentration for instantaneous peak power prediction. The proposed methods are experimentally verified with various cell aging levels and ambient temperatures.

The proposed approaches for accurately modelling and estimating lithium-ion battery states in this thesis can contribute to safe, reliable and sufficient utilization of the battery. The developed methods are pretty general, and therefore are promising to provide valuable insight to the investigations of other types of batteries with various chemistries.