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ABSTRACT 

Lithium-ion batteries are being widely used as an enabling energy storage for electric 

vehicles, renewable energy storage systems, and power grids, etc., as they always exhibit 

high energy density and long life cycle along with environmental friendliness. However, 

overly pessimistic or optimistic estimates of lithium-ion battery states would result in 

waste or abuse of battery available capabilities and may even lead to fire and explosion 

risks. The safety and reliability of battery utilization necessitate the accurate and reliable 

state estimation techniques in battery management systems (BMSs). This thesis focuses 

on the development of the estimation methods of lithium-ion battery states of interest, 

which are capable of determining internal battery status accurately. 

The first phase of this thesis centers on battery electrochemical model simplification and 

discretization for incorporating the co-estimation algorithm of battery state of charge 

(SOC), capacity, and resistance based on the proportional-integral (PI) observers. A 

physics-based battery model that has the capability to describe the electrochemical 

reaction process inside the battery is first developed. Trinal PI observers are then 

employed to implement the co-estimation task. It takes the influence of battery aging on 

SOC estimation by furnishing the state equations with up-to-date capacity and resistance 

estimates into account, thereby improving the SOC estimation accuracy. 

To achieve high estimation accuracy with low computation costs, SOC and capacity 

estimation approaches based on the incremental capacity analysis and differential voltage 

analysis are subsequently investigated. Feature points extracted from the SOC based 

incremental capacity/differential voltage (DV) curves are applied for developing the 

estimation algorithm of battery SOC and capacity. Besides, an extended Kalman filter 

and a particle filter are served as the state observers in an SOC estimator based on the DV 

model for further improving the performance of estimation. 

With the credible SOC estimates, a state of energy (SOE) estimator based on a 

quantitative relationship between SOC and SOE is proposed in the next step, and a 
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moving-window energy-integral technique is then incorporated to estimate the battery 

maximum available energy. Through the analysis of ambient temperature, battery 

discharge/charge current rate, and cell aging level dependencies of SOE, the relationship 

between SOC and SOE can be quantified as a quadratic function for SOE estimation. The 

simplicity of the proposed SOE estimation method can avoid the heavy computation cost 

required by the conventional model-based SOE estimation methods. 

Finally, two state of power capability predictors are designed for a battery to sufficiently 

absorb or deliver a certain amount of power within its safe operating region. A battery 

direct current resistance model for quantitatively describing its temperature dependence 

is proposed and implemented on the battery capability prediction in the first method, 

which is beneficial to reduce the memory-consumption and dimension of the power 

characteristic map embedded in BMSs for applications. Different from the conventional 

methods using the limits of macroscopically observed variables for power prediction, the 

second method investigates a physical mechanism-based power prediction method and 

quantifies the relationship between battery power capability and surface lithium 

concentration for instantaneous peak power prediction. The proposed methods are 

experimentally verified with various cell aging levels and ambient temperatures. 

The proposed approaches for accurately modelling and estimating lithium-ion battery 

states in this thesis can contribute to safe, reliable and sufficient utilization of the battery. 

The developed methods are pretty general, and therefore are promising to provide 

valuable insight to the investigations of other types of batteries with various chemistries. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Significance 

Global climate change and energy supply shortages are now problems of paramount 

concern. To cope with the climate change caused by the extensive greenhouse gas (GHG) 

emissions, the Paris Agreement, announced in December 2015 and enforced in November 

2016 by the United Nations, clearly set the objective of mitigating the GHG emissions 

and limiting the global average temperature increase below 2 °C [1.1], [1.2]. This 

ambitious objective is highly unlikely to be achievable without a significant contribution 

from the transport sector, which accounts for about 23% of global GHG emissions [1.2]. 

With the merits of zero or low emissions and high energy efficiency, electric vehicles 

(EVs), primarily the pure battery EVs and plug-in hybrid EVs, are acknowledged as a 

major contributor to the goal of GHG emissions reduction in the transport sector [1.3]-

[1.6], and have attracted tremendous attentions around the world. Fig. 1.1 depicts the EV 

stocks from 2011 to 2016 in different countries and their target stocks in 2020, where the 

EV stocks present a remarkable increase during this period, especially in China. The 

global EV stock surpassed 2 million vehicles in 2016, and it aspires to bring 13 million 

EVs on the road by 2020 [1.2], [1.3]. The development of EVs is also beneficial to a 

reduction of air pollutant emissions in the up-and-coming urbans with ever-growing 

populations. Besides, EVs, acting as mobile energy storage systems, are regarded as 

eminent resources for smart grid, due to their potential bidirectional power flow 

capabilities and high degrees of flexibility [1.7], [1.8].  
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Fig. 1.1 Evolution of the EV stock from 2011 to 2016 in different countries and their 

target stock in 2020 (data sources from [1.2] and [1.3]). 

 

Fig. 1.2 Global average annual net capacity additions by type (from [1.9]). 

Another solution for addressing the global issue of climate change as well as the energy 

supply shortages is provided by exploiting renewable energies [1.10]. Renewable energy 

is collected from renewable sources that are continually replenished by nature in a human 

timescale such as sunlight, wind, tides, and geothermal heat. Global electricity generation 

from renewable energy sources has been growing sharply over the past several years 

[1.11]. Fig. 1.2 illustrates the global average annual net capacity additions of renewables 

and conventional energy sources including coal, gas and nuclear. It is anticipated that 

renewables will be the undisputed energy growth leader in the next 20 years. The rapid 
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development of renewable energy is resulting in significant benefits in both environment 

and economy sectors [1.11], [1.12]. 

All of these trends rely heavily on efficient storage and supply of electric energy [1.10]. 

One promising candidate for this is the lithium-ion battery, which attributes to its 

strengths including high energy density, high efficiency, long life cycle, and 

environmental friendliness [1.13]-[1.15]. The comparisons of energy and specific 

densities between the lithium-ion battery and other types of batteries are depicted in Fig. 

1.3, where the lithium-ion battery exhibits superior gravimetric and volumetric energy 

densities. In fact, lithium-ion batteries are considered to be the most promising traction 

batteries for the next-generation EVs, and have been deployed in megawatt-scale 

renewable energy storage systems for supporting power grids [1.15]-[1.17]. 

 

Fig. 1.3 Comparison between different kinds of batteries in terms of  

energy and specific densities (from [1.18]). 

Notwithstanding the desirable performance of lithium-ion battery technology, the 

reliability, safety, and longevity of lithium-ion battery utilization necessitate an effective 

and dependable battery management system (BMS) for battery data acquisition, state 

estimation, and charge/discharge control, etc. [1.19]-[1.23]. Although the functional 
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requirement of BMS appears to be a more sophisticated and complex trend [1.24], the 

estimation of battery states is still one of the most crucial challenges in BMSs due to the 

nonlinear battery characteristics and unpredictable operating conditions [1.25], [1.26]. 

Overly pessimistic or optimistic estimates of battery states would result in waste or abuse 

of battery available capabilities [1.27] and could even lead to fire and explosion risks. 

Accordingly, it is indispensable to develop accurate estimation methods of lithium-ion 

battery states of interest for BMSs in EVs, renewable energy storage systems, etc., and 

this is the research focus of this thesis. 

1.2 Research Objectives 

This thesis aims at developing accurate and reliable estimation methods of lithium-ion 

battery states of interest, which are capable of determining the internal battery status 

accurately for safe, reliable, and efficient battery utilization. The main research objectives 

of this thesis can be described as follows: 

 A comprehensive literature survey on the state-of-the-art techniques, challenges 

and development of BMS and state estimation, 

 Development of a high-fidelity battery model as accurate modeling plays a 

fundamental role in ensuring reliable state estimation, 

 Development of battery state of charge (SOC) estimation and actual capacity 

estimation methods since the state of health (SOH) of a battery is usually 

represented by its actual capacity, 

 Investigation of the incremental capacity analysis and differential voltage analysis 

techniques since they are capable of analyzing the aging mechanisms of a battery 

and promising for states estimation, and 

 Analysis of the temperature and cell aging dependencies of battery energy and 

power capabilities, and development of battery state of energy (SOE) and state of 

power (SOP) estimation methods. 
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1.3 Outline of Thesis 

The background and significance of this thesis as well as its research objectives have been 

illustrated in this chapter (Chapter 1). The remainder of this thesis is organized as follows. 

In Chapter 2, a critical review of the BMS development and estimation techniques of four 

lithium-ion battery states of interest including SOC, SOH, SOE, and SOP in literature is 

presented. The focus for each estimation technique is not to detail its solution, but rather 

to elaborate on its key idea, strengths, and weaknesses as well as its possibilities for 

improvement. 

In Chapter 3, trinal proportional-integral (PI) observers with a reduced physics-based 

electrochemical model are proposed for an accurate and simultaneous estimate of battery 

SOC, capacity and resistance. A numerical solution for the employed model is firstly 

derived, and PI observers are then developed to realize the co-estimation. The moving-

window ampere-hour counting technique and the iteration-approaching method are also 

incorporated for the estimation accuracy improvement. 

In Chapter 4, battery SOC and capacity estimation methods based on incremental capacity 

analysis and differential voltage analysis are proposed and evaluated. Feature points 

extracted from the SOC based incremental capacity/differential voltage (DV) curves are 

applied for developing the estimation algorithm of battery SOC and capacity. Besides, an 

extended Kalman filter and particle filter are employed as the state observers in a DV 

model based estimator to improve further the performance of SOC estimation. 

In Chapter 5, a quantitative relationship between SOE and SOC is proposed for SOE 

estimation, and a moving-window energy-integral technique is incorporated to estimate 

the battery maximum available energy. The ambient temperature, battery 

discharge/charge current rate, and cell aging level dependencies of the battery maximum 

available energy and SOE are comprehensively analyzed. The robustness and feasibility 

of the proposed approaches are validated by test results of different operating conditions 

during battery aging processes. 
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In Chapter 6, two power capability prediction approaches based on the battery direct 

current resistance (DCR) model and battery electrochemical model, respectively, are 

proposed for lithium-ion batteries. Through the analysis of battery DCR values at 

different SOCs and temperatures, a DCR model for quantitatively describing its 

temperature dependence is proposed and implemented on a battery power predictor in the 

first method. Differing from the conventional methods using the limits of macroscopically 

observed variables for power prediction, the second method investigates a physical 

mechanism-based power prediction method and quantifies the relationship between the 

battery power capability and surface lithium concentration for instantaneous peak power 

prediction. The proposed methods are experimentally verified by experiments at various 

cell aging levels and ambient temperatures. 

The conclusions of this thesis are finally drawn in Chapter 7, and the potential research 

works that require further investigations are also highlighted. 

 

References 

[1.1] United Nations, "Paris Agreement," 2015. 

[1.2] International Energy Agency, “Global EV Outlook 2017: Two million and counting,” 2017. 

[1.3] International Energy Agency, “Global EV Outlook 2016: Beyond one million electric cars,” 2016. 

[1.4] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, "Energy Storage Systems 

for Transport and Grid Applications," IEEE Transactions on Industrial Electronics, vol. 57, no. 12, 

pp. 3881-3895, 2010. 

[1.5] G. Xu, C. Zheng, Y. Zhang, K. Xu and J. Liang, "Energy efficiency of electric vehicles – energy 

saving and optimal control technologies," INTECH, 2015, http://dx.doi.org/10.5772/59420. 

[1.6] K. T. Chau and C. C. Chan, "Emerging energy-efficient technologies for hybrid electric vehicles ", 

Proceedings of the IEEE, vol. 85, no. 4, pp. 821-835, 2007. 



Introduction 

7 

[1.7] R. Yu, W. Zhong, S. Xie, C. Yuen, S. Gjessing and Y. Zhang, "Balancing power demand through 

EV mobility in vehicle-to-grid mobile energy networks," IEEE Transactions on Industrial 

Informatics, vol. 12, no. 1, pp. 79-90, 2016. 

[1.8] K. Knezovi´c, S. Martinenas, P. B. Andersen, A. Zecchino and M. Marinelli, "Enhancing the tole of 

electric vehicles in the power grid: field validation of multiple ancillary services," IEEE 

Transactions on transportation electrification, vol. 3, no. 1, pp. 201-209, 2017. 

[1.9] International Energy Agency, "World Energy Outlook 2017," available at 

http://www.iea.org/weo2017/#section-1-1 (accessed on 06/12/2017). 

[1.10] J. Illig, "Physically based impedance modelling of lithium-Ion cells," Ph.D. Thesis, Karlsruhe 

Institute of Technology, Karlsruhe, Germany, 2014. 

[1.11] O. Ellabban, H. Abu-Rub and F. Blaabjerg, "Renewable energy resources: current status, future 

prospect sand their enabling technology," Renewable and Sustainable Energy Reviews, vol. 39, pp. 

748-764, 2014. 

[1.12] International Energy Agency, “Energy Technology Perspectives 2012: Pathways to a Clean Energy 

System,” 2012. 

[1.13] J. Cho, S. Jeong and Y. Kim, "Commercial and research battery technologies for electrical energy 

storage applications," Progress in Energy and Combustion Science, vol. 48, pp. 84-101, 2015. 

[1.14] C. Zhang, Y. Wei, P. Cao and M. Lin, "Energy storage system: Current studies on batteries and 

power condition system," Renewable and Sustainable Energy Reviews, 2017, 

https://doi.org/10.1016/j.rser.2017.10.030. 

[1.15] X. Hu, C. Zou, C. Zhang, and Y. Li, "Technological developments in batteries: a survey of principal 

roles, types, and management needs", IEEE Power and Energy Magazine, vol. 15, no. 5, pp. 21-31, 

2017. 

[1.16] A. Opitz, P. Badami, L. Shen, K. Vignarooban and A.M. Kannan, "Can Li-Ion batteries be the 

panacea for automotive applications?," Renewable and Sustainable Energy Reviews, vol. 68, pp. 

685-692, 2017, 

[1.17] J. Arteaga, H. Zareipour and V. Thangadurai, "Overview of lithium-ion grid-scale energy storage 

systems," Current Sustainable/Renewable Energy Reports, vol. 4, no. 4, pp. 197-208, 2017. 

[1.18] B. Scrosati, K. M. Abraham, W. van Schalkwijk, and J. Hassoun, "Lithium Batteries: Advanced 

Technologies and Applications," First Edition, John Wiley & Sons, Inc., 2013.  



Introduction 

8 

[1.19] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. 

Santhanagopalan and V. R. Subramanian,"Battery energy storage system (BESS) and battery 

management system (BMS) for grid-scale applications," Proceedings of the IEEE, vol. 102, no. 6, 

pp. 821-835, 2014. 

[1.20] H. Rahimi-Eichi, U. Ojha, F. Baronti and M. Chow, "Battery management system: an overview of 

its application in the smart grid and electric vehicles" IEEE Industrial Electronics Magazine, vol. 7, 

no. 2, pp. 4-16, 2013. 

[1.21] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, "A review on the key issues for lithium-ion battery 

management in electric vehicles," J. Power Sources, vol. 226, pp. 272-288, 2013. 

[1.22] B. Sun, J. Jiang, F. Zheng, W. Zhao, B. Y. Liaw, H. Ruan, Z. Han and W. Zhang, "Practical state of 

health estimation of power batteries based on Delphi method and grey relational grade analysis," J. 

Power Sources, vol. 282, pp. 146-157, 2015. 

[1.23] Z. Wei, C. Zou, F. Leng, B. H. Soong and K. J. Tseng, "Online model identification and state of 

charge estimate for lithium-ion battery with a recursive total least squares-based observer," IEEE 

Transactions on Industrial Electronics, 2017, DOI 10.1109/TIE.2017.2736480. 

[1.24] W. Zhang, W. Shi and Z. Ma, "Adaptive unscented kalman filter based state of energy and power 

capability estimation approach for lithium-ion battery," J. Power Sources, vol. 289, pp. 50-62, 2015. 

[1.25] L. Zheng, J. Zhu, G. Wang, T. He and Y. Wei, "Novel methods for estimating lithium-ion battery 

state of energy and maximum available energy," Appl. Energy, vol. 178, pp. 1-8, 2016. 

[1.26] L. Zheng, L. Zhang, J. Zhu, G. Wang and J. Jiang, "Co-estimation of state-of-charge, capacity and 

resistance for lithium-ion batteries based on a high-fidelity electrochemical model," Appl. Energy, 

vol. 180, pp. 424-434, 2016. 

[1.27] J. Jiang, S. Liu, Z. Ma, L. Y. Wang, K. Wu, "Butler-Volmer equation-based model and its 

implementation on state of power prediction of high-power lithium titanate batteries considering 

temperature effects," Energy, vol. 117, pp. 58-72, 2016. 

 



 

9 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Lithium-ion batteries are favorable in energy storage applications, such as electric 

vehicles (EVs), railway transportation systems, renewable energy systems, and smart 

grids, etc., due to their superior performance in energy density, power density, lifetime, 

columbic efficiency, and voltage plateau in comparison with the lead-acid, nickel-metal 

hydride (NiMH), and nick-cadmium (NiCd) batteries [2.1], [2.2]. The reliability, safety, 

and longevity of lithium-ion battery operations necessitate an efficient battery 

management system (BMS) with advanced techniques. 

The number of research articles of BMS techniques published in journals and conferences 

have been increasing rapidly in recent years [2.3], especially on battery states estimation. 

It is worthwhile to summarize systemically the states estimation techniques for BMS 

practitioners, in the hope of providing some inspiration for their work. Conducted by an 

up-to-date literature survey in combination with practical applications, this chapter gives 

a technical review on the development of BMS and key states estimation methods for 

lithium-ion batteries. 

2.2 Battery Management System 

In the 1990s, the BMS was developed for monitoring the operation status of lead-acid 

batteries [2.4], [2.5]. At this stage, the acquisition of battery parameters, including the 

voltage, current and temperature, and battery charge/discharge control were the main 

functions of BMSs, and the state of charge (SOC) was mainly indicated by the cell 

terminal voltage and open circuit voltage [2.4]-[2.6]. 

From the 2000s, combined with battery models, state observers were developed for 

lithium-ion battery SOC estimation [2.7], [2.8]. In the following work, different 
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algorithms were proposed for estimating/predicting more battery states such as state of 

health (SOH), state of energy (SOE), and state of power (SOP). 

In the early 2010s, multiple sampling channels for cell voltage and temperature 

measurement were commercially integrated as a single chip such as LTC6802 [2.9], 

BQ76PL536 [2.10], MAX11068 [2.11], etc., which significantly reduces the size and cost 

of BMSs. Until now, the functional requirement of BMS appears to be a more 

sophisticated and complex trend [2.12], and the core functions of BMS mainly include 

cell and pack monitoring and protection, states estimation, cell balancing, thermal 

management, charge/discharge control, and data communication and record, as shown in 

Fig. 2.1. 

 

Fig. 2.1 Core functions of BMSs. 

Overly pessimistic or optimistic estimates of battery states would result in waste or abuse 

of battery available capabilities, even lead to fire and explosion risks. This work focuses 

on the development of battery states estimation methods that are capable of determining 

internal battery status accurately for the safe, reliable and efficient battery utilization. The 

battery states of interest include: 

 State of charge (SOC) which is a quantity describing the stored charge capability 

of the battery, 



Literature Review 

11 

 State of health (SOH) which is a quantity describing the aging level of the battery, 

 State of energy (SOE) which is a quantity describing the stored energy capability 

of the battery, and 

 State of power (SOP) which is a quantity describing the delivered or absorbed 

power capability of the battery. 

 

Fig. 2.2 Relationships of battery states. 

The relationships and affected factors of the battery states of interest are shown in Fig. 

2.2. The SOC is determined by cell terminal voltage, loading current, cell temperature, 

operating time, and battery aging level, and the SOC usually has fast time-varying 

dynamics. Likewise, the SOE is also determined by these factors. Traditionally, the SOC 

is regarded as an indicator of battery available energy. Defined as the ratio of the 

remaining charge stored in a battery to its full capacity, however, the SOC actually 

indicates the state of available capacity rather than the state of available energy. The SOE 

is therefore required for indicating the state of available energy of the battery. The SOH 

is governed by the aging path of the battery and operating conditions such as fault states 

and ambient temperature, which is slow time-varying. The SOP is dependent on 

SOC/SOE and SOH. In particular, the SOP has a short prediction horizon which is 
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typically limited between 1 s and 20 s [2.13]. The reported techniques for different states 

estimation/prediction are elaborated in the following parts. 

2.3 State of Charge Estimation 

Defined as the ratio of the remaining charge to the full charge stored in a battery, the SOC, 

represents a “fuel gauge” and is an indispensable indicator for the safe operation of 

batteries. A high number of approaches for estimating battery SOC have been proposed 

in literature, most of which are classified in Fig. 2.3. 

 

Fig. 2.3 Classification of the approaches for estimating battery SOC. 

2.3.1 Coulomb-counting method 

Coulomb-counting, also called Ampere-hour integral, is the most basic and simplest 

method to estimate battery SOC, as given by 

     
0

= 0 +
t

cSOC t SOC i t dt Q            (2.1) 

where SOC(t) and SOC(0) denote the SOC values at time t and the initial time, 

respectively, i(t) the loading current at time t (positive for charging and negative for 

discharging), and ηc the coulombic efficiency that can be considered as 1 for lithium-ion 

batteries. 



Literature Review 

13 

Due to the primary advantage achieved by its ease of use and implementation with few 

computation efforts, the Coulomb-counting method has been widely used in real 

applications, especially during the early stages of the development of BMSs. The 

effectiveness of this method is essentially dependent on the accuracy of current 

measurement and initial SOC value. Due to the inevitable cumulative error of current 

detection, the SOC estimation results suffer from significant divergence problems, 

especially after performing over a long period. It needs a periodic calibration procedure 

for correcting the initial accumulated charge value, which limits its direct applications in 

practices. Hence, the Coulomb-counting method is often used in combination with other 

techniques, such as the following open circuit voltage (OCV) and model-based methods. 

2.3.2 Open circuit voltage method 

The OCV method is usually applied to recalibrate the SOC value. An OCV-SOC curve 

of LiMn2O4 (LMO) battery is depicted in Fig. 2.4, where the SOC interval is 5%. At each 

SOC interval, the relationship between the OCV and SOC can be fitted as a segmented 

function, as given by 

 i iOCV k SOC b f SOC              (2.2) 

where ki and bi are the parameters of the ith segmented function. 

 

Fig. 2.4 The OCV-SOC curve of a LiMn2O4 battery cell. 
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If the OCV is obtained in advance, it is easy to compute the SOC by using (2.2). However, 

there are several existing points that should be taken into account when applying the OCV 

method for SOC estimation: 

  Accurate SOC estimation requires precise battery OCVs. However, it usually 

takes a long rest time for batteries to recovery their fundamental OCV, which 

limits its feasibility in applications. Thus, the strategy for how to obtain the OCV 

in a short period of time needs to be further developed. 

 The OCV method is an open-loop estimator that doesn’t have the ability to 

eliminate voltage detection errors and uncertain disturbances [2.14]. The cell 

voltage detection sensor with high accuracy and anti-interference capability is 

therefore needed in this method. Some kinds of batteries have a relatively flat 

OCV-SOC curve, especially for LiFePO4 cells. This means that a small OCV 

measurement error may lead to a larger SOC deviation. In this case, it requires 

cell voltage detection sensors with extremely high accuracy, which increases the 

cost of BMSs. 

 The OCV-SOC curves of batteries may differ from various factors, such as 

ambient temperature, cell aging level, etc. [2.15]. Xing et al. [2.16] pointed out 

that the OCV-SOC curve of LiFePO4 cells of the 18650-cylindrical type is related 

to the ambient temperature, and a single OCV-SOC table used in the estimation 

algorithm would cause erroneous results. To address this problem, an offline 

OCV-SOC-temperature table was established to estimate the SOC in the paper, 

where the verification indicated that it can provide better results than that without 

considering ambient temperature. In [2.17], it can be observed that OCV-SOC 

values of a Li-NMC cell differ from different aging levels. For robust and accurate 

battery SOC estimation at various ambient temperatures and cell aging levels, it 

is suggested to establish a multi-dimension OCV table including various 

influenced factors, such as an OCV-SOC-temperature-aging table in advance. 
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2.3.3 Model-based methods 

The schematic of battery model-based methods shown in Fig. 2.5 mainly consists of a 

battery cell, a state observer or filter, and a battery electrical circuit model (ECM) or 

electrochemical model (EM). The input for both the real battery and battery model can be 

the loading current and ambient temperature. The principle of SOC estimation is to 

compare the cell terminal voltage with the output voltage of the battery model for 

generating a residual voltage, and then to feed it back to the model through an observer 

or a filter for revising the model parameters and states. Hence, the residual voltage is 

gradually eliminated, while the SOC of the battery model is gradually closed to the actual 

value. 

 

Fig. 2.5 The schematic of battery model-based SOC estimation methods. 

Battery model-based SOC estimation methods always exhibit desirable merits, such as 

closed-loop, insensitive to the initial SOC value and uncertain disturbances, and 

availability of estimated error bounds, which have attracted enormous attention. Various 

techniques of observers and filters including sliding-mode observer (SMO), particle filter 

(PF), proportional-integral (PI) observer, H-infinity (H∞) observer, different extensions 

of Kalman filter (KF), and so forth, are extensively applied in model-based SOC 

estimation methods. 

A. Kalman filter based methods 

The KF is an optimal recursive solution for linear systems, which assume that the noise 

in both the transition and measurement processes is an independent Gaussian type. 
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However, KF tends to diverge in nonlinear systems. Different extensions of KF, such as 

extended KF (EKF), sigma-point KF (SPKF), unscented KF (UKF), central difference 

KF (CDKF), and fading KF (FKF) have been proposed to address this issue, and therefore 

were widely employed for estimating the SOC of batteries with non-linear characteristics. 

The key idea and steps of the EKF algorithm for battery SOC estimation including 

prediction update and measurement update were first elaborated in Plett’s series of papers 

[2.7], [2.18]. In the following research, Lee et al. [2.19] employed a modified OCV-SOC 

relationship and measurement noise models with EKF to achieve more robust estimates 

for all cells. Since EKF can equilibrate the algorithm complexity and estimation accuracy 

well, it is regarded as being capable of implementation into a microprocessor for efficient 

operations in BMSs [2.7], [2.20]. 

However, an argument against using EKF is that it linearizes battery model nonlinearities, 

thus leading to linearization errors. To tackle this problem, Plett [2.21] proposed the 

SPKF method for estimating the SOC of LiPB high-power cells, which highlighted its 

superiority in terms of estimation accuracy compared with the EKF. It is noted that there 

is little or no additional cost at the gains of SPKF compared with that of EKF, and the 

implementation of SPKF requires no analytic derivation or Jacobians as in EKF [2.21], 

[2.22]. Moreover, the performances of EKF and SPKF for SOC estimation were 

comparatively studied in [2.23], where both estimated robustness against uncertainties 

and convergence behaviour with an erroneous initial value were improved in the SPKF 

method. 

Meanwhile, CDKF and UKF are the two most common used variants of SPKF, which are 

also applied for SOC estimation. A nonlinear enhanced self-correcting battery model was 

employed with the CDKF estimator to achieve more accurate SOC estimation results in 

[2.24]. With a UKF algorithm, Santhanagopalan et al. [2.25] obtained accurate estimates 

while greatly reducing the computational time in inferring SOC from a rigorous battery 

EM. For relieving the computation requirement of the original UKF, Dai et al. [2.26] 

proposed a square-root UKF algorithm and implemented it on a Digital Signal Processor 
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(DSP) based platform. The experimental results demonstrated better accuracy than that 

of the EKF estimator, and they required almost the same computation complexity, which 

makes the UKF estimator more competitive. Additionally, due to its capability to 

compensate battery modelling errors through a fading factor, FKF can effectively avoid 

the possibility of large estimation errors and therefore it was studied for estimating battery 

SOC in [2.27], [2.28]. 

It is noted that accurate knowledge of process and measurement noises covariance is 

highly required in all variants of KF for precise SOC estimation [2.29]. Erroneous 

knowledge of noises covariance may result in considerable errors in estimated results. 

Aiming at adaptively matching the process and measurement noises covariance in real-

time, adaptive KF based estimators, such as adaptive EKF (AEKF) and adaptive UKF 

(AUKF) were applied for battery SOC estimation. In [2.30], an AEKF estimator was 

investigated with an improved battery Thevenin model achieved by adding an extra RC 

branch to a conventional Thevenin model for the estimation. Both the maximum SOC 

estimation error and mean SOC estimation error can be reduced to low levels in 

comparison to using EKF thereof. Xiong et al. [2.31] further developed AEKF for 

estimating the SOC of a series-connected lithium-ion battery pack, in which a battery 

pack model was established as a cell unit model for avoiding cell-to-cell variations in the 

battery pack. Besides, AUKF for SOC estimation was presented in [2.32], where the 

comparative study results indicated that AUKF has a better accuracy than AEKF and EKF. 

The other problem is that the model and measurement noises of varied extensions of KF 

are restricted by the Gaussian distribution. However, it does not relate well to practices, 

which may have an adverse effect on the convergence behaviour and estimated accuracy 

[2.29]. 

B. Sliding-mode observer 

The SMO is another effective technique for state estimation in nonlinear systems subject 

to uncertainties and disturbances [2.33]. It is designed to force and confine the system 
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state to stay in a pre-constructed surface, known as the sliding (hyper) surface, which 

exhibits desired dynamics [2.34]. 

The SMO design for SOC estimation was described by Kim in [2.35], [2.36], where the 

systematic design approach for SMO in combination with state equations of battery 

ECMs with was present, and the convergence of SMO was proved by Lyapunov functions. 

The modelling errors caused by simple ECMs were effectively compensated by the SMO, 

and therefore, under the real driving environments, the proposed method showed robust 

tracking performance against modelling errors and uncertainties. Due to its simple 

calculation and robust estimation characteristic, the SMO was suggested to be directly 

apply in hybrid EVs [2.35]. 

However, an inevitable issue of the conventional SMO is the chartering phenomenon, 

which is caused by the discontinuous switching control. To tackle the above problem, 

Chen et al. [2.37], [2.38] proposed adaptive switching gain SMO approaches for 

minimizing chattering levels. In the meantime, the accuracy of SOC estimation was 

improved by adaptively adjusting switching gains for compensating modelling errors. 

With the same aim, Kim et al. [2.39] employed an adaptive discrete-time SMO for 

estimating the OCV of a battery cell and then predicting the SOC with an enhanced 

Coulomb-counting algorithm. In [2.40], the elimination of chattering in both the output 

voltage and SOC estimates was achieved by the application of a second order discrete-

time SMO that can drive not only the sliding variable but also its derivative to zero. 

Compared with the conventional first-order SMO approach, the proposed method showed 

a drastic reduction in both the estimation error and chattering phenomenon while maintain 

the robustness of the SMO approach. Although the effectiveness of adaptive SMO 

approaches and the second-order SMO method for attenuating chattering levels was 

validated, this benefits from the additional complexity and computation cost of the 

algorithms. 
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C. Particle filter 

The PF is a sequential Monte Carlo approach, which aims to obtain a set of particles (also 

called samples or individuals) as well as importance weights assigned to the particles for 

representing the posterior probability density of the system [2.41]. The main operations 

of PF include particle propagation, importance weight computation, and resampling 

[2.42]. 

A PF based battery SOC estimation algorithm was proposed in [2.43], where the 

experimental results showed that PF and EKF have similar performance in estimation 

accuracy, but the execution time of PF is six times faster than that of EKF. Since LFP 

batteries have very flat OCVs with hysteresis between charging and discharging which 

bring challenges for estimating the SOC, Schwunk et al. [2.44] employed a PF framework 

and modelled the OCV hysteresis by multimodal probability functions to overcome this 

problem. The algorithm was able to track the SOC well over time with current profiles of 

photovoltaic and EV applications. However, the tracking behaviour of the algorithm 

under various ambient temperatures during battery aging needs further analysis. 

Considering the effects of dynamic current noise and temperature changes, Wang et al. 

[2.45] established a temperature and capacity retention ratio composed battery EM and 

then combined it with PF for eliminating the noise effects and estimating battery SOC. 

For improving the estimation robustness, Zhou et al. [2.46], [2.47] presented a PF based 

multi-model data fusion technique for battery SOC estimation. In this approach, a battery 

ECM and EM with PF were employed to infer SOC values, separately, and then the SOC 

values and their weights were adjusted by using PF and weighted average methodology. 

Although the validations indicated that this method can achieve better accuracy compared 

with conventional approaches of the single battery model, it was at the expense of 

additional computational efforts. 

It was reported that the calculation process of conventional PF requires a massive number 

of particles for accurate SOC estimation [2.48]. To avoid this, an estimation approach 

based on Unscented PF (UPF) was proposed in [2.48], where UKF was employed to 



Literature Review 

20 

update each particle at the measurement time while the resampling was performed using 

measurements. Accordingly, the proposal distribution of PF included the new observation 

information, and the number of particles can be significantly reduced. Moreover, with the 

consideration of the cells’ inconsistencies in a battery pack, Zhong et al. [2.49] developed 

a UPF based approach for the estimation of the battery pack SOC. The UPF algorithm 

was applied for estimating SOCs of the first over-discharged cell and the first over-

charged cell in the battery pack, and then the pack SOC was governed by these two SOCs 

through varied expressions related to different balancing control strategies. 

D. H-infinity observer 

H-infinity (H∞) observer has been effectively applied to handle state estimation problems 

involving multivariate systems with cross-coupling since the late 1990s [2.50]-[2.53]. It 

is a worst-case robust design approach, which means that it is less sensitive to model 

uncertainties and disturbances [2.53], [2.54]. The satisfactory battery SOC estimates can 

be obtained by the application of H-infinity in model-based estimation schemes. 

Yan et al. [2.55] designed a H-infinity observer for addressing SOC estimation problems 

of nickel metal hydride (NiMH) batteries in noised and uncertain environments. The 

verification indicated that the proposed approach has the stronger robustness than current 

integral and KF methods. In [2.56], when unknown or erroneous statistical properties of 

errors were provided, the H-infinity observer based method still offered good SOC 

estimation accuracy for a battery-powered robot that is used for inspecting power 

transmission lines. Likewise, for accurately estimating battery SOC and terminal voltage 

without a prior knowledge of process and measurement noises, H-infinity observer with 

a battery ECM whose parameters were extracted by a genetic algorithm was utilized in 

[2.53], where the SOC and voltage estimation error bounds are invariant with different 

measurement noise levels. 

Furthermore, to weaken the errors caused by a single battery model, Lin et al. [2.57] 

focused on a multiple battery ECMs fusion approach using the H-infinity algorithm for 
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SOC estimation. In the proposed method, three H-infinity observers were applied with 

three different kinds of ECMs to predict their respective SOCs. Then, the SOCs were 

synthesized with optimal weights to determine the battery SOC by the Bayes theorem. It 

was stated that the proposed approach highlighted its superiority in terms of robustness 

and estimation accuracy for both LMO and LFP batteries operated under dynamic 

conditions in comparison with the methods using sole battery ECM. However, the 

proposed distributed architecture with three observers, three models, and a fusion 

technique inevitably increases the computational burden, and the computational 

efficiency has not been evaluated in the article. 

For increasing the robustness and accuracy of the conventional H-infinity algorithm, the 

adaptive H-infinity estimator was designed for both SOC and SOE estimation by Zhang 

et al. [2.58], where a moving estimation window of samples was employed to develop the 

covariance of the error innovation for adaptively updating the observation and system 

noise covariance. Compared with the conventional H-infinity and EKF methods, the 

adaptive H-infinity estimator can reduce both the maximum SOC estimation error and the 

mean SOC estimation error as well as the convergence time. According to the authors, 

the estimation results kept extremely high accuracy within 0.1% when an erroneous initial 

SOC value was provided. However, the robustness of the proposed method against 

various ambient temperature and cell aging levels is suggested for further evaluation. 

E. Proportional-Integral observer 

The PI observer inherits the advantages of the proportional controller and integral 

controller and exhibits strong robustness against system uncertainties, which is the most 

widely used control approach in engineering applications. The PI observer has the merit 

over other observer and filter techniques in that it is computationally efficient, and 

therefore, it is well-suited to be embedded in low-cost target BMSs [2.59]. 

Since it is hard to establish an accurate battery model for exactly matching a battery’s 

dynamic behaviours, the PI observer was employed to improve the robustness against 



Literature Review 

22 

modelling uncertainties for SOC estimation in [2.60], where the structure of the proposed 

method with a battery ECM was presented, and its convergence with model errors was 

validated. Furthermore, Zhao et al. [2.61] quantitatively analysed the error sensitivity of 

battery ECM parameters including OCV, ohmic resistance, polarization resistance, and 

capacity for the PI observer based SOC estimation method. It was stated that the OCV 

has a more significant influence on the estimation accuracy than other parameters. To 

suppress the drifting current errors and achieve desirable SOC estimation results, Tang et 

al. [2.62] proposed a dual-circuit state observer for LFP batteries, which was a 

combination of a PI observer and current integrator with drifting corrector. In [2.59], the 

authors developed PI observers with a high-fidelity EM for simultaneously estimating 

battery SOC, capacity, and resistance. It is noted that the battery SOC was indicated by 

lithium ion concentration values, and the PI observer was therefore applied for obtaining 

the gain of residual voltage to modify the lithium ion concentration in solid electrodes. 

The estimation accuracy and robustness against aging and temperature variations were 

systematically verified, but the complexity of the EM may hinder its implementation into 

microprocessors with limited capabilities in embedded BMSs. 

Additionally, the PI observer was comparatively studied with other observers and filters, 

such as EKF, H-infinity, and SMO for SOC estimation in [2.54], [2.63]. The PI observer 

always achieves similar estimation accuracy yet outperforms others in terms of 

computational efforts due to its simplicity. The proportional gain and integral gain of the 

PI observer, however, are usually obtained from practical experiences. It may take a 

tedious tuning procedure to achieve optimal gains. 

F. Least-squares based filters 

Least-square (LS) technique provides a solution that minimizes the sum of the squares of 

the errors between the estimated values and actual values [2.64]. Since the basic LS 

method requires all the input and output data for a one-off estimation, it is not well-suited 

to the online applications where measurement data are not available all at once but instead 

arrive sequentially. To tackle this difficulty, Verbrugge et al. [2.65] applied a first-in and 
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first-out method that keeps the most recent 91 data points rather than all data for the LS 

regression to yield an estimate of the SOC. Likewise, the moving-window LS approach 

that employs a certain number (window) of input and output data of past steps for 

estimating parameters was reported in [2.64], [2.66]. In the articles, the authors employed 

the moving-window LS approach to extract battery parameters, which were then fed to 

an optimal observer gain that was calculated by a linear quadratic approach for estimating 

battery SOC. It was stated that the proposed approach showed a better performance in 

terms of estimation accuracy and convergence time than EKF and SMO methods in a 

typical current profile containing both charging and discharging cycles. But the moving-

window LS approach requires a high demand of memory consumption for storing the 

certain numbers of measurement data. 

Instead of computing the estimate by using all the available data, recursive LS (RLS) 

updates the estimates on the basis of the last estimate and newly collected data. The RLS 

is popularly used for on-board parameters identification. To avoid the saturation 

phenomenon of the standard RLS caused by the exponential growth of the covariance 

matrix [2.67], weighting and forgetting factors are usually incorporated with the RLS 

algorithms. For example, Verbrugge et al. [2.68], [2.69] developed the weighted RLS 

(WRLS) approach with exponential forgetting for battery SOC and other parameters 

estimation. In the proposed method, time weighing factors were applied to accentuate 

impact to recent measurement data for determining the SOC. The effectiveness of the 

proposed method was verified with Lead Acid, NiMH, and lithium-ion batteries. He et al. 

[2.67] employed a RLS algorithm with an optimal forgetting factor for on-board 

identification of battery parameters, and then used a pre-built lookup table between OCVs 

and SOCs to infer the battery SOC. The authors set the optimal forgetting factor as a fixed 

value, 0.98, for equilibrating the parameter tracking capability and maladjustment.  

Moreover, considering that a single fixed forgetting factor may not accurately identify 

battery parameters, Duong et al. [2.70], [2.71] focused on RLS based SOC estimation 

with multiple adaptive forgetting factors for LFP batteries. The proposed method utilized 
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multiple adaptive forgetting factors to cope with different dynamics of the parameters 

variation, and therefore, it provided a better solution to the divergence problem than the 

RLS with a single forgetting factor. 

Another RLS based approach reported for battery SOC estimation is the Frisch scheme 

bias compensating RLS (FBCRLS) [2.72]. Wei et al. [2.72] designed a FBCRLS based 

observer to estimate the noise statistics for eliminating the noise effect and enhancing 

online model identification, thus leading to a more reliable estimate on the SOC. It was 

stated that the proposed method outperformed the EKF based SOC method with RLS 

model identification technique in terms of estimation accuracy and convergence speed. 

However, the battery capacity used in the proposed method was regarded as a known 

variable. Due to the capacity fading during the battery aging process, it would degrade 

the estimation accuracy without a reliable capacity update. 

It was noticed that no matrix inversion is needed as the RLS requires low computational 

cost and demonstrates fast convergence. However, the RLS based methods for SOC 

estimation need a sophisticated battery model that can effectively reproduce the cell’s 

dynamic behaviour. Otherwise, it may suffer from severe divergence problems. 

2.3.4 Machine learning methods 

Without the physical knowledge of a system, machine learning methods such as neural 

network (NN), support vector machine (SVM), and fuzzy logic (FL) have the ability to 

learn and approximate the relationship between the input and the output of the system, 

which have been widely applied to battery systems to estimate SOC. 

A. Neural network 

Neural network (NN) is inspired by the way that the human brain processes information 

[2.73] and is an intelligent mathematical tool for system modelling. A NN typically 

consists of an input layer, one or more hidden layers, and an output layer to demonstrate 

a complex nonlinear system. Different learning algorithms can be employed to train the 

input data and the target data to acquire the parameters of the network. The most often 
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used learning method, back-propagation, was employed to train the relationship between 

battery parameters including cell terminal voltage and loading current and targeted SOCs 

in [2.73] for estimating battery SOC. The experimental results indicated that the NN 

method could perform well if the trained data is identical to the real experience. 

Considering the effect of battery capacity degradation, a battery capacity aging model 

that was built according to the test data at various temperatures was introduced as an input 

parameter of a Radial Basis Function NN (RBFNN) in response to the varying aging 

levels and temperatures in [2.74]. The verification of the proposed method showed a good 

robustness against varying battery degradation, temperature, and loading profiles. 

However, a large amount of reliable experiment data are required for accurately deducing 

the battery aging model and training the network. 

B. Support vector machine 

Support vector machines (SVMs), originally introduced as support vector networks 

[2.75], are supervised learning models that are used for data classification and regression 

analysis. SVMs can effectively transform a non-linear model using kernel functions and 

regression algorithms to a linear model in high dimension by using creditable training 

data [2.76]. The training process is also likely to be time-consuming. A battery SOC 

estimator using the SVM technique was proposed in [2.77]. The battery test data including 

cell terminal voltage, loading current, temperature, and SOC were used for training the 

parameters of the SVM model. With the input variables of battery cell voltage, current, 

and temperature, the SVM model was able to estimate battery SOC accurately with an 

estimated coefficient of determination of 0.97. It is noted that a relatively large estimated 

error can be observed for some points of discontinuity of the current. This may cause 

problematic estimates in real applications especially with dramatically changed loading 

current.  

With the goal of achieving robust SOC estimation, an iterative weighted least squares 

SVM (WLS-SVM) algorithm was proposed by Chen et al. [2.78], where the key idea is 

similar to that of [2.77], namely establishing a relationship of SOC to cell voltage, current 
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and temperature. The verified results showed that the proposed estimator can achieve 

good robustness for SOC estimation. An optimized SVM for regression (SVR) with 

double search optimization process was employed for SOC estimation in [2.79]. The main 

purpose of the double step search was to reduce the time of training processes for selecting 

the optimal parameters. The proposed SOC estimator outperformed the estimations based 

on artificial NN in terms of efficiency and accuracy. However, since the results were 

verified in a vehicle simulator ADVISOR, it is recommended to evaluate the performance 

of the proposed method in real situations. 

C. Fuzzy logic 

Fuzzy logic (FL) mimics human control logic and is a way of processing data which 

incorporates a simple and rule-based approach to solving a control problem. The 

implementation process of FL includes fuzzifying inputs into membership functions, 

computing the output based on the rules, and de-fuzzifying the fuzzy output. Singh et al. 

[2.80] used ac impedance and voltage recovery measurements as the input of an FL model 

for estimating battery SOC. The proposed method was implemented in a microcontroller 

for the application of portable defibrillators. Dai et al. [2.81] proposed an adaptive neuro-

fuzzy inference system (ANFIS) for online SOC correction. The average SOC of the 

battery pack was estimated by the KF method and then was corrected by the ANFIS with 

the information of cell differences and current. The proposed method has good accuracy 

and robustness against varying loading current, battery state, and aging, but it needs 

relatively high computational efforts. 

A brief comparison of the aforementioned SOC estimation methods regarding to their 

complexity and accuracy is summarized in Table 2.1. 
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Table 2.1 The comparison of different SOC estimation methods regarding to their 

complexity and accuracy. 

 Methods Complexity Accuracy 

SOC estimation 

Coulomb-counting 

method 
Low 

Low (especially 

after performing 

over a long period) 

OCV method Low 

Low (especially for 

batteries with flat 

voltage plateau) 

Model-based 

methods 

High (especially 

with a battery 

electrochemical 

model) 

High 

Machine learning 

methods 
Medium 

Dependent on 

training data 

 

2.4 State of Health Estimation 

There is no clear consensus for the definition available in literature for the SOH, although 

the importance of the SOH is really high [2.82]. The SOH can be quantified based on two 

measures: battery capacity fade and internal resistance increase [2.82]-[2.85]. Most 

studies consider the battery actual capacity in order to evaluate the SOH of a battery, and 

the SOH is determined by 

/ 100%act NSOH Q Q               (2.3) 

where Qact denotes the battery actual capacity and QN denotes the battery nominal 

capacity. Generally, a battery cell is regarded as being at the end of life when the actual 

capacity declines to 80% of its nominal capacity. 
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There are three main degradation modes including loss of lithium inventory, loss of active 

anode material, and loss of active cathode material that are considered to be the primary 

causes of battery capacity fade [2.86]. The formation and growth of surface of electrolyte 

interphase (SEI) consume cyclable lithium ions, resulting in an irreversible capacity fade, 

particularly during the initial few charging cycles [2.87], [2.88]. Lithium plating occurs 

at charging processes of a lithium-ion cell especially with high SOC, high current rate, 

and low temperature [2.89]. Although plated lithium can partially dissipate and intercalate 

into the anode active material, parts of deposited lithium would react with battery 

electrolyte and therefore consume lithium ions [2.90]. Active cathode material often 

suffers from transition metal dissolution, especially with high cathode potentials and high 

temperature [2.88], [2.91]. The intercalation and de-intercalation of lithium ions into 

active materials of electrodes lead to mechanical stress, structural damage and particle 

cracking [2.86], [2.88], thus resulting in loss of active materials. 

The reported estimation approaches of battery actual capacity for evaluating the capacity 

fade and indicating the SOH are mainly classified into three categories: model-based 

methods, incremental capacity analysis (ICA) and differential voltage analysis (DVA) 

methods, and machine learning methods, which are elaborated in the following parts. 

2.4.1 Model-based methods 

The model-based methods for SOC estimation usually outperform others in terms of 

robustness and availability. However, the continuous capacity fade is prone to result in 

considerable errors in SOC estimation. To address this issue and simultaneously estimate 

SOH, the dual/joint model-based methods are introduced to co-estimate battery SOC, 

SOH, and other parameters [2.59]. 

A. Kalman filter based methods 

A dual EKF (DEKF) framework for concurrently estimating battery state and parameters 

was first introduced by Plett [2.7]. In the article, two EKF estimators were designed to 

run in parallel for adapting battery state and parameters so that the relationship between 
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the model input and output values could closely match the real data. In the verifications, 

the estimates of battery capacity were able to converge to referenced values. 

Generally, battery parameters and states have different variation rates. For example, the 

characteristics of battery internal resistance and capacity are usually slow time-varying, 

and the SOC has fast time-varying dynamics. In this regard, multiple time scales were 

popularly applied in the scheme of dual EKFs for SOC and SOH/capacity estimation in 

[2.92]-[2.95]. A micro-scale EKF was used to update battery SOC, and a macro-scale 

EKF was applied to adapt battery capacity/SOH. The advantage of the multi-time-scale 

design is that it reduces computational efforts of BMSs while keeping desirable estimates. 

Besides, the DEKF algorithm was investigated with NN technique to estimate battery 

SOH in [2.96]. For eliminating the dependency of SOC and SOH estimation on empirical 

battery models including ECMs and EMs, Bai et al. [2.96] developed a NN based battery 

model to approximate the relationship between cell voltage, current, SOC, and capacity. 

The trained NN model was then employed in the DEKF method for adaptively updating 

model parameters and estimating battery SOC and SOH. The proposed method could 

achieve high accuracy for both short-term and long-term capacity estimates. However, 

the introduction of the NN would increase the computational efforts of the algorithm of 

the DEKF framework. 

B. Other observers and filters 

The dual SMO technique for estimating battery SOH was designed by Kim [2.97]. In the 

article, the dual SMOs consist of a fast time-varying observer for estimating SOC, cell 

terminal voltage, and polarization effects and a slow time-varying observer for estimating 

capacity fade and resistance deterioration. The Lyapunov equation was employed to 

design and ensure the convergence of the observers. The estimates were exchanged 

between the observers for updating new parameters and states through moving average 

filters, which were used for reducing the chattering in the estimated values. The test 

results exhibited good tracking performance for both SOC and SOH estimation. 
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Chen et al. [2.98] proposed multi-scale dual H-infinity filters for real-timely estimating 

battery SOC and capacity. The authors employed dual time scales with respect to fast-

varying battery state and slow-varying battery parameters. The offline experimental 

results indicated the proposed method has superior performance in terms of robustness 

and accuracy compared with single/multi-scale DEKFs. The proposed method was 

further validated in a battery-in-loop test bench for EV applications, and the SOC and 

capacity estimates could effectively converge to the referenced values with high 

accuracies of 2% and 4%, respectively. However, when considering practical EV 

applications, the operation time of the proposed method in an embedded BMS should be 

evaluated, and the temperature effects on the battery model should be taken into account. 

In [2.59], Zheng et al. employed a reduced physics-based EM and three PI observers for 

co-estimating battery SOC, capacity, and resistance. The first PI observer was applied to 

feed back the voltage difference between the measurement voltage and model output 

voltage to estimate the SOC. A moving window with Coulomb-counting method was then 

used for computing a comparative SOC. The second PI observer was then applied to feed 

back the SOC difference between the estimated value and the comparative value for 

estimating battery capacity. With erroneous initial model parameters, the proposed 

method could successfully reduce the capacity estimation error to less than 3% after 

several iterative estimation times for various battery aging levels and ambient 

temperatures. The primary concern comes from the computation burden of the proposed 

method in BMSs due to the complicated EM, although some efforts have been made for 

the model reduction. 

Generally, the joint/dual estimators for battery model parameters identification and state 

prediction may suffer from the cross interference. To address this issue, Wei et al. [2.99] 

proposed decoupled multi-timescale estimators integrated by a KF-based SOC estimator 

and a RLS-based capacity estimator. In particular, a vector-type RLS (VRLS) approach 

which uses multiple forgetting factors was applied to cope with the different variation 

rates of battery parameters for solving the wind-up problem in the standard RLS. The 
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proposed approach was verified on different types of batteries including the lithium-ion 

battery and vanadium redox flow battery with high accuracy and fast convergence. It is 

noted that the computational cost of the proposed algorithm is lower than other existing 

methods, which was attributed to the lower filtering order of the state estimator and larger 

timescale of the parameter estimator. However, it should be pointed out that the 

temperature dependencies of battery parameters have not been taken into the proposed 

estimators. It is suggested to consider the affected factors in the battery model and 

estimation algorithm for enhancing robustness. 

Hua et al. [2.100] developed a multi time-scale SOC and SOH estimation framework for 

the lithium-ion battery pack with passive balance control. As there exists cell-to-cell 

variation in a battery pack, it is not accurate to describe the pack states using a unit cell 

model. The authors employed a cell screening process to select the ‘weakest in-pack cell’ 

with minimum capacity, and then the SOC and capacity of the battery pack were 

represented by those of the ‘weakest cell’. Dual nonlinear predictive filter (NPF) with 

different time-scales were employed for cell-level SOC, resistance, and capacity 

estimation. The NPF outperforms most filters in terms of the process noise in NPF being 

estimated as a part of the solution and that it can take any distribution form, such as a 

non-zero mean non-Gaussian process. The Urban Dynamometer Driving Schedule 

(UDDS) profiles were used to verify the performance of the proposed framework, and 

promising SOC and capacity estimates with high accuracy could be achieved. However, 

the results were just validated on a sole aged level of a battery pack, and the tracking 

performance of pack SOC and SOH estimator for the battery pack from its fresh status to 

its age status needs to be further investigated. 

2.4.2 Incremental capacity analysis and differential capacity analysis based methods 

The incremental capacity analysis (ICA) and differential voltage analysis (DVA) methods 

have been investigated in recent years and reported in [2.101]-[2.110] as effective non-

invasive tools to study the behaviour and mechanism of a battery. The ICA approach 

transforms a battery charge or discharge voltage versus capacity curve to an incremental 
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capacity (IC) curve using the differential capacity. Likewise, the DVA method utilizes 

the differential voltage to transform the cell voltage versus capacity curve to a differential 

voltage (DV) curve. Mathematically, the IC curve is computed as the gradient of 

charged/discharged capacity (Q) with respect to cell voltage (V) using (2.4), and the DV 

curve is derived as the gradient of V with respect to Q using (2.5) [2.111]. 

dQ dV Q V                 (2.4) 

dV dQ V Q                 (2.5) 

The positions and magnitude of the peaks of IC/DV curves were widely employed for 

characterizing battery aging mechanisms, such as the loss of active materials, loss of 

lithium inventory (LLI), and increase of internal resistance. The implementation of ICA 

techniques on on-board SOH estimation for battery cells and modules were introduced 

by Weng et al. [2.112], [2.113]. Since it is difficult to calculate the IC curve directly from 

battery test data with measurement noise, the linear programming based SVR algorithm 

was employed in [2.112] for smoothing IC curves and improving its computational 

efficiency. A robust and quantitative correlation between faded battery capacity and IC 

peaks was extracted from the developed IC curves using the data from one single cell. 

The proposed algorithms for SOH estimation were then verified with seven other cells, 

and the predictive errors were confined in a small error bound of 1%. The authors further 

developed and extended the SOH monitoring algorithm from single cells to battery 

modules in [2.113]. A LiFePO4 battery module consisting of three cells with different 

aging conditions connected in parallel was applied for the simulation analysis of IC peaks 

based SOH characterization of the battery module. The simulation results indicated that 

the developed SOH estimation framework for single cells could also be used for battery 

modules. A total of about thirty battery modules with various capacity variations were 

then employed to validate the proposed estimation method, and promising results with 

the root mean square error (RMSE) of 1.28% could be achieved, which highlighted the 

generalizable correlation for battery modules. Note that the ambient temperature has a 
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significant impact on battery electrochemical processes and therefore influences battery 

IC peaks. Since the experimental results presented in the articles were only verified under 

room temperature, the robustness and applicability of the proposed method against 

various temperatures needs to be further investigated. 

Similar techniques based on the quantitative correlation between IC peaks and faded 

battery capacity for SOH estimation were reported in [2.114]-[2.116]. For obtaining clear 

IC curves without noise and with only three IC peaks, a Butterworth filter with the 

advantage of being insensitive to the input data range was applied to calculated the IC 

curve in [2.114], where the verifications demonstrated that the decrease of the third peak 

area is consistent with battery capacity fade, thus providing an efficient SOH estimator. 

However, the current rate and temperature dependencies of IC peaks have not been 

considered in the proposed method, which may distort battery IC peaks. Different to 

proposing approaches for directly smoothing IC curves, Feng et al. [2.115] and Han et al. 

[2.116] proposed voltage point counting based methods for on-board implementations of 

the ICA in BMSs, which transfer the charge/discharge procedure of a battery to the 

statistical histogram of cell voltage. The voltage intervals of 1 mV and 10 mV were 

selected for counting measured voltage points in [2.115], [2.116], respectively, and the 

charge/discharge ICs in each voltage interval were proportional to the numbers of counted 

points. Besides, a probability density function (PDF) was employed in [2.115] to smooth 

the histogram of cell voltage and deduce a PDF map of the voltage, which demonstrated 

similar results with those of ICA/DVA, and the aging regularity of the peak of PDF results 

was applied for evaluating battery SOH. The main advantage of voltage point counting 

based methods is achieved by easily and rapidly deriving the battery IC curve, and 

therefore they are computationally efficient. However, they require rigorous constant 

current for the effective voltage statistics, which limits their feasibility in practices, 

especially in the discharge process of batteries with dynamic changing currents in EVs. 

As another effective non-invasive approach for revealing battery degradation 

mechanisms, the DVA technique, was also developed for real-time SOH estimation for 
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BMS operation in [2.117], [2.118]. Through the comparison of battery DV curves at 

various cell aging levels, a measurable special section of DV curves from 60% SOC until 

an almost full charge was selected by Berecibar et al. [2.117] for estimating the SOH of 

the battery. The experimental analysis showed that the length of the special section 

decreases as the SOH decreases. The SOH was then determined by the ratio of the lengths 

of the special section and a calculated section which was computed by the special section 

to the fresh capacity. The performance and robustness of the proposed method were 

verified by cell and battery pack levels at various scenarios, and the average errors of 0.8% 

and 1.5% could be achieved for cell and pack levels, respectively. However, it requires 

that the battery is charged or discharged at a low and constant current rate for accurately 

obtaining DV curves and the special section. In their later work [2.118], features of 

interest on the DV and IC curves were extracted and applied as inputs of three supervised 

learning methods including linear regression, NN, and SVM for estimating the SOH of 

NMC cells. Wrapper methods and filter methods were then employed for feature selection, 

which aims at reducing feature space while maintaining a desirable predictive capability. 

The experimental results suggested that the NN method outperformed others in terms of 

variability of the error, however it was less comprehensive than the linear regression 

method. 

Wang et al. [2.119] proposed an improved centre least squares algorithm for obtaining 

clear DV curves, and extracted two inflection points from the DV curves for estimating 

battery SOH estimation. According to the analysis results, the first inflection point stayed 

at almost the same location, which can be used for eliminating the cumulative error of the 

charged capacity, while the second inflection point moved with the battery aging, which 

can be applied for indicating battery capacity fading. The location interval between these 

two inflection points demonstrated a linear relation to battery capacity, and it was 

validated by four LiFePO4 cells in various aging states. Furthermore, the authors 

developed the proposed method for battery pack application. The battery pack SOH was 

inferred from the difference between the real-time measured DV curve and the original 
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one. However, no verified results of the battery pack SOH estimation were reported in 

the article, and its feasibility needs to be investigated. 

It can be summarized that the most common way to apply ICA/DVA methods for online 

implementations is to extract the features of interest of IC/DV curves to indicate battery 

capacity fading. Compared with the model-based methods for SOH estimation, there is 

no need to individually identify model parameters for each cell in the ICA/DVA based 

methods, which is attributed to universal characteristics of IC/DV curves. Accordingly, 

the ICA/DVA methods are promising to be developed for applications from the cell level 

to the battery pack level. However, it is noteworthy that the reported ICA/DVA 

techniques for SOH estimation are primarily based on the analysis of battery 

charge/discharge with the operating conditions of constant current and/or constant 

ambient temperature. The temperature and current rate dependencies of IC/DV curves for 

battery SOH estimation have not been efficiently investigated yet. A more robust 

ICA/DVA based method against dynamic operating conditions is desirable. 

2.4.3 Machine learning methods 

Nuhic et al. [2.120] developed an SVM algorithm for establishing a relationship between 

battery capacity fade and the load that the battery has experienced, which was used for 

battery SOH estimation. The operating data of six high power lithium-ion cells cyclically 

stressed at various real driving cycles and load collectives were employed for training the 

proposed algorithm. A linear SVR kernel function was applied in the SVR parameter 

determination for reducing computational efforts in further on-board implementations. 

Promising results for SOH estimation validated on driving profiles and temperatures were 

achieved, while with load collectives, the proposed method could also be used for the 

prognosis of the simple remaining useful life of the battery. An improved pattern of the 

standard SVM, least squares SVM (LS-SVM), was proposed for predicting the actual 

capacity of battery that can be used to estimate battery SOH in [2.121]. In the article, the 

Coulomb-counting method with current correction using the Peukert’s equation and the 

dual AEKF algorithm were combined to estimate battery model parameters and SOC. For 
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improving the estimation accuracy of the proposed method at various temperatures 

among the lifetime of the battery, the LS-SVM model was implemented to estimate the 

available capacity of the battery. It is noted that a five-elements vector including 

temperature, battery series resistance, polarization resistance, voltage change, and voltage 

was used as each input sample of the proposed LS-SVM model, and therefore, the LS-

SVM model took the temperature and degradation into account. The optimal parameters 

of the LS-SVM model were obtained by a genetic algorithm. According to the verification 

results, the maximum error of 2% could be obtained for the capacity prediction at the 

nominal temperature of 25 °C. However, since the temperature has an impact on the 

battery capacity, it is recommended to evaluate the performance of the capacity prediction 

method at different ambient temperatures. 

Hu et al. [2.122] used the sample entropy of cell voltage sequence under the hybrid pulse 

power characterization (HPPC) profile as the input of the battery SOH estimator. The 

battery capacity was expressed as a third-degree polynomial model of sample entropy 

with different parameters for various temperatures. Although the referenced sample 

entropy was calculated from a randomly selected cell, the proposed estimator could be 

well applied for other cells. For improving the accuracy and robustness of SOH 

monitoring, sparse Bayesian predictive modelling (SBPM) approach was applied to 

investigate the relationship between the sample entropy and capacity loss in the authors’ 

following work [2.123]. A multivariate Bayesian SOH estimator was proposed to 

integrate temperature effects. Compared with the SVM scheme, the proposed method 

exhibited slightly better performance with much fewer parameters. 

Another popular choice for classification task, relevance vector machine (RVM), uses 

Bayesian inference to obtain the solutions for regression and probabilistic classification, 

which uses dynamically fewer basis functions while offering more reasonable predictions 

and other additional advantages as compared to SVM [2.124], [2.125]. Widodo et al. 

[2.126] developed RVM techniques with sample entropy for battery SOH monitoring. 

The battery discharge voltage and time data were used for extracting the sample entropy, 
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which gave a degradation trend of tested batteries. Thus, the sample entropy was applied 

to establish the intelligent ability for SOH prognostics by training SVM and RVM 

networks. The verification results showed that RVM has better accuracy than SVM in 

SOH predictions. 

Besides, based on thousands of sample experimental data tested in battery charge 

processes with constant current, representative external features (i.e. the selected voltage 

samples and velocities of the voltages) of the battery were first extracted by Wu et al. 

[2.127] using a differential geometry based approach. A group method of data handling 

(GMDH) polynomial NN consisting of 8 inputs, 4 hidden layers, and maximally 20 

nervous in each hidden layer was then constructed for training the relation between 

battery SOH and the external features. The experimental results showed that the proposed 

method was able to accurately estimate battery SOH with the maximum error of 5%. 

However, a large amount of reliable experimental data is required for extracting effective 

features, which incurs a tedious battery test process, and the presented complicate NN 

may be computationally expensive. 

Additionally, the machine learning methods were also combined with other techniques 

such as DEKF [2.96] and ICA/DVA [2.118] for incorporating their merits in SOH 

estimation algorithms, which have been described in previous sections. 

A brief comparison of the aforementioned SOH estimation methods regarding to their 

complexity and accuracy is summarized in Table 2.2. 
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Table 2.2 The comparison of different SOH estimation methods regarding to their 

complexity and accuracy. 

 Methods Complexity Accuracy 

SOH estimation 

ICA or DVA 

methods 
Low High 

Model-based 

methods 

High (especially 

with a battery 

electrochemical 

model) 

High 

Machine learning 

methods 
Medium 

Dependent on 

training data 

 

2.5 State of Energy Estimation 

The SOC was employed for battery energy availability forecasting formerly. However, it 

is an indicator of battery available capacity rather than battery available energy. Mamadou 

et al. [2.128], [2.129] proposed a new criterion, SOE, for evaluating battery energetic 

performances. Represented by the ratio of the remaining energy in the battery to its total 

energy, the SOE, allows a direct determination of battery available energy, which is 

critical for energy optimization and management for ESSs and predicting the remaining 

driving mileage for EVs. The SOE can be governed by 

     
0

= 0 +
t

taSOE t SOE P t dt E            (2.6) 

where SOE(t) and SOE(0) denote the SOE values at time t and the initial time, 

respectively, P(t) the loading power at time t (positive for charging and negative for 

discharging), and Eta the battery total available energy. 
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Note that the definition of SOE is analogous to that of SOC. Most of the approaches for 

SOC estimation can be effectively applied for SOE estimation, such as the model-based 

methods and machine learning methods. 

2.5.1 Model-based methods 

Since the expression of SOE (as given in (2.6)) is similar to the expression of SOC (as 

given in (2.1)), the model-based methods proposed for SOC estimation can be developed 

for SOE estimation. Different kinds of filters and observers are also popularly employed 

in the estimation algorithms. 

A. Kalman filter based methods 

The AUKF for adaptively adjusting the process noise and measurement noises was 

applied to estimate the SOE in [2.12], [2.130]. In the proposed algorithms, Lu et al. [2.120] 

employed a simplified electrochemical combination model that describes the relationship 

between the battery SOE and terminal voltage, while Zhang et al. [2.12] employed a 

Thevenin model and a 3-D relationship between the OCV and the SOE considering the 

aging level and the operating temperature for the estimation. The robustness of the AUKF 

algorithm against different operation conditions and cell aging levels was verified in 

[2.12]. Besides, its performance was evaluated in comparison with that of the UKF 

algorithm, and the results showed that the AUKF algorithm can efficiently improve the 

estimation accuracy [2.130]. 

In [2.131], He et al. proposed a Gaussian model with the CDKF algorithm for SOE 

estimation. The Gaussian model was constructed for simulating the OCV behaviours of 

batteries, and its parameters were determined by using a genetic algorithm. For 

equilibrating the model complexity and estimation accuracy, the Akaike information 

criterion technique was employed to determine the best hysteresis order of the model. The 

effectiveness of the proposed algorithm was verified by two kinds of batteries including 

LiMn2O4 and LiFePO4 batteries. 
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Additionally, Zhang et al. [2.132] focused on the remaining discharge energy and energy 

utilization ratio estimation for large format lithium-ion battery packs. Since the cells in 

the battery pack usually work with different heat dissipation conditions and operating 

temperatures, the inconsistency of the cells was incorporated in the estimation for the 

battery pack. According to the authors, the battery pack remaining discharge energy and 

maximum remaining discharge energy were deduced by the formulas with cells’ 

capacities and SOCs. The RLS technique was employed to identify the model parameters, 

and the UKF was applied to estimate the cell SOC for the remaining discharge energy 

prediction. The proposed algorithm was verified under the new European driving cycles 

and real driven profiles with high accuracy. But the computational task to calculate the 

capacity and SOC of each cell is extraordinarily time-consuming especially for large-

scale series-connected battery packs, and the accuracy of the remaining discharge energy 

prediction is highly dependent on the accuracy of the SOC and capacity estimation of 

each cell. 

The methods utilizing variants of KF as the state observer for SOE estimation are able to 

achieve desirable results, but they encounter the same problem for SOC and SOH 

estimation, which is that the measurement and process noises should be the Gaussian type. 

B. Other observers and filters 

Wang et al. introduced the PF for battery SOE estimation in [2.133] and embedded the 

PF algorithm into a real-time operating system µC/OS-II within a BMS for practical EV 

applications in [2.134], where desirable results can be obtained by both the laboratory test 

of a LFP battery module and the road test of a Li(Ni1/3Co1/3Mn1/3)O2 battery pack. 

However, the model parameters were identified off-line and may not match the real 

applications well. 

To enhance the on-line performance of a battery model, EKF-PF dual filters were 

developed as an SOE estimator in [2.135], where the EKF was applied to update the 

model parameters using real-time cell loading current and terminal voltage, while the PF 
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was employed to estimate the battery SOE. Although the proposed method can work well 

against dynamic current and different operating temperatures, the accuracy of the model 

parameters extracted by the EKF is still highly dependent on the knowledge of the process 

and measurement noises covariance. With the same aim, Dong et al. [2.136] employed a 

Wavelet NN (WNN) based battery model for mimicking a battery’s dynamic 

characteristics and a PF for estimating battery SOE. The operating temperatures and 

discharging rates were taken into account in the modeling so that the battery model can 

provide good prediction performance. According to the estimates, the proposed method 

showed good robustness against different operating temperatures and loading currents. 

However, the complexity of the proposed method may hold back its applicability. 

Moreover, Wang et al. [2.137] designed an adaptive SOE estimator that is based on the 

AEKF and PF. The AEKF functioned to identify parameters on line and provide the prior 

knowledge for the PF to estimate the SOE. Compared with the EKF algorithm, the 

proposed estimator provided more accurate and robust results for SOE estimation. 

However, it is worth mentioning that in the proposed method, the particles resampling 

step of PF is replaced by the state update of AEKF, and therefore, it requires a certain 

number of AEKF estimators to update the particles used in the PF algorithm, which 

significantly increases the computational efforts. 

In [2.58], extreme high accuracy within 0.1% was achieved for SOE estimation by using 

the adaptive H-infinity estimator. This benefits from the proposed estimator having the 

ability to adaptively update the observation and system noise covariance. Although the 

proposed method highlighted its superiority in terms of estimation accuracy and 

convergence speed compared with H-infinity and EKF approaches, the average task 

execution time of the proposed estimator was almost the same as that of the other two 

filters. However, since the proposed algorithm was validated in a hardware-in-the-loop 

approach and executed in a host computer, it is recommended to evaluate its performance 

in an embedded BMS for real applications. 
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In consideration of current sensor fails that may occur in practice, Xu et al. [2.138] 

developed the PI observer for simultaneously detecting the current sensor fault and 

estimating the battery SOE. In the proposed method, the PI observed was designed to 

isolate the current sensor fault from the state estimation. With an appropriate 

compensation of current sensor fault, the SOE estimation error caused by the current fault 

can be eliminated. It was stated that promising results for SOE estimation with the 

maximum error of less than 2% could be achieved, even though a large current error 

existed. A sophisticate battery model with accurate parameters, however, is highly 

required in this method. 

2.5.2 Machine learning methods 

Liu et al. [2.139] employed a three-layer Back-Propagation NN (BPNN) for the SOE 

estimation. Conducted by an investigation on battery discharged energy at different 

operating conditions, the battery terminal voltage, loading current, and the temperature 

were selected as the inputs of the BPNN with the consideration of the impact of the 

current and temperature on the discharged energy. The Levenberg-Marquardt 

backpropagation algorithm was then applied to train the parameters of the network. 

According to the obtained results, the proposed approach can effectively suppress the 

measurement noise and achieve accurate SOE estimates under dynamic temperatures and 

currents. Since twelve neurons were used in the hidden layer of the proposed BPNN, it 

would cause a high computational cost. Thus, the complexity of the BPNN approach 

needs to be further addressed. 

2.5.3 Characteristic mapping methods 

Through a study on ambient temperature, loading current, and cell aging levels 

dependencies of battery available energy, Zheng et al. [2.140] revealed that the 

relationship between the SOE and the SOC of LMO batteries almost keeps unchanged 

under different battery operating conditions and various cell aging levels. The stable 

relationship was then quantitatively expressed by a quadratic function. With the accurate 

SOC value, the battery SOE was readily computed by solving the quadratic function. The 
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advantage of this method lies in its simplicity, which can avoid heavy computational 

burden in a low-cost target BMSs with limited computation capabilities. The 

disadvantage is that the accuracy of SOE estimation is highly dependent on the accuracy 

of the provided SOC. Besides, the quantitative relationship between the SOE and the SOC 

needs to be further verified for the applications of other kinds of lithium-ion batteries. 

In [2.141], Li et al. analysed the impact of the discharging power rates, charging 

approaches, and operating temperatures on total available energy of LTO batteries, and 

then modified the calculation approach of the SOE with the consideration of the 

influenced factors to realize high reliability and accuracy of SOE estimation. In the 

proposed method, the real-time battery available energy was determined by a multi-

dimensional look-up table that was pre-established on the basis of the test data with 

various ambient temperatures, initial SOEs, and discharging power rates. The authors 

stated that the proposed method has an improvement over the classic power integral 

approach in terms of estimation accuracy and showed a closer description of battery 

discharging performance. However, the verification was carried out with an accurate 

initial SOE. An erroneous initial SOE may result in considerable errors in the estimation. 

Another problem is that a vast multi-dimensional look-up table with the consideration of 

different influential factors is needed in the proposed method, which requires a tedious 

battery test procedure. 

A brief comparison of the aforementioned SOE estimation methods regarding to their 

complexity and accuracy is summarized in Table 2.3. 
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Table 2.3 The comparison of different SOE estimation methods regarding to their 

complexity and accuracy. 

 Methods Complexity Accuracy 

SOE estimation 

Characteristic 

mapping methods 
Low Low 

Model-based 

methods 

High (especially 

with a battery 

electrochemical 

model) 

High 

Machine learning 

methods 
Medium 

Dependent on 

training data 

 

2.6 State of Power Prediction 

The SOP describes the peak power capability of a battery that can be delivered to loads 

or absorbed from regenerative braking or active recharging in a predictive time horizon. 

It is of great significance to accurately predict battery available power for reliable and 

optimal utilization of the battery. The reported techniques for SOP prediction can be 

mainly classified as three kinds of approaches include characteristic map based methods, 

model-based methods, and machine learning methods. 

2.6.1 Characteristic map based methods 

To establish a battery SOP characteristic map for various SOCs, the HPPC profile [2.142] 

has been extensively employed in battery tests. The internal resistance of battery cell for 

each iteration of the test profile is determined by the pulse current and its resulting voltage 

response, and is given by 

R V I                   (2.7) 
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where ΔV denotes the cell voltage change, ΔI the pulse current, and R the internal 

resistance of the battery cell (the discharge and charge resistances are denoted by RD and 

RC, respectively). Within the operating voltage limits, the battery cell power capabilities 

are governed by 

    
    

,max min min min min

,min max max max max
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     (2.8) 

where PD,max and PC,min denote the battery cell maximum discharge power and minimum 

charge power, respectively; and Vmax and Vmin denote the upper and lower cut-off voltages, 

respectively. The peak power capabilities of the battery pack are mainly determined by 

the “weakest” cell power capability and the cell number connected in the pack, and can 

be expressed as follows [2.82], [2.143]: 
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           (2.9) 

where PPack,D,max and PPack,C,min denote the battery pack maximum discharge power and 

minimum charge power, respectively; np and ns denote the numbers of cells connected in 

parallel and series, respectively; and PD,max,k and PC,min,k denote the maximum discharge 

power and minimum charge power of the kth (k = 1, 2, …, ns) cell, respectively. 

Since the ambient temperature has a significant impact on battery available power values 

[2.144], the cell power capability calculated by the HPPC method (as shown in (2.8)) 

omits its temperature dependency. An improvement to the HPPC technique took ambient 

temperature into account based on the varying battery OCV-SOC performances at 

different temperatures as reported in [2.144]. An exponential function of temperature 

compensation was introduced to add in (2.8) for reducing the offset caused by ambient 

temperatures and improving the accuracy of battery power capability prediction. 

In addition, the HPPC profile was generally conducted to test battery cells at a wide 

temperature range for establishing a comparatively comprehensive SOP characteristic 
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map. The underlying Fig. 2.6 shows a characteristic map of the discharge power 

capability related to battery SOC and temperature of a large format LMO cell with the 

rated capacity of 90 Ah for EV applications, which is provided by battery manufactory. 

The characteristic map is then tabulated in embedded BMSs for online SOP prediction. 

The main advantage of this approach lies in its simplicity, but it requires a high demand 

of memory consumption for storing the parameters of the characteristic map. 

 

Fig. 2.6 A characteristic map of battery discharge power capability. 

One way to reduce the demands of memory storage was introduced by Kim et al. [2.145]. 

The characteristic maps related to SOC, temperature, and accumulated discharge capacity 

were incorporated in an equation with three interrelations to determine battery power 

capabilities. The interrelation between the maximum available power and SOC was 

governed by a 5th order polynomial function whose coefficients were determined by a 

2nd order polynomial function, which represents the interrelation between the maximum 

available power and temperature. Another 5th order polynomial function was applied to 

describe the interrelation between the maximum available power and accumulated 

discharge capacity. The battery maximum available power can be examined under various 

operating conditions and cell aging levels by the developed equation, but it requires 

powerful computational capabilities within BMSs to deal with the high order polynomial 

functions. 
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Alternatively, Burgos-Mellado et al. [2.146] developed a scheme with two cascaded 

modules for estimating battery SOC and maximum available power. The PF technique 

was employed in the first module for approximating the PDF of SOC and SOP. The 

second module was a look-up table of SOC versus SOP, which was built on the basis of 

the solution of an optimization problem using the proposed fuzzy battery model with the 

consideration of the dependencies of the polarization resistance on both SOC and current. 

Instead of a simple expectation, the output of the second module was an empirical PDF 

for the SOP. The proposed algorithm was implemented and verified in a DSP system of 

16 bit for real-time applications. However, it is recommended to take the impacts of 

ambient temperature and cell aging level on the polarization resistance and other 

parameters of the fuzzy battery model into account for improving the adaptiveness of the 

proposed algorithm. 

2.6.2 Model-based methods 

The model-based methods are the mainstream solutions reported in literature for battery 

SOP prediction. In these methods, a battery model is usually employed for forecasting 

dynamic behaviours of the battery within a certain prediction horizon in order to 

determine the extreme voltage and current within the safe operating range to compute the 

battery available power capability. For battery’s safe operation, related battery variables 

that can be used as the control limits in the model based SOP prediction methods are listed 

as follows: 

 Upper and lower cut-off voltages, 

 Maximum/minimum SOC/SOE, 

 Design current rate, 

 Design power. 

The more design limits the algorithm uses, the more reliable SOP prediction results it 

may achieve, but the more computational efforts it requires. 



Literature Review 

48 

A. Voltage limit 

Wang et al. [2.147] proposed an adaptive, multi-parameter battery SOP estimator based 

on the direct solution of the governing differential equations of a battery Thevenin model. 

The model parameters were regressed by the WRSL method using the real time measured 

values of current and voltage, and then the analytical solution of the model response was 

used for calculating the charge current IC(Vmax) and discharge current ID(Vmin) with the 

upper and lower cut-off voltages, respectively. Sequentially, the charge and discharge 

power capabilities (positive for discharging and negative for charging) were determined 

by 
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               (2.10) 

where PD,max,V and PC,min,V denote the maximum discharge power and the minimum 

charge power under the voltage limit, respectively. According to the experimental results, 

the short-term (0.5 s and 2 s) power predictions agreed well with the measurement values, 

but the long-term (10 s) power predictions showed a large deviation. The authors 

attributed the long-term power prediction fails to the limitations of the single RC element 

in the battery model, which could not effectively mimic the diffusion effect of the battery. 

For tackling this problem, the authors added a nonlinear diffusion resistance that is 

proportional to the square root of time to the SOP prediction algorithm in [2.148]. The 

improved estimator was implemented in a hardware-in-the-loop setup, and the accurate 

long-term SOP results for the discharge power with the deviation of less than 2% can be 

attained, while a modest improvement was achieved for the charge power prediction. 

Since the operating temperature has an impact on the diffusion phenomenon [2.149], it is 

suggested to take into account the temperature dependency of the diffusion resistance for 

more accurate and robust SOP predictions. Another problem is that the voltage and 

current differentials (i.e. dV/dt and dI/dt) were incorporated in the computational process, 

which requires high measurement accuracy and sampling rate for the voltage and current. 
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Malysz et al. [2.150] focused on battery power prediction algorithms for longer time 

horizons (i.e. 15 s and 60 s) than the approaches presented above. According to the 

authors, variations in the ECM parameters were required to be taken into account in the 

long prediction horizons for achieving higher prediction accuracy, and thus two different 

predictive algorithms were proposed. Based on a cell asymmetric ECM, the first method 

considered the extrapolation of resistor and OCV values, and the second method was a 

multistep model predictive iterative (MMPI) technique. The proposed algorithms were 

evaluated with UDDS drive cycles data at two low temperatures of 0 °C and -20 °C by a 

model-in-the-loop methodology in MATLAB. The verification showed that the first 

method has a marginal improvement compared with the conventional voltage-limited 

approach, while a better agreement with the measurement plus terminal voltages can be 

achieved by the MMPI method. However, this benefit comes at the cost of high 

computational efforts, and it is recommended to evaluate the performances of the 

proposed algorithms in practices. 

It is well acknowledged that conventional ECMs can demonstrate the electrical 

behaviours of batteries well, but omit their thermal behaviours. The ECMs based SOP 

prediction methods, therefore, lead to the omission of the temperature dependency of 

battery power capability. To address this issue, Jiang et al. [2.151] implemented a Butler-

Volmer equation-based model for LTO batteries SOP prediction over a large temperature 

range even below 0 °C. The Butler-Volmer equation-based battery model proposed in 

their previous work [2.152] incorporated a Thevenin model and a simplified Butler-

Volmer equation, which equilibrated the model simplicity and the representation of a 

battery’s electrochemical behaviours, and the model parameters were identified by the 

COMPLEX method. Note that two voltage limits based on the OCVs at 0% SOC and 100% 

SOC rather than only the upper and lower voltage limits were utilized in the proposed 

method for more appropriately matching the voltage characteristics of LTO batteries, thus 

contributing to high accuracy in predicting the power capability. However, since the 

battery model parameters were identified by an offline approach, it may suffer from 

prediction divergence problem in uncertain operating conditions. 
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B. Voltage and current limits 

When considering that a simple battery model could not capture the battery dynamics 

while a complex model may be prone to the parameter divergence problem, Feng et al. 

[2.115] designed a novel battery ECM by adding a moving average noise to a Thevenin 

model, which enhances the ability to reflect a battery’s dynamic effects whilst  retaining 

the simplicity of the model, for a two-level SOP prediction. In the proposed method, the 

random error of the system was modelled by a moving average white noise, and the 

parameters of the new model was identified by using a recursive extended LS algorithm 

in real time. It is noted that the design limits of both voltage and current were considered 

in the SOP prediction. The power capabilities under the voltage limit was expressed by 

(2.11), while the predictive values under the current limit was governed by 
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where PD,max,I and PC,min,I denote the maximum discharge power and the minimum charge 

power under the current limit, respectively; and VD(Imax) and VC(Imin) denote cell terminal 

voltages with the maximum design discharge current and with the minimum design 

charge current, respectively. The predicted power capabilities for discharging PD,max and 

charging PC,min were then determined by 
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             (2.12) 

According to the obtained results, the proposed method significantly improved the 

accuracy of the parameter identification, and the single-step (short-term) SOP was in good 

agreement with that measured, while the accuracy of the long-term prediction could be 

increased. 

For improving the applicability of SOP prediction, Pei et al. [2.153] designed a training-

free estimator and a combined limit of voltage and current approach that the voltage limit 
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and current limit were simultaneously employed to derive the power capabilities. The 

training-free estimator was formed by a DEKF, in which the state filter was applied for 

forecasting battery polarization current, and the weight filter was employed for 

identifying the parameters of a Thevenin model. Since the designed estimator has the 

ability to directly estimate the battery model parameters under real-time conditions, the 

effects of temperature and aging on the parameters were internally included. It was stated 

that promising results for power capability prediction with the relative error of less than 

5% could be achieved under various operating temperature and aging conditions. 

It is worth mentioning that a battery model with accurate parameters, which can 

effectively reproduce battery’s dynamics, is highly needed for achieving good 

performance of the SOP prediction. It appears to lack robustness against model parameter 

errors. To tackle this problem, Wik et al. [2.154] proposed a power capability prediction 

approach based on analytical solutions. In the proposed method, the analytical solution 

for battery equivalent circuits response was derived for calculating the discharge and 

charge currents, which would lead to the upper and lower voltages at the end of the 

prediction horizon, respectively. The voltage marginal between the cell terminal voltage 

and the upper or lower voltage was the driving force to converge the cell terminal voltage 

towards the design limits of voltage. The proposed algorithm acted like a PI controller, 

thus possessing good convergence and robustness, which were verified with a 

characterized vehicle drive cycle. However, since the OCV was assumed to be unchanged 

at the prediction horizon in the analytical solutions, it may be well-suited for short-term 

prediction, but lead to large errors for long-term prediction. 

The above mentioned SOP prediction approaches with the design limits of voltage and 

current are aimed primarily at battery cells. It is indispensable to develop the prediction 

methods from the cell level to the pack level for practical applications. To this end, Waag 

et al. [2.155] focused the available power prediction on a battery pack with the 

consideration of the characteristic variances among cells in a battery pack. The power 

capability of the battery pack is generally limited by the “weakest” cell, which is the first 
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one to reach the design limits of voltage or current during the battery charging or 

discharging process. For identifying the “weakest” cell, the straight-forward method 

needs to estimate the parameters, predict the voltage, and calculate the SOP of each cell. 

However, it is computationally time-consuming. To overcome this drawback, the authors 

regarded the cells with the highest resistance or the highest/lowest OCV as the “weakest” 

ones. The proposed method also took into account the current dependency of battery 

resistance, which is considerable at low temperatures and high aging cells, thus enhancing 

the accuracy of SOP prediction. According to the authors, the promising results with the 

root mean square error within 6.5% could be achieved in the short-term (1 s) predictions, 

which is more accurate than that in the long-term (5 s and 10 s) predictions. The main 

advantage of the proposed method is achieved by optimizing the memory consumption 

and computation efforts, but the disadvantage is that the accuracy of the SOP prediction 

is dependent on the forecasting horizon. 

C. Voltage, current, and SOC/SOE limits 

Except for the design limits of voltage and current, the SOC was firstly introduced as a 

constraint in SOP prediction by Plett [2.156]. To ensure that the battery was operated 

within the permitted SOC limit, the real-time SOC was applied to compute the maximum 

discharge current (i.e. ID,max,SOC) and the minimum charge current (i.e. IC,min,SOC) as 
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where SOCmax and SOCmin denote the permitted maximum and minimum SOC values, 

respectively, and SOC(k) denotes the SOC value at time k. 

Then combined with the limits of voltage and current, the battery maximum discharge 

current (i.e. ID,max) and the minimum charge current (i.e. IC,min) were determined by 
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where ID,max,V and IC,min,V denote the maximum discharge current and the minimum charge 

current under the voltage limit, respectively, and IC,min,I and IC,min,I denote the permitted 

maximum discharge current and minimum charge current, respectively. 

In [2.156], two methods with different battery models were proposed to predict battery 

charge and discharge power. A simple battery model with a constant internal resistance 

was applied in the first method, which caused significant errors in some SOC ranges. The 

second proposed method utilized a dynamic model considering battery resistance, 

capacity, temperature and so forth, for the power predictor. Although more promising 

estimates can be obtained by the second method, it requires a good cell model and more 

computational efforts. Similar power predictor was also reported in [2.157], where the 

authors employed a battery electrochemical-polarization model with the consideration of 

polarization effects. 

Moreover, the battery power design limits which are usually provided by battery 

manufactures are taken into account in the power prediction, and the predictive power 

capabilities are then governed by 
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            (2.15) 

where Pmax and Pmin denote the battery discharge and charge power design limits, 

respectively. 

A piece-wise linearized battery ECM and the KF were employed in [2.158] for the joint 

estimation of LFP battery SOC and peak power capability which was represented by the 

state of function. The advantage of the proposed algorithm lies in its simple computation 

without complex operating, such as the Jacobian matrix calculation in EKF, the unscented 

transform in UKF, and the particle resampling in PF. However, it may result in 

untrustworthy estimates if the battery characteristics are seriously nonlinear. Likewise, 

Xiong et al. [2.159] proposed an AEKF based battery SOC and peak power capability 
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joint estimator. In the presented method, four different charge-discharge currents were 

employed to redefined the HPPC test for obtaining accurate battery model parameters. 

According to the authors, promising results with the peak error within 2% can be achieved 

for available peak power capability prediction. However, the battery model parameters 

were identified by the offline approach, which could not adapt the real applications well. 

To address this issue, it is recommended to incorporate the online battery model 

parameters identification technique for adaptive predictions. 

Additionally, with the limits of cell terminal voltage, loading current, and SOC, 

references [2.160] and [2.161] focused on the power prediction for battery module and 

pack levels. The battery pack power capabilities are determined by the power capabilities 

of each cell connected in series and parallel, and can be calculated by 
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where Vk,D(ID,max) and Vk,C(IC,min) denote the discharging and charging voltages of the kth 

cell, respectively. According to the experimental results shown in [2.160], [2.161], more 

reliable estimates can be obtained by the pack power predictor expressed in (2.16) than 

the traditional HPPC method. It is noted that the variances of cell power capabilities 

among the cells connected in series has been incorporated in (2.16), but the variances of 

cell power capabilities among the cells connected in parallel are omitted. It is 

recommended to take the variances of cell power capabilities among the cells connected 

in parallel into account for achieving more reliable battery pack power prediction. 

Given that the power capability of a battery is greatly related to its available energy, the 

SOE was applied as a control limit for the SOP prediction in [2.12]. Analogous to the 

methods described in the above section that used the SOC for the prediction, a battery 

Thevenin model was employed for predicting the available peak charge and discharge 

currents within the design limits of the upper and lower cut-off voltages. The SOE 
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inferred by the battery model with an AUKF estimator was used for determining the SOE 

limit based battery available power through the following equation 

  
  

,max, min

C,min, max

D SOE ta

SOE ta

P SOE k SOE E t

P SOE k SOE E t

   


  
           (2.17) 

where PD,max,SOE and PC,min,SOE denote the maximum discharge power and the minimum 

charge power under the SOE limit, respectively; SOEmax and SOEmin the permitted 

maximum and minimum SOE, respectively; and Δt the prediction horizon. In the article, 

the design limits of current rate and power were also considered in the calculation of the 

battery power capability. The minimum value of various limits based maximum discharge 

power and the maximum value of various limits based minimum charge power were 

regarded as the predicted battery discharge and charge power capabilities, respectively. 

Since the AUKF estimator had the ability to adaptively adjust the process and 

measurement noises covariance, the accurate SOE estimates can be achieved, thus 

enabling more reliable SOP prediction against different operating temperatures and cell 

aging levels. 

2.6.3 Machine learning methods 

The BPNN was investigated for battery SOP prediction in [2.162]. The battery voltage 

and discharging current were considered as the leading factors that affected the SOP by 

the authors. Thus, the number of nodes in the input layer was set to two in corresponding 

to the cell voltage and discharging current, and the number of nodes in the hidden layer 

was set to twice that of the input layer based on the empirical law. According to the 

network training results, the TRAINLM function outperformed others in terms of 

convergence rate and prediction accuracy. Although desirable SOP prediction results with 

the maximum prediction error of 1.01% can be achieved, the proposed approach was only 

verified in offline simulations with constant discharging power profiles. It is necessary to 

examine the performance of the proposed algorithm in practical applications. 
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With the focus on time forward voltage prognosis, Fleischer et al. [2.163] proposed a 

framework of adaptive neuro-fuzzy inference system (ANFIS) for online battery SOP 

prediction. The ANFIS incorporated both the advantages of the fuzzy inference system 

and artificial NN, and its architecture consisted of five input variables (including pulse 

current, pulse capacity, time averaged voltage, SOC, and temperature), three rules, three 

membership functions, and one output. The cell SOC was determined using the robust 

EKF approach, and the parameters of the proposed network was identified by means of 

the Levenberg-Marquardt method. The functionality of the proposed algorithm was 

verified with small prediction errors for voltage prognosis in software-in-the-loop tests. 

The predictive voltage was then compared with the voltage limits to determine the 

maximum charging/discharging current with a current bisection method. However, the 

proposed algorithm must be run iteratively to obtain the maximum possible power/current 

magnitude for a defined prediction horizon, thus leading to high computational cost. 

Additionally, the authors optimized the ANFIS architecture by means of reducing the 

number of rules from three to two for cell voltage prognosis in [2.164], which was 

expected to reduce the complexity and computation time of the proposed algorithm. 

In [2.144], Zheng et al. proposed a SVM based non-parametric model for battery power 

capability prediction. According to the authors, the radial basis function was selected as 

the model kernel function since it has a simple form and exhibits good performances in 

state estimation. The input variables of the SVM based non-parametric model were 

battery temperature, SOC, and internal resistance, and the output variable was the 

predicted battery power capability. In the context, three lithium-ion manganese oxide 

batteries were tested and used for SVR training, and the test data of the other three 

batteries were applied for the model validation. As depicted in the experimental results, 

the proposed method captured the referenced power capability better in the high 

temperature and SOC regimes, but worse in the low temperature and SOC regimes than 

the HPPC approach with the temperature compensation. Since these two methods can 

operate well at different temperature and SOC regimes, it is recommended to combine 
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them to achieve a high accuracy of battery power capability prediction in a wide range of 

temperature and SOC. 

A brief comparison of the aforementioned SOP prediction methods regarding to their 

complexity and accuracy is summarized in Table 2.4. 

Table 2.4 The comparison of different SOP prediction methods regarding to their 

complexity and accuracy. 

 Methods Complexity Accuracy 

SOP prediction 

Characteristic 

mapping methods 
Low Low 

Model-based 

methods 

High (especially 

with a battery 

electrochemical 

model) 

High 

Machine learning 

methods 
Medium 

Dependent on 

training data 

 

2.7 Summary 

The functional requirement of the lithium-ion battery management system (BMS) has 

appeared as a more sophisticated and complex trend, especially in estimating battery 

states. Overly pessimistic or optimistic estimates of battery states would lead to waste or 

abuse of battery available capabilities, and the states estimation is therefore one of the 

major challenges of BMSs. This chapter mainly presents a technical review on key states 

estimation methods for lithium-ion batteries. It is noted that the machine learning methods 

can be applied for modelling the relationship of target state to input variables, but the 

estimated error is highly dependent on the training data. Among the reported techniques, 

model-based methods are the most popular ones for different states estimation, which is 

primarily attributed to their inherent traits such as closed-loop and insensitive to the initial 
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value and uncertain disturbances. However, in order to achieve more reliable and robust 

states estimation, the exiting issues of different techniques need to be further addressed. 
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CHAPTER 3 

MODEL-BASED BATTERY SOC AND CAPACITY 

ESTIMATION 

3.1 Introduction 

Energy storage systems play a vital role in a variety of industrial applications including 

electrified vehicles (EVs), uninterruptible power supplies and renewable energy systems, 

etc. [3.1]. Lithium-ion batteries are being widely used as an enabling energy storage since 

they exhibit high energy and power density along with no memory effect [3.2]. To ensure 

safe and efficient operation of battery systems under fleeting and even demanding 

conditions, an effective battery management system (BMS) is highly desirable [3.3]. 

Primary functions of BMSs include accurate state of charge (SOC) estimation and key 

parameter identification. These tasks pose significant challenges owing to the 

unmeasurable and nonlinear internal reaction process, and unpredictable operating 

conditions of battery systems [3.4]. 

Myriad methods have been proposed in the literature to address the SOC estimation 

problem [3.5]-[3.14], such as coulomb-counting method, OCV method, model-based 

methods, and machine learning methods. Among these methods, the model-based 

methods have attracted tremendous attention, thanks to their inherent traits such as 

closed-loop, online access, and availability of estimation error bounds. It is well 

acknowledged that the SOC estimation accuracy is strongly related to the battery health 

status. The capacity fade and/or the resistance deterioration may result in considerable 

errors in SOC estimation. More precise SOC estimated results could be obtained with 

known capacity information [3.14]. Similarly, the SOC observer with periodical 

parameter updates outperforms that without real-time parameter renewal [3.15]. 

Therefore, it is essential to furnish the battery parameters in real-time for credible SOC 

A substantial proportion of this chapter has been published as an article [3.38] in Applied Energy. 
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estimation. Considerable effort has been directed to the joint estimation of SOC, capacity, 

and the underlying model parameters in the literature [3.16]-[3.23]. 

However, the aforementioned model-based methods are mainly developed on the basis 

of equivalent circuit models (ECMs). These ECMs are always derived from empirical 

knowledge and experimental data by employing idealized circuit elements to represent 

electrical behaviours of batteries. The main advantage of ECMs lies in their simple and 

flexible model structure, but ECMs are insufficient to adequately depict the internal 

underlying reactions due to lack of physical-chemical representations, thus leading to 

limited prediction capability. In contrast to ECMs, electrochemical models (EMs) use 

partial differential equations (PDEs) to describe the real electrochemical reaction process 

inside cells, which can capture cell dynamic behaviours with high accuracy. It has been 

reported that one of the defining features of futuristic advanced BMSs is to use a physics-

based EMs rather than an ECMs [3.24]. However, the formidable mathematical structure 

of EMs heavily curtails their applicability in practice. Accordingly, the task how to tailor 

EMs towards embedment in advanced BMSs remains a challenge. 

The primary goal of this work is to overcome the above-mentioned drawbacks, and 

improve SOC estimation accuracy through the co-estimation of SOC, capacity and 

resistance for lithium-ion batteries. To this end, a one dimensional (1-D) EM was adopted 

for its ease of implementation in a real BMS with limited computation resource. Trinal 

proportional-integral (PI) observers were then employed to achieve co-estimation. It is 

worth noted that PI observers always exhibit strong robustness against modeling 

uncertainties through the addition of integrator [3.25], [3.26]. In particular, they are more 

computationally efficient and well-suited to be embedded in BMSs relative to other 

observers. Actually, the utilization of the high-fidelity electrochemical model and the 

robust PI observers differentiates our study with the presented methods in the literature. 

This can not only improve the modeling accuracy, but also make the proposed method 

applicable in realistic BMSs. Additionally, a moving-window ampere-hour counting 

technique and an iteration-approaching method were incorporated to further improve the 
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estimation accuracy. The effectiveness of the proposed method was experimentally 

verified on a well-established test rig. The estimation robustness against erroneous initial 

parameters and different aging levels. 

3.2 Lithium-Ion Battery Modeling 

3.2.1 Electrochemical model 

On the basis of porous electrode theory and concentrated solution theory, EMs can 

capture the spatiotemporal dynamics including lithium-ion concentration, electric 

potential, and intercalation kinetics. The 1D-spatial model is used here strike a balance 

between mathematical simplicity and accuracy. It describes the dynamic behaviors of 

lithium-ion batteries by the governing equations from (3.1) to (3.9) (also given in [3.24], 

[3.27]-[3.29]) based upon the electrochemical principles. It is assumed that the solid 

spherical particles uniformly disperse along the X-axis, and the intercalation and de-

intercalation process of lithium-ions is represented by the insertion of ions in and out of 

these solid spherical particles [3.24], as shown in Fig. 3.1. 

 

Fig. 3.1 Schematic of a lithium-ion battery electrochemical model. 

The cell terminal voltage is governed by 
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where  0 ,s t  and  0 ,s t  denote the electric potentials at the ends of two solid 

electrodes, respectively; Rc represents an empirical contract resistance; I(t) and U(t) are 

the loading current and the terminal voltage, which serve as the model input and output. 

The relationship between the loading current and potentials in the electrode and 

electrolyte are given by 
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where σ denotes the effective electronic conductivity in the electrode, ie the local current 

in the electrolyte, R the universal gas constant, T the absolute temperature, F Faraday’s 

constant, f± the activity coefficient, k the effective ionic conductivity in the electrolyte, 

and tc
0 the transference number of the cations. 

The relationships between the ionic current and lithium-ion concentrations in the 

electrode and electrolyte are expressed as 
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where De denotes the effective ionic diffusion coefficient, εe the volume fraction of 

electrolyte, and ta
0 the transference number of the anions. 

The molar flux jn(x,t) is related to the divergence of the current in the electrolyte, and can 

be modeled as 
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where a denotes the specific interfacial area. 

According to the well-known Bulter-Volmer equation, the relationship between the molar 

flux jn(x,t) and the overpotential ηs(x,t) is given by 
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where aa and ac denote the anodic and cathodic coefficients; i0 the exchange current 

density. 

The overpotential and the exchange current density are given by 

          , , , , , ,s s e s p f nx t x t x t U c x R t FR j x t            (3.8) 
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where U(cs(x,Rp,t)) denotes the open circuit potential of the electrode, Rf the solid-

electrolyte interface (SEI) film resistance, reff a kinetic rate constant, Rp the radius of 

spherical solid particles, and cs,max the maximum possible solid-phase lithium-ion 

concentration. 

3.2.2 Model reduction 

The PDE-based model presented in the previous section is able to represent the battery 

dynamics with high accuracy. For model derivation, the PDEs are always first converted 

into ordinary differential equations through diverse methods [3.30]. However, the 

analytical solution may be infeasible without further model simplification or reduction. 

To perform model simplification, it is presumed that each electrode can be idealized as a 

single spherical solid particle that is universally known as the single particle model (SPM). 

This model significantly enhances state observability while retaining high model 
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accuracy, which enables it applicable for SOC estimation and SOH monitoring [3.31]. 

The ionic concentration in the electrolyte ce(t) is also deemed to be uniform for the further 

model reduction, which implies 0ec

t





 and 0ec

x





 [3.24], [3.32]. Then, the two 

electrode potentials can be derived as 
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The terminal voltage is governed by 
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where Rsum is the sum of contract and SEI film resistances. 

The boundary and initial conditions in both electrodes are given by 
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   0,0s sc r c r                   (3.16) 

Equations (3.12) to (3.16) describe the relationship between the loading current I(t) and 

the cell terminal voltage U(t) with the lithium-ion concentration cs(r, t). 

3.2.3 Numerical solution for PDEs 

The described model has overwhelmingly high complexity due to the employment of a 

set of PDEs. Therefore, it is pivotal to solve the model in a more efficient manner so that 

it can be embedded in BMSs for online implementation. To this end, equation (3.5) can 

be reformulated as 

     2

2

, , ,2s s s
s

c r t c r t c r t
D

t r r r

   
  

   
            (3.17) 

For further discretising (3.17), the spatial grids of radius Rp and time t are demarcated as 

1

2
pdr R node

dt t node


 

                 (3.18) 

where node1 and node2 denote the number of grid nodes of the radius and time, 

respectively. 

For k = 1 (the lowest grid index is 1) to k = node2-1 and i = 1 to i = node1, 

     , , 1 ,s sd sdc r t c i k c i k

t dt

  



             (3.19) 

where csd(i, k) denotes cs((i-1)dr, (k-1)dt). 

For i = 2 to i = node1-1 and k = 1 to k = node2, 
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Then, equation (17) can be approximated as 
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where i = 2, 3, …, (node1-1), and k = 1, 2, …, (node2-1). 

The boundary conditions can be derived by 
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and 
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where k = 1, 2, …, node2. 

The initial conditions can be given by 
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where i = 1, 2, …, node1. 

Based on the above equations, cs(r, t) can be deduced at various frame of radius and time. 

Furthermore, in combination with (3.12), the complete model can be obtained. 

3.2.4 SOC definition in the SPM 

For the SPM modeling, the lithium-ion concentration in electrodes is used to represent 

the battery SOC. The total number of lithium-ions in the solid electrode can be described 

as 

     
1

22
_ 0

1

4 , , 4 1
p

nodeR

s total s sd
i

c r c r t dr c i k i dr dr


              (3.26) 

where cs_total is the total number of lithium-ions in the solid electrode. 

The mean lithium-ion concentration in the electrode can be given by 
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         (3.27) 

where cs_mean denotes the mean lithium-ion concentration in the solid electrode. 

Thus, the battery SOC can be defined by 

   _ _ 0% _ 100% _ 0%s mean s SOC s SOC s SOCSOC c c c c             (3.28) 

where cs_SOC=0% and cs_SOC=100% denote the mean lithium-ion concentration values at 0% 

SOC and 100% SOC, respectively. Since the loss of lithium inventory (LLI) is considered 

as one main cause of capacity degradation [3.33], the total number of lithium-ions in the 

solid electrode gradually decreases during the battery aging processes. The mean lithium-

ion concentration values at 0% SOC and 100% SOC for different aging levels are listed 

in Table 3.1, which are referenced from [3.28], [3.29] and adjusted for accommodating 

the charging/discharging characteristics. The relationship between the mean lithium-ion 

concentration values and battery capacity can be considered as a tabulated function. 
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Accordingly, cs_SOC=0% and cs_SOC=100% need to be updated according to the capacity during 

battery aging processes. 

Table 3.1 The mean lithium-ion concentration values in the positive electrode  

for different aging levels 

 92 Ah 87 Ah 82.5 Ah 78.5 Ah 74 Ah 69.5 Ah 

cs_SOC=0% 42430 41000 40000 39000 38080 36750 

cs_SOC=100% 20400 20400 20400 20400 20400 20400 

 

3.3 Proposed Estimation Approaches 

The structure of SOC, capacity and resistance co-estimation scheme proposed in this 

study is shown in Fig. 3.2. It includes three main parts: battery SPM, capacity estimation 

module and resistance estimation module. The capacity estimation module is used for 

calculating battery capacity and the comparative SOC. The resistance estimation module 

is employed to estimate the comparative capacity and resistance that comprises of 

contract resistance and SEI film resistance. The estimated capacity and resistance are then 

fed back to the battery SPM to estimate battery terminal voltage and SOC. The detailed 

co-estimation process is elaborated in the following parts. 
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Fig. 3.2 The structure of battery SOC, capacity and resistance co-estimation algorithms. 

3.3.1 SOC estimation 

In Fig. 3.2, the model output voltage U*(k) at time index k is given by (3.12). The residual 

voltage e1(k) is the difference between the model output voltage U*(k) and the actual cell 

terminal voltage U(k). G1 is the gain of the first PI observer for SOC estimation. As 

indicated by (3.12), the model output voltage is strongly related to lithium-ion 

concentration values. Therefore, the first PI observer compensation G1e1(k) is fed back to 

modify the lithium-ion concentration csd(i, k+1) at the next time interval (k+1) for 

correcting the model output voltage and eliminating the residual voltage. Besides, the 

SOC value is determined by the mean lithium-ion concentration, cs_mean, which is 

determined by the lithium-ion concentration csd(i, k) as expressed by (3.26) and (3.27). 

Accordingly, with the updated lithium-ion concentration csd(i, k+1), the estimated SOC 

can be amended to have higher accuracy. The modified function is written as 
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             (3.29) 
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3.3.2 Capacity estimation 

The battery SOC can also be calculated by Coulomb-counting method by 

   2

1
2 1( ) /

t

t
SOC t SOC t i t dt Q               (3.30) 

where η denotes the columbic efficiency that can be considered as 1 for lithium-ion 

batteries; Q denotes the battery capacity. 

A moving window with a range of 200 secs is used for computing the comparative value 

SOC**(k) according to (3.30). If the estimated capacity equates to the actual battery 

capacity, the SOC values SOC*(k) determined by (3.28) would be equal to the 

comparative value SOC**(k). Otherwise, there would be a difference between these two 

values. The difference can be utilized to modify the estimated capacity. As shown in Fig. 

3.2, the residual SOC e2(k) represents the difference between the model estimated SOC 

value SOC*(k) and the comparative SOC value SOC**(k). G2 is the gain of the second PI 

observer for capacity estimation. The second PI observer compensation G2e2(k) is fed 

back to update the battery capacity Q(k+1). The modified function can be written as 

     
     

* **
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* *
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e k SOC k SOC k

Q k Q k G e k

  
   

            (3.31) 

The estimated battery capacity Q*(k) needs to be fed back to the battery model, and serves 

as the initial capacity Q0(k+1) for the next estimation interval until the estimated capacity 

is equivalent to the model initial capacity. 

3.3.3 Resistance estimation 

Despite the model can track the actual terminal voltage with the first PI observer, it may 

lead to inaccurate SOC estimation due to the erroneous resistance value and lithium-ion 

concentration. Fig. 3.3 shows the ∆OCV/∆SOC evolution against SOC values. It can be 

seen that the ∆OCV/∆SOC drops significantly from 5% SOC to 10% SOC (the low SOC 

range), but rises significantly from 90% SOC to 100% SOC (the high SOC range). The 

SOC estimation error resulting from the erroneous OCV in these two zones would be less 

than that in other areas (the medium SOC range). In contrast, the SOC estimation error 
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caused by an erroneous resistance estimate in other OCV range would be greater. 

Therefore, the low and high SOC zones can be employed to estimate battery resistance. 

In order to make batteries avoid working in low SOC zones for safety concerns and 

service life preservation, the resistance estimation is only implemented in the high SOC 

zone. 

 

Fig. 3.3 The △OCV/△SOC curve in different SOC. 

The method for resistance estimation is similar to that for capacity estimation. The battery 

capacity can be calculated by 

    2

1
2 1/ ( )

t

t
Q i t dt SOC t SOC t              (3.32) 

If there is no error in resistance estimation, the comparative capacity Q**(k) calculated by 

(3.32) would be equal to the estimated capacity Q*(k). As shown in Fig. 3.2, the residual 

capacity e3(k) denotes the difference between the model estimated capacity Q*(k) and the 

comparative capacity Q**(k). G3 is the gain of the third PI observer for resistance 

estimation. The third PI observer compensation G3e3(k) is fed back to update the 

resistance value Rsum(k+1) with the modified function formulated as (3.33). The estimated 

resistance needs to be fed back to the battery model for updating the model output voltage 

at the next time interval. 
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3.4 Experimental Test 

3.4.1 Battery test bench 

To verify the effectiveness of the proposed method, a test bench is purposely established 

to obtain battery test datasets as shown in Fig. 3.4. It mainly consists of a battery 

charger/discharger, a host computer, a thermal chamber and the test lithium-ion battery 

cells. The battery cycler is used to charge or discharge cells according to preset loading 

profiles, and measure desirable experimental parameters (e.g. terminal voltage and 

loading current) with a precision of 0.05% of full the measurement range. The host 

computer functions to compose the loading profiles, and record the real-time operating 

parameters of batteries. The thermal chamber can provide various ambient temperatures 

as required. The lithium-ion battery cells with a nominal capacity of 90 Ah are used to 

conduct all the tests. 
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Fig. 3.4 Battery test bench. 
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3.4.2 Test schedules 

A test schedule was specially designed to excite the test batteries under different ambient 

temperatures, loading currents and aging levels as shown in Fig. 3.5. 

Characterization test
10 ℃ 

Characterization test
25 ℃ 

Characterization test
40 ℃ 
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60 ℃ 

Static capacity test 

Pulse test 

Charge & Dishcarge test
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CC Charge & Dishcarge
1 C 

Rest

Rest

Rest

Rest

Rest

Rest

Rest

Repeat

Repeat

Rest

 

Fig. 3.5 Battery test schedules. 

Each experimental procedure begins with a battery characterization test at 10 °C and then 

a rest for 4 hours. Two identical characterization tests at 25 °C and 40 °C ensue, followed 

by an accelerated aging test conducted at 60 °C. The battery characterization test includes 

a static capacity test, a pulse test, a charge/discharge test and a dynamic stress test (DST). 

The static capacity test is to measure the actual cell capacity. The pulse test is used to 

obtain the OCV versus SOC curve by charging or discharging at C/3 every 5% SOC 

increment followed by 1 hr rest until 100% SOC or 0% SOC. The charge or discharge 

tests are to load the batteries with dissimilar current regimes. In this test, the battery cell 

was charged by the (constant-current-constant-voltage) CCCV regime and discharged in 

a (constant-current) CC regime at different loading current rates including C/3, 2C/3, C/2 

and 1C. The driving-cycle-based DST cycles were utilized to simulate actual loading 

conditions in EV applications. The purpose of the accelerated aging test is to attain 

different aging levels in a limited time. In the accelerated aging test, the battery cell was 
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charged and discharged in a CC regime at 1C rate and 60 °C. Each accelerated aging test 

cycle makes the capacity decrease by 5 Ah, approximately. 

3.5 Numerical Simulation and Experimental Verification 

3.5.1 Cell voltage verification 

The model parameters used in this study are obtained from [3.28], [3.29], [3.32] and 

[3.34], and adjusted by fitting the experimental data based on the Levenberg–Marquardt 

algorithm [3.35], [3.36]. The battery cell was fully charged using the CCCV regime at 1C 

rate and 25 °C. The comparison between the simulation and measured data for cell voltage 

is shown in Fig. 3.6.  

 

Fig. 3.6 Cell voltage simulation result, where (a) reference voltage and simulation 

voltage and (b) voltage error. 

By observing Fig. 3.6(b), it is apparent that the voltage error between the referenced 

voltage and simulated voltage can be limited to a band of +/-10 mV. The result shows 

that the derived model can accurately capture the battery dynamics, which provides a 

solid foundation for subsequent state estimation. 
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3.5.2 SOC estimation result 

To verify the proposed co-estimation method for lithium-ion batteries under realistic 

loading conditions, the driving-cycle-based DST cycle is employed to discharge the test 

battery. Firstly, the battery cell was fully discharged in a CC regime at C/3 rate until full 

discharged, namely 0% SOC. The referenced SOCs can be calculated using Coulomb-

counting method as given by (3.29) with the accurate initial SOC. Since the current sensor 

used is highly accurate, the referenced SOC can be reasonably regarded as the “real” 

battery SOC. 

With the accurate initial SOC, the SOC estimation results are shown in Fig. 3.7. It can be 

seen that the estimated SOC can accurately track the referenced SOC during the entire 

test. The error between the referenced SOC and the estimated SOC can be successfully 

confined into an error band +/-1.5%. This minor error can be attributed to the modelling 

deficiency. 

 

Fig. 3.7 SOC estimation results during CC charge with accurate initial SOC, where (a) 

SOC estimation and (b) SOC error. 

However, it is always difficult to acquire the accurate initial SOC for BMSs in real 

applications, especially after the batteries have been used for a long time. A deviant SOC 

initiation often leads to large SOC estimation errors, even a complete failure. Thus, it is 
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essential to ensure the robustness against inaccurate initiation for an enabling SOC 

scheme. In this study, in order to verify the robustness of the proposed method against 

erroneous initial state assumptions, the initial SOC of the model is set to 30% while the 

actual initial SOC is 0%. The estimation results are shown in Fig. 3.8. 

 

Fig. 3.8 SOC estimation results during CC charge with erroneous initial SOC, where (a) 

SOC estimation and (b) SOC error. 

It is obvious that the estimated SOC can quickly compensate the initial error, and 

converge to the referenced SOC. Then, the estimated SOC can follow the referenced SOC 

with an error band of 1.5% SOC. 

From the above verification in the CC charging regime, it can be concluded that the 

proposed method is capable of tracking the referenced SOC accurately with robustness to 

the initiation nuance. 

The DST cycle is a simplified test schedule extracted from the federal urban driving 

schedule (FUDS) [3.37], which is widely used to simulate actual battery loading 

conditions in EV applications. The current profile of DST cycle is depicted in Fig. 3.9(a). 

It is worth mentioning that the battery cell was fully charged in a CCCV regime before 

the execution of DST, and the initial referenced SOC was 100% while the initial SOC of 

the model was set to an incorrect value, 50% SOC. 



Model-Based Battery SOC and Capacity Estimation 

91 

 

Fig. 3.9 SOC estimation results during DST cycles, where (a) DST cycle current 

profiles, (b) SOC estimation and (c) SOC error. 

From Figs. 3.9(b) and 3.9(c), it can be seen that the maximum SOC error is 50% at the 

beginning, and the estimated SOC can fast converge to the referenced SOC. Thence, the 

estimated SOC keeps on following the referenced SOC closely, and the estimation error 

can be effectively limited to an error band of +/-3%. Discarding the maximum SOC error 

appearing at the beginning, the root mean square error (RMSE) for SOC estimation is 

1.2%. It manifests that the proposed method can estimation the SOC with high accuracy 

under dynamic loading conditions, even when an erroneous initial SOC value is provided. 

3.5.3 SOC and capacity co-estimation results 

Usually, the discharging current of a battery pack in EVs changes dramatically due to the 

varying driving conditions. A short sampling interval and a powerful computation 

capability are preferred for guaranteeing precision and calculation efficiency. On the 

contrary, the current varies moderately or even keeps constant during charging period. 

For example, many manufacturers recommend to charge their batteries in a CC regime. 

Therefore, this study focuses on battery charging process for capacity estimation. 
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In the previous section, the proposed method can achieve accurate SOC estimation with 

known battery capacity. However, in practice, the actual capacity decreases constantly 

owing to the battery aging. If a BMS fails to take the varying capacity into consideration 

in SOC estimation, it may result in deviant SOC estimation results. 

To demonstrate the influence on SOC estimation caused by erroneous capacity values, 

two cases are considered here. In the first case, the model capacity is assumed to be greater 

than the referenced capacity. A battery cell degraded from 92 Ah (the cell initial capacity) 

to 69.5 Ah was utilized. The referenced capacity is 69.5 Ah, and the referenced initial 

SOC is set as 0%, while the model capacity and initial SOC are set to 92 Ah and 30%, 

respectively. The co-estimation results are shown in Fig. 3.10 and Table 3.2. Therein, Q0 

denotes the model initial capacity; Q* denotes the estimated capacity; eQ denotes the 

relative capacity error; eSOC_RMSE denotes the SOC RMSE and eSOC_MAX denotes the 

maximum absolute SOC error. In each iterative estimation, the estimated capacity at the 

last time Q*(k) is used as the model initial capacity Q0(k+1) for the estimation. 

The SOC estimation results with the referenced SOC and estimated SOC at different 

iteration times are shown in Fig. 3.10. Without any capacity modification, the initial 

estimated SOC curve is the farthest one from the referenced SOC curve, and most of the 

estimated SOC values are greater than that of the referenced one. During the process of 

iterative estimation and capacity modification, the estimated SOC curves get closer and 

closer to the referenced SOC curve. It validates that the SOC is highly dependent on the 

actual capacity value, and an erroneous initial capacity value would markedly reduce the 

accuracy of SOC estimation. 
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Fig. 3.10. SOC estimation results in the first case. 

Table 3.2 Capacity estimation results in the first case. 

Iteration 

times 

Q0 

(Ah) 

Q* 

(Ah) 

eQ 

(%) 

eSOC_RMSE 

(%) 

eSOC_MAX 

(%) 

0 92  32.37 2.45 3.58 

1 92 79.59 14.52 2.34 3.38 

2 79.59 74.02 6.50 0.83 1.54 

3 74.02 71.47 2.83 0.79 1.30 

4 71.47 70.36 1.24 0.62 1.00 

5 70.36 70.3 1.15 0.58 0.97 

6 70.3 70.28 1.12 0.58 0.96 

7 70.28 70.28 1.12 0.58 0.96 
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As shown in Table 3.2, it can be seen that the estimated capacity is equal to the model 

initial capacity in the seventh iterative estimation, which means that the algorithm finishes 

the estimation and gets the final estimated capacity, 70.28 Ah. The capacity relative error 

significantly declines from 32.37% to 1.12%, while the SOC RMSE decreases from 2.45% 

to 0.58%, and the maximum SOC error drops from 3.58% to 0.96%. In fact, from the fifth 

to the seventh iterative estimation, there is very little variation for capacity estimation. To 

reduce the iterative estimation times, it can be considered that the capacity estimation 

procedure terminates when the estimated capacity difference between two adjacent 

estimated capacities is less than 0.5% of the rated capacity (i.e. 0.45 Ah in the above case). 

In Table 3.2, the estimated capacity difference between the fourth and the fifth estimated 

capacity values reaches 0.06 Ah, which is well less than 0.45 Ah. It proves that it only 

takes five iterative estimation times to obtain the final estimated capacity with only an 

infinitesimal error. 

Fig. 3.11 shows two zoomed-in figures of estimated SOC and comparative SOC at the 

initial estimation and the seventh estimation, respectively. As shown in Fig. 3.11(a), 

without any capacity modification, there is a significant difference between the estimated 

SOC and the comparative SOC at each moving window during the initial estimation 

process. However, after seventh capacity modification, the difference shown in Fig. 

3.11(b) reduces considerably, and the comparative SOC closely tracks with the estimated 

SOC. Meanwhile, the battery capacity has also been corrected with a small error. These 

results validate well the feasibility of the proposed method for the capacity estimation. 
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Fig. 3.11 Estimated SOC and comparative SOC, where (a) at the initial estimation and 

(b) at the seventh estimation. 

In the second case, the model capacity is assumed to be less than the referenced capacity. 

The referenced capacity is 69.5 Ah, and the referenced initial SOC is 0%. While, the 

model capacity is set to 40 Ah, and the model initial SOC is set to 30%. The results for 

SOC and capacity co-estimation are shown in Fig. 3.12 and Table 3.3. It presents a similar 

result to the first case. Due to the deliberately erroneous initial capacity value, the initial 

estimated SOC curve is far from the referenced SOC curve, and most of the estimated 

SOCs are less than the referenced values, as shown in Fig. 3.12. However, with several 

iterative estimation times, the estimated capacity can be rapidly modified so that the 

estimated SOC curves get closer and closer to the referenced SOC curve. 
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Fig. 3.12 SOC estimation results in the second case. 

Table 3.3 Capacity estimation results in the second case. 

Iteration 

times 

Q0 

(Ah) 

Q* 

(Ah) 

eQ 

(%) 

eSOC_RMSE 

(%) 

eSOC_MAX 

(%) 

0 40  -42.45 2.25 4.54 

1 40 69.19 -0.45 2.36 5.00 

2 69.19 69.96 0.66 0.57 0.95 

3 69.96 70.17 0.96 0.57 0.96 

4 70.17 70.24 1.06 0.57 0.97 

5 70.24 70.27 1.09 0.58 0.97 

6 70.27 70.27 1.11 0.58 0.97 

 

In Table 3.3, the estimated capacity is equal to the model initial capacity in the sixth 

iterative estimation, which means the algorithm finishes the estimation and obtains the 

final estimated capacity, namely 70.27 Ah. The capacity relative error markedly drops 
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from 42.45% to 1.11%, while the SOC RMSE decreases from 2.25% to 0.58% and the 

maximum SOC error goes down from 4.54% to 0.97%. The difference between the 

second and the third estimated capacity values is 0.21 Ah, which is less than 0.45 Ah, and 

therefore, it just needs three iterative estimation times to obtain the final estimated 

capacity with a small error.  

It can be concluded that the proposed method for SOC and capacity co-estimation works 

well, and is quite robust against the erroneous initial capacity and SOC values. During 

the estimation process, the estimated capacity and SOC gradually converge to the 

referenced values at the same time. 

3.5.4 SOC, capacity and resistance co-estimation results 

The previous co-estimation results of SOC and capacity are based on the referenced 

battery resistances. However, the battery resistance changes with SOCs and aging. An 

incorrect resistance value may cause an inaccurate model output voltage, and also 

compromise the SOC and capacity estimation results. Therefore, it is crucial for advanced 

BMSs to incorporate the real-time resistance estimation with SOC and capacity 

estimation. 

A battery cell with 69.5 Ah, 1.680 mΩ and 0% SOC was used to verify the proposed 

method, while the model parameters were set to erroneous values: 92 Ah, 1.000 mΩ and 

30% SOC. The co-estimation results of SOC, capacity and resistance are shown in Fig. 

3.13. 
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Fig. 3.13 Co-estimation results, where (a) capacity and resistance and (b) SOC error. 

As can be identified in Fig. 3.13, after several iterative estimation times, the estimated 

capacity converges from 92 Ah to 69.83 Ah, and the estimated resistance converges from 

1.000 mΩ to 1.636 mΩ. The capacity error is 0.33 Ah (relative error 0.47%) while the 

resistance error is 0.044 mΩ (relative error -2.62%). Meanwhile, the estimated SOC gets 

closer the referenced SOC with the increasing iterations. The SOC RMSE drops from 

3.97% to 1.01%, while the maximum SOC error declines from 5.86% to 1.58%. 

To verify the effectiveness of the proposed method during battery aging process, a battery 

cell degraded from 92 Ah to 69.5 Ah was used for the investigation. The co-estimation 

results are shown in Fig. 3.14 at six different aging levels (1-6) with 92 Ah, 87 Ah, 82.5 

Ah, 78.5 Ah, 74 Ah and 69.5 Ah, respectively. The initial values of the model were set to 

92 Ah, 1.000 mΩ and 30% SOC. 
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Fig. 3.14 Co-estimation results at different aging levels, where (a) capacity and 

resistance, and (b) SOC errors. 

In Fig. 3.14(a), the co-estimation results show a good performance for both capacity and 

resistance. At different aging levels, the maximum estimated capacity error is 1.22 Ah 

(relative error 1.65%) at Level 5 (75 Ah), and the maximum estimated resistance error is 

0.094 mΩ (relative error 6.44%) at Level 4 (78.5 Ah). From Fig. 14(b), it can be seen that 

without capacity and resistance co-estimation, both initial SOC RMSE and maximum 

SOC error are small at low aging levels such as Level 1 (92 Ah) and Level 2 (87 Ah) 

while the SOC errors rise with the increased battery aging levels. However, with the 

proposed co-estimation approach, the final estimated SOC RMSE can be decreased to an 

error band of 1% SOC, and the maximum SOC can be limited in an error band of 2% for 

all aging levels, which indicates that the proposed approach handles different battery 

aging levels quite well. 



Model-Based Battery SOC and Capacity Estimation 

100 

To verify the effectiveness of the proposed method under different temperatures, the 

characteristic test data under 10 °C, 25 °C and 40 °C were used. The initial value of the 

model was set to 92 Ah, 1.000 mΩ and 30% SOC. The co-estimation results under these 

temperatures are shown in Fig. 3.15. 

 

Fig. 3.15. Co-estimation results under different temperatures, where (a) capacity and 

resistance, and (b) SOC errors. 

Under varied ambient temperatures, the co-estimation results presented in Fig. 3.15(a) 

show that the proposed method perform well for the co-estimation of battery capacity and 

resistance. The maximum estimated capacity error is 1.89 Ah (relative error 2.81%) at 

10 °C, and the maximum estimated resistance error is 0.087 mΩ (relative error -7.5%) at 

40 °C. In Fig. 3.15(b), both SOC RMSE and maximum SOC absolute error can be limited 

in small error bands under different temperatures. It is noted that with incorrect initial 

capacity and resistance values, the SOC estimation can still work well at 40 °C. This is 
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the result of both incorrect capacity and resistance values supplied to the model. Although 

the final estimated SOC errors are a little greater than the initial ones, the capacity and 

resistance estimates have been refined to be much closer to the actual values. 

From above co-estimation results of SOC, capacity, and resistance, it can be concluded 

that the proposed method for SOC, capacity and resistance co-estimation can tail after the 

referenced values closely, and presents strong robustness against erroneous initial 

parameters and different battery aging levels. 

3.6 Summary 

In this chapter, a novel approach has been proposed to simultaneously estimate SOC, 

capacity and resistance for lithium-ion batteries. It incorporates the influence of aging on 

SOC estimation by furnishing the state equations with up-to-date capacity and resistance 

estimates, thereby improving the SOC estimation accuracy. To this end, a high-fidelity 

electrochemical model was adopted to capture the battery dynamics with accuracy. The 

model was further simplified and derived through a numerical method. Trinal PI 

observers were executed to realize the co-estimation task. Furthermore, the moving-

window ampere-hour counting technique and the iteration-approaching method were 

incorporated for enhancing the estimation precision. To verify the proposed approach, 

comprehensive characterization tests were carried out under discrepant ambient 

temperatures and aging levels on a well-established test rig. Experimental results showed 

that the proposed co-estimation approach could simultaneously estimate SOC, capacity 

and resistance with high precision. The estimation robustness against erroneous initial 

parameters, different aging levels and various ambient temperatures was also 

experimentally verified. However, the proposed EM-based estimation algorithm may be 

still too complex to implement in a low-cost target BMS although some model reduction 

efforts have been done. For realizing low computation efforts while maintaining high 

estimation accuracy, novel data-driven methods based on incremental capacity analysis 

(ICA) and differential voltage analysis (DVA) are developed in the following chapter. 
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CHAPTER 4 

ICA AND DVA BASED SOC AND CAPACITY 

ESTIMATION 

4.1 Introduction 

The increasing energy crisis and environmental deterioration issues are primary 

promoting forces for the development of lithium-ion battery systems used in electric 

vehicles (EVs) and smart-grid systems [4.1]-[4.3]. For reliable and efficient battery 

systems operation and integration, advanced battery management systems (BMSs) are 

necessary to detect cells’ parameters and estimate key states, such as battery state of 

charge (SOC) and actual capacity. The SOC that is defined as the ratio of battery 

remaining capacity to its fully charged capacity acts as an indicator not only for predicting 

the remaining mileage of EVs but also for determining a safe management strategy to 

avoid battery over-charge and over-discharge [4.4]. The actual capacity of a battery is 

another important indicator, which manifests the battery state of health (SOH), and can 

be used for predicting its remaining useful life [4.5]. However, battery systems usually 

suffer from unpredictable loading and inevitable degradation during practical applications, 

which bring challenges for BMSs to accurately track battery SOC and actual capacity. 

Incremental capacity analysis (ICA) and differential voltage analysis (DVA) techniques 

have been recently reported that they can provide a non-invasive means to characterize 

the electrochemical reaction processes inside the battery, which have attracted 

tremendous attention for investigating battery degradation mechanisms [4.6]-[4.13]. 

Unfortunately, there are few publications presenting the on-board implementation of the 

ICA/DVA method for BMSs. Weng et al. [4.14] used the ICA with support vector 

regression (SVR) to develop a quantitative correlation between the incremental capacity 

peak and cell faded capacity for SOH monitoring, which is indicated by cell capacity. An 

A substantial proportion of this chapter has been published as articles [4.31] and [4.32] in Energy. 
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SVR based fitting algorithm was required in the approach to obtain a clear ICA curve. 

The authors also extended the proposed SOH estimation approach from single cells to 

battery modules in [4.15], where promising SOH estimation results with the root mean 

square error of 1.28% could be achieved for battery modules. Li et al. [4.16] employed 

Lorentzian functions to describe the profiles of IC peaks, and the parameters of the 

functions were determined by the height and width of each IC peak. The battery charged 

capacity was then governed by the integral of the Lorentzian functions with cell voltages, 

and the estimated error was less than 4% of the nominal capacity for different batteries 

and statuses. In [4.17], a Butterworth filter with high cut-off frequency and order was 

employed to discriminate noise and information for obtaining a smooth ICA curve. The 

diminution of the third IC peak area was depicted as a function of cell capacity loss, which 

provided an effective SOH estimator with the accuracy of 2% in the verification. Note 

that curve fitting algorithms or peak fitting functions in the aforementioned approaches 

[4.14]-[4.17] are required for obtaining clear ICA curves, which requires high 

computational efforts in BMSs and also introduces additional errors in the data processing. 

Considered as a mathematical derivation of ICA/DVA, probability density function was 

proposed to incorporate the faded height of the peak for evaluating battery SOH [4.18]. 

It seems a relatively easy ICA/DVA based means to apply in BMSs, but the battery 

loading current needs to be rigorously limited to allow for efficient probability density 

statistics.  

It is worth mentioning that the above reports rarely discussed the implementation of the 

ICA/DVA method on battery SOC estimation. Although some efforts on the development 

of ICA/DVA based capacity estimation have been done, the task how to take advantage 

of ICA/DVA method for on-board battery SOC and capacity estimation is still an open 

question. 

In this chapter, the development of ICA and DVA methods for battery SOC and capacity 

estimation is investigated. At first, conventional cell terminal voltage based ICA and 

DVA methods are transformed to SOC based ICA and DVA methods, which are 
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insensitive to the changed battery resistance and polarization during battery aging 

processes. Feature points (FPs) that are potential to be easily identified by BMSs are 

extracted from SOC based IC/DV curves and applied for developing the estimation 

algorithms of battery SOC and capacity. Besides, extended Kalman filter (EKF) and 

particle filter (PF) are employed in the algorithm for further improving the performance 

of SOC estimation. 

4.2 SOC based IC and DV Curves 

The LiFePO4 battery cells are applied to investigate the ICA/DVA characteristics during 

battery aging processes. At each aging cycle, the cells are charged with a constant current 

(CC) of 0.5 C to the upper limited voltage of 3.65 V, followed by a constant voltage (CV) 

at 3.65 V charging until it reaches C/20 to cut off the charging. A CC of 0.5 C is applied 

to discharge the cells to the lower limited voltage at 2.5 V under the room temperature. 

Since the battery test system employed in the experiment has high measurement 

accuracies, the battery test data including cell terminal voltage, loading current, and 

charge/discharge capacity recorded in a host computer can be used for the analysis and 

as the referenced data. 

The remarkable advantage of ICA and DVA methods is the transformation of cell voltage 

plateaus into clearly identifiable dQ/dV and dV/dQ peaks on IC and DV curves, 

respectively, which describe the cell phase transition characteristics during the 

intercalation and de-intercalation process of lithium-ions of active materials [4.14]. 

Mathematically, the IC curve is computed as the gradient of charged/discharged capacity 

(Q) with respect to cell voltage (V) using (4.1), and the DV curve is derived as the gradient 

of V with respect to Q using (4.2) [4.19]. 

dQ dV Q V                 (4.1) 

dV dQ V Q                 (4.2) 
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Fig. 4.1 Cell #3 IC curves at different cycles, where (a) from the perspective of 3-D and 

(b) from the perspective of 2-D. 

The IC curves during battery CC charge process at different aging levels are shown in 

Fig. 4.1(a) where the voltage interval (ΔV) is 5 mV. Fig. 4.1(b) is the 2-D perspective of 

Fig. 4.1(a). From Fig. 4.1(b), it can be observed that the positions of IC peaks severely 

drift with aging cycles. This is because the effect of the increase of resistance and 

polarization has been enacted in the IC curves [4.6], [4.7], and therefore, it is difficult to 

accurately identify features of interest on IC/DV curves for further applications. Although 

cell resistance and polarization free methods [4.6], [4.7] were applied to cell terminal 

voltage to reduce the effect of resistance and polarization, it is hard to real-timely identify 
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the ohmic resistance and polarization voltage with high accuracy during battery aging 

process. To address this issue, the SOC based IC curves (i.e. SOC–dQ/dV), which are 

insensitive to cell resistance and polarization and can reflect the relationships between the 

IC/DV values and battery intrinsic states, are proposed and elaborated in the following 

parts. 

The cell voltage curves at different SOCs and aging cycles are depicted in Fig. 4.2, where 

each cell voltage can correspond to its SOC value at each aging cycle. Based on the 

corresponding relationship, the voltage axis shown in Fig. 4.1(a) can be changed as the 

SOC axis. Thus, the cell voltage based IC curves depicted in Fig. 4.1(a) can be 

transformed into the SOC based IC curves, as shown in Fig. 4.3(a). 

 

Fig. 4.2 Cell #3 voltage versus SOC curves at different cycles. 
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Fig. 4.3 Cell #3 SOC based IC curves at different cycles, where (a) from the 

perspective of 3-D and (b) from the perspective of 2-D. 

Fig. 4.3(b) is the 2-D perspective of Fig. 4.3(a), where the IC curves are insensitive to the 

changed battery resistance and polarization during battery aging processes and can reflect 

the relationship between the IC value and SOC. 
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4.3 SOC and Capacity Estimation Methods  

with Feature Points 

In this section, three points with distinct features that are potential to be easily identified 

by BMSs, also called feature points (FPs) in this study, are extracted from the SOC based 

IC and DV curves for SOC and capacity estimation. 

4.3.1 FPs in IC and DV curves 

In Fig. 4.3(b), the IC values show well overlap at the first peak (about 13% SOC) and the 

third valley (about 70% SOC) during battery aging process. The SOC based IC curves for 

two other cells are depicted in Fig. 4.4. 

 

Fig. 4.4 (a) Cell #1 SOC based IC curves and (b) Cell #2 SOC based IC curves at 

different aging cycles. 
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In Fig. 4.4, the IC values also present well overlap at almost the same SOC positions 

(about 13% SOC and 70% SOC) with different aging cycles. Thus, these two SOC 

positions are considered as the FPs of IC curves. Fig. 4.5(a) shows all SOC positions of 

the first FP (i.e. the first peak) of the three cells. The average SOC value of the first FPs 

can be computed, which is equal to 12.49%. The variances between each SOC position 

value and the average value are shown in Fig. 4.5(b). It can be found that the SOC 

variances can be limited in a narrow SOC error band of ±0.8%, which suggests that the 

average value can be considered as the SOC position of the first FP. Thus, when BMSs 

capture the first FP, the SOC can be accurately corrected to 12.49%. 

 

Fig. 4.5 (a) The SOC positions of the first FP for different cells and (b) SOC variances 

between each SOC position value and the average value. 



ICA and DVA Based SOC and Capacity Estimation 

115 

As shown in Fig. 4.3(b) and Fig. 4.4, the IC values at the third valley (about the SOC 

position of 70%) exhibit well overlap and therefore are considered as the second FP. Fig. 

4.6(a) depicts all SOC positions of the second FP of the three cells. 

 

Fig. 4.6 (a) The SOC positions of the second FP for different cells and (b) SOC 

variances between SOC position values and its fitting values. 

From Fig. 4.6(a), it can be observed that the SOC positions of the second FP present an 

inconspicuous moving and gradually increase with battery aging. The relationship 

between the aging capacities and the SOC position values can be simply fit as a quadratic 

function, as given by 

  2
2 _nd FP a a aSOC f Q aQ bQ c              (4.3) 



a b c

a

b

c

SOC–dV/dQ
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Fig. 4.7 (a) Cell #3 DV curves and (b) zoom figure of DV curves at different aging 

cycles. 

In Fig. 4.7(b), it can be seen that DV values increase significantly from about 92.5% SOC 

at different aging cycles, which is of great convenience for BMS to identify this point 

compared to other SOC points. DV curves of the other two cells are depicted in Fig. 4.8, 

where it demonstrates the same characteristic of remarkable increase at the almost same 

SOC position. Therefore, this point can be considered as the third FP. 
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Fig. 4.8 (a) Cell #1 DV curves and (b) Cell #2 DV curves at different aging cycles. 

All SOC position values of the third FP are picked up and depicted in Fig. 4.9(a), where 

the values distribute in the SOC range from about 91.4% to 93.3%, and their average 

value is calculated as 92.37%. The SOC variances of the third FP between the actual 

values and the average value shown in Fig. 4.9(b) are limited to a SOC error band of ±1%, 

which suggests that the obtained average value can be used as the SOC position of the 

third FP. Since the SOC positions of the third FP keep few changes during battery aging 

process, the third FP can be applied for on-board applications. 
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Fig. 4.9 (a) The SOC positions of the third FP for different cells and (b) SOC variances 

between SOC position values and the average value. 

4.3.2 Proposed SOC and capacity algorithms 

From the above discussions, it can be seen that the first FP and the third FP have relatively 

fixed SOC position values, namely 12.49% and 92.37%, respectively. Accordingly, the 

first FP and the third FP can be utilized for battery SOC correction and actual capacity 

estimation. If a BMS captures the first FP or the third FP, the estimated SOC can be 

corrected to the corresponding value. 

Furthermore, when a BMS captures both the first FP and the third FP, the battery actual 

capacity can be determined by 
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rd FP

st FP

t

a rd FP st FP C rd FP st FP
t

Q Q SOC SOC I t t SOC SOC      (4.4) 

where ∆Q3_1 denotes the cumulative capacity from the first FP to the third FP, ∆t the 

sampling time interval, SOC3rd_FP the SOC value of the third FP (i.e. 92.37%), and 

SOC1st_FP the SOC value of the first FP (i.e. 12.49%). 

It is noted that both the first FP SOC variances and the third FP SOC variances can be 

limited to SOC error bands of ±1%, and thus, without considering the error of cumulative 

capacity between the first FP and the third FP, the capacity estimation error would be 

theoretically less than 2%. 

However, measurement and process errors such as over-measured/under-measured 

loading current and/or sampling time interval possibly existing in computing the 

cumulative capacity would lead to an erroneous capacity estimation. Since there is a 

quantitative correlation between the battery actual capacity and the second FP given by 

(4.3), the second FP is employed to address this issue. The cumulative capacities between 

the FPs can be expressed as 

    
2 _

1 _

2 _1 2 _ 1 _

nd FP

st FP

t

C nd FP st FP a
t

Q I t t SOC SOC Q           (4.5) 

    
3 _

2 _

3_ 2 3 _ 2 _

rd FP

nd FP

t

C rd FP nd FP a
t

Q I t t SOC SOC Q           (4.6) 

where SOC2nd_FP denotes the SOC value of the second FP, ∆Q2_1 the cumulative capacity 

between the first FP and the second FP, and ∆Q3_2 the cumulative capacity between the 

second FP and the third FP. 

The drift (overestimation or underestimation) coefficient of cumulative capacities is 

assumed to be k during battery charging process. The measurement cumulative capacities 

are governed by 
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where  
2 _1

mQ  denotes the measurement cumulative capacity between the first FP and the 

second FP, and  
3 _ 2

mQ  denotes the measurement cumulative capacity between the 

second FP and the third FP. 

Divide (4.7) by (4.8), and one can obtain 

 

 
2_1 2_1

3_ 23_ 2

m

m

Q Q

QQ

 



               (4.9) 

From (4.9), it can be observed that although there exist errors in the measurement 

cumulative capacities, their ratio is still equal to the ratio of the actual cumulative 

capacities. 

In the practical applications, the given capacity of the battery may be greater or less than 

its actual capacity. Thus, the given capacity is first assumed to be greater than the actual 

capacity, namely 

*
a aQ Q                    (4.10) 

where *
aQ  denotes the given capacity of the battery. 

Since the SOC value of the second FP would increase with the decreased capacity shown 

in Fig. 4.6(a), an overestimated battery actual capacity would lead to an underestimated 

SOC value of the second FP, as given by 

 
2 _ 2 _

c
nd FP nd FPSOC SOC                (4.11) 



ICA and DVA Based SOC and Capacity Estimation 

122 

where  
2 _

c
nd FPSOC  denotes the calculated SOC position value of the second FP. 

Then, the differences among FPs can be compared by 

    2 _ 1 _ 2 _ 1 _
c
nd FP st FP nd FP st FPSOC SOC SOC SOC            (4.12) 

    3 _ 2 _ 3 _ 2 _
c

rd FP nd FP rd FP nd FPSOC SOC SOC SOC           (4.13) 

Divide (4.12) by (4.13), and one can obtain 

  
  

 
 

2 _ 1 _ 2 _ 1 _

3 _ 2 _3 _ 2 _

c
nd FP st FP nd FP st FP

c
rd FP nd FPrd FP nd FP

SOC SOC SOC SOC

SOC SOCSOC SOC

 



        (4.14) 

Furthermore, the given battery capacity and the actual value are added to the both sides 

of (4.14), respectively, as given by 

  
  

 
 

*
2 _ 1 _ 2 _ 1 _

*
3 _ 2 _3 _ 2 _

c
nd FP st FP a nd FP st FP a

c
rd FP nd FP ard FP nd FP a

SOC SOC Q SOC SOC Q

SOC SOC QSOC SOC Q

 



       (4.15) 

According to (4.5) and (4.6), (4.15) can be rewritten as 

(c)
2_1 2 _1

(c)
3_ 2 3_ 2

Q Q

Q Q

 


 
                 (4.16) 

where (c)
2 _1Q  denotes the calculated cumulative capacity between the first FP and the 

second FP (i.e.    *
2 _ 1 _
c
nd FP st FP aSOC SOC Q ), and (c)

3_ 2Q  denotes the calculated 

cumulative capacity between the second FP and the third FP (i.e. 

   *
3 _ 2 _

c
rd FP nd FP aSOC SOC Q ). 

Likewise, if the given capacity of the battery is less than the actual capacity, (4.17) can 

be obtained. 
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(c)
2_1 2 _1

(c)
3_ 2 3_ 2

Q Q

Q Q

 


 
                 (4.17) 

Therefore, if and only if a given capacity of the battery is equal to its actual value, the 

ratio of calculated cumulative capacities is equivalent to that of actual cumulative 

capacities, as given by 

(c)
2_1 2 _1

(c)
3_ 2 3_ 2

Q Q

Q Q

 


 
                 (4.18) 

Combining (4.9) and (4.18), it can be concluded that the ratio of the measurement 

cumulative capacities is equivalent to that of the calculated cumulative capacities if and 

only if the given battery capacity is equal to the actual value, which can be expressed as 

 

 

(c)
2 _1 2 _1

(c)
3_ 23_ 2

m

m

Q Q

QQ

 



                 (4.19) 

Moreover, equation (4.19) is reformulated as 

 

 

  
  

 

 

*
2 _ 1 _2_1 2 _ 1 _

*
3_ 2 3 _ 2 _3 _ 2 _

cm c
nd FP st FP a nd FP st FP

m cc
rd FP nd FPrd FP nd FP a

SOC SOC QQ SOC SOC

Q SOC SOCSOC SOC Q

 
 

 
      (4.20) 

By substituting (4.3) into (4.20), one can obtain 

             2* *
3_1 3_1 1 _ 3_ 2 3 _ 2_1 0m m m m

a a st FP rd FPa Q Q b Q Q c SOC Q c SOC Q              (4.21) 

The root of (4.21) that belongs to a possible battery capacity range or an overall capacity 

range from battery initial capacity to zero can be considered as the optimal actual capacity, 

namely the estimated actual capacity. 
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4.3.3 Estimation results 

A. Without drift cumulative capacities 

Without any drift cumulative capacities, the first and third FPs are directly employed for 

estimating battery SOC and capacity. Two cases for evaluating the effectiveness of the 

proposed approaches are discussed in the following parts. 

In the first case, a correct battery capacity is applied in the algorithms, but the initial SOC 

is set to an erroneous value. The referenced initial SOC is 0%, but the erroneous initial 

SOC is set to 50%. The battery cell is charged from 0% SOC to 100% SOC with the CC 

and CV charging regime. Once the algorithms effectively capture FPs, the SOC can be 

corrected as their corresponding values. Otherwise, the SOC value is calculated by 

Ampere-counting method. The SOC estimation results are shown in Fig. 4.10, in which 

the blue dot line denotes the referenced SOC, and the black dash line and the red solid 

line indicate the estimated SOC without any correction and with correction, respectively. 

 

Fig. 4.10 The SOC estimation results of Case 1. 

As can be observed in Fig. 4.10, before the BMS algorithm captures the first FP, the 

estimated SOCs increase with operating time from the initial value 50%. Since the correct 

battery capacity is employed during the charging process, the growth rate of estimated 

SOC with time is the same as that of the referenced SOC, and therefore, the estimated 

SOC error between the estimated value and the referenced value keeps at 50%. It is noted 
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that without any correction, the estimated SOC keeps going up until 100% SOC, and the 

estimated SOC error could not be eliminated. With the FPs correction method, the 

algorithm captures the first FP at about 1100 s, and the estimated SOC is corrected to 

12.49%. After that, the estimated SOC can track the referenced SOC well with small 

errors. 

In the second case, the referenced capacity is 59.84 Ah, and the referenced initial SOC is 

0%. However, the initial capacity is set to 50 Ah, and the initial SOC is set to 50% in the 

algorithm. The SOC and capacity estimation results are shown in Fig. 4.11. 

 

Fig. 4.11 The SOC and capacity estimated results of Case 2. 

It is similar to Case 1 that the estimated SOC keeps raising to 100% SOC without any 

correction. However, with the FPs correction, the estimated SOC can be corrected at the 

first FP to the value of 12.49%. Subsequently, the growth rate of estimated SOC is faster 

than that of the referenced SOC. This is because that the capacity is still an incorrect value. 

The estimated SOC error makes a significant fall compared with the results without any 

correction, although the estimated SOC with the first FP correction could not tail well 

after the referenced value. This is because that the given capacity is still less than the 

referenced value, and the third FP has not been captured for correcting the battery capacity. 

For achieving accurate SOC estimation, the actual capacity of the battery should be 

corrected at first. It is noteworthy that when the algorithm captures the third FP at about 
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7000 s, the estimated SOC and capacity are corrected as 92.37% and 60.5 Ah, respectively, 

which are very close to referenced values, and the estimated SOC can accurately follow 

the tracks of the referenced value therefrom. 

 

 

 

Fig. 4.12 Estimated results at different aging cycles for three cells, where (a) Cell #1, 

(b) Cell #2, and (c) Cell #3. 
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The charging data of three cells operated at different aging cycles are applied to 

investigate the robustness and effectiveness of the proposed algorithm. The relative errors 

(REs) of battery capacity estimation and the maximum absolute errors (MAEs) of the 

SOC estimation are depicted in Fig. 4.12. The initial battery capacity and the initial SOC 

are set to 50 Ah and 50%, respectively, for all the verifications. As can be observed in 

Fig. 4.12, the estimated capacities can catch up well with the referenced capacities during 

battery aging processes for these cells. The estimated capacity REs are limited to a narrow 

error band of ±2%. Meanwhile, most of the estimated SOC MAEs are less than 1%. 

B. With drift cumulative capacities 

With drift cumulative capacities, it may cause relatively large estimated errors if only 

employing the first and third FPs to estimate battery capacity. Therefore, the second FP 

is also employed for more accurate estimation. In the following validation, the drift 

coefficient of cumulative capacities is set to 1.1, which means that there exist relative 

errors of 10% in computing cumulative capacities. Conducted by the proposed algorithms, 

the estimated results are depicted in Fig. 4.13. 

The capacity estimated results for the cells with and without the second FP are compared 

in Figs. 4.13(a) to (c) where the estimated capacities with the second FP can follow the 

tracks of the referenced values much better than that without the second FP. Their 

estimated relative errors are drawn in Fig. 4.13(d). It can be observed that without 

employing the second FP, the relative errors of capacity estimation mainly caused by the 

drift cumulative capacities distribute in a range from 8% to 12%. It is worth mentioning 

that the second FP employed in the algorithms can effectively slash the estimated errors, 

and the relative errors can be limited to an error band of ±2% at different aging cycles, 

which indicates the proposed method can perform well even with drift cumulative 

capacities and exhibits strong robustness against battery aging. 
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Fig. 4.13 Capacity estimated results with drift cumulative capacities, where (a) Cell #1, 

(b) Cell #2, (c) Cell #3 and (d) relative errors for these three cells. 

As this sections puts more focus on describing the details for obtaining SOC based IC/DV 

curves from conventional voltage versus charge capacity curves, relatively simple 

estimation algorithms with FPs are proposed for monitoring battery SOC and capacity. 

Compared with the existing SOC and capacity estimation approaches, the major 

limitation of the proposed method is that the SOC and capacity values could not be 

corrected until a BMS successfully captures FPs. In other words, the BMS may operate 

with uncertain SOC and capacity values before it captures FPs. Another problem is that 

it seems to take a long time to capture the first FP and the third FP for the approximate 

estimate. For addressing these issues, improving SOC estimation approaches using the 

SOC based IC/DV curves with EKF and PF are developed in the following section. 
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4.4 Improved SOC Estimation Methods with EKF and PF 

In general, the model-based methods have been demonstrated to be an effective approach 

for the SOC estimation due to their prominent superiorities such as closed-loop control 

and insensitive to noise. For incorporating the merits of the conventional model-based 

methods and the SOC based ICA/DVA methods, this section will develop a battery SOC-

DV model based SOC estimation approaches. 

4.4.1 Battery SOC-DV model 

Fig. 4.14 depicts all DV versus SOC values for three tested cells at different aging cycles. 

As observed in Figs. 4.14(a) and 4.14(b), there is a nonlinear changed tendency that the 

DV values drop significantly from 0% SOC to about 12% SOC, and then form two peaks 

at about 20% SOC and 70% SOC with the intensities of about 10 mV/Ah and 5 mV/Ah, 

respectively, followed by remarkably raising from 90% SOC to 100% SOC. This 

universal tendency can approximately describe the relationship between DV values and 

SOC values for all cells with different aging cycles. The process to figure out this 

tendency which is also regarded as a battery SOC-DV model is described in the following 

parts. 
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Fig. 4.14 (a) SOC-DV values for three cells at different aging cycles, and (b) zoom 

figure of (a). 

By observing Fig. 4.14, the DV values of each aging cycle do not uniformly distribute 

along the SOC-axis, and there are very few points in some SOC regions. For obtaining a 

relatively dense and uniform distribution along the whole SOC range, a natural cubic 

interpolation algorithm [4.21] is employed in the presented study. 

Firstly, the relationship between DV values and SOC values can be considered as a 

tabulated function, as given by 
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 i iy h x                   (4.22) 

where yi and xi (i = 0, …, N) denote DV values and SOC values, respectively. 

Then, suppose that in addition to the tabulated DV values, another tabulated values for 

the second derivatives of DV values, yi”, can also be known. Focus attention on one 

particular SOC interval (xi, xi+1), and the cubic interpolation formula in this interval is 

expressed as (for i = 0, …, N-1), 

1 1i i i iy ay by cy dy 
                   (4.23) 

where: 
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Take derivatives of (4.23) with respect to x, and one can obtain 

       1
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i i
i i
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      (4.25) 

By substituting (4.24) into (4.25), the first derivative is given by 
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       (4.26) 

Likewise, take derivatives of (4.26) with respect to x, and the second derivative is 

governed by 

2

12 i i

d y
ay by

dx 
                   (4.27) 

According to (4.24), at x = xi in the interval (xi, xi+1), a = 1 and b = 0, and at x = xi in the 

interval (xi-1, xi), a = 0 and b = 1. Besides, the key idea of a cubic spline interpolation 

algorithm is to require the first derivative continuity, which means that the first derivative 
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value obtained by (4.26) at x = xi in the interval (xi, xi+1) must be equal to the value 

calculated by the same equation at x = xi but in the interval (xi-1, xi). With some 

rearrangement, it can be depicted as (for i = 1, …, N-1) 

 1 1 1 1 12i i i i i i i i im y m m y m y n n    
                  (4.28) 

where: 
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              (4.29) 

Equation (4.28) demonstrates the relationship among the second derivatives, and 

therefore, one can obtain a matrix equation for all intervals as given by 
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In the matrix equation, it can be seen that there are N-1 equations but N+1 variables (i.e. 

yi”, i = 0, …, N), and thus, equation (4.30) is under determined. To obtain a unique 

solution for (4.30), two additional variables supposed to be known have to added to the 

equation. To do this, a stipulation that the second derivatives at the boundary points, x0 

and xN, are both set to zero is adapted, namely, 

0 = 0Ny y                     (4.31) 

Accordingly, the unique solution for yi” (i = 0, …, N) can be determined by (4.30) and 

(4.31). By substituting the second derivatives into (4.23), the natural cubic interpolation 
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formula in each interval can be obtained, and therefore yielding DV interpolation values 

for all SOC variables. 

The natural cubic interpolation algorithm is then applied for varying cells with different 

aging cycles test data to obtain their respective new SOC-DV curves for the whole SOC 

range. Subsequently, the mean DV value at each SOC point can be computed according 

to the obtained SOC-DV curves. The relationship between the mean DV values and SOC 

points can approximately describe the universal tendency which is considered as a 

universal SOC-DV model for all cells, as shown in Fig. 4.15. 

 

Fig. 4.15 (a) Battery cells SOC-DV values and their universal model, and (b) zoom 

figure of (a). 
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From Fig. 4.15, it can be seen that the universal SOC-DV model can accurately fit the 

changed tendency for all DV-SOC values well. Additionally, Fig. 4.16 demonstrates the 

differences between the actual values and the universal model values at the fresh level 

(i.e. the 200th cycle) and the aged level (i.e. the 1800th cycle) of Cell #3. It is observed 

that at the SOC range from 10% to 90%, most of the DV differences can be effectively 

limited at an error band of ±1 mV/Ah. In particular, at the SOC range from 40% to 60% 

and from 80% to 90%, the DV differences are relatively smaller than those at other ranges, 

which approximately stay at a narrow error band of ±0.5 mV/Ah. The results show that 

the universal model can well capture the dynamic changes of DV-SOC values, and 

therefore the model can be confidently applied for subsequent battery SOC estimation. 

 

Fig. 4.16 The DV differences between the actual values and the universal model values 

at the 200th and 1800th cycles of Cell #3. 

4.4.2 Proposed SOC algorithms 

The conventional structure of the model-based SOC estimation algorithms is shown in 

Fig. 4.17(a) which mainly includes three parts: a battery cell, a state observer, and a 

battery model that is an ECM or EM. The principle of SOC estimation is to employ a 

battery model for generating cell voltage and then to compare it with the actual value. By 

feeding back the residual voltage between the model output voltage and the actual value 

through a state observer into the battery model, the residual voltage can be gradually 
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eliminated, and the estimated SOC can be corrected to follow the tracks of the actual state 

value. 

Observer

Battery ECM/EM
Model Voltage

Current

Residual 
voltage 

+

-

Actual Voltage

Lithium-ion Battery Cell

Estimated SOC

Delay

(a)

Observer

Battery SOC-DV Model
Model DV

Current

Residual 
DV 

+

-

Actual Voltage

Lithium-ion Battery Cell

Estimated SOC

Delay

IC/DV Calculation Module
Actual DV

(b)

 

Fig. 4.17 The structures of the model-based SOC estimation methods, where (a) the 

conventional one and (b) the proposed one. 

Drawn but different from the conventional structure, an IC/DV calculation module is 

added for computing the measurement DV values in the proposed scheme for the SOC-

DV model based SOC estimation algorithm, as shown in Fig. 4.17(b). Instead of a battery 

ECM or EM, the battery SOC-DV model is applied for generating the cell DV, which is 

compared with the measurement DV value. Hence, the residual DV rather than the 

residual voltage is fed back into the model for correcting the predicted SOC through a 

state observer. In this study, EKF and PF are served as the state observer, respectively. 
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In addition, according to Ampere-hour counting method, the battery SOC is determined 

by 

     = 1 + C a
SOC k SOC k I k t Q             (4.32) 

where SOC(k) and SOC(k-1) denote the SOC values at time k and (k-1), respectively; I(k) 

the loading current at time k (negative for discharging and positive for charging), ∆t the 

sampling time interval, Qa the battery actual capacity, and ηc the coulombic efficiency 

which is approximately equal to 1 for lithium-ion batteries. 

Equation (4.32) can be considered as a state function of the SOC-DV model. The output 

function of the model is given by (4.22). Therefore, a discrete-time nonlinear battery 

system with noise input is governed by 

 1,k k k kx f x i w                  (4.33) 

and, 

 k k ky h x v                   (4.34) 

where xk denotes the battery SOC, ik the loading current, f(·,·) a nonlinear process model 

for SOC update given by (4.32), and wk and vk the process and measurement noise which 

are assumed to be zero mean Gaussian noise with covariance Q and R, respectively. EKF 

and PF are then incorporated into the proposed SOC estimation algorithms depicted in 

the following parts, respectively. 

A. SOC estimation with EKF 

The Kalman filter (KF) is an optimal estimate for linear systems with independent white 

Gaussian noise in both the transition and measurement processes. However, most of 

practical systems are nonlinear, where KF may suffer from divergence problems. Varied 

extensions of KF such as EKF, sigma-point KF, unscented KF and cubature KF have been 

proposed to address this issue. Among these extensions of KF, EKF has demonstrated 
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superior performances in terms of the estimation accuracy, algorithm complexity, and 

computation time-consumption, and therefore it has become one of the most popular 

approaches for the recursive nonlinear estimation [4.22]. In the present study, EKF 

algorithm is applied for the SOC estimation with the SOC-DV model. 

The basic steps of EKF algorithm include initialization, prediction update and 

measurement update. Detailed implementation processes of the EKF based SOC 

estimation algorithm are presented in Appendix A, which are conducted by the filtering 

schemes described in [4.23]-[4.25]. 

B. SOC estimation with PF 

PF has been proposed for sequential signal processing since two decades ago [4.26]. It is 

an effective recursive Bayesian estimator, which uses a genetic-type mutation-selection 

sampling approach and aims at finding a set of particles (also called samples or 

individuals) as well as importance weights assigned to the particles for representing the 

posterior probability density [4.27]. PF always exhibits good states observation ability for 

nonlinear systems and has been popularly developed and adopted in various fields such 

as robotics, navigation, finance, wireless communications and battery systems [4.27], 

[4.28]. In comparison with EKF, the noise of the system model in PF applications is not 

restricted by the Gaussian distribution, and therefore PF may have more flexibility and 

applicability. 

The primary steps of PF algorithm also include initialization, prediction update and 

measurement update, which are based on three fundamental operations involving particle 

propagation, importance weight computation, and resampling [4.28]. Detailed 

implementation processes of the PF algorithm for SOC estimation with the SOC-DV 

model are presented as follows, which are conducted by the filtering schemes described 

in [4.25], [4.27]-[4.29]. 
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4.4.3 Estimation results 

The performances of the proposed algorithms based on the SOC-DV model with EKF 

and PF are evaluated by the three metrics including maximum absolute error, root mean 

square error and computation time, respectively. 

The computation time of the proposed algorithms for each estimation cycle (i.e. the 

prediction update and the measurement update) is evaluated by the Matlab functions tic 

and toc in a computer with i5-4570 CPU and 8.00 GB RAM. The tic function is placed at 

the beginning of each estimation cycle, which starts a stopwatch timer for the estimation. 

Meanwhile, the toc function is placed at the end of the estimation, which reads the 

stopwatch timer and displays the elapsed time of each estimation cycle. 

Due to varying driving conditions, the loading current of batteries in electric vehicles 

normally changes dramatically. In contrast with battery discharging processes, the 

charging current varies slightly or even keeps constant during battery charging processes 

[4.30]. It is well acknowledged that ICA/DVA curves can be easily obtained with 

relatively stable operation current. Therefore, the proposed algorithms are performed for 

SOC estimation during battery charging processes. 

In this section, the battery cells were firstly discharged with a constant current (CC) of 

0.5 C to a lower limited voltage of 2.5 V, namely 0% SOC. Then, the verifications were 

carried out during the cells charging processes, in which a CC of 0.5 C loading current is 

used to fully charge the cells to an upper limited voltage of 3.65 V, followed by a constant 

voltage (CV) of 3.65 V charging until C/20 cut-off. The referenced SOC values are drawn 

from the recorded charging data. A grossly erroneous initial SOC was set to 50% in the 

algorithms while the referenced initial value was 0%. The parameters of EKF and PF 

algorithms used in this study are presented in Table 4.2. 
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Table 4.2 The parameters of EKF and PF algorithms. 

*
0|0x  (%) P0|0 Q R Np *

0, jx  (%) 

50 1000 0.1 1 101 [0:1:100] 

 

 

Fig. 4.18 SOC estimation results, where (a) with EKF and PF algorithms, (b) SOC 

errors with EKF, and (c) SOC errors with PF. 
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Fig. 4.18 describes SOC estimation results in the case of Cell #3 at the fresh level (i.e. the 

200th cycle) with EKF and PF algorithms. It can be observed that both EKF and PF 

algorithms are capable of following the trails of the referenced SOC values. Notice that 

in the zoomed-in figure of Fig. 4.18(a), the EKF algorithm can quickly track the 

referenced SOCs in very few seconds. But for employing the PF algorithm, it takes about 

100 s to converge to the referenced values. The SOC estimation absolute errors between 

the estimated values and the referenced values are depicted in Figs. 4.18(b) and 4.18(c) 

for the EKF and PF algorithms, respectively. By observing Fig. 4.18(b), except for the 

initial SOC errors in the first few seconds, the EKF algorithm can achieve accurately 

estimated results, and the SOC errors can be limited in a narrow error band of ±1%. In 

this case, the SOC MAE is 0.669% while the SOC RMSE is 0.267%. Due to its relatively 

slow converging characteristics, the PF algorithm yields large estimated errors in the first 

100 s. Afterward, the PF algorithm can also track the referenced SOCs well, and the errors 

stay in the error band of ±1%, as shown in Fig. 4.18(c). Neglect the estimated errors in 

the first 100 s, the SOC RMSE and MAE of the PF algorithm are 0.657% and 0.493%, 

respectively. These results indicate that both the proposed EKF and PF algorithms for 

SOC estimation can perform well with small errors, even when an incorrect initial SOC 

is provided. 

To investigate the effectiveness and robustness of the proposed approaches against 

varying cells with different aging levels, the proposed EKF and PF algorithms were 

validated with the aging cycles test data of three cells. An erroneous initial SOC, 50%, 

was always applied in the estimation program, and regardless of the initial SOC errors in 

the first 100 s, the estimated errors including MAEs and RMSEs are demonstrated in Figs. 

4.19 and 4.20, respectively. 
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Fig. 4.19 SOC estimation MAEs at different aging levels, where (a) Cell #1, (b) Cell #2, 

and (c) Cell #3. 

As shown in Figs. 4.19(a) to (c), with the EKF algorithm, the SOC estimation MAEs at 

different aging cycles for all the three cells are less than 1.75%, and the maximum SOC 

estimation MAE occurs at the 1600th cycle of Cell #1, which is about 1.745%. It is worth 

mentioning that the PF algorithm demonstrates better results especially for Cell #2 and 

Cell #3, in which the SOC estimation MAEs at different aging levels can be limited in an 
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error band of 1%. For Cell #1, the PF algorithm yields the maximum MAE at the 400th 

cycle, which is approximately equal to 1.146%. 

The SOC estimation RMSEs presented in Figs. 4.20(a) to (c) for both EKF and PF 

algorithms are less than 1.10%. The maximum RMSE value with the EKF algorithm 

happened at the 1600th cycle of Cell #1 is about 1.017%. In particular, with the PF 

algorithm, most of the SOC estimation RMSEs stay with a very narrow error band of 

0.6%, and the maximum RMSE is about 0.650% at the 200th cycle of Cell #2. 

 

Fig. 4.20 SOC estimation RMSEs at different aging levels, where (a) Cell #1, (b) Cell 

#2, and (c) Cell #3. 
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From the above discussions, it can be concluded that both the proposed EKF and PF 

algorithms can handle the problem of SOC estimation for varying cells at different aging 

levels quite well. Although a deviant initial SOC value was always applied in the 

estimation program, the proposed algorithms can still achieve accurate results with small 

errors. The universal battery SOC-DV model used in the algorithm can work well with 

different cells, which is totally different from the conventional battery models such as EM 

and ECM that need to accurately identify their model parameters for each cell to achieve 

desirable results [4.30]. It is also worth mentioning that there are a handful of cases that 

the MAE and/or RMSE with the EKF algorithm are less than that with the PF algorithm. 

But overall, the PF algorithm presents a superior performance in terms of both MAE and 

RMSE in comparison with the EKF algorithm. 

The computation time of the proposed algorithms is evaluated using the approach stated 

in the previous section. The mean computation time of each estimation cycle for the EKF 

algorithm is about 7.5 µs, while the PF algorithm (with 101 particles) is much more 

computationally expensive and needs about 150 µs for each estimation cycle. Actually, 

the computation time of the PF algorithm is strongly dependent on the number of particles. 

The more particles the algorithm uses, the more accurate results it may achieve, but the 

more computational efforts it costs. Thus, to reduce the computational cost, the EKF 

algorithm is favourable. 

4.5 Summary 

In this chapter, novel algorithms based on ICA/DVA approaches are proposed for 

estimating the battery SOC and capacity. Since the conventional cell terminal voltage 

based ICA/DVA methods are sensitive to the changed battery resistance and polarization 

during battery aging process, the SOC based ICA/DVA methods are proposed to address 

this problem. The SOC based IC/DV curves have the ability to reflect the correspondence 

between IC/DV value and battery SOC. Thus, three FPs extracted from the IC/DV curves 

are employed for simple implementation of real-time battery SOC and capacity 

estimation. The robustness of the proposed methods against different aging cycles is 
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evaluated for varying cells, and the verifications indicate that the proposed approaches 

are able to achieve desirable estimates with small errors, even operating with drift 

cumulative capacities. Besides, EKF and PF are employed for further improving the 

performance of the SOC estimation algorithm. A universal battery SOC-DV model is 

derived from SOC-DV curves of varying cells with different aging cycles, and a new 

scheme was proposed for incorporating the SOC-DV model. In the proposed scheme, 

EKF and PF are served as a state observer for the estimation algorithms, respectively. The 

robustness and effectiveness of the proposed approaches against different aging levels 

were validated for varying cells. The verifications showed that the PF algorithm presents 

superior performance in terms of estimated accuracy at the expense of heavy 

computational efforts, while the EKF algorithm can achieve desirable results with lower 

computational cost. In comparison with the popular model-based SOC and capacity 

estimation methods, it is not required to identify battery parameters for each cell in the 

proposed methods, and therefore, the proposed algorithms are promising to be extended 

from cell-level to pack-level. 
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CHAPTER 5 

SOC CORRELATION BASED SOE AND 

MAXIMUM AVALIABLE ENERGY ESTIMATION 

5.1 Introduction 

Lithium-ion batteries have many desirable merits such as high energy density, light 

weight and long cycle life, and are widely developed as energy storage devices in smart 

grids and electric vehicles [5.1], [5.2], etc. To meet the application power and energy 

demands, a battery system usually contains hundreds, even thousands of cells connected 

in series and parallel. To ensure safe and reliable operation, an effective battery 

management system (BMS) is required to monitor and control these cells. Much of the 

BMS functionalities, such as the state of charge (SOC) estimation, state of health 

estimation, cell monitoring and balancing techniques [5.3]-[5.8], have been 

sophisticatedly developed for applications. Nevertheless, due to the nonlinear battery 

characteristics and unpredictable operating conditions, accurate and reliable battery state 

of energy (SOE) and maximum available energy estimations still pose significant 

challenges. 

Traditionally, the SOC is regarded as an indicator of battery available energy. A wide 

variety of approaches for SOC estimation has been reported in recent literature [5.2], 

[5.9]-[5.19], and remarkable results have been achieved on novel SOC estimation 

methods and improving the estimated accuracy. For example, the proportional-integral 

(PI) observer [5.11], [5.12], Luenberger observer [5.13], Sliding-mode observer [5.14], 

[5.15] and Kalman-filter-based algorithms [5.2], [5.16]-[5.19] were employed in model-

based SOC estimation methods to obtain estimated results of high accuracy. Defined as 

the ratio of the remaining charge stored in a battery to its full capacity, however, SOC 

actually indicates the state of available capacity rather than the state of available energy. 

A substantial proportion of this chapter has been published as an article [5.32] in Applied Energy. 
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K. Mamadou etc. [5.20], [5.21] introduced a new criterion, the state of energy (SOE), for 

battery energetic performances evaluation. SOE allows a direct determination of the ratio 

of battery remaining energy to its maximum available energy, which is critical for energy 

optimization and management in energy storage systems. 

Compared with the SOC estimation approaches, there are few studies report the 

systematic research for SOE estimation. Neural Network based SOE estimation methods 

were presented in [5.22], [5.23], where the target batteries were treated as a “black-box” 

system, and it needs a great number of sample data to train the network parameters. The 

main disadvantage of these methods is that the estimation errors are strongly dependent 

on the training data. In [5.24], [5.25], an adaptive unscented Kalman filter algorithm and 

the relationship between the SOE and open circuit voltage (OCV) were employed in the 

model-based SOE estimation approaches. In [5.26], the particle filter and a battery model 

are utilized to develop a method for joint estimation of the SOE and the SOC, and the 

robustness of the method has been verified under dynamic temperature conditions. H. He 

etc. [5.27] employed a Gaussian model oriented battery model and proposed a data-driven 

estimator with a central difference Kalman filter algorithm for SOE estimation, and the 

approach was evaluated by two kinds of batteries including LiFePO4 and LiMn2O4 cells. 

Although these SOE estimation approaches are able to achieve acceptable accuracy, the 

complex algorithms produce a heavy computational burden on the microprocessor with 

limited computation capability within BMSs. 

Besides, a common drawback of these SOE estimation methods is that they fail to achieve 

desirable predictions against various operating conditions during battery aging processes. 

The trajectory of the neural network parameters or battery model parameters cannot be 

fully described within a limited number of experiments [5.27]. Various battery operating 

conditions and cell aging levels with pre-set parameters may lead to inaccurate SOE 

estimated results. It is also noted that the above-mentioned battery available energy 

studies focus just on the SOE estimation. Unfortunately, there are very few studies 

involving the estimation of battery maximum available energy (i.e. battery actual energy). 
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Since the battery maximum available energy is strongly related to the battery operating 

conditions [5.22], it is necessary to systematically study the effects of ambient 

temperature, current rate, and aging level in order to estimate the SOE and maximum 

available energy more accurately, and further improve the robustness of estimation 

approaches against uncertain operating conditions. 

To implement this work, a battery test bench was developed, and the characteristics of 

LiMn2O4 battery cells with a nominal capacity of 90 Ah were tested under different aging 

levels, current rates, and ambient temperatures. The tests cover a broad aging level range 

from 92 Ah to 69.5 Ah, a wide temperature range from 10 °C to 40 °C and a commonly 

used current rate range from 1/3 C to 1 C. Based on the test data, the relationships between 

SOE and SOC under various operating conditions are systematically analyzed and 

quantified for SOE estimation. A moving-window energy-integral technique is 

incorporated to estimate the battery maximum available energy. The robustness and 

feasibility of the proposed approaches are validated in different operating condition tests 

during battery aging processes. 

5.2 Temperature, current and aging level dependencies of 

battery maximum available energy 

The LiMn2O4 cells with a nominal capacity of 90 Ah were used to investigate the battery 

energy characteristics at various experimental conditions of different ambient 

temperatures, current rates, and cell aging levels. Temperature, current and aging level 

dependencies of battery maximum available energy. To investigate the battery maximum 

available energy with different currents at various ambient temperatures, the battery cells 

were loaded with the discharge current rates of C/3, 2C/3, C/2 and 1C at temperatures of 

10 °C, 25 °C and 40 °C, respectively. At each temperature, the battery cells were firstly 

charged with a pre-set constant current to the upper limit voltage 4.2 V followed by a 

constant voltage charge at 4.2 V until C/20 cut-off. Then, there was a rest time for 1 h 

followed by the pre-set constant current discharge to the lower limit voltage 3 V. After 
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that, the battery was given a rest for 1 h and the procedure was carried out repeatedly. 

During the battery discharge processes, the maximum available energy results with 

different currents at various temperatures are shown in Fig. 5.1. 

 

Fig. 5.1 The maximum available energy with different currents at various temperatures. 

From Fig. 5.1, it can be found that the battery maximum available energy presents a 

change with different currents at various temperatures. At the same ambient temperature, 

the available energy appears a decreasing trend with the increasing discharge current rate. 

For example, when the discharge current rate was increased from 1/3C to 1C, the 

available energy dropped from 324.8 Wh to 315.1 Wh at 10 °C. At various temperatures, 

when the discharge current rate is kept at 1/3C, the maximum available energies are 324.8 

Wh, 355.1 Wh, and 356.5 Wh at 10 °C, 25 °C and 40 °C, respectively, presenting an 

increasing trend with the rising temperature. 

To investigate the battery maximum available energy with different currents at various 

battery cell aging levels, accelerated aging tests with the charge/discharge current of 1C 

at 60 °C were applied to the battery cell to obtain different cell aging levels including 92 

Ah, 87 Ah, 82.5 Ah, 78 Ah, 74.5 Ah and 69.5 Ah, and at each cell aging level, the battery 

cell was loaded with the discharge currents of C/3, C/2, 2C/3 and 1C at the room 

temperature (25 °C), respectively. The battery maximum available energy values are 

plotted in Fig. 5.2. 
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Fig. 5.2 The maximum available energy with different currents at various aging levels. 

In Fig. 5.2, when the discharge current rate is 1/3C, the battery maximum available energy 

values are 355.1 Wh, 331.9 Wh, 315.8 Wh, 299.0 Wh, 281.9 Wh and 261.4 Wh at the 

battery capacity 92 Ah, 87 Ah, 82.5 Ah, 78.5 Ah, 74 Ah and 69.5 Ah, respectively. The 

maximum available energy shows similar declining trends with different discharge 

current rates such as 1/2C, 2/3C, and 1C at different aging levels, indicating that the 

battery maximum available energy appears a significant decrease during battery aging 

processes. 

It can be summarized that the battery maximum available energy varies with the operating 

conditions and is greatly related to the ambient temperature and cell aging level. 

Accordingly, it is necessary to develop reliable approaches for accurate battery maximum 

available energy and SOE estimations with strong robustness against the varying 

operating conditions during the battery aging processes. 

5.3  Temperature, current and aging level dependencies of 

the relationship between SOE and SOC 

Being similar to the SOC range, the SOE reaches its maximum value 100% when the 

battery is fully charged which means it has the maximum available energy, and it reaches 

its minimum value 0% when the battery is fully discharged which means there is not any 



SOC Correlation Based SOE and Maximum Available Energy Estimation 

154 

remaining energy can be discharged. Since the battery charger/discharger is able to 

measure cell voltage and loading current with high precision, the referenced data are 

represented by the measurement data detected by the charger/discharger which are 

recorded in the host computer. The recorded data include the battery cell terminal voltage, 

loading current, charge/discharge capacity and energy, and therefore the SOC and SOE 

can be easily calculated by (5.1) and (5.2), respectively, 

     = 1 + C a
SOC k SOC k I k t C            (5.1) 

       = 1 + aSOE k SOE k U k I k t E           (5.2) 

where SOC(k) denotes the SOC value at time k, SOC(k-1) the SOC value at time (k-1), 

SOE(k) the SOE value at time k, SOE(k-1) the SOE value at time (k-1), ∆t the sampling 

time interval, I(k) the loading current at time k (positive for charging and negative for 

discharging), U(k) the battery cell terminal voltage at time k, Ca the battery maximum 

available capacity (i.e. the battery actual capacity), Ea the battery maximum available 

energy (i.e. the battery actual energy), and ηC the coulombic efficiency which is 

considered to be approximately equal to 1 [5.26]. 

The maximum available energies of different SOCs and SOEs at battery’s fresh phase 

(i.e. 92 Ah) are listed in Table 5.1. From Table 5.1, it can be seen that there is a positive 

correlation between the SOE and SOC, but their relationship has not yet been clearly 

explored [5.24]. Thus, the relationship between SOE and SOC should be further studied. 

To investigate the aging level dependence of the relationship between SOE and SOC, the 

battery cell was loaded with a discharging current rate of C/3 at battery capacity degraded 

from 92 Ah to 69.5 Ah, respectively, and the relationships are shown in Fig. 5.3. 
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Table 5.1 The maximum available energies of different SOCs and SOEs at battery’s 

fresh phase. 

SOC (%) Energy (Wh) SOE (%) 

100 355.1 100.0 

90 319.9 90.6 

80 284.2 81.0 

70 249.4 71.5 

60 212.9 61.4 

50 176.9 51.4 

40 141.4 41.4 

30 106.8 31.6 

20 71.3 21.5 

10 36.0 11.1 

0 0 0 

 

 

Fig. 5.3 The relationships between SOE and SOC at different aging levels. 



SOC Correlation Based SOE and Maximum Available Energy Estimation 

156 

In Fig. 5.3, the relationships between SOE and SOC at different aging levels appear a 

superior overlapping characteristic. It demonstrates that the relationship between SOE 

and SOC remains steady during battery aging processes and has strong robustness against 

the battery capacity fade. 

To investigate the temperature dependency of the relationship between SOE and SOC, 

different battery cells of the same batch were loaded with the discharge current C/3 at 

10 °C, 25 °C and 40 °C, respectively. The relationships between SOE and SOC at 

different temperatures are plotted in Fig. 5.4 where the SOC is regarded as the X-axis and 

the SOE as the Y-axis. 

 

Fig. 5.4 The relationships between SOE and SOC at different temperatures. 

Fig. 5.4 shows a perfect coincidence among the relationships between SOE and SOC at 

different temperatures. It indicates that the relationship between SOE and SOC has strong 

robustness against the changing ambient temperature. Besides, it is noted that for three 

different cells of the same batch, the relationships between SOE and SOC also coincide 

well with each other. Thus, the relationship between SOE and SOC can be readily 

extended for each cell of whole battery pack operated at different ambient temperatures. 
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In order to investigate the current dependence of the relationship between SOE and SOC, 

the battery cells were loaded with the discharge and charge current rates of C/3, C/2, 2C/3 

and 1C, respectively. The results are shown in Fig. 5.5. 

 

Fig. 5.5 The relationships between SOE and SOC with various current rates. 

From Fig. 5.5, it can be seen that the relationships between SOE and SOC with various 

discharge or charge current rates almost coincide with each other. It manifests that the 

charging and discharging current rates have little effect on the relationship between SOE 

and SOC. Thus, the relationship can be applied not only in battery constant current 

charging/discharging processes but also in dynamic changed current working conditions. 

From above experimental results, it can be summarized that under different operating 

conditions and cell aging levels, the relationship between battery SOE and SOC always 

keeps unchanged. Although the maximum available energy and maximum available 

capacity of a battery cell are significantly dependent on its operated ambient temperature, 

loading current rate and aging level, it is noted that these factors have negligible effects 

on the relationship between SOE and SOC. This is because the SOE and SOC values were 

calculated by (5.1) and (5.2) with the maximum available energy and maximum available 

capacity, respectively, which have already included these influence factors. 
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5.4 Proposed Estimation Algorithms 

It has been reported that the model-based SOC estimation methods are able to achieve 

high estimated accuracy [5.9-5.19]. Thus, the estimated SOC and the stable relationship 

between SOE and SOC can be utilized to estimate SOE. According to the results shown 

in Figs. 5.3-5.5, the relationship between SOE and SOC can be expressed as an explicitly 

quantitative expression which is assumed to be a quadratic function, as given by 

     2
SOE k aSOC k bSOC k c             (5.3) 

where a, b and c are three coefficients of the quadratic function. 

The coefficients of the quadratic equation are fit by using Levenberg-Marquardt 

algorithm [5.28, 5.29] for the relationship between SOE and SOC under different 

temperatures, current rates, and cell aging levels. The optimal parameters are listed in 

Table 5.2. The coefficient of determination R-Square is 0.999989, which means the fitting 

function can precisely match the real relationship between SOE and SOC. 

Table 5.2 Optimal parameters of the relationship function between SOE and SOC. 

Parameter Coefficient 

a 0.000600 

b 0.944954 

c -0.426930 

 

Based on the quantitative relationship between SOE and SOC with estimation SOC, the 

overall structure of the proposed algorithms for both battery SOE and maximum available 

energy estimation is shown in Fig. 5.6. 
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Fig. 5.6 The structure of the proposed algorithms. 

The SOC is firstly estimated by a model-based estimation method. Since the model-based 

SOC estimation method is not the emphasis of this paper, we briefly explain the working 

principle of the method, and refer readers to [5.11-5.19, 5.30] where give a more 

comprehensive description on the model-based SOC estimation methods. Briefly, a 

battery model such as equivalent circuit models and electrochemical models is employed 

to calculate the model output voltage with the given initial SOC value and loading current. 

Then the voltage residual between the model output voltage and the cell terminal voltage 

(i.e. cell actual voltage) is fed to an observer or filter such as PI observer, Luenberger 

observer, Sliding-mode observer and Kalman-filter-based filters, for producing a 

compensation value. After that, the compensation value is used to modify state variables 

of the battery model and therefore the estimated SOC is able to track with the actual SOC. 

Subsequently, the estimated SOC and the quantitative relationship are employed to 

estimate SOE. Furthermore, a moving-window energy-integral technique with the SOE 
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estimation is incorporated to estimate the battery maximum available energy and its 

detailed estimation process is described as follows. 

Equation (5.2) expresses the relationship between SOE and battery maximum available 

energy, and therefore the battery maximum available energy can be derived reversely, as 

given by 

         
0

/ 0
k

a
i

E U i I i t SOE k SOE


           (5.4) 

where     
0

k

i

U i I i t


  is the energy integral from the beginning time to the time k and 

SOE(0) is the SOE value at the beginning time. 

As mentioned in Section 5.2, the battery maximum available energy is greatly related to 

the ambient temperature, cell aging level and loading current rate. However, it is noted 

that these three variables are not included in (5.4). This is because that in (5.4), the battery 

maximum available energy is calculated with the estimated SOE, which is calculated by 

(5.3). Equation (5.3) describes the quantitative relationship between SOC and SOE, 

which was obtained by fitting the experimental SOC and SOE data under various ambient 

temperatures, cell aging levels and loading current rates. From Figs. 5.3-5.5, it can be 

observed that these variables have negligible effects on the relationship between SOE and 

SOC. Thus, the variables are not included in (5.3) and also not included in (5.4). Since 

the SOC value is considered as the input for calculating the SOE given by (5.3) at different 

operating conditions, the SOC should be the value under the corresponding operating 

conditions, which has considered the variables of ambient temperature, cell aging level 

and loading current rate, and therefore the estimated SOE and maximum available energy 

values are also related to these variables. 

As presented in (5.4), the battery maximum available energy can be calculated by using 

two certain SOE points such as the beginning charge/discharge point and the final 

charge/discharge point. However, the SOE estimation errors in these two points may lead 
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to incorrect battery maximum available energy estimation results. From experience, one 

way to decrease the uncertainty in experimental data is to make multiple measurements 

and take the average. Accordingly, a moving-window energy-integral technique with 

multiple calculations is incorporated for the estimation. The battery maximum available 

energy is calculated in each 200 seconds’ moving-window. Then the average of the 

maximum available energy values of each moving-window is considered as the final 

estimated result, as given by 

_
1

n

a avg ai
i

E E n


                (5.5) 

where Eai is the maximum available energy in each moving-window and n the number of 

moving-windows. 

5.5 Verification and Discussion 

5.5.1 SOE estimation 

As presented in the previous SOC estimation work [5.12], the SOC estimation error can 

be limited to a +/-2% error band and the estimated SOC can track with the referenced 

SOC quickly even with an erroneous initial SOC value. Combining the estimated SOC 

and the relationship between SOE and SOC, the SOE estimation result of a battery cell 

with 92 Ah and 1/3C discharging current rate is shown in Fig. 5.7 where the referenced 

SOE values are calculated by (5.2) with the experimental test data. 
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Fig. 5.7 SOE estimation result. 

In Fig. 5.7, the referenced initial SOE value is 100% while there is an erroneous initial 

SOC value of the battery model that caused an incorrect initial SOE value 48%. It can be 

seen that in the first 400 s, the estimated SOE increases quickly to catch up with the 

referenced SOE, and therefrom the estimated SOE is able to follow the tracks of the 

referenced value well. It indicates that the proposed SOE estimation method can work 

well even when a grossly erroneous initial SOE value is supplied to the program. The 

detailed SOE estimation errors at different battery aging levels and operation conditions 

will be depicted as follows. 

To investigate the effectiveness of the proposed method during the process of battery 

aging, the battery cell degraded from 92 Ah to 69.5 Ah was used for the verification. The 

SOE estimation errors including the maximum absolute error (MAE) and the root mean 

square error (RMSE) are shown in Fig. 5.8 at six different aging levels with 92 Ah, 87 

Ah, 82.5 Ah, 78.5 Ah, 74 Ah and 69.5 Ah, respectively. 
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Fig. 5.8 SOE estimation errors at different battery aging levels. 

In Fig. 5.8, the SOE estimation MAEs at different battery aging levels are less than 3.0% 

while the SOE estimation RMSEs are less than 2.0%, indicating that the proposed method 

can handle different battery aging levels quite well. 

The characteristic test data at 10 °C, 25 °C and 40 °C were used to validate the 

effectiveness of the proposed method under different ambient temperatures. The SOE 

estimation errors are shown in Fig. 5.9. 

 

Fig. 5.9 SOE estimation errors under various ambient temperatures. 
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From Fig. 5.9, it can be seen that the maximum SOE estimation MAE occurred at 40 °C, 

which is about 3.32%. At different ambient temperatures, the SOE estimation RMSEs are 

less than 2.0%. It can be concluded that the proposed approach is able to achieve desirable 

SOE estimation results under various ambient temperatures. 

To investigate the effectiveness of the proposed method with different charge current 

rates, the characteristic test data with four discharging current rates: 1/3C, 1/2C, 2/3C and 

1C at the room temperature (25 °C) were used to verify the method. The SOE estimation 

errors are shown in Fig. 5.10. 

 

Fig. 5.10 SOE estimation errors with different discharge current rates. 

In Fig. 5.10, the SOE estimation MAEs can be limited in a 2.5% error band and the SOE 

estimation RMSEs are less than 1.0% with different discharging current rates, indicating 

that the proposed approach can perform well with different discharge current rates. 

5.5.2 Maximum available energy estimation 

The battery maximum available energy is calculated by the proposed moving-window 

energy-integral and average methods. During the discharge process of a battery cell with 

92 Ah and 1/3C discharging current rate, the maximum available energy estimation 

results are plotted in Fig. 5.11. 
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Fig. 5.11 Battery maximum available energy estimation results. 

In Fig. 5.11, the proposed algorithm begins to estimate battery maximum available energy 

at about 700 s. This is because that the first 500 s are used for SOE estimation correction 

and the followed 200 s are used for the first moving-window calculation. Although some 

significant estimation errors occurred during the first 4000 s, the estimated maximum 

available energy can finally converge to the referenced value. 

The battery test data at different aging levels are used to verify the effectiveness of the 

proposed method for battery maximum available energy estimation. The estimated results 

and relative estimation errors are shown in Fig. 5.12. 

 

Fig. 5.12 Battery maximum available energy estimation results at different aging levels. 
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In Fig. 5.12, the estimated maximum available energies can track well with the referenced 

values at different battery aging levels, and the relative estimation errors can be limited 

in a +/-3% error band, indicating that the proposed method is feasible for various battery 

aging levels. 

To verify the effectiveness of the proposed approach under different ambient 

temperatures, the estimated processes were performed at 10 °C, 25 °C and 40 °C, 

respectively, and the results are shown in Fig. 5.13, where the estimated results indicate 

that the battery maximum available energy estimation method can work well at the above-

mentioned temperatures and the relative estimation errors are able to be limited in a +/-

2% error band. 

 

Fig. 5.13 Battery maximum available energy estimation results under different ambient 

temperatures. 

To investigate the effectiveness of the proposed method with different charging current 

rates, the characteristic test data with four discharging current rates: 1/3C, 1/2C, 2/3C and 

1C at the room temperature (25 °C) were used to verify the battery maximum available 

estimation, and the results are shown in Fig. 5.14. 
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Fig. 5.14 Battery maximum available energy estimation results with different discharge 

current rates. 

From Fig. 5.14, it can be seen that the estimated maximum available energies can follow 

the tracks of the referenced values well with different battery discharging current rates. 

The maximum estimated error is 2.92% at 1C current rate, showing that the proposed 

method can handle different discharging current rates quite well. 

5.5.3 Dynamic stress test cycles verification 

The dynamic stress test (DST) cycle [5.31] is widely used to simulate the dynamic 

changed loading conditions of batteries in real applications. The current profiles of DST 

cycles are depicted in Fig. 5.15(a). Before the DST test, the battery cell was fully charged 

in a constant current and constant voltage regime and the initial referenced SOE was 100% 

while the initial SOE of the algorithm was set to an incorrect value, 48%. The referenced 

SOE and the estimated SOE are compared in Fig. 5.15(b). It can be seen that the estimated 

SOE is able to track the referenced value quickly. Fig. 5.15(c) shows the estimated SOE 

errors, in which the SOE estimation MAE and RMSE are 3.2% and 1.2%, respectively. 

The battery maximum available energy estimation results are plotted in Fig. 5.15(d). The 

resultant estimated maximum available energy is 324.2 Wh in contrast to the referenced 

value of 331.9 Wh, and the relative error is 2.32%. The estimated results indicate that the 
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proposed methods can perform well with small errors even under dynamic loading 

conditions. 

 

Fig. 5.15 Estimation results with DST cycles, where (a) current profile of DST cycles, 

(b) SOE estimated results, (c) SOE estimated errors and (d) maximum available energy 

estimated results. 

5.6 Summary 

Different from SOC, SOE allows a direct determination of the ratio of battery remaining 

energy to maximum available energy, which is critical for energy optimization and 

management in energy storage systems. In order to estimate the battery SOE and 

maximum available energy accurately, the temperature, current rate and battery aging 
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level dependencies of battery maximum available energy and SOE were systematically 

analysed. The relationships between SOC and SOE for different influence factors, such 

as the ambient temperature, charging and discharging current rates, and battery aging 

levels, were explicitly quantified for the SOE estimation. Besides, a moving-window 

energy-integral and average method were incorporated for battery maximum available 

energy estimation. Experimental results show that the proposed approaches can estimate 

the battery maximum available energy and SOE with high precision even under the 

dynamic loading conditions. The robustness of the proposed estimation approaches 

against various operation conditions and cell aging levels is systematically evaluated. The 

simplicity of the proposed SOE estimation method can avoid heavy computation cost 

required by conventional model-based SOE estimation methods, which causes a severe 

computational burden to the microprocessor with limited computation capability used in 

BMSs, and therefore the proposed method has the potential to be implemented in practical 

applications. 
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CHAPTER 6 

MODEL BASED BATTERY POWER CAPABILITY 

PREDICTION METHODS 

6.1 Introduction 

Lithium-ion batteries with desirable performance in energy density, power density, and 

cycle life are ubiquitous in electrical energy storage applications, such as smart grids, 

electric vehicles, railway transportation systems [6.1]-[6.3], etc. Precisely because large 

amounts of power and energy are required in these applications, lithium-ion battery 

management systems (BMSs) with essential functions including cell balancing, state of 

charge (SOC) estimation, state of health estimation, state of available power prediction, 

etc. are necessary to ensure safe and efficient battery operations [6.4]-[6.10]. State of 

available power reports the peak power capability of the battery that can be delivered to 

loads or absorbed from regenerative braking or active recharging in a predictive time 

horizon. Thus, it is of great significance to accurately predict battery available power for 

reliable and optimal utilization of the battery. 

The reported techniques for predicting battery available power can generally be classified 

into three groups including characteristic map-based methods, machine learning methods, 

and model-based methods. The characteristic map-based methods utilize static 

interdependencies between battery available power and its influenced factors, such as 

SOC, temperature, and cell aging to build a multidimensional power capability map [6.9], 

which can be directly stored in the memory of BMSs. The commonest approach for 

determining the operating point of the characteristic map is to measure the battery voltage 

response to a reference pulse current and to calculate the battery direct current resistance 

(DCR) and power capability [6.11], [6.12]. Due to their simplicity and ease of 

A substantial proportion of this chapter has been published as an article [6.45] in IEEE Transactions on 

Power Electronics and a conference paper [6.46] in the proceedings of ICEMS 2017. 
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implementation, the characteristic map-based methods are prevailingly adopted by 

manufacturers of battery and BMS. However, the characteristic map-based methods 

require a high amount of non-volatile memory to store the multidimensional map [6.13]. 

The machine learning methods including neural network and support vector machine 

have been developed for battery available power prediction in [6.14]-[6.16]. Approximate 

relationships between battery available power and input variables, such as cell terminal 

voltage, internal resistance, SOC, temperature, etc., can be quantitatively trained with 

reliable experimental data, but the accuracy of the prediction depends firmly on the 

training data. Alternatively, a battery model is employed in the model-based methods to 

predict dynamic behaviours of the battery for computing its peak power capability within 

the design limits such as the permitted highest and lowest values of cell terminal voltage, 

current, SOC, etc. [6.17]-[6.20]. The model-based methods have attracted considerable 

attention due to their high adaptation capabilities and real-time performance. The main 

differences among the model-based methods are the type of battery model and the 

estimation technique of battery states and model parameters. Farmann et al. [6.9] 

summarized and compared different adaptive joint and dual estimation techniques 

including Kalman filter-based approaches, least-square-based approaches, and other 

filters and observers for the model-based power prediction methods. It is noteworthy that 

equivalent circuit models (ECMs) are typically employed in these model-based methods 

since they have simple and flexible structures as well as few unknown variables [6.21]. 

However, ECMs idealize battery by applying circuit elements to represent its electrical 

behaviours but offer little physical explanation of battery performance, thus leading to 

limited prediction capability [6.22], [6.23]. 

For overcoming the previously mentioned drawbacks, two novel methods for predicting 

battery power capability are proposed in this chapter. The first method presented in 

Section 6.2 aims at enhancing the potential of the characteristic map-based approach to 

be implemented in BMSs. To this end, the temperature dependence of battery DCR would 

be analysed and quantitatively modelled for power capability prediction since the battery 

DCR is typically employed to describe the battery power capability [6.11]. The proposed 
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DCR model and its implementation on battery power capability prediction will be capable 

of forecasting battery DCRs and power capabilities under different temperatures, thus 

significantly reducing battery test work and the dimensions of the characteristic map as 

well as the memory-consuming. Different from the conventional methods [6.9]-[6.20] 

using the limits of macroscopically observed variables such as cell terminal voltage and 

current for power prediction, the second method presented in Section 6.3 used a practical 

physical limit (i.e. the lithium concentration limit) thus providing a direct insight into 

electrochemical processes inside batteries. The surface lithium concentration of the solid 

particle is derived from a simplified battery electrochemical model. Based on the 

theoretical analysis of battery Gibbs power and dissipation power of battery internal 

resistance, a relationship between battery instantaneous available power and surface 

lithium concentration is quantified for the power capability prediction. The proposed 

methods are experimentally verified with various cell aging levels and ambient 

temperatures. 

6.2 Temperature-Dependent DCR Based Power Prediction 

Method 

It is well recognized that battery resistance characteristic significantly depends on the 

ambient temperature, and its experimental investigation and analysis can be found in 

[6.11], [6.24]-[6.26]. The modeling of the temperature dependence of battery charge-

transfer resistance that is the difference between battery DCR and ohmic resistance has 

been reported, which can be described by an Arrhenius expression [6.11], [6.26]. 

However, the temperature-dependent DCR has not been quantitatively expressed. 

Accordingly, it is of the essence to investigate systematically the temperature dependence 

of the DCR and establish an effective DCR model for reliable battery power capability 

prediction. 
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6.2.1 Temperature dependence of DCR 

To systematically investigate the temperature dependence of battery DCR and power 

capability, a battery current pulse test schedule was specially designed for identifying the 

battery DCR at different battery SOCs and ambient temperatures. The current pulse tests 

were conducted in a commonly-used temperature range from 10 °C to 40 °C at an interval 

of 5 °C. In each current pulse test, the battery was charged or discharged with C/3 at every 

5% SOC increment followed by 1 h relaxation until the battery reaches to 100% SOC or 

0% SOC. 

For excluding the impacts of the changing open circuit voltage (OCV) and the diffusion 

process on the measurement of battery DCR, it is recommended to detect the voltage 

response within a few hundred milliseconds to several seconds after the start of the current 

pulse. The responded voltage change is mainly caused by battery pure ohmic resistance 

and charge transfer reaction [6.11]. In this work, the voltage change between 1 s after the 

start of the current pulse is applied for the DCR and power capability calculation. 

The battery charge and discharge DCRs at different SOCs under various temperatures are 

shown in Figs. 6.1(a) and 6.2(b), respectively. As can be observed, the battery charge and 

discharge DCRs have an essential dependence on the ambient temperature. For instance, 

at 5% SOC, the battery charge DCR is about 2.673 mΩ under the temperature of 10 °C, 

which approximates 2.85 times of that under the temperature of 40 °C (i.e. 0.938 mΩ). It 

is noted that the DCRs difference between two adjacent temperatures strikingly decreases 

with the increasing temperature. For example, the charge DCR difference at 50% SOC 

between 10 °C and 15 °C is about 0.517 mΩ, while it is only the difference of 0.063 mΩ 

between 35 °C and 40 °C. Additionally, both the charge and discharge DCRs show a 

relatively large decline in the low SOC range from 5% SOC to 10% SOC, especially 

under low temperatures, such as 10 °C and 15 °C. From 10% SOC to 95% SOC, the 

charge or discharge DCRs differ slightly under a certain temperature. 
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Fig. 6.1 Battery DCRs at different SOCs and temperatures, where (a) charge DCRs, and 

(b) discharge DCRs. 

Fig. 6.2 shows the dependence of battery charge and discharge DCR on the temperature 

at different battery SOCs. It is worth mentioning that for both battery charge and 

discharge processes, the DCR has a nearly exponential dependence on the temperature at 

a certain SOC, which is in line with the results reported in 6.[11]. In Fig. 6.2, it can be 

found that the rates of exponential increase/decrease of the temperature-dependent DCRs 

are not identical at different SOCs. For instance, the rate of exponential increase/decrease 

at 5% SOC is much greater than those at other SOCs. Therefore, it is difficult to apply 

the exponential dependence directly for the modeling of DCRs and necessary to further 

develop the relationship between the temperature and DCR. 
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Fig. 6.2 Battery DCR-Temperature curves of different SOCs, where (a) charge DCRs, 

and (b) discharge DCRs. 

6.2.2 Modeling of Battery DCR for Power Prediction 

The linear representation of DCRs depicted in Fig. 6.2 is transferred to the logarithmic 

representation, as shown in Fig. 6.3. 
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Fig. 6.3 Battery logarithmic DCRs at different SOCs and temperatures, where (a) charge 

logarithmic DCRs, and (b) discharge logarithmic DCRs. 

As can be observed in Fig. 6.3, both charge and discharge logarithmic DCRs appear a 

similar decreasing tendency with the increasing temperature for all different cell SOCs. 

It is noteworthy mentioning that the logarithmic DCR versus temperature curves for 

various battery SOCs are approximately parallel to each other. Accordingly, the 

relationship between the logarithmic DCR and temperature can be quantitatively 

expressed as a set of quadratic equations with the same rate of increase/decrease for 

different SOCs. Thus, at various battery SOCs, the temperature-dependent DCRs are 

modeled as 

    2ln ,DCR T SOC T T SOC              (6.1) 
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where DCR(T, SOC) denotes the DCR under the temperature T; α and β are two constant 

parameters for different SOCs; and γ(SOC) denotes the intercept of the equation at the 

certain SOC. 

If one temperature is considered as the based temperature, its corresponding DCR, also 

called the based DCR in the presented work, is governed by 

    2ln bas bas basDCR SOC T T SOC             (6.2) 

where DCRbas(SOC) and Tbas denote the based DCR and temperature, respectively. 

By combining (6.1) and (6.2), one has 

 
     2 2,

ln bas bas
bas

DCR T SOC
T T T T

DCR SOC

 
       

 
       (6.3) 

It is worth mentioning that the SOC dependent parameter γ(SOC) is counteracted in (6.3), 

and α and β are constants for different SOCs. Thus, the parameters for DCR calculation 

are identical for all battery states, which benefits to deduce a universal DCR model. 

With some arrangements, (6.3) is rewritten as 

       2 2, expbas bas basDCR T SOC DCR SOC T T T T           (6.4) 

In the presented study, the room temperature (i.e. 25 °C) and its corresponding DCRs at 

different SOCs are regarded as the based temperature and DCRs, respectively. Thus, with 

the based values, (6.4) can be used to compute battery DCRs at different SOCs and 

temperatures. 

The parameters α and β are fit by using the experimental data and Levenberg–Marquardt 

algorithm for the proposed temperature-dependent DCR model. The Levenberg–

Marquardt algorithm is widely applied to solve non-linear least squares problems by 

finding a model curve so that the sum of the squares of the deviations between the 

experimental data and model computed values is minimized [6.27]-[6.29]. The optimal 
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parameters and the resulting coefficients of determination (i.e. R2) for battery charge and 

discharge processes are listed in Table 6.1. It is noted that both the charge and discharge 

coefficients of determination are very close to 1, which means that the proposed model 

can precisely match the temperature dependence of battery DCR during both battery 

charge and discharge processes. 

Table 6.1 The optimal parameters of the temperature-dependent DCR model. 

Parameters Charge coefficient Discharge coefficient 

α 0.00075446 0.00071906 

β -0.070325 -0.068226 

R2 0.99716 0.99854 

 

A battery cell must be enforced to operate within the safe area of cell terminal voltage, 

and the battery power capability is therefore constrained by the design limits of the 

terminal voltage. Two recommended equations (i.e. (6.5)) with the design limits of cell 

terminal voltage, open circuit voltages (OCV), and DCRs in many studies and standards 

[6.30]-[6.32] are typically employed for determining the charge and discharge power 

capabilities, as defined by 

 
 

max max

min min

chg chg

dis dis

P V OCV V DCR

P V OCV V DCR

 
  

          (6.5) 

The proposed DCR model expressed in (6.4) is then introduced to incorporate in (6.5) for 

improving the accuracy and robustness of battery power capability prediction against 

various ambient temperatures. Thus, the battery charge and discharge power capabilities 

at different SOCs and temperatures are determined by 
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2 2
max max ,

2 2
min min ,

, exp

, exp

chg bas chg bas bas

dis bas dis bas bas

P T SOC V OCV SOC V DCR SOC T T T T

P T SOC V OCV SOC V DCR SOC T T T T

        


        

(6.6) 

where different values of the based DCR may be used for charge and discharge, and are 

denoted by DCRbas,chg(SOC) and DCRbas,dis(SOC), respectively. 

It is noteworthy that the temperature dependence of battery power capability has been 

involved in (6.6), which can be used to calculate the power capabilities under various 

ambient temperature, thus effectively lightening battery test work and the dimensions of 

battery power characteristic map as well as the memory-consuming. 

6.2.3 Experimental Verification 

To evaluate the performance of the proposed methods for predicting battery DCRs and 

power capabilities, the metrics including the relative error (RE) and mean absolute 

percentage error (MAPE) are employed in the presented study. The RE acts as an 

indicator of how close a measure is relative to the actual value of the thing being measured, 

which is used to directly evaluate the accuracy of the forecasts of battery DCR and power 

capability at different SOCs and temperatures. The MAPE gives an indication of how 

accurate a forecasting method is in statistics, which is applied to evaluate the prediction 

precision of the proposed methods under different ambient temperatures. The RE and 

MAPE are governed by the following expressions, respectively. 

  100%i i iRE f y y                (6.7) 

 
1

1
100%

n

i i i
i

MAPE f y y
n 

             (6.8) 

where fi and yi denote the predictive and referenced values, respectively, and n denotes 

the number of data set of predictive and referenced values. 
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A. Verification of battery DCRs prediction 

With the based temperature and based DCRs (i.e. 25 °C and its corresponding DCRs), 

Equation (6.4) can be applied for predicting battery DCRs under various ambient 

temperatures. The forecasts of battery charge and discharge DCRs are depicted in Figs. 

6.4 and 6.5, respectively. 

 

Fig. 6.4 The results of battery charge DCR prediction, where (a) referenced and 

predictive DCRs, and (b) REs of the predictive DCRs. 

Fig. 6.4(a) shows the results of battery charge DCR prediction at different SOCs and 

temperatures, in which Ref. and Pre. denote the referenced and predictive values, 

respectively. It can be seen that under various ambient temperatures, the predictive battery 

charge DCRs can follow the tracks of the referenced values at different SOCs. Since the 
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DCRs under 25 °C are selected as the based values, the forecasts computed by the DCR 

model are entirely identical to the referenced values. 

The REs of the battery charge DCR predictions are plotted in Fig. 6.4(b). A handful of 

relatively large absolute values of REs occur at battery low and high SOC, namely 5% 

SOC and 95% SOC, which may be mainly caused by the deviation of the proposed DCR 

model, and the maximum absolute value of RE is about 4.95%. It is noteworthy that most 

of the REs of battery charge DCR are limited in an error band of ±3%. Besides, the 

MAPEs of battery charge DCR under different ambient temperatures are listed in Table 

6.2, where the maximum charge DCR MAPE is 1.74% happened under 15 °C. It suggests 

that the proposed method can forecast battery charge DCR with small errors at various 

SOCs and temperatures. 

Table 6.2 The MAPEs of battery charge and discharge DCR predictions. 

Temperature 

(°C) 

Charge DCR MAPE 

(%) 

Discharge DCR MAPE 

(%) 

10 1.67 0.88 

15 1.74 1.19 

20 1.18 0.82 

30 1.10 1.29 

35 1.06 1.54 

40 1.39 1.76 

 

Under different ambient temperatures, the forecasts of battery discharge DCR at different 

SOCs are depicted in Fig. 6.5(a). As can be observed, the predictive discharge DCRs are 
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capable of tracking the referenced values at various SOCs and temperatures with small 

deviations. The deviations are quantitatively analyzed through the REs showed in Fig. 

6.5(b) and the MAPEs listed in Table 6.2. In Fig. 6.5(b), it presents a similar result to the 

charge DCR REs, which is that most of discharge DCR REs can be successfully confined 

into an error band of ±3%. The maximum absolute value of discharge DCR RE is about 

5.38% at the battery SOC of 5% and the temperature of 40 °C. Note that the few relatively 

large REs are all occurred under the temperature of 40 °C, thus leading to the maximum 

discharge DCR MAPE value, i.e. 1.76%, as listed in Table 6.2. It suggests that the 

proposed approach can handle the battery discharge DCR quite well at various SOCs and 

temperatures. 

 

Fig. 6.5 The results of battery discharge DCR prediction, where (a) referenced and 

predictive DCRs, and (b) REs of the predictive DCRs. 
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From above discussions, the verified results of battery discharge and charge DCR 

prediction indicate that the proposed DCR model is able to describe the temperature 

dependence of both battery charge and discharge DCRs well and estimate the DCR values 

with high accuracy, which provides a credible foundation for subsequent predictions of 

battery charge and discharge power capabilities. 

B. Verification of battery power capabilities prediction 

With the battery DCR forecasts, (6.6) is applied to predict battery charge and discharge 

power capabilities, and the results are shown in Figs. 6.6 and 6.7, where Ref. denotes the 

referenced power and Pre. denotes the predictive power. 

 

Fig. 6.6 The results of battery charge power capability prediction, where (a) referenced 

and predictive powers, and (b) REs of the predictive powers. 
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As can be observed in Fig. 6.6(a), under different ambient temperatures, the battery 

charge power declines with the decreasing SOC, which is mainly caused by the charge 

OCV characteristics that decreases with the decreasing SOC. It can also found that battery 

charge power capability has a significant dependence on the temperature. For example, 

at the battery SOC of 50%, the absolute values of the referenced charge power capabilities 

are about 465.93 W, 888.01 W, and 1219.94 W under the temperatures of 10 °C, 25 °C, 

and 40 °C, respectively. Since the mentioned-above charge DCR forecasts can track well 

with the actual values, the predictive charge power capabilities can effectively follow the 

referenced values with small errors at different SOCs and temperatures, as shown in Fig. 

6.6(a). Their REs are depicted in Fig. 6.6(b). Strikingly, most of the REs of the battery 

charge power capability are confined to a small error band, i.e. ±3%, and the maximum 

RE is about 5.20%. By comparing the charge DCR REs with the charge power REs, it 

can be found that they are almost opposite in sign. This is because that according to (6.5), 

an over-estimated charge DCR forecast would result in an underestimated charge power 

capability, and vice versa. 

Table 6.3 The MAPEs of battery charge and discharge power capabilities predictions. 

Temperature 

(°C) 

Charge power MAPE 

(%) 

Discharge power MAPE 

(%) 

10 1.67 0.89 

15 1.72 1.17 

20 1.18 0.81 

30 1.10 1.30 

35 1.06 1.55 

40 1.38 1.72 
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Moreover, the MAPEs of the predictive charge power capabilities under various 

temperature are listed in Table 6.3, where all MAPEs are less than 2%. It indicates that 

the proposed method can effectively forecast battery charge power capability under 

different battery operating temperatures. 

 

Fig. 6.7 The results of battery discharge power capability prediction, where (a) 

referenced and predictive powers, and (b) REs of the predictive powers. 

Fig. 6.7(a) shows the referenced and predictive values of battery discharge power 

capabilities. Under different ambient temperatures, the referenced discharge power 

capability presents an increasing tendency with the increasing battery SOC. At a certain 

battery SOC, the referenced discharge power capability decreases with the decreasing 

ambient temperature, which suggests that the ambient temperature has a substantial 

impact on battery discharge power capability. By observing Fig. 6.7(a), it can be found 

that the predictive discharge power capabilities can tail closely after the referenced values 
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at various SOCs and temperatures. Fig. 6.7(b) draws the REs of battery discharge power 

capability prediction, where most of the REs are effectively limited in an error band of 

±3%, and the maximum absolute value of the RE is about 5.10%. The MAPEs of battery 

discharge power capability forecasts are listed in Table 6.3, where the MAPE under the 

temperature of 40 °C (i.e. 1.72%) is greater than those under other temperatures, which 

highlights the effectiveness of the proposed method for battery discharge power 

capability prediction under various ambient temperatures. 

From above prediction results of battery power capabilities, it can be summarized that 

based on the accurate temperature-dependent DCR model, promising results with small 

errors can be achieved in both battery charge and discharge power capabilities predictions 

at different SOCs and ambient temperatures. 

 

6.3 Surface Lithium Concentration Based Power Prediction 

Method 

The available techniques of battery power prediction are primarily derived based on the 

limits of macroscopically observed variables, such as cell terminal voltage and current, 

which are insufficient to provide a direct insight into electrochemical processes inside 

batteries, and consequently, the resulting battery power forecasts may be conservative. 

To enhance the safety, efficiency, and longevity of the battery system, an advanced BMS 

with physical insight into batteries should be developed, and a practical physical limit of 

the battery is highly required for reliable battery power capability prediction. In lithium-

ion batteries, high power requires that the lithium diffusion in and out of solid particles 

of battery electrodes takes place fast enough to supply the loading current [6.33]. Based 

on the assumption that lithium ions within the inner regions of solid particles fail to fleetly 

diffuse to the surface of the solid particles for instantaneous applications, the surface 

lithium concentration can be employed for describing battery instantaneous power 

capability. It has also been reported that battery instantaneous available power depends 
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significantly on the surface lithium concentration [6.34]. However, the relationship 

between the surface lithium concentration and battery instantaneous available power has 

not been explored sufficiently yet. 

6.3.1 Battery electrochemical model and lithium concentration 

A lithium-ion battery electrochemical model (EM) consisting of a negative electrode with 

solid LixC6 particles, an electron-blocking separator, and a positive electrode with solid 

metal oxide particles is depicted in Fig. 6.8. During battery discharge process, lithium 

ions de-insert from the solid LixC6 particles in the negative electrode, travel via diffusion 

and migration through the electrolyte across the separator to the positive electrode where 

they insert into the solid metal oxide particles. Simultaneously, electrons, blocked by the 

separator, transfer from the negative electrode to the positive electrode through an 

external circuit. During battery charge process, the opposite moving processes of lithium 

ions and electrons occur. 

 

Fig. 6.8 Schematic of a lithium-ion battery EM. 

Coupled nonlinear partial differential equations (PDEs) are inevitably used in the lithium-

ion battery EM for describing underlying dynamics of the battery, thus leading to the 

expensive computation and impracticability of the model [6.35]. To reduce the 

computational complexity, a simplified lithium-ion battery EM, known as single particle 

model (SPM), has been widely investigated in the literature [6.22], [6.34], [6.36]-[6.38]. 
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In the SPM, each electrode is idealized as a single spherical solid particle, which can well 

strike a balance between the mathematical simplicity and modeling accuracy while 

sufficiently enhancing the state observability [6.22], [6.36]. The mean lithium 

concentration of the solid particle of the SPM has been sophisticatedly applied for battery 

state of charge (SOC) estimation, and remarkable results with high accuracy can be 

achieved [6.22], [6.36]-[6.38]. It has been reported that surface lithium concentration of 

the solid particle is strongly related to the instantaneous power capability of the battery 

[6.34], but their relationship has not been investigated sufficiently yet. Thus, this work 

focuses on developing the surface lithium concentration of the solid particle for modeling 

and predicting battery instantaneous available power. 

As reported in our previous work [6.22], the lithium concentration at various radii of the 

solid particle can be obtained by using the discretized governing equations, and the 

experimental results confidently validated the robustness and availability of the 

developed SPM, which provides a solid foundation and convincing calculation results of 

surface concentration for this work. The governing equations for computing the lithium 

concentration of the solid particle are briefly listed in Table 6.4, and we refer readers to 

[6.22] therein gives more details. 
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Table 6.4 The governing equations for computing the lithium concentration of the solid 

particle [6.22]. 

Equation Description 

pdr R node                             (6.9) Node meshing of radius 
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 (6.15) Boundary conditions 

  0,1sd sdc i c                             (6.16) Initial condition 
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In the developed SPM [6.22], each solid particle was meshed as 40 nodes for equilibrating 

the model accuracy and computational efforts. Fig. 6.9 shows the lithium ion 

concentrations in different nodes of the negative solid particle during battery charge 

process with the current rate of 1/3 C. As can be observed, the lithium concentration in 

the outmost node can be acquired during the whole process of battery operation, which is 

regarded as the surface concentration of the solid particle and is employed to develop the 

prediction method for battery instantaneous available power capability. 

 

Fig. 6.9 Lithium ion concentrations in different nodes of the negative solid particle 

during battery charge process with the current rate of 1/3 C. 

6.3.2 Proposed instantaneous available power prediction method 

The reaction Gibbs free energy of the battery is determined by 

lnOCV rG nFV RT Q                  (6.17) 

where ΔG denotes the Gibbs free energy, n the number of electrons transferred, F the 

Faraday constant, VOCV the open circuit voltage (OCV), R the gas constant, T the absolute 

temperature, and Qr the reaction quotient. 
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If all the Gibbs free energy is converted to work that would be the maximum electrical 

work (WGibbs), one has 

lnGibbs OCV rW G nFV RT Q                 (6.18) 

As previously mentioned, the internal resistance of a battery is a primary source of power 

dissipation, which could not be omitted when applying a large loading current. With this 

in consideration, the charge and discharge power capabilities of the battery are governed 

by (6.19) and (6.20), respectively. 

Gibbs
chg Gibbs res res

dW
P P P P

dt
                 (6.19) 

Gibbs
dis Gibbs res res

dW
P P P P

dt
                 (6.20) 

where Pchg and Pdis denote the charge and discharge power capabilities of the battery, 

respectively, PGibbs the Gibbs power, and Pres the power dissipation in battery internal 

resistance. It is noted that the charge power provides the Gibbs power of the battery 

reaction and the power dissipation during battery charge process, while the Gibbs power 

of the battery reaction affords the discharge power and the power dissipation during 

battery discharge process. 

The time horizon is defined as 1 s for the instantaneous power prediction in the presented 

study. During this instantaneous time horizon, the reaction quotient (Qr) that is 

determined by the concentrations of chemical species involved in the battery reaction is 

deemed to be not significantly changed and remain constant. Thus, the instantaneous 

Gibbs power can be arranged as 

 OCV OCV
Gibbs OCV

d nFV dVdn
P FV nF

dt dt dt
             (6.21) 
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With the lithium concentration limit, it is regarded that battery instantaneous available 

power achieves its peak value when the surface concentration of the solid particle 

increases to its permitted maximum value. The change of the number of electrons 

transferred in the instantaneous time horizon is represented by the growing number of 

lithium ions inserted to the surface of the solid particle, namely 

 ,max ,0surf surf surf

dn
c c c

dt
                  (6.22) 

where csurf,0 and csurf,max denote the initial value and the maximum value of the surface 

concentration of the solid particle, respectively, Δcsurf the maximum change of the surface 

concentration which is the difference between csurf,max and csurf,0, and σ the 

transformational coefficient between the surface concentration and the number of 

electrons. 

The number of electrons transferred is represented by the mean lithium concentration of 

the solid particle and can be described as 

_meansn c                    (6.23) 

where γ denotes the transformational coefficient between the number of electrons 

transferred and the mean lithium concentration of the solid particle, and cs_mean denotes 

the mean lithium concentration of the solid particle, which can be computed based on the 

concentration of each node [6.22], as given by 

   2 3 3
_mean

1

3 , 1
node

s sd p
i

c c i k i dr R


              (6.24) 

The battery OCV change with time can be expressed as 

=OCV OCV OCV
surf

dV dV dVdSOC
k c

dt dt dSOC dSOC
              (6.25) 
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where the SOC change is determined by the maximum change of the surface 

concentration in the instantaneous time horizon, and k denotes their transformational 

coefficient. 

Likewise, the loading current applied to battery internal resistance is also considered as 

being determined by the maximum change of the surface concentration in the 

instantaneous time horizon, and therefore the power dissipation is given by 

2 2
res bat surf batP i R c R                  (6.26) 

where i denotes the loading current of the battery, ε the transformational coefficient 

between the loading current and the maximum change of surface concentration, and Rbat 

the battery internal resistance that refers to battery direct current resistance, which is the 

sum of the ohmic resistance and the polarization resistance [6.39]. Different battery 

internal resistance values may be used for charge and discharge, and are denoted by Rchg 

and Rdis, respectively. 

As mentioned in the previous section, the lithium ions de-intercalate from the negative 

electrode and intercalate into the positive electrode during battery discharge, and the 

opposite process occurs during battery charge. Thus, the surface concentration of the 

positive solid particle is applied for predicting battery discharge power capability, and the 

surface concentration of the negative solid particle is employed for forecasting battery 

charge power capability. Combining (6.19) to (6.26), the maximum values of 

instantaneous charge and discharge power capabilities can be expressed as 

2
, _mean

OCV
chg inst surf OCV surf s surf chg

dV
P c FV c c F c R

dSOC
                    (6.27) 

2
, _mean

OCV
dis inst surf OCV surf s surf dis

dV
P c FV c c F c R

dSOC
                   (6.28) 
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where a parameter with the superscript “+” (or “-”) denotes the parameter using in the 

positive (or negative) solid particle, Pchg,inst and Pdis,inst the instantaneous charge and 

discharge power capabilities, respectively, and λ the product of γ and k. 

Since the cell aging and ambient temperature have a significant impact on battery power 

capability, the cell aging and temperature dependencies of the parameters in (6.27) and 

(6.28) should be taken into account to achieve more promising results in battery power 

capability prediction. In [6.40], [6.41], the maximum possible concentration in the solid 

phase was expressed as being proportional to the capacity of the electrode. Thus, the 

permitted maximum surface concentration of the solid particle would also change with 

the cell aging level and is formulated by 

,maxsurfc Q                   (6.29) 

where Q denotes the battery capacity, and α and β are two fitting coefficients for the 

maximum surface concentration. 

Thus, the maximum change of surface concentration can be rewritten as 

,0surf surfc Q c                   (6.30) 

Combining (6.27), (6.28), and (6.30), the instantaneous available power capabilities at 

different cell aging levels can be calculated. 

Moreover, physiochemical properties of lithium-ion batteries are temperature dependent 

and obey the Arrhenius expression [6.42], [6.43]. The standard Arrhenius equation for 

computing a general physiochemical property value is defined as 

1 1
exp act

bas
bas

E

R T T

  
     

  
              (6.31) 
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where η denotes the physiochemical property value at ambient temperature T, ηbas the 

based physiochemical property value at the based temperature Tbas (namely 25 °C in the 

presented study), and Eact the activation energy. 

As expressed in (6.27) and (6.28), the instantaneous available power capabilities of the 

battery are mainly governed by the lithium ion diffusion from electrolyte phase to solid 

phase which is temperature dependent through the Arrhenius law, and consequently, the 

temperature dependent Power capability can be determined by the Arrhenius expression. 

Equation (6.31) is a critical application in determining the rate of electrochemical 

reactions, while the activation energy is theoretically regarded as a constant. However, in 

most of practical cases, the activation energy changes with variation in temperature [6.44]. 

With this in consideration, the activation energy of battery power may be temperature 

dependent, and a modified Arrhenius equation for computing battery instantaneous 

available power is given by 

 
_

1 1
expinst inst bas

bas

T
P P

R T T

   
   

  
           (6.32) 

where Pinst denotes the battery instantaneous available power (Pchg,inst for charge power 

and Pdis,inst for discharge power); Pinst_bas denotes the based instantaneous available power 

under the temperature of 25 °C; and ω and ρ are two fitting coefficients for the activation 

energy. It is noted that the based instantaneous charge and discharge power capabilities 

at the temperature of 25 °C are computed by using (6.27) and (6.28), respectively, and 

thereby combining with (6.32), the power capabilities at other temperatures can be 

obtained. 

6.3.3 Experimental Verification 

Since the battery direct current resistance is typically employed for describing the battery 

power capability, the battery charge and discharge power capabilities computed by using 

(6.5) are considered as the “real” values, i.e. the referenced power capabilities of the 

battery. In particular, the direct current resistance is determined by a current pulse and its 
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resulting voltage change between 1 s after the start of the current pulse, which is 

consistent with the instantaneous time horizon for the power prediction. In this work, 

LiMn2O4 batteries are used for the experiment and verification, and therefore, the 

maximum and minimum cell terminal voltages are set as 4.2 V and 3.0 V, respectively. 

The referenced charge and discharge power capabilities at different cell aging levels and 

ambient temperatures are depicted in Figs. 6.10, 6.12, 6.13, and 6.15 in the following part 

and are used for parameter fitting. 

A. Parameters fitting 

Due to its good performance in training model parameters, the Levenberg-Marquardt 

algorithm is applied to fit the parameters of (6.27), (6.28), (6.30) and (6.32) with the 

experiment data. The optimal parameters for the positive and negative solid particles are 

listed in Table 6.5. 

Table 6.5 The optimal parameters for the positive and negative solid particles. 

Parameter 
Positive solid particle 

coefficient 

Negative solid particle 

coefficient 

σ 1.854e-7 1.356e-7 

λ 1.075e-16 1.034e-15 

ε 2.0e-3 1.631e-3 

α 795.814 299.507 

β 14965.888 3585.242 

ω 54.670 63.184 

ρ -19107.892 -21800.752 

R2 0.995 0.996 
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Note that the coefficients of determination R2 are 0.995 and 0.996 for instantaneous 

discharge and charge power capabilities, respectively. It means that the proposed models 

can well match the real relationships between the instantaneous available power 

capabilities and surface lithium concentrations of solid particles. The predictive results of 

instantaneous available power capabilities are elaborated in the following parts. 

B. Instantaneous charge power prediction 

To investigate the effectiveness of the proposed approach during the process of battery 

aging, the battery cell with a rated capacity of 90 Ah degraded from 92 Ah to 69.5 Ah 

was used for the verification.  

 

Fig. 6.10 Battery instantaneous charge power prediction results at different aging levels, 

wherer (a) 92 Ah, (b) 87 Ah, (c) 82.5 Ah, (d) 78.5 Ah, (e) 74 Ah, and (f) 69.5 Ah. 

Fig. 6.10 shows the predictive results of battery instantaneous charge power at six various 

aging levels with the capacities of 92 Ah, 87 Ah, 82.5 Ah, 78.5 Ah, 74 Ah, and 69.5 Ah, 
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respectively. It can be observed that battery instantaneous available charge power 

decreases with the rising SOC, and the predictive power capabilities can track well with 

the referenced values for all the aging levels.  

For evaluating the predictive accuracy of the proposed approach at different cell aging 

levels, one of the most common measures of forecast error, MAPE is employed in the 

presented study and is governed by (6.8). The MAPEs of battery instantaneous charge 

power prediction at different aging levels are depicted in Fig. 6.11, where the maximum 

MAPE is about 5.4% at the capacity of 92 Ah. This relatively large error is attributed to 

the influence of few outliers in the prediction. However, promising results with the 

MAPEs of less than 3.5% can be obtained at other aging levels. It indicates that the 

proposed method can well handle different cell aging levels. 

 

Fig. 6.11 MAPEs of battery instantaneous charge power prediction at different aging 

levels. 

The MAPEs of battery instantaneous charge power prediction at different aging levels are 

depicted in Fig. 6.11, where the maximum MAPE is about 5.4% at the capacity of 92 Ah. 

This relatively large error is attributed to the influence of few outliers in the prediction. 

However, promising results with the MAPEs of less than 3.5% can be obtained at other 

aging levels. It indicates that the proposed method can well handle different cell aging 

levels. 
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To assess the adaptability of the proposed method at various temperatures, the battery 

was loaded at a commonly used temperature range from 10 °C to 40 °C with the interval 

of 5 °C for the verification. Fig. 6.12(a) compares battery instantaneous charge power 

prediction results with referenced data at various SOCs and ambient temperatures, 

showing that the forecasts are able to follow the tracks of the referenced values. It can 

also be seen that the ambient temperature has a significant impact on the power 

capabilities, which decrease with the declining temperature at some battery SOCs. 

Furthermore, the MAPEs between of the prediction results are presented in Fig. 6.12(b), 

where all the MAPEs are limited in a small error band of 3.0%, indicating the proposed 

method can work well and achieve desirable results at various ambient temperatures. 

 

Fig. 6.12 Battery instantaneous charge power prediction results at various temperatures, 

where (a) referenced and predictive power capabilities, and (b) MAPEs. 

C. Instantaneous discharge power prediction 
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Likewise, the battery operated at six different aging levels are used for evaluating the 

instantaneous discharge power prediction, and the predictive results are demonstrated in 

Fig. 6.13. It is clear that the battery instantaneous discharge power increases with the 

rising SOC which appears an opposite tendency in comparison with the instantaneous 

charge power, and the predictive power capabilities can effectively follow this trend and 

approach the referenced values at different aging levels. 

 

Fig. 6.13 Battery instantaneous discharge power prediction results at different aging 

levels, where (a) 92 Ah, (b) 87 Ah, (c) 82.5 Ah, (d) 78.5 Ah, (e) 74 Ah, and (f) 69.5 Ah. 
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Fig. 6.14 MAPEs of battery instantaneous discharge power prediction at different aging 

levels. 

Fig. 6.14 provides the MAPEs of battery instantaneous discharge power prediction results. 

It can be observed that at various aging levels, the MAPEs are within 2.50%, which 

highlights the robustness of the proposed method in forecasting battery instantaneous 

discharge power against varying battery aging. 
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Fig. 6.15 Battery instantaneous discharge power prediction results at various 

temperatures, where (a) referenced and predictive power capabilities, and (b) MAPEs. 

Additionally, the referenced and predictive results of battery instantaneous discharge 

power at different ambient temperatures are compared in Fig. 6.15(a), and their MAPEs 

are depicted in Fig. 6.15(b). From Fig. 6.15(a), it can be seen that as the ambient 

temperature rises, the magnitude of the discharge power capability increases at some 

battery SOCs. Moreover, the instantaneous discharge power forecasts can still tail after 

the referenced data. It is noteworthy that the MAPEs showed in Fig. 6.15(b) are 

successfully confined into a narrow error band of 2.0%, which validates the feasibility of 

the proposed method for the instantaneous discharge power prediction. 

According to the close agreement between the forecasts and experimental data, it can be 

summarized that the proposed method for both battery instantaneous available charge and 
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discharge power capabilities prediction can handle various cell aging levels and ambient 

temperatures quite well. 

6.4 Summary 

In this chapter, two novel methods based on the battery direct current resistance (DCR) 

model and electrochemical model, respectively, are proposed for predicting battery power 

capability. In the first method, a battery DCR model for quantitatively describing its 

temperature dependence is proposed and then employed for predicting battery power 

capability. The verification results show that the proposed approaches are capable of 

accurately forecasting battery DCRs and power capabilities under different temperatures, 

thus significantly reducing battery test work and the dimensions of the characteristic map 

as well as the memory-consuming. Different from the conventional methods for battery 

power capability prediction with macroscopically observed variables such as cell terminal 

voltage and current as constrained limits, the second method utilizes a physical limit, 

namely the lithium concentration limit of the solid particle as a constrain, thus providing 

a direct insight into electrochemical processes inside batteries. Quantitative relationships 

between battery surface lithium concentration and instantaneous charge and discharge 

power capabilities are deduced based on the analysis of battery Gibbs power and 

dissipation power of its internal resistance. The proposed approach is verified with 

various cell aging levels and ambient temperatures, and the experiments demonstrate the 

close agreement between the forecasts and experimental data. Most of the mean absolute 

percentage errors of the forecasts at various battery operation conditions are less than 

3.5%, which highlights superior accuracy and robustness of the proposed method. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

Motivated by the requirements of safe, reliable, and efficient utilization of lithium-ion 

batteries, this thesis developed novel techniques for battery states of interest estimation, 

which are capable of determining internal battery status accurately. The main work and 

contributions of this thesis can be summarized as follows: 

 A literature survey on the battery management system (BMS) development and 

estimation techniques of the state of charge (SOC), state of health (SOH), state of 

energy (SOE), and state of power (SOP) was presented. The focus for each 

estimation technique was not to detail its solution, but rather the elaboration of its 

key idea, strengths, and weaknesses as well as its possibilities of improvements. 

It is worthwhile to systemically summarize the states estimation techniques in the 

hope of providing some inspiration for BMS practitioners. 

 A novel high-fidelity electrochemical model was adopted to capture a battery’s 

dynamics, and was then simplified and discretized to improve its applicability. 

Based on the model, the co-estimation algorithm using trinal PI observers was 

proposed to estimate battery SOC, capacity, and resistance simultaneously. 

Furthermore, the moving-window ampere-hour counting technique and the 

iteration-approaching method were incorporated for enhancing the estimation 

precision. Experimental results showed that promising estimates can be achieved 

with small errors. 

 Another SOC and capacity estimation method was proposed using the incremental 

capacity analysis (ICA) and differential voltage analysis (DVA). The 

conventional cell terminal voltage based ICA/DVA approaches were transformed 
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to the SOC based ICA/DVA methods, which is beneficial in the analysis of the 

relationships between the incremental capacity (IC)/ differential voltage (DV) 

values and battery intrinsic states. Three feature points extracted from the IC/DV 

curves were effectively applied for battery SOC and capacity estimation. To 

improve the adaptability of the ICA/DVA based SOC estimation, extend Kalman 

filter and particle filter were served as a state observer in the proposed SOC-DV 

model-based estimation scheme, respectively. The robustness and feasibility of 

the proposed approaches were validated for different cells. 

 By analyzing the temperature, current rate and battery aging level dependencies 

of battery maximum available energy and SOE, a relationship between the SOE 

and SOC was quantified and exhibited good robustness against different 

influential factors. Therefore, with the credible SOC estimates, the SOE can be 

easily and accurately estimated by using the relationship. A moving-window 

energy-integral and average method were then incorporated for accurate battery 

maximum available energy estimation. The simplicity of the proposed SOE 

estimation method can effectively avoid heavy computation costs required by 

conventional model-based SOE estimation methods. 

 A battery direct current resistance (DCR) model for quantitatively describing its 

temperature dependence was proposed and implemented on the battery capability 

prediction. Based on the analysis of battery test data, the logarithmic DCRs could 

be approximately expressed as a set of quadratic equations for various ambient 

temperatures. Experimental results indicated that the proposed approaches can 

achieve high accuracy for both battery DCR and power capability predictions. 

 Another approach for battery power capability prediction was derived from the 

perspective of physical mechanism-based reactions inside the battery using a 

physical limit, namely lithium concentration limit, which is different from 

conventional power prediction methods using macroscopically observed variables 

such as the cell terminal voltage and current as constrained limits. Quantitative 
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relationships between battery surface lithium concentration and instantaneous 

charge and discharge power capabilities were proposed based on the analysis of 

battery Gibbs power and dissipation power of its internal resistance. The 

experiments demonstrated the close agreement between the forecasts and 

experimental data at various cell aging levels and ambient temperature. 

The proposed modelling and state estimation methods of lithium-ion batteries in this 

thesis are pretty general, and therefore are promising to provide valuable insight to the 

investigations of other types of batteries with various chemistries. 

7.2 Future Works 

Based on the research progress of this thesis, the potential research work that requires 

further investigations can be described as follows: 

 The physics-based electrochemical model has the ability to describe the dynamic 

behaviors inside the battery. The knowledge of these behaviors can help determine 

the real status of the battery during battery charging/discharging processes. It has 

the potential to develop electrochemical model-based fast charging strategies 

while maintaining a high healthy level of the battery. 

 The primary concern comes from the computation burden of the battery 

electrochemical model-based methods due to the complicated mathematical 

structure of the model, although some efforts have been made for the model 

reduction. It seems unlikely to implement the electrochemical model associated 

with estimation or control algorithms in the on-board BMSs with limited 

computational capabilities. One promising solution is to employ the cloud-based 

BMS with sufficient resources for processing the computing task. 

 The developed estimation algorithms focus on an individual cell level. However, 

as one single battery cell has limited capacity and voltage, it normally needs up to 

hundreds, even thousands of cells connected in series and parallel in a battery pack 
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for electric vehicles and energy storage systems to provide sufficient power and 

energy. Thus, the extension of the proposed methods from a cell level to a pack 

level would be meaningful for applications, especially under the circumstances of 

lacking efficient balancing techniques. 

 Despite the development of battery state estimation techniques, other features of 

BMSs such as thermal management and balancing are also crucial for improving 

the performance of battery utilization. Since temperature has a significant impact 

on battery characteristics, it is of the essence to develop an efficient thermal 

management system in order to confine batteries to operate within a desirable 

temperature range. The battery balancing is indispensable to mitigate the 

inconsistencies among battery cells for improving the capacity of the battery pack 

and thus prolonging its service life. Some research work on battery balancing has 

been done during this thesis project, which is presented in Appendixes B and C, 

and needs further investigations. 

 

 



 

215 

APPENDIX A 

DV BASED SOC ESTIMATION ALGORITHMS 

USING EKF AND PF 

A.1 SOC Estimation with EKF 

The basic steps of the extended Kalman filter (EKF) algorithm include initialization and 

update of the prediction and measurement. The detailed implementation processes of the 

differential voltage (DV) based state of charge (SOC) estimation algorithm using EKF 

are presented as follows. 

(1) Initialization: For k = 0, set, 

a) Initial estimated state: *
0|0x . 

b) Initial error covariance: P0|0. 

c) The covariance of the process noise: Q. 

d) The covariance of the measurement noise: R. 

(2) Prediction update: For k = 1, 2, …, compute, 

a) Update the prior estimated state: 

 * *
| 1 1| 1,k k k k kx f x i                (A.1) 

where *
| 1k kx   and *

1| 1k kx    denote the priori estimated state at the k-th time instant 

and the posterior estimated state at the (k-1)-th time instant, respectively. 

b) Update the prior error covariance: 

| 1 1 1| 1 1
T

k k k k k k kP F P F w                  (A.2) 
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where Pk|k-1 and Pk-1|k-1 denote the prior error covariance of the state estimation at 

the k-th time instant and the posterior error covariance of the state estimation at 

the (k-1)-th time instant, respectively, and Fk-1 is defined as the state transition 

Jacobian matrices governed by 

*
1| 1

1=
k k

k
x

f
F

x
 






               (A.3) 

(3) Measurement update: For k = 1, 2, …, compute, 

a) Calculate innovation covariance: 

| 1
T

k k k k k kS H P H v               (A.4) 

where Hk denotes the observation Jacobians matrices given by 

*
| 1

=
k k

k
x

h
H

x





               (A.5) 

b) Calculate the Kalman gain: 

1
| 1k k k k kK H P S 
               (A.6) 

c) Calculate error innovation: 

* *
k k ke y y                 (A.7) 

d) Update the posterior error covariance: 

 | | 11k k k k k kP K H P                (A.8) 

e) Update the posterior estimated state: 

* * *
| | 1k k k k k kx x K e                (A.9) 
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A.2 SOC Estimation with PF 

The primary steps of particle filter (PF) algorithm also include initialization and update 

of the prediction and measurement, which are based on three fundamental operations 

involving particle propagation, importance weight computation, and resampling. Detailed 

implementation processes of the DV based SOC estimation algorithm using PF are 

presented as follows. 

(1) Initialization: For k = 0, set, 

a) The number of created particles: Np. 

b) The covariance of the process noise: Q. 

c) The covariance of the measurement noise: R. 

d) Initial values of all particles: *
0, jx  (j = 1, 2, …, Np). 

e) Initial importance weights for all particles: 

*
0, 1 /j pw N                 (A.10) 

(2) Prediction update: For k = 1, 2, …, compute, 

Update the values of particles: 

 * *
, 1, ,k j k j k kx f x i w                (A.11) 

where *
,k jx  denotes the value of the j-th particle at the k-th time instant. 

(3) Measurement update: For k = 1, 2, …, compute, 

a) Update error innovation: 

* *
, ,k j k k je y y                 (A.12) 
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where *
,k je  and *

,k jy  denote the error innovation and calculation value of the j-

th particle at the k-th time instant, respectively, and yk is the measurement value 

at the k-th time instant. 

b) Calculate the likelihood for each particle 

   2*
, ,1 / 2 exp 2k j k jL R e R     

          (A.13) 

where Lk,j denotes the likelihood of the j-th particle at the k-th time instant. 

c) Calculate the importance weight for each particle:  

*
, 1, ,k j k j k jiw iw L                (A.14) 

where iwk,j denotes the importance weight of the j-th particle at the k-th time 

instant, and *
1,k jiw   denotes the normalized importance weight of the j-th particle 

at the (k-1)-th time instant. 

d) Normalize the importance weights: 

*
, , ,

1

pN

k j k j k j
j

iw iw iw


 
   

 
              (A.15) 

e) Evaluate the effective number of particles Neff to judge the necessity of the 

resampling by 

 
1

2*
,

1

pN

eff k j
j

N iw





 
   
 
               (A.16) 

The typical resampling threshold is 0.85Np [A.1]. If Neff ≥ 0.85Np, it is not 

necessary to resample the particles. Otherwise, the program executes the 

following step (f). 
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f) Resample the particles with a systematic resampling technique. 

The core idea of systematic resampling is to generate Np random numbers, u, with 

exactly the same interval and use them to select particles. The random numbers 

are drawn by 

  1 0,1 pu U N :  with      1 1 pu j u j N          (A.17) 

where j = 2, 3, …, Np. 

Compared with other basic resampling techniques such as multinomial 

resampling, stratified resampling and residual resampling, the systematic 

resampling method is more favorable in terms of both resampling quality and 

computational efficiency [A.1], [A.2], and thus employed in the present study. 

Pseudocodes of the systematic resampling technique are shown in Table A.1, 

where sum_iw represents the cumulative sum of the importance weight of the 

particles; x and x_new denote the previous and new particles, respectively. The 

cumulative sum of the importance weight of the particles is applied to compare 

with the generated random number to select the top particle [A.2]. 

g) Compute the estimated state: 

* * *
, ,

1

pN

k k j k j
j

x x iw


                 (A.18) 

 

 



DV Based SOC Estimation Algorithms Using EKF and PF 

220 

Table A.1. Pseudocodes of the systematic resampling technique. 

Pseudocodes: Systematic resampling 

u = linspace(0, 1-1/Np, Np) + rand/Np 

for j = 1 : Np 

sum_iw = 0 

for i = 1 : Np 

sum_iw = sum_iw + iw(i) 

if sum_iw >= u(j) 

x_new(j) = x(i) 

break 

end 

end 

end 
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APPENDIX B 

A COMPARATIVE STUDY OF BATTERY 

BALANCING STRATEGIES FOR DIFFERENT 

BATTERY OPERATION PROCESSES 

B.1 Introduction 

As one single battery cell has limited capacity and voltage, it normally needs up to 

hundreds, even thousands of single cells connected in series and parallel for electrified 

vehicles and energy storage systems to provide sufficient power and energy. In such a 

battery pack, inevitable cell inconsistencies are concerned due to two categories: the 

inconsistent manufacturing process such as different internal impedance and self-

discharge rate, and the inhomogeneous operating environment such as various ambient 

temperature [B.1], [B.2]. To improve cell consistencies, increase battery pack capacity 

and prolong battery pack service life, battery cell balancing techniques are essentially 

required in battery management systems (BMSs). 

Among the literature, most papers focus on battery balancing circuit topologies [B.2]-

[B.7] and balancing algorithms [B.1], [B.5]-[B.14]. The battery balancing circuit 

topologies reported in [B.2]-[B.7] mainly include resistor bleeding (passive balance), cell 

to cell, cell to pack, pack to cell and cell to pack to cell, and their advantages and 

disadvantages presented in detail. According to the literature [1, 5-14], the battery 

balancing algorithms can be mainly divided into two categories: voltage-based balancing 

algorithms and SOC-based balancing algorithms. The voltage-based balancing algorithm 

which targets the consistent battery cell terminal voltages is widely used in research and 

industry [5-10]. The SOC-based balancing algorithm which targets the consistent battery 

cell SOCs requires accurate cell SOC estimation [B.1], [B.10]-[B.14]. While their pros 

A substantial proportion of this appendix has been published as an article [B.16] in the proceedings of 2016

IEEE Transportation Electrification Conference and Expo (ITEC). 
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and cons are discussed in the literature, unfortunately, there are few studies that compare 

these balancing circuits incorporating the balancing algorithms in a comprehensive and 

systematical manner. 

Regardless of balancing circuits and algorithms, when to perform balancing plays a vital 

role in balancing performance. Performing balancing during different battery operation 

processes, such as constant current charging processes, dynamic current discharging 

processes and rest time, may lead to various balancing effects. Therefore, it is essential to 

carry out a comparative study of battery balancing strategies incorporating balancing 

circuits and algorithms for different battery operation processes. 

B.2 Battery Balancing Strategies 

According to the balancing current used for battery cell charging or discharging, we 

classify battery balancing circuits into four categories: passive discharge balance, active 

discharge balance, charge balance, and charge-discharge (namely bidirectional) balance. 

Regardless of balancing circuits, effective balancing algorithms are highly required to 

maximize balancing effects. It has been reported that the voltage-based balancing 

algorithm cannot achieve desirable balancing results because a small voltage variation 

may lead to a large capacity inconsistency, especially for some kinds of batteries with a 

flat charge/discharge voltage plateau [B.1]. The SOC-based algorithm can really reflect 

the battery capacity level and therefore it was employed for this study. Combining the 

classified circuit categories with the SOC-based balancing algorithm, we can obtain four 

balancing strategies: SOC-based passive discharge balance (PDB), SOC-based active 

discharge balance (ADB), SOC-based charge balance (CB), and SOC-based charge-

discharge balance (CDB). 

B.3 Balancing Results and Discussions 

In order to investigate the performance of different balancing strategies applied for 

various battery operation processes, eight lithium-ion cell models connected in series with 
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different available capacities and SOCs shown in Fig. B.1 were used for balancing 

experimental simulation. The charge/discharge balance current was set to 4 A while the 

balance referenced SOC was set to the average SOC with a band of +/-1%. The efficiency 

of the balancer was set to 85%, which means that 15% of balance energy will be 

dissipative during balancing. 

 

Fig. B.1 Initial cell remaining capacities and remaining charging capacity. 

 

Fig. B.2 Battery operation processes. 

The battery operation processes usually include charge process, rest time after charge, 

discharge process, and rest time after discharge. To simulate the charge and discharge 

processes of batteries used in electric vehicles, a constant current was used for battery 

charging and dynamic stress test (DST) [15] profiles were used for battery discharging, 

as shown in Fig. B.2. Each battery operation cycle began with a constant current at C/3 

to charge to the battery pack until one of the battery cells reached the upper limit voltage 



A Comparative Study of Battery Balancing Strategies for Different Battery Operation Processes 

224 

of 4.2 V. Then there was a rest for 1 h followed by DST profiles to discharge the battery 

pack until one of the battery cells reached the lower limit voltage 3 V. Subsequently, it 

followed a rest for 1 h and then repeated the operation cycle. The battery pack maximum 

available capacity was calculated by ampere-hour counting during the whole discharge 

process. Five battery operation cycles were used for evaluating the balancing results 

including battery pack maximum available capacity, SOC variances at the end of 

discharge (EOD) and the end of charge (EOC). Without balance, the battery pack 

maximum available capacity is 65.06 Ah which is less than the minimum cell capacity 

(cell 2 charged in constant current regime) of 66.63 Ah, while the maximum SOC 

variance at EOC is 13.05% and the maximum SOC variance at EOD is 18.8%. The mean 

battery cell capacity (charged in constant current regime) is 77.16 Ah. 

When balancing is performed during battery discharge processes, the balancing results 

are shown in Fig. B.3. In Fig. B.3(a), the ADB, CB and CDB strategies are able to increase 

the battery pack capacity, and the final battery pack capacities are a little larger than the 

capacity without balance. However, the balanced pack capacities were still less than the 

minimum cell capacity. It is noted that the PDB method caused a counterproductive 

balancing result of the battery pack capacity being less than the value without balance. 

This is because the PDB method is an energy dissipation method and the dissipative 

energy could not supply from elsewhere. It can be seen that different balancing strategies 

were able to make an improvement in decreasing SOC variances at EOD compared with 

the result without balance as shown in Fig. B.3(b). On the contrary, the SOC variances at 

EOC were increased, which are larger than the value without balance as shown in Fig. 

B.3(c). 
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Fig. B.3 Battery balancing results when balancing is performed during battery discharge 

processes, where (a) battery pack capacity, (b) SOC variance at EOD and (c) SOC 

variance at EOC. 

Fig. B.4 shows the balancing results when balancing is performed during battery charge 

processes. In Fig. B.4(a), four balancing strategies were able to make an improvement on 

the battery pack capacities, which are about equal to 67.00 Ah. As shown in Fig. B.4(c), 

the SOC variances at EOC were shortened to a small level compared with the value 

without balance. However, SOC variances at EOD presented inconsistent change. For the 

PDB, ADB and CB strategies, there was a little decrease on the SOC variances at EOD. 

But for the CDB strategy, the SOC variance at EOD was increased to be larger than the 

value without balance. 
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Fig. B.4 Battery balancing results when balancing is performed during battery charge 

processes, where (a) battery pack capacity, (b) SOC variance at EOD and (c) SOC 

variance at EOC. 

When balancing is performed during battery rest time after discharge, the battery 

balancing results are shown in Fig. B.5. The battery pack capacities for four different 

balancing strategies depicted in Fig. B.5(a) showed a shade of increment in comparison 

with the value without balance. The SOC variances at EOD appeared as a gradual decline 

trend as shown in Fig. B.5(b) and in the final cycle, the SOC variances can be limited to 

a small value. However, the SOC variances at EOC shown in Fig. B.5(c) gradually rose 

with the cycle time and finally achieved a high level. Moreover, the balancing results of 
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the fifth cycle shown in Fig. B.5 are similar to the results when balancing is performed 

during battery discharge processes as shown in Fig. B.3. This is because the four above-

mentioned balancing strategies are able to limit the SOC variance at EOD in a balance 

referenced SOC band when balancing is performed during battery discharge process and 

rest time after discharge. However, it would have a counterproductive effect on the 

variance at EOC and increase the value of the variance at EOC. 

 

Fig. B.5 Battery balancing results when balancing is performed during battery rest time 

after discharge, where (a) battery pack capacity, (b) SOC variance at EOD and (c) SOC 

variance at EOC. 
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Fig. B.6 Battery balancing results when balancing performed during battery rest time 

after charge, where (a) battery pack capacity, (b) SOC variance at EOD and (c) SOC 

variance at EOC. 

The balancing results when balancing is performed during battery rest time after charge 

are drawn in Fig. B.6, where battery pack maximum available capacities of the final cycle 

can be approximately increased to 66.86 Ah which is a little larger than the battery pack 

capacity value without balance. SOC variances at EOD and EOC shown in Fig. B.6(b) 

and B.6(c), respectively, presented exactly opposite results to the balancing results when 

balancing is performed during battery rest time after charge shown in Fig. B.5(b) and Fig. 
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B.5(c). It can be seen that in Fig. B.6(b), the SOC variances at EOD dropped gradually 

and reached a small level. However, the SOC variances at EOD finally increased to 

become larger than the value without balance. 

From the above results, it can be summarized that when balancing performed during one 

kind of battery charge process, rest time after charge, and rest time after discharge, four 

above-mentioned balancing strategies are able to increase the battery pack capacity to be 

approximately equal to the minimum cell capacity. During the discharge processes, the 

PDB method would make a counterproductive balance result which decreases the battery 

pack capacity, while other balancing strategies can make an improvement in the battery 

pack capacity but cannot reach the minimum cell capacity.  

In addition to comparing how much battery pack capacity can be increased, other 

important factors are SOC variances at EOC and EOD. It would decrease the SOC 

variance at EOD when balancing is performed during battery discharge processes and rest 

time after discharge, and therefore the battery pack is able to discharge more capacity. On 

the contrary, the SOC variance at EOC would decrease to a small value when balancing 

is performed during battery charge processes and rest time after charge, and therefore the 

battery pack can be charged to a greater capacity. The above balanced battery pack 

capacity can be maximally increased to close to the minimum cell capacity, but it is still 

much less than the mean battery cell capacity. To maximally utilize the battery pack 

capacity, namely the mean battery cell capacity, it should fully charge and discharge each 

cell of the battery pack. In other words, the SOC variances at both EOC and EOD should 

be maximally decreased to a small level, and therefore it would maximally increase the 

battery pack maximum available capacity. Thus, the battery balancing should be 

performed during both battery charge and discharge processes. 

Fig. B.7 shows the battery balancing results when balancing is performed during both 

battery charge and discharge processes. In Fig. B.7(a), the ADB, CB and CDB strategies 

are able to increase the battery pack capacity to a high value which is more than the 

minimum cell capacity. Especially in regards to the CDB strategy, the battery pack 
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capacity can be increased to 75.30 Ah, which improves 15.74% compared with the 

capacity without balance (65.05 Ah) and is very close to the mean battery cell capacity. 

 

Fig. B.7 Battery balancing results when balancing performed during both battery charge 

and discharge processes, where (a) battery pack capacity, (b) SOC variance at EOD and 

(c) SOC variance at EOC. 

It is noted that for the CDB strategy, SOC variances at EOC and EOD were able to be 

significantly dropped to a small level, and therefore the battery capacity of the CDB 

strategy is larger than other strategies. As for the PDB strategy, although SOC variances 
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at both EOD and EOC can be declined, there was a large amount of energy consumption 

due to resistor bleeding during the battery discharge processes, which caused the battery 

pack capacity decrement. 

Summary 

Battery balancing techniques are essentially required in BMSs for increasing battery pack 

capacity and prolonging its service life. Regardless of balancing circuits and algorithms, 

when to perform balancing plays a vital role in balancing performance. Performing 

balancing during different battery operation processes would lead to various balancing 

effects. In this work, four battery balancing strategies including PDB, ADB, CB and CDB 

were developed from the state-of-the-art balancing circuits and balancing algorithms for 

simulation experiments. During one single kind of battery charge processes, rest time 

after charge and rest time after discharge, the four above-mentioned balancing strategies 

can increase the battery pack capacity to be close to the minimum cell capacity. During 

the battery discharge processes, the PDB strategy would make a counterproductive 

balance result which decreases the battery pack capacity, while other balancing strategies 

can make an improvement in the battery pack capacity but cannot reach the minimum cell 

capacity. To maximally utilize the battery pack capacity, the SOC variances at both EOC 

and EOD should be maximally decreased to a small value, and therefore it would 

maximally increase the battery pack capacity. Performing balancing during both battery 

charge and discharge processes with the ADB, CB and CDB strategies can effectively 

increase the battery pack capacity to a higher level, which can be approximately close to 

the mean cell capacity. Actual battery balancing experiments and energy consumption 

analysis during battery balancing will be investigated in future work. 
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APPENDIX C 

MODEL PREDICTIVE CONTROL BASED 

BALANCING STRATEGY FOR SERIES-

CONNECTED BATTERY PACKS 

C.1 Introduction 

Due to the non-uniform manufacturing processes and inhomogeneous operating 

environment, inconsistent battery cell internal conditions are inevitable in a series-

connected lithium-ion battery pack, which lead to the insufficient use of the battery pack 

and even cause safety issues [C.1], [C.2]. Therefore, renewable energy storage systems 

and electric vehicles with lithium-ion batteries significantly require balancing techniques 

for making the full use of battery packs and improving the safety of battery operations. 

Most of the reported balancing techniques focus on the research of balancing circuits, and 

remarkable results have been achieved on improving the performance of balancing 

circuits [C.3]-[C.10]. Except for balancing circuits, the balancing strategy is also essential 

in determining the balancing performance. However, compared with balancing circuits, 

there are fewer studies reporting the research on the balancing strategy. It is well 

recognized that the voltage based balancing strategies are not applicable for some kinds 

of batteries with flat voltage plateau [C.1], [C.10]. Alternatively, the state of charge (SOC) 

based balancing strategies targeted at converging each cell’s SOC to a band of their 

average value, which can achieve desirable balancing results in [C.2], [C.9]-[C.11], 

especially for fresh battery packs with relatively uniform cell capacities. 

However, the balancing strategy for aged battery packs is more challenging than that for 

new battery packs. It is because that aged battery packs usually suffer from not only non-

A substantial proportion of this appendix has been published as an article [C.13] in the proceedings of 2017 

19th European Conference on Power Electronics and Applications, EPE’17 ECCE Europe. 
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uniform cell SOCs and voltages but also non-uniform cell capacities. This results in over-

equalization which means that a cell that was supposed to be charged (discharged) 

balancing was in fact discharged (charged) for a while by its equalizer [C.1] during the 

battery balancing processes, thus increasing balancing energy consumption. Accordingly, 

it is indispensable to develop balancing strategies for aged battery packs. 

In this work, a novel balancing strategy based on the model predictive control (MPC) is 

proposed for series-connected battery packs, especially for aged battery packs. Aiming at 

eliminating over-equalization and fully charging a battery pack, the required average 

balancing current and the predicted balancing current for each cell can be computed in 

advance. A cost function related to these two currents is employed to select the optimal 

operation mode for each equalizer. The simulation results of an aged battery pack with 

eight cells validate the effectiveness of the proposed method. 

C.2 Battery Balancing System 

Bidirectional equalizers can concurrently charge and discharge individual cells and have 

been proved to be more efficient in improving battery pack capacity than other types of 

equalizers in [C.10]. Therefore, bidirectional equalizers are deployed to each cell, and the 

balancing system is shown in Fig. C.1. 

In the balancing system, each cell equalizer can be operated in three modes including cell 

charging balancing mode, cell discharging balancing mode, and idle mode by controlling 

the driving signals of the primary and secondary switches. The cell charging balancing 

mode happens when the equalizer transfers the pack energy to the cell, while the cell 

discharging balancing mode operates when the equalizer transfers the cell energy to the 

pack. The idle mode means that the equalizer is currently not in operation. The switch 

signals are generated by balancing strategies, which are elaborated in the following 

sections. 
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Fig. C.1 Schematic of battery balancing system. 

C.3 Battery Balancing Strategies 

C.3.1 Conventional average SOC strategy 

The working principle of the conventional average SOC balancing strategy is to compare 

the SOC of each cell with the average SOC of the battery pack. A positive balancing 

threshold and a negative value are usually applied to the average SOC to compose a 

balancing band. If a cell’s SOC is higher than the balancing band, the cell needs to be 

discharged until the SOC falls within the balancing band. On the contrary, if a cell’s SOC 

is lower than the balancing band, the cell needs charging balancing until the SOC 

increases to the balancing band. 

Since cell capacities are usually non-uniform in aged battery packs, a cell with a low 

capacity tends to have a higher SOC when the battery pack is near fully charged state, but 
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it has a lower SOC when the pack is near fully discharged state. With the average SOC 

strategy, over-equalization may occur during battery balancing processes due to the non-

uniform cell capacities, thus increasing balancing energy consumption. 

C.3.2 Proposed MPC based strategy 

To eliminate over-equalization during battery balancing process, an MPC based 

balancing strategy is proposed in this study. The remaining charging capacity of each cell 

is determined by 

      _ 1Cell remch CellQ i SOC i Q i             (C.1) 

where QCell_remch(i) denotes the remaining charging capacity of the ith cell, SOC(i) the 

SOC value of the ith cell, and QCell(i) the actual capacity of the ith cell when it is fully 

charged. 

The average remaining charging capacity of the battery string is governed by 

 _ _
1

N

Ave remch Cell remch
i

Q Q i N


 
  
 
            (C.2) 

where QAve_remch denotes the average remaining charging capacity of the battery pack, and 

N represents the number of the series-connected cells. 

It is worth mentioning that the balancing system could not offer energy to alleviate the 

average remaining charging capacity during balancing processes. The average remaining 

charging capacity is gradually reduced by external charging current before one of the cells 

reaches to its upper limited voltage. But during the battery charging process, the balancing 

system should have the ability to redistribute the imbalance energy for achieving the 

objective of fully charging the battery pack. 

Thus, for fully charging the battery pack, the charging time can be approximately 

computed by 
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_Ave remch cht Q I                (C.3) 

where t denotes the battery charging time, and Ich denotes the charging current of the 

battery pack. 

During the battery charging process, the average balancing current (positive for charging 

and negative for discharging) for each cell is expected as 

    _ _ _bc ref Cell remch Ave remchI i Q i Q t            (C.4) 

where Ibc_ref(i) denotes the average balancing current of the ith cell during the battery 

charging process, which is considered as the referenced balancing current in the proposed 

MPC based strategy. 

Three operation modes of cell equalizers including cell charging balancing mode, cell 

discharging balancing mode, and idle mode can be expressed as (C.5) to (C.7), 

respectively. 

     1 0ch disS i S i                 (C.5) 

     0 1ch disS i S i                 (C.6) 

     0 0ch disS i S i                 (C.7) 

where Sch(i) and Sdis(i) denote the states of the charging and discharging modes of the ith 

cell equalizer, respectively. It is noted that Sch(i) and Sdis(i) cannot be equal to 1 

simultaneously due to the fact that each cell equalizer cannot be concurrently operated in 

both the charging and discharging modes. 

In this work, the operation efficiency of each equalizer is assumed to be of the same value. 

If one cell equalizer is in the charging balancing mode, the absorbed or drawn balancing 

current of each cell can be described as 
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where UCell(i) (i = 1, 2, …, N) denotes the terminal voltage of the ith cell, UPack the total 

voltage of the series-connected cells, ηch the charging balancing efficiency, and Ie_ch the 

cell charging balancing current of each equalizer. 

Likewise, if one cell equalizer is in the discharging balancing mode, the absorbed or 

drawn balancing current of each cell is determined by 
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1
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    (C.9) 

where ηdis denotes the discharging balancing efficiency and Ie_dis represents the cell 

discharging balancing current of each equalizer. 

The states of the charging and discharging modes of each cell equalizer can be written as 

      T
1 2dis dis disS S S N   disS L            (C.10) 

      T
1 2ch ch chS S S N   chS L            (C.11) 

where Sdis and Sch denote the states matrices of charging and discharging modes of the 

equalizers, respectively. 

Then, the predictive balancing current for each cell is the sum value of charging balancing 

currents and discharging balancing currents, which can be governed by 
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      T

_ _ _1 2bc pre bc pre bc preI I I N    bc_pre bc_ch ch bc_dis disI I S I SL     (C.12) 

where Ibc_pre(i) denotes the predictive balancing current of the ith cell. 

To control the cell balancing current, the cost function J is defined as 

    2

_ _
1

N

bc pre bc ref
i

J I i I i


               (C.13) 

Since the state combinations in the matrices Sdis and Sch can be varied, there are different 

predictive balancing currents can be obtained according to (C.12), thus leading to 

different cost function values in (C.13). Among the cost function values, the minimum 

value means that its predictive balancing currents are overall the closest ones to the 

referenced balancing currents, and therefore its state matrices Sdis and Sch are employed 

for controlling the operation modes of cell equalizers. 

C.4 Verifications and Discussions 

Since the techniques of SOC estimation and battery modeling are not the emphases of 

this paper, the presented work excludes discussions of these techniques and employs the 

effective approaches reported in our previous work [C.12]. To investigate the 

effectiveness of the proposed MPC based balancing strategy, eight simulated cells were 

randomly set with non-uniform initial SOCs and capacities as shown in Fig. C.2. 

 

Fig. C.2 Eight simulated cells with non-uniform initial SOCs and capacities. 
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Since the presented balancing strategies aim at fully charging the battery pack, the 

balancing strategies are validated during battery charging processes. Figs. C.3(a) and 

C.3(b) demonstrate balancing results with the average SOC and MPC based strategies, 

respectively. As can be observed, both the average SOC and MPC based balancing 

strategies can finally eliminate the SOC imbalance, and each cell can be charged to a high 

SOC level. The SOC values of the cells with the average SOC strategy shown in Fig. 

C.3(a) converge to its balancing band in about 3800 s, which is much faster than that with 

the MPC based strategy. In Fig. C.3(b), the MPC based balancing strategy can converge 

the cell SOCs to relatively uniform values at the end of charging (EOC). 

 

Fig. C.3 Balancing results with (a) the average SOC strategy and (b) the MPC based 

strategy. 

During battery charging and balancing processes, voltage curves of the eight cells are 

shown in Fig. C.4. At the beginning of battery charging process, the maximum voltage 
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variance among the eight cells is 130.7 mV. However, the voltage imbalance can be 

alleviated with these two balancing strategies. As can be seen in Fig. C.4(a), the average 

SOC balancing strategy can rapidly converge the cell voltages, and the maximum voltage 

variance can be reduced to 19.1 mV at the EOC. By observing Fig. C.4(b), although the 

cell voltage convergence rate with the MPC based balancing strategy is slower than that 

with the average SOC strategy, the maximum voltage variance can also finally reduce to 

a small value, namely12.2 mV. 

 

Fig. C.4 Voltage curves of the eight cells during charging and balancing processes with 

(a) the average SOC strategy and (b) the MPC based strategy. 

To demonstrate the operation modes of cell equalizers during battery balancing processes, 

the cell charging balancing mode is represented by 1; the cell discharging balancing mode 

is represented by -1; and the idle mode is represented by 0. Figs. C.5 and C.6 demonstrate 

the operation modes of Cell #2 and Cell #8 equalizers with the average SOC and MPC 

based balancing strategies, respectively. 
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Fig. C.5 The operation modes of cell equalizers with the average SOC strategy, where 

(a) Cell #2 and (b) Cell #8. 

 

Fig. C.6 The operation modes of cell equalizers with the MPC based strategy, where (a) 

Cell #2 and (b) Cell #8. 

Over-equalization can be observed in both Figs. C.5(a) and C.5(b). In Fig. C.5(a), Cell #2 

is charged by its equalizer from the beginning of charging to about 2900 s. After a short 
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idle rest, the equalizer mainly discharges the cell until the EOC. In contrast to Cell #2, 

Cell #8 is discharged by its equalizer at the first 3100 s, followed by mostly charging 

balancing shown in Fig. C.5(b). As can be seen from Fig. C.6(a), with the MPC based 

strategy, Cell #2 equalizer operates in idle and discharging balancing operation modes, 

which means that there is no over-equalization occurs during the whole balancing 

processes. Likewise, there are only idle and charging balancing operation modes in Cell 

#8 equalizer as depicted in Fig. C.6(b), and no over-equalization can be observed. 

The balancing energy consumption can be computed during balancing processes, and 

with the average SOC and MPC based strategies, they are 1.001×105 J and 5.275×104 J, 

respectively. In comparison with the conventional average SOC strategy, the proposed 

MPC based strategy can effectively avoid over-equalization during balancing process, 

thus achieving less balancing energy consumption. 

Summary 

Compared with new battery packs, aged battery packs usually suffer from not only non-

uniform cell SOCs and voltages but also non-uniform cell capacities, thus leading to more 

challenging in balancing strategies. A novel balancing strategy based on the MPC was 

proposed in this paper for series-connected lithium-ion battery packs, especially for aged 

battery packs. In the presented work, the balancing system aims at fully charging a battery 

pack during battery charging process. Therefore, the imbalance cell capacities need to be 

redistributed, and the required average balancing currents for each cell can be determined 

by their SOC and capacity values. Bidirectional cell equalizers were employed in the 

balancing system, and their operation modes can be predicted in advance as well as the 

balancing currents for each cell. The minimum cost function value between the required 

average balancing currents and the predicted balancing currents was applied for 

controlling operation modes of cell equalizers. In comparison with the balancing results 

of conventional average SOC strategy, the proposed MPC based strategy can converge 

SOCs of the cells and their voltage values to high and relatively uniform levels at the 

EOC while reducing balancing energy consumption. The results also demonstrate that the 
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MPC based strategy can effectively avoid over-equalization. However, the algorithm of 

the MPC based balancing strategy is more complicated than that of the average SOC 

strategy, which means more computational efforts are required in the MPC based strategy. 

The main tasks for reducing the computational cost of the MPC based strategy and 

implementing it in embedded battery management systems constitute our future work. 
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