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Underground sewer systems are an important national infrastructure requirement of any

country. In most cities, they are old and have been exposed to significant levels of microbial

induced concrete corrosion, which is widely regarded as a serious global problem as they

pose threats to public health and cause economic repercussions to water utilities. In

order to maintain those underground assets efficaciously, it is pivotal for water utilities to

estimate the amount of intact concrete left to rebar by predicting the rate of corrosion

throughout the sewer network. Existing predictive models incorporate concrete surface

temperature and surface moisture conditions as observations. However, researchers and

water utilities often use indirect measures like ambient temperature and humidity data as

inputs to their models. This is primarily due to unavailability of proven technologies in the

state-of-the-art systems and sensing limitations predominantly attributed to the corrosive

nature of the sewer environment. Hence, the focus of this dissertation is to provide reliable

measures of surface temperature and moisture conditions by developing robust sensor

technologies that can facilitate measurements under the hostile sewer conditions.

This dissertation encompasses three main parts:

In the first part, a robust sensor technology using an infrared radiometer sensor for

quantifying surface temperature dynamics inside concrete sewer pipes is proposed. In

this regard, the sensor was comprehensively evaluated in the laboratory conditions to
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study the effects of optical window fogging, incident angle, limit of detection, distance,

lighting conditions, reproducibility, humidity and increased surface temperature

conditions. Thereafter, the sensor was deployed in sewer pipe for real-time continuous

measurements. The field study revealed the suitability of the proposed sensor technology

for non-contact surface temperature measurements under the hostile sewer environment.

Further, the accuracy of the sensor measurements was improved by calibrating the sensor

with emissivity coefficient of the sewer concrete.

In the second part of the dissertation, a non-invasive sensing technique to determine the

concrete surface moisture conditions is proposed. In this context, laboratory experiments

were conducted to study the behaviour of concrete moisture to electrical resistance

variations and different pH concentrations. This study led to utilize the Wenner array

method to determine the surface moisture conditions based on concrete surface electrical

resistivity measurements. Then, the sensor suite was deployed in concrete sewer pipe to

measure the surface resistivity for about three months. Upon on-site calibration, surface

moisture conditions were determined and thereof, the field campaign exhibited the

feasibility of the proposed sensing method. Further investigations were conducted to

locate the reinforcing bar embedded in concrete for optimal sensor installation in order

to minimize the effects of reinforcing bar during measurements.

In the third part, sensor technologies were combined with smart predictive analytics to

develop a diagnostic toolkit that can digitally monitor the health conditions of the sensors

is proposed. This toolkit embraces a seasonal autoregressive integrated moving average

model with statistical hypothesis testing technique to enable temporal forecasting of sensor

data; identify and isolate anomalies in a continuous stream of sensor data; detect early

sensor failure and finally to provide reliable estimates of sensor data in the event of sensor

failure or during the scheduled maintenance period of sewer monitoring systems.

Overall, this dissertation significantly contributes to ameliorating the way sewer assets are

monitored and maintained in Australia and globally by providing information-rich new

data to the predictive models for better corrosion prediction.
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Nomenclature

General Notations

cm Centimetre (unit).

Dt Time interval between the two sensor measurements.

df Degrees of freedom.

mm Millimetre (unit).

g Gram (unit).

md Mass of the concrete sample in a dry condition.

mw Mass of the concrete sample in a wet condition.

n Number of Samples.

ppm Parts per Million (unit).

t Time (continuous).

V Voltage (unit).

◦C Degree Celsius.

µ Mean.

σ Standard deviation.

σ2 Variance.

ρd Density of concrete sample in a dry condition.

ρw Density of pH solution.

θG Wet basis moisture content of a material.

θV Volumetric moisture content of a material.
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Nomenclature xviii

Sensors

TIRR Surface temperature measurements from the infrared radiometer

sensor.

TRIT Surface temperature measurements from the reference instrument

thermistor sensor.

On-site Calibration of Sensors

E Measurement error.

Eir Radiant energy detected by the infrared surface temperature sensor.

Etr Radiant energy detected by the contact-type surface temperature

sensor.

SM Surface moisture conditions.

SRS Surface resistivity value measured from the resistivity meter.

SRW Surface resistivity value measured at wet area of the concrete sewer

pipe.

SRD Surface resistivity value measured at dry area of the concrete sewer

pipe.

Tis Temperature measured by the infrared surface temperature sensor.

Ttr Temperature measured by the contact-type surface temperature

sensor.

εis Set emissivity of the infrared sensor.

εt True emissivity of the measured surface.

εIR Set emissivity of the infrared radiometer sensor.

εT Estimated emissivity of the surface.

µ Mean value of εT .

SFDA Algorithm

AR(p) Autoreggressive model of order p.

AR(p)t Actual value of AR(p) at time t.

ARMA(p, q) Autoreggressive Moving Average model of order p and q.

ARMA(p, q)t Actual value of ARMA(p, q) at time t.



Nomenclature xix

ARIMA(p, d, q) Autoreggressive Integrated Moving Average model of order p, d and

q.

ARIMA(p, d, q)t Actual value of ARIMA(p, d, q) at time t.

B Backshift operator.

d Parameter governs the level of differencing.

D Degree of seasonal differencing parameter.

k Backward observation of the time series.

Kn Number of parameters estimated to compute one-step ahead

forecasts.

L Maximized likelihood of the SARIMA(p, d, q)(P,D,Q)Sp model.

MA(q) Moving Average model of order q.

MA(q)t Actual value of MA(q) at time t.

p Autoregressive model order.

P Seasonal Autoregressive model order.

q Moving Average model order.

Q Seasonal Moving Average model order.

Rt Observe red sensor data coming from the sewer.

SARIMA SARIMA(p, d, q)(P,D,Q)Sp model with parameters p, d, q, P,D and

Q.

Sp Seasonal period of the stochastic model.

St+f Future observable variable.

S̃t−n Previous deviations from the mean value of the time series data.

Ŝt+f (+) Forecast value resulting from the SARIMA model.

Ŝt+f (+) Upper limit of the forecast.

Ŝt+f (−) Lower limit of the forecast.

WL Size of sliding window

φn Finite set of weight parameters of the AR(p).

θn Finite set of weight parameters of the MA(q).

εt Random shock.

µλ/2 Percentiles of the standard normal distribution.

σg Standard deviation of the Gaussian distribution.



Nomenclature xx

χ2 Pearson’s chi-squared test.

χ2
df Chi-squared distribution.

α Critical value.



Glossary of Terms

Ambient Pertains to the immediate surroundings.

Anomalies Data that deviates from the standard, normal, or expected.

Autonomous Without human intervention.

Data

Accommodation

Utilizing the data coming from the reliable measure, prediction

or estimation.

Field Deployment The transportation of equipment to a place or position for

desired operations.

Forecasting Predict or estimate the future trends or unknown events.

Infrared Radiometer An instrument for detecting or measuring the intensity of

radiation using infrared signals.

Measurements The action of measuring the physical quantities.

Modelling A description of a system using mathematical concepts and

language. The process of developing a mathematical model is

termed mathematical modelling.

Predictive Analytics A variety of statistical techniques from predictive modelling,

machine learning and data mining to predict future trends or

unknown events by using historical and transactional data.

Real-time Relating to a system in which input data is processed within

milliseconds so that it is available virtually immediately as

feedback to the process from which it is coming.

Relative Humidity The amount of water vapour present in air expressed as a

percentage of the amount needed for saturation at the same

temperature.
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Glossary of Terms xxii

Resistance The measure of the degree to which a conductor opposes an

electric current through that conductor.

Resistivity It is a fundamental property that quantifies how strongly a

material under test is opposing the flow of electric current.

Robust Able to withstand or overcome adverse conditions.

Sensing Suite A set of sensors enclosed in a housing to perform measurements

of interest.

Sensor A device that detects or measures a physical property, indicates

or otherwise responds to it.

Sensor

Characterization

A description of the distinctive nature or features of the sensor

under different condition.

Sensor Failure The state of improper functioning of a sensor.

Sewers An underground conduit for carrying off drainage water and

waste matter.

Smart Device programmed so as to be capable of some independent

action.

Study A detailed investigation and analysis of a subject or situation.

Technology Device or equipment developed from the application of

scientific knowledge.

Temporal Dynamics The properties that changes within a system or process relating

to or denoting time.

Quantification The measurement of the variable of interest.
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