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Underground sewer systems are an important national infrastructure requirement of any

country. In most cities, they are old and have been exposed to significant levels of microbial

induced concrete corrosion, which is widely regarded as a serious global problem as they

pose threats to public health and cause economic repercussions to water utilities. In

order to maintain those underground assets efficaciously, it is pivotal for water utilities to

estimate the amount of intact concrete left to rebar by predicting the rate of corrosion

throughout the sewer network. Existing predictive models incorporate concrete surface

temperature and surface moisture conditions as observations. However, researchers and

water utilities often use indirect measures like ambient temperature and humidity data as

inputs to their models. This is primarily due to unavailability of proven technologies in the

state-of-the-art systems and sensing limitations predominantly attributed to the corrosive

nature of the sewer environment. Hence, the focus of this dissertation is to provide reliable

measures of surface temperature and moisture conditions by developing robust sensor

technologies that can facilitate measurements under the hostile sewer conditions.

This dissertation encompasses three main parts:

In the first part, a robust sensor technology using an infrared radiometer sensor for

quantifying surface temperature dynamics inside concrete sewer pipes is proposed. In

this regard, the sensor was comprehensively evaluated in the laboratory conditions to
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study the effects of optical window fogging, incident angle, limit of detection, distance,

lighting conditions, reproducibility, humidity and increased surface temperature

conditions. Thereafter, the sensor was deployed in sewer pipe for real-time continuous

measurements. The field study revealed the suitability of the proposed sensor technology

for non-contact surface temperature measurements under the hostile sewer environment.

Further, the accuracy of the sensor measurements was improved by calibrating the sensor

with emissivity coefficient of the sewer concrete.

In the second part of the dissertation, a non-invasive sensing technique to determine the

concrete surface moisture conditions is proposed. In this context, laboratory experiments

were conducted to study the behaviour of concrete moisture to electrical resistance

variations and different pH concentrations. This study led to utilize the Wenner array

method to determine the surface moisture conditions based on concrete surface electrical

resistivity measurements. Then, the sensor suite was deployed in concrete sewer pipe to

measure the surface resistivity for about three months. Upon on-site calibration, surface

moisture conditions were determined and thereof, the field campaign exhibited the

feasibility of the proposed sensing method. Further investigations were conducted to

locate the reinforcing bar embedded in concrete for optimal sensor installation in order

to minimize the effects of reinforcing bar during measurements.

In the third part, sensor technologies were combined with smart predictive analytics to

develop a diagnostic toolkit that can digitally monitor the health conditions of the sensors

is proposed. This toolkit embraces a seasonal autoregressive integrated moving average

model with statistical hypothesis testing technique to enable temporal forecasting of sensor

data; identify and isolate anomalies in a continuous stream of sensor data; detect early

sensor failure and finally to provide reliable estimates of sensor data in the event of sensor

failure or during the scheduled maintenance period of sewer monitoring systems.

Overall, this dissertation significantly contributes to ameliorating the way sewer assets are

monitored and maintained in Australia and globally by providing information-rich new

data to the predictive models for better corrosion prediction.
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Chapter 1

Introduction

Robotic systems are no longer in the realm of science fiction. Today, we are witnessing a

paradigm shift in scientific advancements that are sliding towards a robotic revolution from

the golden era of computers. Curiosity Rover from NASA is a paragon of “How robotic

revolution has stretched out its presence from the planet Earth to Mars?”. Besides the

extraterrestrial life of robots in this day and age, there are several applications where

robots can cause technological interventions to achieve the objective of making our planet

safer and smarter.

Several pioneering works were accomplished in the past by utilizing the fundamental

research areas of robotic science. Currently, the heritage of robotics vividly signifies a

proliferating role for mobile robotic systems in the challenging man-made environments.

Such emerging trends indicate that scientists are viewing mobile robots as a promising

tool to navigate, explore and measure the environmental health of hostile areas, where

direct human contact can cause occupational health hazards.

Urban sewerage systems is an ideal example of a man-made hostile environment, where

human health and safety can be under threat. Exploiting robotic inspections in such

systems not only requires hi-tech robots but also advanced sensing technologies in order

to provide credible information about the sewer assets. Therefore, employing robots with

robust sensing technologies in high-risk environments can revolutionize the way traditional

manual operations are conducted.

1
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Figure 1.1: Multi-sensor robot for condition assessment of sewer infrastructures [1].

SewerVue Technology manufactures commercial robots as shown in Figure 1.1 for

evaluating the underground pipe conditions of the sewer infrastructures [2]. In such

robots, sensors play a crucial role in providing reliable information. However, it is a very

challenging problem to develop sensing technologies that can facilitate desired operations

under sewer conditions. This dissertation tackles one such problem by developing robust

sensor technologies that can yield information about the factors that influence concrete

corrosion in the sewer pipes. In the broader context, the developed sensor technologies

can be implemented by robots for evaluating the sewer corrosion.

This chapter introduces the research work presented in this dissertation. It commences

with an introduction to a background for sewer infrastructures. This background furnishes

the historical perspective of sewer corrosion and elaborates on the mechanism involved in

the corrosion process of the concrete sewer assets. Following this, the chapter elucidates the

research motivation and delineates the statement of the problem with research questions.

In addition, the chapter chronicles the principal contributions and enumerates the first

published appearances of the described contributions. Finally, the chapter concludes by

outlining the structure of the dissertation in order to provide the reader with an overview

of the pursued work.
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1.1 Hostile Sewer Infrastructures

Urban underground infrastructure like sewer system is an important national property to

any country as it allow us to occupy the clean cities of today. However, the notion of

having underground sewer systems was historically a part of urban evolution. In fact,

archaeological evidence reveals that the sewer systems were constructed in ancient India,

China, Greece and Egypt since 1000 AD [3–5]. In that era, sewer systems were used

for collecting storm water to irrigate farm lands and discharging sewage. In the early

1900s, few methodological studies presented scientific evidence relating the sewage waste

to epidemic diseases. This led to the construction of modern urban sewer systems in

Europe during the mid 19th century [4]. Later, the first occurrence of sewer corrosion was

noticed in the late 19th century in the USA [6]. However, it was only in the 1940s that the

methodological studies conducted in Australia and USA entrenched the biological nature

of concrete corrosion [7–9]. Then in the 1980s, a radical increase of concrete corrosion

was observed in the sewers of the USA [10] and Europe [11]. Until that time, sewer

corrosion was not regarded as a major problem. Increases in sewage temperature due to

urbanization factors such as the discharge of household detergents containing sulphur and

toxic metals from industries were related to the ascendancy of sewer corrosion in the 1990s

[12, 13]. Nowadays, properly planned and managed sewer systems are viewed as a critical

infrastructure element in building a sustainable urban society.

Presently, the underground sewer pipes are constructed for thousands of kilometres for

servicing various sectors of the community. For instance, in Australia nearly 110,000

kilometres of sewer piping benefits the household and industrial society [15]. In such

urban sewer systems, H2S is mainly produced due to the biological activities of

sulphate-reducing bacteria in the rising main sections (pressure pipes) under the

anaerobic conditions [16], which is then transported to the gravity flow sections of the

sewer [17]. Due to turbulent flow, the dissolved H2S present in waste water is released to

the sewer atmosphere as gaseous H2S [18], where it is absorbed on the exposed concrete

surface, notably on the crown of the sewer pipe. In general, the newly installed concrete

possesses surface pH approximately between 12 to 13 [15]. However, when the

micro-organisms begin to colonize on the concrete surface the pH falls nearly to 9 [19].
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[14]

Figure 1.2: Microbial induced corrosion process in concrete sewer assets.

Due to the occurrence of biological oxidation, the absorbed H2S on the concrete surface

is converted into Sulphuric acid (H2SO4) by the micro-organisms that dwell on the moist

surface of the concrete [20]. The generated biogenic H2SO4 penetrates into the pores of

the concrete and starts to chemically react with the cement material of the concrete and

initiates sewer corrosion [21]. With time and urban growth, the buried concrete sewer

pipes are vulnerable to structural deterioration mostly due to the physical and biological

process known as microbial induced corrosion [17]. Figure 1.2 illustrates the chemical

reaction of microbial induced concrete corrosion in the sewer pipe. The nature of

atmospheric conditions inside the sewer system makes the infrastructure a hostile

environment.

To address the corrosion problem emanating from the concrete sewer, the water utilities

invest in research and development to endeavour sensing technologies that can provide vital

information about corrosion. This dissertation originated as a part of Activity 1c of the

project on “Data Analytics on Sewers” funded by Sydney Water, Melbourne Water, South

Australian Water and Water Corporation (Western Australia). The research organisations

include Data61-Commonwealth Scientific and Industrial Research Organisation (CSIRO),

The University of Newcastle and University of Technology Sydney.
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1.2 Research Motivation

Public Health and Safety: Urban sewerage systems transporting domestic and

industrial waste water through underground pipelines have been widely regarded as an

imperative infrastructure asset of our public society mainly for the reason that they

conserve our civic communities from the menace of sewage-borne diseases, abhorrent

odours and unhygienic conditions [22]. However, such infrastructure systems undergo

severe H2S induced corrosion of reinforced concrete sewer pipes particularly in warm

climatic countries like Australia. As the sewer concrete corrosion escalates gradually, the

structural health of the sewer infrastructure is seriously affected and this leads to sewer

pipe deterioration and consequential structural failures. Practising preventive measures

such as proper maintenance and timely interventions of such critical sewer infrastructures

can thwart the threats posed to nearby residents and surrounding environments due to

potential catastrophic events like the structural breakdown of sewer pipes.

Economy: On a global scale, the sewer corrosion causes governments and water utilities

a major problem as they incur losses that are estimated to be billions of dollars every

year [23]. The value of sewer infrastructure assets in USA and Australia are estimated to

be over $1 trillion and $100 billion respectively [24]. This is nearly equivalent to 7% of

USA’s and 6% of Australia’s gross domestic product as of 2016. Failure to maintain such

infrastructures will lead the utilities and governments to a range of economic repercussions.

For example, the sewer assets are degrading at an estimated annual cost of $13.75 billion

in USA [25], $50 billion in Germany [26] and $100 million in Australia [19]. The cost

related to the loss of sewer infrastructure is expected to increase as the failure of critical

sewer pipes continues [20]. Therefore, the concrete corrosion in sewer systems is regarded

as a paramount problem to water utilities around the globe.

Technology: One of the direct measures to address the sewer corrosion problem is to

measure the amount of concrete corrosion itself. However, there is no reliable, robust and

efficient technology in the state-of-the-art systems to measure this quantity throughout

the network. Then, the obvious choice is to seek the quantifiable proxies of concrete

corrosion. In this sense, a good proxy could be the surface acid levels. However, there is

no proficient long-term measuring technique available for quantifying the surface acid
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levels in the sewer system. So, the micro-organisms that are responsible for producing

biogenic H2SO4 on the concrete surface could be the next level of proxy measure.

Adversely, this proxy measurement is an intricate process involving the tedious task to

identify the liable bacterial species from other micro-organisms that reside on the sewer

pipe. Currently, there is no appropriate technology available for in-sewer application to

measure bacterial types that account for concrete corrosion. Then, the researchers have

focussed on investigating the attributes that could be quantifiable to estimate the

presence of bacteria. In this regard, living conditions for bacteria such as food (H2S),

comfortable temperature (sewer surface temperature) and moist environment (sewer

surface moisture) were recognized as the key contributing factors for the growth of

bacteria in sewer pipes [19, 27]. Presently, there is an industry-proven commercial system

to monitor H2S levels in sewer systems [28]. However, there are no proven technologies

available in the market to quantify surface temperature and surface moisture in the

sewer system. The non-existence of such technologies leads to adopting another level of

proxies. For this reason, the gas-phase temperature of the sewer air and relative

humidity of the sewer air were adopted. There is technology available to measure air

temperature inside sewer pipes in a reasonable and robust way. The relative humidity of

sewer air can be measured, but the sensors have proven to be of short-term use only as

they become non-functional under harsh sewer conditions in a short period of time.

There are current developments in the fiber optics sensing technology [29], which may be

a feasible option in the future.

In order to effectively manage the sewer infrastructure, the scope for innovative sensing

technologies and physical data interpretations has become the need of the hour for the

governments and water utilities to comprehend the elements that leverage sewer concrete

corrosion. For that reason, the sewer managing bodies are looking forward to an ingenious

solution by utilizing smart sensing technology and predictive analytics for reinforcing the

present sewer monitoring capabilities by providing pivotal information about the sewer

concrete corrosion. Therefore, public health and safety, economy and technology will be

the influential factors of motivation for the research problem detailed in the next section.
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1.3 Statement of the Problem

Research studies over the years have attained several landmarks on sewer concrete

corrosion modelling by using observations like ambient temperature, relative humidity

and H2S levels of the sewer atmosphere [15, 30–33]. Recently, a first pass model for

predicting the rate of sewer concrete corrosion and service life of the pipe was formulated

by [27], where the model conceptualizes the functional relationship between the corrosion

and observations.

The predictive model is of the form as in Equation 1.1:

C = A× [H2S]0.5 × 0.1602H − 0.1355

1− 0.9770H
× e(−45000/RT ) (1.1)

where C is the rate of concrete corrosion in sewer pipe (mm year−1), A is the value of the

scaling constant (= 207750 mm year−1 ppm−0.5), H2S is the concentration of hydrogen

sulphide present in the sewer atmosphere (ppm), H is the relative humidity of the sewer

air (%), T is the ambient temperature of the sewer air (Kelvin) and R is the universal gas

constant (= 8.314 J mol−1 K−1).

Despite the model in Equation 1.1 progressing towards conceivable results for corrosion

prediction, there is still a large proportion of uncertainty associated with the model

prediction. This is primarily due to the reason that the accurate prediction of corrosion

across the sewer network is often hampered because of inherent scattering of data or

insufficient observations [31, 34], a problem that is commonly referred as “sparsity” in

data analytics.

Based on the theory proposed by [27], higher relative humidity levels in the sewer

atmosphere does not necessary imply higher moisture conditions on the pores of the

exposed concrete surface. For example, 90% of relative humidity is approximately

equivalent to 10% of saturated moisture level on the concrete surface. In addition, in

locations where the sewer pipe is above the ground level, the surface temperature near

the crown can be intermittently distinctive to the temperature of the sewer atmosphere

mainly due to the degree of moisture condensation that occurs within the concrete pore
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structure. Therefore, the gas-phase temperature of the sewer air and relative humidity of

the sewer air are not the representative measures to that of sewer wall moisture and

temperature. However, the predictive model in Equation 1.1 uses relative humidity and

temperature of the sewer air as observatory variables.

In the contemplation of ameliorating the existing sewer corrosion predictive models with

regard to the described statement of the research problem, there arise the following research

questions:

1. Research Question-1:

How to quantify the temporal dynamics of surface temperature conditions of the

sewer pipes without altering the concrete surface properties under hostile sewer

environment?

2. Research Question-2:

How to determine the surface moisture conditions of the concrete sewer pipe without

damaging the exposed surface during measurements and will the sensor survive the

hostile conditions during long-term monitoring?

3. Research Question-3:

Assuming the fact that there are technologies available to quantify surface

temperature and moisture conditions inside sewer pipes, in this scenario, how to

automatically determine the measurements from the sensor are reliable and what

will happen to the temporal data supplied to the corrosion predicting models in the

event of sensor malfunction or scheduled maintenance?

Albeit the fact that existing researchers have focused on measuring different variables in

the sewer systems, it is to be noted that there have been no reports in the scientific

literatures about the non-invasive measurements of surface temperature and surface

moisture conditions of the concrete sewer pipes inside the perilous environmental

conditions of the sewer system.
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1.4 Principal Contributions

In accordance with the research questions stated in the previous section, this dissertation

has developed the new sensor technologies to measure the actual surface temperature and

moisture conditions of concrete sewer pipes. The outcomes achieved thus far include:

“Developed a sensing Proof of Concept System (including the development of hardware,

algorithms and electronics by using commercial sensors) that was successfully evaluated

in laboratory and in field conditions (e.g. Sydney Water sewer site, Thornleigh suburb of

Sydney city, Australia) for 96 days.”

In this context, this dissertation has led to the following principal contributions in the

field of sensor technologies.

1. Developed a robust sensor technology for measuring surface temperature

dynamics inside concrete sewer pipes.

Proven and validated infrared radiometer sensor with an antifog coated germanium

optical window can be used for non-contact surface temperature measurements in

sewer systems. The developed sensor technology is more robust and reliable for

deployment in harsh corrosive sewer conditions. It operated for three months

without maintenance and can be used on moving platforms. In pursuance of

providing more accurate measurements, an in-situ field calibration technique was

adopted by determining emissivity value of the sewer concrete surface. These

emissivity coefficients of the sewer concrete surface were used to calibrate

temperature measurements under real-world conditions.

2. Developed a robust sensor technology for determining surface moisture

conditions inside concrete sewer pipes.

Proven and validated electrical resistivity based moisture sensing on the exposed

surface of the concrete sewer is feasible using on-site calibration to mitigate the

effects of metals (reinforcing bar) in order to provide reliable measurements of

surface moisture conditions. This sensing system measures surface moisture,

without changing the concrete surface conditions. In addition, a technique for
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optimal placement of a sensor on the concrete surface for measurements was

proposed.

3. Developed a machine learning based diagnostic toolkit for detecting early

sensor failure.

Developed sensing system incorporating smart predictive analytics to intelligently

identify sensor failure or unreliable data to prevent the occurrence of false positive

or negative results. The predictive algorithm of the toolkit embraces forecasting

model with statistical hypothesis techniques. The salient features of the algorithm

include: (i) Enabling temporal forecasting of sensor data, (ii) Identifying and

isolating anomalies in a continuous stream of sensor data, (iii) Detecting early

sensor failure and (iv) Providing reliable estimates of sensor data in the event of

sensor failures or during the scheduled maintenance period of sewer monitoring

systems. This algorithm was evaluated with the surface temperature and surface

moisture data sourced from the instrumented sewer infrastructure.

1.5 First Published Appearances of the Described

Contributions

Most of the contributions described in this dissertation have first appeared as the following

publications.

1.5.1 Journals

1. K.Thiyagarajan, S. Kodagoda, R. Ranasinghe, D. Vitanage and G. Iori, “Robust

sensing suite for measuring temporal dynamics of surface temperature in sewers,”

Nature - Scientific Reports. (Under Review)

2. K.Thiyagarajan, S. Kodagoda, R. Ranasinghe, D. Vitanage and G. Iori, “Robust

sensing system for non-invasive estimation of surface moisture conditions in concrete

sewers,” Nature - Scientific Reports. (Under Review)
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3. K.Thiyagarajan, S. Kodagoda, L.V. Nguyen, and R. Ranasinghe, “Sensor Failure

Detection and Faulty Data Accommodation Approach for Instrumented Wastewater

Infrastructures”, IEEE Access. (Under Review)

1.5.2 Conference Proceedings

1. K.Thiyagarajan, S. Kodagoda, L.V. Nguyen, and S. Wickramanayake, “Gaussian

Markov Random Fields for Localizing the Reinforcing Bars in Concrete

Infrastructures,” 35th International Symposium on Automation and Robotics in

Construction (ISARC), Berlin, Germany, 2018. pp. 1035-1041.

2. K.Thiyagarajan, S. Kodagoda, and L.V. Nguyen, “Predictive Analytics for

Detecting Sensor Failure Using Autoregressive Integrated Moving Average Model,”

2017 IEEE 12th Conference on Industrial Electronics and Applications (ICIEA),

Siem Reap, Cambodia, 2017, pp. 1923-1928.

3. K.Thiyagarajan, S. Kodagoda and J. K. Alvarez, “An instrumentation system for

smart monitoring of surface temperature,” 2016 14th International Conference on

Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 2016, pp.

1-6.

4. K.Thiyagarajan, S. Kodagoda and N. Ulapane, “Data-driven machine learning

approach for predicting volumetric moisture content of concrete using resistance

sensor measurements,” 2016 IEEE 11th Conference on Industrial Electronics and

Applications (ICIEA), Hefei, China, 2016, pp. 1288-1293.

1.5.3 Technical Reports

1. S. Kodagoda, R. Ranasinghe, K.Thiyagarajan, G. Dissanayake, “Predictive

Analytics for Sewer Corrosion - Final Report”. Pages: 1-18, 2017.

2. S. Kodagoda, R. Ranasinghe, K.Thiyagarajan, J. K. Alvarez and G. Dissanayake,

“Sensors for Surface Temperature and Surface Moisture Measurements - Scoping

Study”. Pages: 1-35, 2016.
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1.6 The Structure of the Dissertation

The remainder of this dissertation is structured as follows:

Chapter 2: This chapter will enumerate the development of a robust sensor technology

using an infrared radiometer for non-invasively measuring the surface temperature of

concrete sewer pipe inside hostile sewer conditions.

Chapter 3: This chapter will elucidate a non-invasive sensing technique for determining

the surface moisture conditions of the concrete sewer pipes based on the surface electrical

resistivity measurements.

Chapter 4: This chapter will present a smart predictive analytic framework by combining

forecasting model and statistical diagnostic method for detecting early sensor failure in

the instrumented sewer infrastructure.

Chapter 5: Finally, this chapter will present a summary of conclusions drawn from the

proposed sensor technologies and smart predictive analytics whilst discussing the

limitations of the proposed work together with the implications for water industry and

future prospects.



Chapter 2

Robust Sensor Technology for

Measuring Surface Temperature in

Sewers

2.1 Introduction

Robust sensor technologies have become a promising element of tomorrow’s smart

infrastructures. This is due to their capabilities to enable intelligence and cater reliable

measures of critical variables. Integral to the robotics revolution and smart systems, the

dominance of sensors has inclined to decipher the dynamics of measurand in several

infrastructure monitoring applications. The data obtained from the sensors are utilized

to ascertain the real behaviour of infrastructure assets and in addition, they answers to

resolve the scale of threats by calling on the amalgamation of smart sensing technology

and data analytics. This chapter focusses on the development of a robust sensor

technology for measuring temporal dynamics of surface temperature in hostile sewer

environments.

The confined sewer pipes are subjected to thermal effects due to interactions with both

internal ambient conditions and external atmospheric conditions. As the sewer ambient

temperature changes over time, the sewer surface may not come to an equilibrium with

13
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the ambient temperature. Therefore, the sewer walls can potentially have a slightly

different temperature to that of the ambient gas temperature. The distribution of the

surface temperature on sewer pipes inner walls is affected by many factors such as

ambient temperature, air flow, humidity, fluid flow rate and effluent temperature.

Therefore, it is important to measure the surface temperature at different locations in

sewers to correctly estimate the surface temperature distribution of the sewer wall.

Recent studies have shown the feasibility of measuring different temperature variables

in the sewer systems. For example, the gaseous temperature of sewer air was measured

inside the corroded sewer pipes in different cities of Australia [19, 27]. Similarly, the effluent

temperature and ambient temperature of the sewers were measured in two sewer manholes

of the Kent city in England and thereby observed that on average effluent temperature is

higher by 3.5°C [35]. A considerable amount of research was performed using Distributed

Temperature Sensing (DTS) technology, which utilizes fibre optic cables for measuring

the wastewater temperatures in sewer networks [36, 37]. The use of DTS technology

has been demonstrated in the application of measuring temperature gradients at different

positions of the sewer pipe by placing the fibre optic cable near soffit (top), wastewater

level (floating) and invert (bottom) [38]. Although researchers have focused on measuring

different temperature variables in the sewer, there have been no reports in the scientific

literature about the measurement of concrete surface temperature in sewers. As the sewer

corrosion is dependent on the surface temperature variable, the water utilities are looking

forward to a sensor technology for measuring the surface temperature at the crown of the

sewer pipe inside the confined sewers.

In this chapter of the dissertation, the possibility of measuring surface wall temperature

is studied. The surface temperature is a better proxy that can add value to the current

development of corrosion modelling and data analytics. Therefore, it is important to

develop a surface temperature monitoring suite that can readily perform measurements

under the aggressive environmental conditions of the sewers as the temperature data of

the concrete surface is necessary to predict the rate of sewer concrete corrosion.

However, the sewers are classified as Zone-2 hazardous areas in Australia [39]. So, there

are multifarious requirements to be considered in developing a sensor suite as there are

no commercial sensor systems proven to be sewer deployable and comply with the
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requirements specified by the sewer operators. In the light of the preceding discussion,

the sensor suite should possess low maintenance and convenient access to the monitoring

data, easily deployable and removable, non-destructive measurements on the concrete

surface at regular frequencies, integrated multi-sensor package to accommodate different

sensors and finally to sustain in harsh sewer conditions. In order to accomplish it, several

laboratory studies were conducted to recognize radiometry based surface temperature

measurements as a potential option to address the key challenges emerging from the

sewer environments [39–41].

This chapter first reports the scoping study conducted to identify the potential sensors

that can perform surface temperature measurements in the aggressive sewer conditions.

Then, the chapter elucidates the characterization of the IRR sensor in laboratory

conditions. In the IRR sensor characterization, the performance of optical window, the

effects of incident angle, limit of detection, distance, lighting condition, reproducibility,

humidity conditions, varying surface temperature conditions were investigated.

Thereafter, the sensor was deployed in the sewers for evaluating the long-term sensing

performance and endurance of the sensor package. The measurements from a non-contact

type IRR sensor was examined with the measurements from a contact-type thermistor

sensor to furnish a scientific evidence for supporting the application of non-contact

surface temperature sensing in the sewer. In addition, the quantifications of ambient

temperature in-situ and ex-situ of the sewer pipe were compared and analysed with the

measurements resulting from the IRR sensor. After successfully completing the field trial

campaign, the sensor suite was brought to the laboratory for post-deployment validation.

Further, the measurements from IRR sensor data was improved by calibrating the sensor

based on the emissivity coefficient of sewer concrete surface. To the best of author’s

knowledge, this is the first ever research work that investigates the feasibility of

monitoring non-contact surface temperature in the hostile sewer environment with a

motive of augmenting the present development of corrosion modelling.

The remainder of this chapter is organised as follows: Section 2.2 presents the scoping

study of sensors for surface temperature measurements. Section 2.3 details the methods

adopted for sensor characterization in laboratory conditions. Section 2.4 describes the

sensor deployment for monitoring the temporal dynamics of surface temperature. Section
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2.5 presents the post-deployment investigations. Section 2.6 presents the theoretical

consideration for determining the emissivity co-efficient for the measured surface

temperature. Section 2.7 presents the experimental results and analyses and finally,

Section 2.8 summarizes the main contribution resulting from this chapter with research

outcomes.

2.2 Scoping Study: Sensors for Surface Temperature

Measurements

This scoping study of sensors for surface temperature measurements investigates a wide

range of temperature measurement techniques with the aim of selecting a practically

feasible sensor that can potentially be used in sewers.

2.2.1 Sensors for Surface Temperature Measurements

This section covers the review of relevant literatures about the technologies that are

associated with the motivation of this research work for measuring surface temperature.

Although the temperature can be measured using a wide variety of sensors they all infer

temperatures by sensing some change in physical characteristics. Considering this,

temperature measurement instruments can be broadly classified into the following types.

1. Fluid expansion type temperature measurement devices

2. Bimetallic temperature measurement devices

3. Resistive temperature measurement devices

4. Thermocouple sensors

5. Thermistors

6. Infrared temperature measurement device

7. Fiber optic type temperature measurement devices

8. Distributed Temperature Sensing
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2.2.1.1 Fluid Expansion Type Temperature Measurement Devices

Glass thermometers are well-known fluid expansion type devices that are very common

in households to measure body temperature. This is the oldest method to measure

temperature or a temperature gradient.

Technology: The fluid expansion based temperature measurement technology works on

the principle based on the tendency of volumetric change of matter with respect to change

in temperature [42]. They usually come in two main classifications: the mercury type and

the organic-liquid type. In these thermometers, a liquid is encased in a narrow glass tube.

They have two important parts: a temperature sensor in which some physical change

occurs with temperature and some means of converting this sensed physical change into a

human readable value.

Discussion: Fluid-expansion sensors do not require electric power and do not pose

explosion hazards. The behavior of these temperature sensors is stable even after

repeated cycles. However, they suffer from low accuracy and slow response time. There

are commercially available sensor types, which utilize organic liquids and gases for

expansion based temperature measurements. Stream traps are an ideal example that

displays the functionality of these sensor labels. Each of these labels that are attached on

the traps contains a white dot, which turns black indicating the change in temperature

above a specific point. However, this method has a low response time. So, they do not

respond to transient temperature changes.

2.2.1.2 Bimetallic Temperature Measurement Devices

The bimetallic temperature measurement devices are more rugged and low-cost measuring

devices compared to the glass thermometers. However, the accuracy of the measurement

is comparatively inferior. These bimetallic measurement devices are suitable for many

industrial applications where it is sufficient to know what is the temperature of a fluid or

device to within a few degrees.

Technology: Bimetallic devices take advantage of the difference in the rate of thermal

expansion between different metals. These are constructed using two metal strips bonded
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together. When heated, one side expands more than the other, and the resulting bending

is translated into a temperature reading by pointing to a temperature indicator [43].

Discussion: These devices are portable and they do not require a power supply to

operate. However, they are usually not as accurate as thermocouples or resistive

temperature measurement devices. This issue makes the bimetallic temperature

measurement devices less suitable for the intended application.

2.2.1.3 Resistive Temperature Measurement Devices

This group of temperature measurement devices includes Resistance Temperature Detector

(RTD). A RTD is a temperature sensor that can be used to determine the temperature

by measuring the resistance of an electrical wire. These RTD sensors are commonly used

in industrial applications that require high accuracy.

Technology: The operating principle of the RTD sensor is based on the change of

electrical resistance as a result of a change in temperature [44]. It is called

resistance-temperature characteristics. This positive correlation between resistance and

temperature is highly predictable, allowing for accurate and consistent temperature

measurements. It is actually the inverse of a metals resistivity, that resulted in the

development of RTD sensors. Metals are conductive materials and each metal has a

specific and unique resistivity that can be determined experimentally. In theory, any

metal could be used to measure temperature. However, the metal selected should have a

high melting point and an ability to withstand the effects of corrosion. The metal wires

that are widely used in RTD sensors are made of materials such as Copper, Nickel and

Platinum. Platinum is the most preferred metal for RTD sensors as it has desirable

characteristics such as chemical stability, availability in the pure form, and electrical

properties that are highly reproducible.

Discussion: The RTD sensors are typically resistive to corrosion while providing more

repeatability and stability than their counterparts. With the added repeatability, stability,

and accuracy at lower temperatures, the RTD sensors are more prevalent in applications

that remain below 600°C.
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2.2.1.4 Thermocouple Sensors

The thermocouple is an extensively used thermoelectric sensor for measuring temperature

due to its simplicity and cost-effectiveness. They are known for versatility as temperature

sensors and hence they are commonly used in a wide range of applications. These are

contact type sensors.

Technology: A thermocouple consists of two dissimilar metallic conductors that are

coupled to make an electrical junction (measurement junction). This is extended to the

reference junction (of a known temperature). The temperature difference between the

measurement junction and the reference junction is detected by measuring the change

in voltage (electromotive force) at the reference junction [45]. This voltage varies with

the temperature difference between the junctions. The temperature of the measurement

junction can be calculated based on the knowledge of the temperature at the reference

junction. Among the different types of thermocouples, Nickel based K-type thermocouples

exhibit high corrosion resistances, good linearity to the measurement of temperature and

good resistance against oxidation. There are many applications that can be found in using

thermocouples. For example, they were used to monitor ambient temperature in data

centers [46] and they were used in a matrix structure to sense the temperature at different

locations [47].

Discussion: Thermocouples are generally low-cost and robust as they do not have any

moving parts. They can cover a wide temperature range and can operate in harsh

environments. However, it has low sensitivity. The accuracy of thermocouples is

typically not better than 0.5°C. Moreover the accuracy of thermocouples decreases over

time due to changes in the electrical and chemical properties. The technology relies on

an accurate reference point to obtain the absolute temperature measurement.

2.2.1.5 Thermistors

A thermistor is a quite commonly used temperature-sensing element composed of a

temperature dependent resistor. In this device, the resistance of the material changes

with varying temperatures. Thus the temperature can be predicted by using the
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variations of the resistance. Thermistors usually have negative temperature coefficients,

which means the resistance of the thermistor decreases as the temperature increases.

Technology: Thermistors are made of ceramic semiconductor materials with a

resistivity that is especially sensitive to temperature [48]. However, unlike most other

resistive devices, the resistance of a thermistor decreases with increasing temperature.

This is due to the properties of the semiconductor material that the thermistor is made

from. These are known as Negative Temperature Coefficient (NTC) thermistors. There

are several forms of commercially available thermistors: discs, beads, rods, washers, and

flakes. They utilize resistance as a function of temperature for a typical thermistor. In

general, for thermistors, the resistance-temperature curve will have a sharp drop of

resistance (say from 100kΩ) to a very small value at a range around room temperature.

Therefore, the sensitivity of this device near room temperature measurements is very

high. There are positive temperature coefficient thermistors as well. As the name

suggests when temperature increases, the resistance of the material increases, and when

temperature decreases, the resistance of the material decreases. This type of thermistor

is usually used as fuses.

Discussion: The use of thermistors has grown rapidly over the past few years and

thermistors are now used in a wide variety of industries. They are even used in the

medical instrumentation industry, in clinical laboratories, and in other biomedical

applications where they play a critical role in crucially important diagnostic procedures.

Thermistors have better accuracy than RTDs and thermocouples. They are small,

inexpensive, rugged and reliable. Most importantly, they respond quickly to temperature

changes. Furthermore, the high sensitivity of thermistors makes it possible to measure

small changes in temperature. Thermistors are easy to use, inexpensive, sturdy, and

respond predictably to changes in temperature. While they do not work well with

extremely hot or cold temperatures, they are the sensor of choice for many applications

that measure the temperature at the desired base point. They are ideal when very

precise temperatures are required. These characteristics make thermistors a strong

candidate technology to monitor the sewer surface temperature.
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2.2.1.6 Infrared Temperature Measurement Devices

There are several technologies based on infrared radiometry. These technologies use devices

to capture electromagnetic radiation with longer wavelengths than those of visible light.

Infrared Thermography Infrared Thermography (IRT) is a science dedicated to the

acquisition and processing of thermal information from non-contact measurement devices

known as the thermal imager or IR camera [49]. An IR camera detects the infrared

radiation (heat) that is emitted by an object. This technology allows operators to validate

normal operations and, more importantly, locate thermal anomalies (abnormal patterns

of heat invisible to the eye) which indicate possible faults, defects or in efficiencies within

a system or machine asset. This is a reliable technology and has gained attraction in

commercial applications due in large part to the advancement of IR cameras and the

considerable reduction of their cost.

Infrared Thermography - Technology: A thermal imaging camera used in IRT

detects infrared energy emitted from an object and converts it to an image called

thermogram that shows the variation of temperature differences. The concept of infrared

thermography is simple. Any object at a temperature above absolute zero (i.e. T > 0K)

emits infrared radiation [50]. Infrared emissions are invisible to the human eye. Thus, a

special instrumentation known as a thermal imager is required to acquire and process

these infrared temperature signatures that lie beyond the range of visible light [51].

These cameras simply see the heat that is emitted from the surface of the object that it

is viewing. Thermal cameras can usually detect radiation in the far or long wave IR

region from 7-14 microns of the electromagnetic spectrum and produce images of that

radiation. The thermogram represents the apparent thermal patterns across the surface

of the object being inspected. In thermal images, warm objects stand out well against

cooler backgrounds; humans and other warm-blooded animals may become easily visible

against the environment. The intensity of the infrared radiation emitted by objects is

mainly a function of their temperature. This allows thermograms to show variations in

surface temperature.

Infrared Thermography - Discussion: IRT is a mature, fast, clean and safe

non-contact type technology that is used in a wide variety of applications. These include
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detecting problems in building systems and structures, including moisture intrusion,

missing or damaged insulation, overloaded circuits, faulty wiring, loose electrical

connections, construction defects, water infiltration into building side-walls and storm

damage.

IRT has many advantages over other technologies. In general, the salient features include:

1. IRT is a non-contact technology. The devices used are not in contact with the source

of heat. In this way, the temperature of extremely hot objects or dangerous products,

such as acids, can be measured safely, keeping the user out of danger.

2. IRT provides two-dimensional thermal images, which makes a comparison between

different areas of the target possible.

3. IRT provides real-time measurements, which enables not only high-speed scanning

of stationary targets, but also acquisition from fast-moving targets and from fast-

changing thermal patterns.

4. IRT has none of the harmful radiation effects of other technologies, such as X-ray

imaging. Thus, it is suitable for prolonged and repeated use.

5. IRT is a non-invasive technique. Thus, it does not intrude upon or affect the target

in any way.

Even though IRT provides 2D thermal images, an enhanced method for monitoring surface

temperature in 3D was reported by [52]. In this work, the image from the thermal camera

is fused with a depth image acquired through a Kinect camera to produce 3D depth

image representing surface temperature variations. There is a variety of limitations of

IRT technology that need to be taken into account. Firstly, it is still an expensive option.

It may be affected by the instrument and by the environment. These problems can be

minimized, but only with adequate setup and testing procedures, which mostly depend on

the operators skill. This technology has further limitations to be used in sewer conditions.

Specifically, it needs to be protected from corrosive substances, which can be achieved by

an enclosure. However, the enclosure needs to be designed to have a thermal ray passing

window that does not fog in extremely high humidity conditions. In the case of fogging,
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the sensor measures the temperature of the fogged surface rather than the other surface

of interest.

Infrared Thermopile Array: Infrared thermopile array is a serially interconnected array

of thermocouples, which detects radiant heat emitted by infrared sources in the wavelength

range of 2µm to 22µm and based on the spectral response, the surface temperatures are

measured. They are relatively cheap and effective in temperature measurements by placing

in close proximity to the surface of interest.

Infrared Thermopile Array - Technology: Infrared thermopile array is a type of

thermal detector which has an absorption layer that absorbs and converts the light into

heat and generates an electrical signal representing the change in absorption layer

temperature [53]. Thermal detectors respond to any radiation wavelength that is

absorbed and can be made to respond over a wide range of wavelengths. Each of the

thermocouple in thermopile array consists of two dissimilar materials with a large

thermoelectric power and opposite polarities. The thermocouples are placed across the

hot and cold regions of a structure and the hot junctions are thermally isolated from the

cold junctions. In the hot region, there is a black body for absorbing the infrared, which

raises the temperature according to the intensity of the incident infrared [54].

Infrared Thermopile Array - Discussion: These are non-contact type low-cost and

durable temperature measurement sensors. These can operate at room temperature. Gas

analysis, process temperature monitoring, fire and flame detection, household appliances

and explosion detection are some of the applications where infrared thermopile arrays are

commonly used. This technology has not yet been reported for using in sewers. As the

sensor is dependent on infrared rays, it has similar fogging related issues to that of infrared

thermography in high humid environments.

Infrared Radiometers: Infrared radiometers are sensors that measure infrared

radiation, which is used to compute surface temperature without touching the surface

[55]. This is a non-intrusive type sensor which does not alter the surface temperature

during measurement. Infrared radiometer sensors that are commercially available in the

market measure the target temperature even at a distance of 2m with great accuracy. An

infrared radiometer device senses the gradient of surface temperature based on the
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principle of measuring the radiant flux of the electromagnetic radiation between 8µm

14µm. There are many applications to this sensor including agriculture, meteorology and

hydrology.

Infrared Radiometers - Technology: This remote sensing instrument is a passive

measuring sensor. That means the sensor can detect natural energy (radiation) which is

emitted or reflected by an object or scene being observed [56]. Reflected sunlight is the

most common source of radiation measured by passive sensors. It quantitatively measures

the intensity of electromagnetic radiation in the infrared band.

Apogee Radiometer is a reliable and sturdy commercially available Infrared radiometer

sensor [57]. The Apogee sensor consists of a thermopile, which measures the surface

temperature, and a thermistor, which measures sensor body temperature. The thermistor

measurement is used with the Stefan-Boltzmann equation to correct for the effect of sensor

body temperature on the target temperature. The two temperature sensors are housed in

a rugged aluminium body that contains a germanium window.

Infrared Radiometers - Discussion: The radiometer sensor is a non-contact type

sensor, which can operate in outdoor conditions. There are many reported agricultural

applications to this sensor although it is not reported for use in sewers. Due to the sensor

characteristics, it can operate in 100% humid environments; however, condensation can

affect the sensor readings. Although this is a promising sensor for sewer applications, the

issue of condensation at high humid environments remains a challenge.

2.2.1.7 Fiber Optic Type Temperature Measurement Device

In the previous subsections, the most prevalent technologies used to take temperature

measurements such as thermocouples, RTDs and thermistors were presented. While these

technologies have been and will continue to be the most economical solutions for most of

the temperature sensing applications, fiber optic based temperature sensing has gained

attention as an important alternative particularly in harsh environments. Unlike the

traditional temperature sensors, fiber optic based temperature sensors are immune to
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electromagnetic interference, making the temperature measurement sensors robust and

accurate in high Radio Frequency (RF) environments.

Technology: Fiber optic based temperature sensing uses properties of light to measure

the temperature [58]. There are three common principles of fiber optic temperature

measurement sensors: (a) Fiber Bragg Gratings (FBG) (b) Raman Scattering (c)

Interferometry. The FBG is a series of localized changes in the refractive index in the

core of the glass fiber. As the temperature changes, the FBG expands or contracts so

does the gap between the gratings. This, in turn, affects the refraction index. The

change in the refraction index is measured and the shift in wavelength can be converted

to a temperature value [59]. In the Raman scattering, when a pulse of light enters the

fiber optic cable, most of the light bounces back (i.e back-scatter light) without changing

the original wavelength. However, a small amount of the original light is subjected to a

few changes through several mechanisms. Raman scattering, the change of the

wavelength of the original light source due to molecular vibrations is one such

mechanism. Raman Scatter is thermally influenced by temperature as the molecular

vibration is sensitive to the temperature, Therefore the amplitude of the scattered light

is directly related to the intensity of the thermal excitation and hence the temperature

[60]. Fiber optic interferometry can be broadly explained as a technique that utilizes the

fundamental principles of optical signal interference to measure a physical property such

as temperature. Here two or more light beams are superimposed to measure the phase

difference between them. Interferometer utilizes two light beams with the same

frequency. Typically an incident light beam of the interferometer is split into two or

more parts and then recombined together to create an interference pattern [61].

Discussion: This is a completely passive method, which is immune to electromagnetic

interference. These type of sensors can be used in high temperatures and chemically

reactive environments. These sensors can also be used to measure the temperature of

remote locations. This is, however, a relatively expensive technology and the deployment

of fiber optic cables needs changes to the infrastructure.
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2.2.1.8 Distributed Temperature Sensing

The Distributed Temperature Sensing (DTS) system is an optical fiber based technology to

monitor temperature in a distributed manner based on the Raman scatter principle. DTS

system can provide a continuous temperature profile along the fiber optic cable. This

technology has been used in a wide range of applications such as smart grids, building

infrastructure, oil and gas industry, temperature monitoring in tunnels and waste water

systems [37, 38, 62].

Technology: DTS utilizes a laser light to measure temperature along the entire length

of the optical fiber cable. Changes in quantities like temperature, pressure and strain

can affect the internal structure of the fiber optic sensor changing the way light travels

in the fiber. The technology can measure temperature every meter over the fiber cables

over a long distance. As discussed in the previous section the basic operating principle of

DTS is the Raman scattering. As the light pulse scatters down the fiber optic cable, it

produces signals with a longer wavelengths (i.e. stokes signal) and signals with a shorter

wavelength (anti-stokes). Both these signals are shifted from the original laser light signal.

The temperature is determined by measuring the respective intensities of the stokes and the

anti-stokes signals [63]. Additionally, the location of the temperature reading is determined

by measuring the time taken for the back-scatter to return to the light source.

Discussion: In order to measure the surface temperature of the sewer crown, the fiber

optic cables need to be installed in a way such that they touch the surface. Even though

the DTS generates accurate measurements, installing the fiber optic cables along sewer

networks requires distributed changes to the infrastructure which may be economically

unattractive. Although DTS systems can provide a high resolution temperature profile

over a long distance, comparable results may be achieved by combining low-cost sparse

temperature measurements with modern day advanced data analytic techniques.

2.2.2 Feasibility

This section indicates the feasibility aspects of the sensing devices to be used to measure

surface temperature in the sewer system. In this regard, firstly, this section presents the
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atmospheric temperature conditions inside the Australian sewers. Secondly, the section

short-lists the potential sensing solutions. The criteria for short-listing includes the

technical aspects and cost.

2.2.2.1 Temperature Conditions Inside Australian Sewers

There are significant amounts of research literature pertaining to technologies performing

non-contact surface temperature measurement. However, little literature investigates the

efficacy of temperature measuring technologies in harsh conditions such as in sewers.

Although the sewer conditions are harsh, the temperature range is not extreme. For

example, daily averages of gas phase temperatures inside confined sewers in Australia are

tabulated in Table 2.1 [19, 64]. It can be noted that the temperatures can only fluctuate

approximately between 15°C to 37°C.

Gas-phase temperatures inside confined sewer system [19, 64]

Field site
locations

Maximum
temperature (°C)

Minimum
temperature (°C)

Average
temperature (°C)

Sydney (A) 29.7 15.0 21.6

Sydney (B) 28.8 15.3 21.3

Perth (A) 28.8 22.2 25.8

Perth (B) 36.6 14.0 27.0

Melbourne (A) 22.9 16.5 19.7

Melbourne (B) 24.5 17.7 20.7

Table 2.1: Gas-phase temperatures inside confined sewer system.
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2.2.2.2 Comparative Analysis

Table 2.2 presents the feasibility analysis for comparing the previously discussed surface

temperature measurement modalities.

Feasibility Analysis: Comparison of surface temperature measurement modalities

Technology Non-
contact
(Yes/No)

Feasibility
(Yes/No)

Comments

Fluid expansion
type

No No Low accuracy, low reliability and
high response time. Automatic data
logging is challenging.

Bimetallic type No No Low accuracy, automatic data
logging is challenging.

Thermistors No Yes Small, inexpensive, rugged and
reliable. Accuracy is better than
RTDs and thermocouples

Thermocouple No No Low cost and durable. Sensitivity
is very low and the accuracy of
thermocouples decreases with age.

Thermal imaging Yes No Mature, fast clean and safe but
expensive. Produce only relative
temperature distribution profile.
Challenging to use in high humid
environments.

Infrared thermopile
array

Yes No Low cost and durable. Slow to
generate an image using the matrix
of thermopiles. low accuracy and
challenging to use in high humid
environments.

Infrared radiometer Yes Yes Expensive, reliable and accurate.
Condensation affects the readings.

Fiber optic sensing No Yes Relatively expensive, need to
modify the sewer infrastructure to
lay fiber optic cables.

Distributed
temperature sensing

No Yes Expensive, need to modify the sewer
network infrastructure to lay fiber
optic cables.

Table 2.2: Feasibility Analysis: Comparison of surface temperature measurement
modalities
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2.2.3 Concluding Remarks

This scoping study on sensors for surface temperature measurements in sewers has short

listed one non-contact type sensing technology and one contact type sensing technology

as potential sensors. For non-contact type sensing: infrared radiometer sensor and for

contact type sensing: thermistor sensor.

2.3 Sensor Characterization and Development for

Measuring Surface Temperature

In the laboratory investigation on sensor characterization and development, experiments

to study the performance of optical window, effects of incident angle, limit of detection,

distance, lighting condition, reproducibility, humidity conditions, varying surface

temperature conditions were conducted. Two surface temperature sensors, i.e. one IRR

sensor and one epoxy coated thermistor sensor were used in this study. The thermistor

sensor was employed as a reference measure for all the investigations carried out. For the

statistical performance evaluation of laboratory experimentation, Mean Absolute

Percentage Error (MAPE) and Root Mean Square Error (RMSE) were used as metrics.

MAPE is used because of scale-independency and interpretability whereas RMSE

aggregate the magnitudes of errors and it is sensitive to outliers.The MAPE and RMSE

are given by Equation 2.1 and Equation 2.2 respectively, where TRIT is the reference

surface temperature measurements from the thermistor sensor and TIRR is the surface

temperature measurements from the IRR sensor, n is the number of samples and t is the

instantaneous time.

MAPE =
100%

n

n∑
t=1

∣∣∣∣TRIT − TIRRTRIT

∣∣∣∣ (2.1)

RMSE =

[
1

n

n∑
t=1

(TRIT,t − T IRR,t)2
]1/2

(2.2)
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2.3.1 Assessment of IRR Sensor’s Optical Window in Varied Humidity

Conditions

This test details the laboratory assessment of the IRR sensor’s optical window after

exposure to different humidity conditions inside a humidity chamber. Two approaches

were shortlisted to mitigate the effects of fogging on the optical window surface. The

first approach needs micro-controller based electrical heating of the optical window

surface above ambient temperature so that it prevents the surface fogging. Although this

approach yielded desired outcomes, it needed an additional power supply to keep the

electrical circuitry active all the time. The second approach uses antifog coating material

on the surface of the germanium made optical window and thereby avoids the need of an

additional power source to prevent surface fogging. To evaluate this method, the sensing

unit was placed inside the humidity chamber and set to different Relative

Humidity (RH) levels such as 80% RH, 90% RH and 100% RH. The humidity chamber

utilizes ultrasound humidification technology based air humidifier (LB 44, Beurer) for

humidification inside the chamber and humidity sensor (DHT22, Aosong Electronics Co.,

Ltd) having 2-5% accuracy is used to measure the chamber’s RH. Thereafter, a visual

assessment of fogging on the lens was performed.

2.3.2 The Effects of Incident Angle on the IRR Sensor Performance and

their Limit of Detection

This test evaluates the sensing performance of the IRR sensor by placing it at different

incident angles from the surface of interest in dark lighting condition similar to confined

sewers. In this evaluation, the IRR sensor was positioned at different angles so that

the sensor focuses the concrete surface of interest proximity to the reference thermistor.

The measurements from the sensors were collected and relative RMSE was computed for

comparing the IRR sensor performance at different incident angles. This experiment was

conducted in the laboratory conditions having the room temperature of 23°C and dark

lighting condition. Also, the sensor has 22◦ half angle field of view, which makes the

sensor to have the limit of detection in focusing the target surface.
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2.3.3 Distance, Lighting Condition and Reproducibility

In this test, the sensing performance of the IRR sensor is studied in the laboratory by

positioning the sensor at different distances from the surface of interest under varying

lighting conditions. This test was conducted mainly to recognize the pertinent distance

between the IRR sensor and target surface at the time of installing the sensor suite inside

the sewer pipe. The IRR sensor was kept at different distances such as 10cm, 20cm, 30cm,

40cm and 50cm from the target surface. This experiment was conducted by placing the

sensor at 90◦ angle to the concrete surface in both illuminated and dark lighting conditions.

Then, MAPE was used as a metric for performance evaluation to study the effects of

distance and lighting condition during measurements. Further, the reproducibility of the

measurement by the IRR sensor was accessed by taking repetitive measurements. These

experiments were conducted under the same operating conditions such as having same

incident angle, distance and lighting condition. To calculate the reproducibility of the

IRR sensor data, MAPE was used as a performance metric.

2.3.4 Performance of IRR Sensor in Higher Humidity Conditions

In general, the RH conditions of the sewer are over 80% [27]. In order to understand the

effects of humidity during the IRR sensor measurements, the IRR sensor was exposed to

different humidity conditions such as 80% RH, 90% RH and 100% RH inside the

humidity chamber focusing the sewer exposed concrete. Then, the IRR sensor readings

and the reference sensor readings were used to compute RMSE and MAPE for analysing

the humidity effects during measurements.

2.3.5 IRR Sensor Performance with Varying Surface Temperatures

In this laboratory experimentation, we evaluated the IRR sensor by measuring the

increased surface temperature inside the humidity chamber having 100% RH. The

increased surface temperature levels were 25°C, 30°C and 35°C as in evaluating the

methane sensor for sewer application [27]. A heating pad (HP-150, Auber Instruments)

was also kept inside the chamber to increase the surface temperature levels to 25°C,
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30°C, and 35°C. The reference thermistor sensor was affixed on the pad and IRR sensor

was positioned to focus it. Then, the RMSE and MAPE were computed to analyse the

effects of increased surface temperatures during measurements.

2.3.6 Sensor Development and Packaging

Two surface temperature sensors, i.e. one non-contact type IRR sensor (Apogee SI-111,

ICT International) and one contact type thermistor sensor (THERM-EP, ICT

International) were chosen for both laboratory testing and in-situ evaluation. Figure

2.1A shows the IRR sensor used in this work along with thermistor sensor shown in

Figure 2.1B. The key specifications of the temperature sensors used in this study are

summarized in Table 2.3. The IRR sensor is designed to operate in environments having

0% to 100% RH. However, it is not proclaimed to be applicable in wastewater industry

for measuring surface temperature. In this regard, a reliable, robust enclosure system is

an essential part of the durability of the sensing system. An enclosure made up of a

stainless steel 316L grade material that can withstand the harsh environmental

conditions was utilized. This enclosure is IP68 rated and ballistic-proof with an overall

dimension of 380mm × 80mm × 165mm, and an internal usable area of 260mm × 80mm

× 80mm. The enclosure unit has a wiper mechanism to clean the lens area before taking

the surface temperature measurements. The internal area of the enclosure can

accommodate an infrared radiometer sensor and electronics for the motor control. Before

installing the actual sensors in the sewer, only the enclosure was deployed to evaluate its

robustness in the municipal sewers of Sydney city at the Gore Creek Aqueduct. Figure

2.2A illustrates the deployment mechanism of the enclosure in sewers and Figure 2.2B

displays the placement of the enclosure inside the sewer having H2S approximately 5

ppm. As an outcome of this field testing, the sewer operators suggested an enclosure

design that is easy to carry and mount on the sewer walls; less weight and should

accommodate other sensors. Based on the findings and feedback from the sewer

operators, the enclosure was redesigned. The new enclosure design overcomes the

limitations of the previously tested design and it accommodates the IRR sensor,

thermistor sensor and moisture sensor.
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(a) [65]

(b) [66]

Figure 2.1: Surface Temperature Sensors (A) Infrared Radiometer Sensor (B) Epoxy
coated thermistor sensor .

Name IRR Sensor (SI-111) Thermistor Sensor
(THERM-EP)

Measurement Range -30°C to +65°C -40°C to +80°C

Operating Temperature Range -55°C to +80°C -40°C to +80°C

Accuracy ±0.2°C (-10°C to +65°C) ±0.05°C

Resolution 0.01°C 0.01°C

Table 2.3: Specifications of the surface temperature sensors used in this study.
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(a)

(b)

Figure 2.2: Enclosure testing in sewers. (A) Deploying mechanism of the enclosure (B)
Enclosure inside sewer having H2S around 5ppm.

The IRR sensor is placed inside the enclosure with an angle of inclination 45◦ focusing

on the surface of interest. An optical window is placed in front of the IRR sensor. The

optical window used in this study is made up of mono-crystalline germanium with wafer

structure having 0.5 mm thickness and diameter of 26 mm. In order to prevent the surface

fogging, the optical window has undergone nanometer coating using the fluorine and silicon

group. This optical window reduces the effects of water bands below 8µm and above 14µm.

Besides the temperature sensors, the sensing unit accommodates electrical resistivity based

moisture sensor within the sensor enclosure. All the sensors were packaged in a tailor-made

polyvinyl material enclosure. Then, to prevent moisture ingress into the sensor enclosure,

plastic compound (Henley’s Green Compound) was applied between the enclosure body

and sensor lid. The sensor enclosure was designed to accommodate other sensors, to be

easy to carry and easily mountable in sewers.
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2.4 Field Deployment for Real-time Continuous

Measurements Inside Hostile Sewer Infrastructure

An advanced sensor suite comprising sensing and monitoring unit was developed in the

laboratory. After a significant amount of lab testing, the sensing suite was introduced to

the real sewer environment for evaluating the sensing performance and the durability of

the packaged sensors. Based on the recommendations of sewer operators from the Sydney

Water, a sewer site at the Thornleigh area in the municipality of Sydney, Australia, was

chosen for deploying the packaged units. This site was at a remote location, where there is

no electricity and so, a long-term battery powered operation was a requisite. The sensing

unit was installed near the crown of the sewer pipe for measuring the surface temperature

variations (Figure 2.3A) whereas the monitoring unit was constructed outside the sewer

pipe for accessing the data (Figure 2.3B and Figure 2.3C). The field monitoring campaign

was carried out for about 96 days during the summer period in the Sydney city of Australia

between 3rd November 2016 and 7th February 2017. The field application was done in a

sewer having H2S levels approximately ranging between 2 to 5 ppm. Although this study

focusses on measuring surface temperature variable in the sewer system, other temperature

variables that may impact the surface temperature like the ambient temperature of the

sewer pipe and ambient temperature of the field site were also measured during the field

trial campaign.

The sensing unit comprises two temperature sensors namely an IRR sensor and an epoxy

coated thermistor sensor. Both the sensors measure surface temperature variations on

the exposed concrete surface. The IRR sensor works of the principle of Stefan-Boltzmann

Law [39]. The sensor converts the thermal radiations from the surface of interest into

an electrical signal, which is used to compute surface temperature without contacting the

surface. The thermistor sensor is used as a reference measure and it is a contact type

sensor, which performs measurements by touching the surface of the sewer concrete wall.

This sensor is made up of a semiconductor material in which resistance varies based on

the sensing temperature. Both the sensors were housed in a specially built enclosure,

which is made up of PVC material. This enclosure allows the tip of the thermistor to be

in contact with the concrete surface while the body of the thermistor is insulated by the
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(a)

(b) (c)

Figure 2.3: Field deployment of a sensor suite at a sewer site for real-time measurements
of temperature variables. (A) Installations of the sensing unit at the crown of the sewer
pipe for monitoring surface temperature variations (B) Construction of the monitoring
unit outside the sewer pipe (C) Housing the monitoring unit using an electrical pillar box

having vented air supply.
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enclosure. Besides the surface temperature sensors, another two thermistor sensors were

used to measure the temperature of the sewer air and ambient temperature of the field

site. After each measurement, the sensor data was transmitted to the monitoring unit by

using a 20 meters long cable. It was brought to our knowledge during the discussions with

the sewer operators that the sensor cables transmitting signals need to be animal proofed

mainly due to the reason that the vermin in sewers often nibble the cable sheathing. For

this reason, the signal transmitting cables were placed inside an electrical conduit from

the sensing unit to the monitoring unit.

In the monitoring unit, the incoming analog signals from the temperature sensors are

converted into a digital signal by the signal processing unit. Then, the processed digital

signal is sent to a logging instrument, where the data is stored after each measurement

with the respective time-stamp. The data-logger (TSM-1, ICT International) having five

differential ended analogue channels was used for logging all the temperature sensor

measurements. The sensor system is set to perform measurements at an interval of one

hour in hour boundaries. From the data logger, the sensor measurements data can be

accessed and downloaded in the form of a comma separated values file (.csv). Due to the

intrinsic safety concerns of the sewers, a DC battery was used to power the sensor system

and placed in the outside monitoring unit. No direct access was provided to the sensing

unit during the field testing. The sensors were controlled and the data from the sensors

were accessed from the monitoring station, where the battery swapping took place. The

sensor suite was powered by using 12V 100Ah rechargeable heavy duty batteries. In this

field application, the sewer suite did not have an infrastructure to communicate remotely.

Therefore, an operator checked the condition of the sensor suite once a week and

swapped with fully charged batteries throughout the field trial. The entire monitoring

unit was housed inside an electrical pillar box with vented air supply at the field site

(Figure 2.3C).
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2.5 Post-deployment Validations of the IRR Sensor After

Long Exposure to Hostile Sewer Conditions

After completing the field trial campaign, the sensor system was brought to the

laboratory for post-deployment validations. In this investigation, the durability of the

sensor enclosure and the sensing performance of the IRR sensor were examined. Careful

visual inspections were carried out to look for any degradation on the sensor enclosure

and optical window. The IRR sensing performance experimentation was performed in

the dark lighting conditions of the laboratory similar to the confined sewer system. The

IRR sensor was measuring the surface temperature by placing the sewer exposed optical

window and a new optical window to pursue comparative analysis. The measurements

were obtained from each sensor at certain time intervals and then MAPE was used as a

statistical metric to compute the relative percentage error between the IRR sensor and

benchmark measures.

2.6 Improving Surface Temperature Measurements of IRR

Sensor based on On-site Calibration

The IRR sensor used in developing the sensor suite was calibrated to provide surface

temperature measurements for surfaces having emissivity value approximately 0.98. As

the emissivity values can vary in different surfaces, there is a need to determine the

emissivity value of the surface of interest for providing accurate measurements. In this

regard, a method of field calibration was introduced to determine emissivity value of the

sewer concrete surface during the Sydney summer period. The following subsection will

present the theoretical considerations for determining the emissivity value and the

on-site calibration method adopted.

2.6.1 Theoretical Considerations and On-site Calibration

The ratio of radiant energy emitted by the surface to that emitted by a blackbody at

the same temperature is known as emissivity [67]. In [68], the radiant energy of infrared
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surface temperature sensor is computed by using Equation 2.3.

Eir = εisT
4
is + E (2.3)

where Eir is the radiant energy detected by the infrared surface temperature sensor, εis

is the set emissivity of the sensor, Tis is the temperature measured by the infrared

surface temperature sensor and E is the measurement error. According to [68], the

radiant energy from the contact-type surface temperature sensor can be determined by

using the expression in Equation 2.4.

Etr = εtT
4
tr (2.4)

where Etr is the radiant energy detected by the contact type surface temperature sensor,

εt is the true emissivity of the surface, Ttr is the temperature measured by the contact-type

surface temperature sensor. By combining Equation 2.3 and Equation 2.4, the expression

can be written as in Equation 2.5

εtT
4
tr = εisT

4
is + E (2.5)

Upon rearranging, the Equation 2.5 can be written as in Equation 2.6

εt = εis

[
Tis
Ttr

]4
+

E

T 4
tr

(2.6)

In [68], the component E
T 4
tr

of Equation 2.6 is sensor measurement error and assumed to

be normally distributed, uncorrelated and with mean equal to zero. Upon simplification,

Equation 2.6 can be written as εt = εis

[
Tis
Ttr

]4
[68]. In the field testing, the infrared surface

temperature sensor is the IRR sensor and contact-type surface temperature sensor is the

thermistor sensor. Therefore, the estimated emissivity of the surface is calculated based

on the mathematical expression shown in Equation 2.7.
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εT = εIR

[
TIRR
TRIT

]4
(2.7)

where εT is the estimated emissivity of the surface, εIR is the set emissivity of the IRR

sensor, TIRR is the surface temperature measured by the IRR sensor and TRIT is the

surface temperature measured by the reference instrument thermistor. In this study, for

the surface temperature correction analysis, surface temperature data of about 5 days

between 3rd November 2016 and 8th November 2016 were taken as a sample dataset for

determining emissivity coefficient. This implies that εT is determined by using the sensor

data of about 5 days. The mean value of εT is denoted by µ. The value of εIR for the IRR

sensor is 0.98.

The relative difference between the reference instrument thermistor and IRR sensor

readings is termed as pre-correction data. After determining the emissivity coefficient,

the surface temperature was improved by correcting the measured readings. This data is

termed as post-correction data. Surface temperature measurements were corrected by

using the data from 9th November 2016 to 31st January 2017. The surface temperature

measurements from the IRR sensor is corrected by using Equation 2.8, where the

Corrected TIRR is the corrected surface temperature measure of the IRR sensor

measurements. Also, the εT in the below Equation 2.8 denotes µ(εT ).

Corrected T IRR =

[
εT
εIR

]1/4
T IRR (2.8)

The RMSE in Equation 2.2 was used as a statistical performance metric for evaluating

the temperature correction after determining the emissivity coefficient.

2.7 Experimental Results

This section presents the experimental results of pre-deployment evaluation, field

deployment evaluation, post-deployment evaluation and improvisation of surface

temperature measurements.
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2.7.1 Pre-deployment Evaluation: Sensor Characterization and

Development

2.7.1.1 Evaluation of IRR Sensor’s Optical Window

This section demonstrates the laboratory assessment results of the IRR sensor’s optical

window after being exposed to different humidity conditions inside a humidity chamber.

The different humidity conditions are 80% RH, 90% RH and 100% RH. Figure 2.4

presents the images of optical window surface exposed to different humidity levels in the

test chamber. The images appear to be gloomy because they were captured in high

humidity conditions inside the chamber and also due to lighting conditions of the

laboratory. Careful visual inspection revealed that the surface of the germanium-made

anti-fog coated optical window led to no surface fogging. Therefore, this antifog coated

optical window is regarded as a viable solution to overcome the effects of surface fogging

in sewers.

(a)

(b) (c)

Figure 2.4: Assessment of the optical window exposed to different relative humidity
conditions inside the humidity chamber. (A) 80% RH (B) 90% RH (C) 100% RH.
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2.7.1.2 Evaluating the Effects of Incident Angle and Limit of Detection

This evaluation demonstrates the effects of incident angle in the IRR sensor performance

and their limit of detection. Figure 2.5 presents the statistically calculated proportions

of MAPE for different incident angles, where it can be observed that the variations were

relatively small (≤ 0.5%) with no obvious pattern. The relative difference between the

sensor and reference measure being less than 2.5% is generally regarded as reliable sensing

[28]. In this test, the MAPE for the IRR sensor measurements is less than 2.5% implying

the effects of the incident angle between 30◦ and 150◦ is reliable and has an imperceptible

impact on the IRR sensor performance. The half angle field of view of the IRR sensor

which is 22◦ needs to be considered while mounting the sensor.

Figure 2.5: Performance efficacy of IRR sensor by positioning it at different incident
angles from the surface of interest.



Chapter 2: Robust Sensor Technology for Measuring Surface Temperature in Sewers 43

2.7.1.3 Evaluating the Effects of Distance, Lighting Condition and

Reproducibility

This section presents the evaluation results of the effects of distance, lighting and their

reproducibility. Figure 2.6 presents the computed MAPE (%) for the measurements

obtained at different distance and lighting condition, where it can be observed that the

percentage of MAPE is higher for the dark lighting condition than the illuminated

lighting condition for all the distances between 10cm and 50cm. However, the effects of

distance in a particular lighting condition had a negligible impact on the performance of

the IRR sensor. From Figure 2.5 and Figure 2.6, it can be observed that the MAPE for

the IRR sensor performance under different incident angle, distance and lighting

conditions is smaller than 2.5%. This implies that the IRR sensor has good

reproducibility similar to the sensor monitoring methane in sewers [28].

Figure 2.6: Statistical comparative analysis of IRR sensor measurements obtained in
illuminated and dark ambient conditions by positioning the sensor in different distances.
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2.7.1.4 Evaluating the Performance of IRR Sensor in Higher Humidity

Conditions

This evaluation demonstrates the performance of the IRR sensor in different RH levels

(80%, 90% and 100%). Figure 2.7 presents the computed RMSE and MAPE by using

the IRR sensor readings and the reference readings. It can be observed from Figure 2.7

that the RMSE for the range of 80-100% RH was less than 0.5°C and shows no symmetric

trend for the different humidity levels. This indicates that the IRR sensor can be used

with no further calibration as the IRR sensor is factory calibrated for operating in 0-100%

RH conditions. Similar to the laboratory aforementioned experimental results, this test

results present MAPE less than 2.5% for the conditions of 80-100% RH (Figure 2.7). These

results clearly demonstrate the performance of the IRR sensor is not affected by the high

humidity conditions and provides credible measurements.

Figure 2.7: Computed measures of RMSE and MAPE illustrating the IRR sensor
performance under different humidity conditions.
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2.7.1.5 Evaluating the IRR Sensor Performance with Varying Surface

Temperatures

This evaluation presents the effects of the IRR sensor at increased surface temperature

measurements. Figure 2.8 presents the computed RMSE and MAPE for comparing the

IRR sensor performance at different temperature levels. It can be noted that the RMSE

for all the three temperature levels were approximately 0.4°C. However, the MAPE showed

a decreasing trend from 25°C to 35°C. This is due to the reason that the reference measure

and IRR sensor measure showed a difference of around 0.4°C while the temperature for each

level increased by 5°C. The implications of the results were reasonable and indicate that

the IRR sensor can acquire effective measurements under increasing surface temperature

levels.

Figure 2.8: Computed measures of RMSE and MAPE illustrating the IRR sensor with
varying surface temperature.
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2.7.1.6 Sensor Development and Packaging Prior to Sewer Deployment

Figure 2.9A presents the newly designed CAD model of the sensor enclosure, illustrating

the placement of sensors within the package, where the green colour indicates the IRR

sensor and the red colour indicates the moisture sensor. Then, this model was transformed

to a physical model made up of PVC material as shown in Figure 2.9B and Figure 2.9C,

prior to sewer deployment. The sensor enclosure was designed to mount the sensor unit

easily in sewers.

(a)

(b) (c)

Figure 2.9: Sensor enclosure. (A) New enclosure CAD Model (B) Top-view of the sensor
enclosure (C) Front-view of the sensor enclosure.
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2.7.2 Field Deployment Experimentation: Data Collection and Analysis

2.7.2.1 Real-time Sensor Data Showing Temporal Dynamics of Surface

Temperature Measurements from the Sewer Pipe

The surface temperature data obtained from the sewer monitoring campaign using IRR

sensor is shown in Figure 2.10, where it can be noticed that there is no sharp variation of

measurements between the days. The monthly average of surface temperature

measurements for November 2016, December 2016 and January 2017 was 20.30°C,

21.89°C and 23.25°C respectively. For the first week of February 2017, the average

surface temperature was 23.88°C. Overall, the average surface temperature measure

obtained from the IRR sensor during the field trial was 22.22°C. Figure 2.10 also presents

the surface temperature data acquired with the reference instrument thermistor sensor.

From both the sensors, the dynamics of the surface temperature profiles were captured

reasonably and displayed a similar pattern throughout the field trial. Diurnal pattern

tends to vary approximately less than ±1°C. The mean relative difference between the

measurements of two sensors was 0.67°C. Overall, the data from both the sensors showed

an increasing trend from the month of November 2016 to February 2017. Sewer corrosion

is estimated to be 70% higher when the pipe surface temperature is colder by 1°C

relative to the sewer air temperature [69]. Hence, sensor accuracy lesser than 1°C is vital.

Figure 2.10: Surface temperature profiles from IRR sensor and thermistor sensor.
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2.7.2.2 Comparative Analysis of Temperature Variables Data

Figure 2.11 shows the profile of sewer ambient temperature measured by the thermistor

sensor and the surface temperature profile acquired using IRR sensor. The sewer air

temperature and the surface temperature tends to follow a similar pattern. However,

there is a slight difference between the two variables due to the reason that the surface

takes time to be in equilibrium with the atmospheric temperature. Also, during the night

time the difference between the temperature increases. This can be due to the IRR sensor,

prone to lighting inside sewers. Figure 2.12 presents the daily average values of surface

temperature measurements from IRR sensor and the ambient temperature of the field

site. A thermistor sensor was installed on 26th November 2016 to measure the ambient

temperature outside the sewer pipe. In Figure 2.12, it can be recognized that the average

daily surface temperature remains to be increasing as long as the ambient temperature of

the field location increases. In contrast, the surface temperature pattern tends to decrease

when the ambient temperature of the field location decreases. This phenomenon implies

that the surface temperature of the sewer tends to behave as the dynamics of the sewer

air temperature, which synchronizes with the ambient temperature outside the sewers.

Hence, there is a clear correlation between the temperature outside the sewers and inside

temperature.

Figure 2.11: Comparison of surface temperature profile from IRR sensor with the sewer
ambient temperature profile from the thermistor sensor.
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Figure 2.12: Comparison of daily average surface temperature profile from IRR sensor
with the daily average of ambient temperature outside the sewer pipe.

2.7.3 Post Deployment Validations

The sensor enclosure was visually inspected after field trial program. No visual damages

were apparent on the sensor enclosure other than a slight decoloration of the material.

The IRR sensor with antifog coated germanium optical window was used in sewers for

non-contact type measurements. There was a slight visual degradation observed on the

antifog coated optical window after 96 days of exposure to the aggressive conditions of the

sewer (Figure 2.13B). The degradations were in the initial stages around the edges of the

optics and the central part remains unaffected. As a part of preventive maintenance, it is

recommended to replace the lens once in three months for accurate measurements.

The sensing performance of the IRR sensor was evaluated with the sewer exposed

germanium optics and with the new germanium optics. The reference instrument

thermistor sensor was used as a benchmark against the IRR sensor measurements and

thereby MAPE was computed between the two sensor measurements. The MAPE for the

IRR sensor measures using the new optics was 1.41% and for the IRR sensor measures

using the sewer exposed optics was 2.21%. Despite the exposure of the IRR sensor to the

aggressive sewer conditions, the MAPE of the IRR sensor is less than 2.5%, which was

the case even in the laboratory experiments under dark lighting conditions prior to the
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(a)

(b) (c)

Figure 2.13: Sensor enclosure after exposure to hostile sewer conditions. (A) Front view
of the sensor enclosure (B) Picture showing the degradation on the germanium optical

window (C) Top view of the sensor enclosure.

field deployment. Therefore, this evaluation demonstrates the IRR sensor is in good

condition with reliable sensing measures.

2.7.4 Improved Measurements of IRR Sensor with Post Calibration

Analysis

Surface temperature measurements were corrected by using the data from 9th November

2016 to 31st January 2017. Figure 2.14 shows the plots of error differences between the

pre and post correction IRR sensor data. The RMSE was used as a performance metric

for evaluating the surface temperature correction performance. The RMSE of the pre-

correction data and post-correction data is 0.72°C and 0.25°C respectively. Because of the

temperature correction based on the estimated emissivity value, it can be observed that

the surface temperature measurements can be improved with estimated concrete sewer

emissivity post-calibration.
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Figure 2.14: Improving surface temperature measurements of the IRR sensor between
November 2016 and January 2017.

2.8 Summary

The research study presented in this chapter has developed a robust sensor technology

for measuring temporal dynamics of the surface temperature in hostile sewer conditions.

The author believes that this is the first study to prove non-contact type surface

temperature sensing in sewer system. In this regard, this chapter has led to the following

key contributions:

1. A scoping study was conducted to review the currently available surface temperature

measuring devices indicating the suitability of using them in sewers. Almost all the

sensors have their applications in non-sewer conditions, but the scoping study has

short-listed two temperature sensors as the potential sensing solutions. They are: (i)

infrared radiometer (non-contact type sensing) and (ii) thermistor sensor (contact

type sensing).

2. A comprehensive evaluation was conducted in the laboratory condition to

characterize and develop the IRR sensor suite for sewer deployment. In this regard,

experiments on the performance analysis of optical window, the effects of incident

angle, limit of detection, distance, lighting condition, reproducibility, humidity

conditions and varying surface temperature were investigated. As an outcome of
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these investigations, the IRR sensor demonstrated reliable sensing to the

aforementioned environmental conditions.

3. From the field testing experiments, the study has revealed that the IRR sensor with

an antifog coated germanium optical window can be used for non-contact surface

temperature measurements in sewers. There was a slight degradation observed in

the antifog coating after 3 months in the sewer. So, this sensor is more suited for

deployments of about three months or can be used on moving platforms and human

traversing. For long-term sensing operations using IRR sensor, it is recommended

to replace or coat the optical window with antifog material after three months of

use. The thermistor sensor has proven to be reliable and it can be used in sewers for

contact-type sensing.

4. The post-deployment validations showed the robustness of the sensor enclosure

under the aggressive environmental conditions of the sewer. The post validation

lab experiments showed that all the temperature sensors were operating as desired

and no bias was observed. Therefore, it can be concluded that all the sensors

performed reasonably well in sewers and their data are legitimate.

5. A method to improve the accuracy of IRR sensor measurements based on the

emissivity correction was shown in this work. By determining the emissivity

coefficient of the sewer concrete surface, the temperature measurements of IRR

sensor was corrected for the summer period of Sydney city.

6. It is believed that the real-time continuous measurements from the developed IRR

sensor suite will provide information-rich data to the analytical models for better

prediction of corrosion in sewers. Overall, the contributions of this chapter can

enhance the waste water utility’s present sewer corrosion monitoring capabilities.

However, in order to fully utilize the sewer corrosion prediction model, there is a

need to measure the surface moisture conditions on the concrete sewers.

From the works presented in this chapter of the dissertation, the following publications

resulted as an outcome.
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Chapter 3

Robust Sensor Technology for

Measuring Surface Moisture in

Sewers

3.1 Introduction

In distinction to the sensor technology developed in the preceding chapter, another

sensor technology that has a significant role to play in predicting the microbial induced

concrete corrosion throughout the sewer network is the one that can quantify surface

moisture conditions of the concrete gravity sewers. However, water utilities often use

indirect measures like the relative humidity of the sewer air as an input to predict

corrosion. This is primarily due to unavailability of technologies in the state-of-the-art

systems and sensing limitations, as it is difficult to reliably measure moisture at the

concrete surface, due to the corrosive nature of sewer environment. Hence, this chapter

of the dissertation focusses to develop a robust sensing system for measuring moisture on

the surface of the concrete sewer. The information from the developed sensing system is

expected to be utilized by water utilities for assessing the impacts of sewer corrosion in

the networks using predictive modelling for asset maintenance and monitoring programs.

54
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Researchers have mainly focused on monitoring the specific parameters to investigate the

ambient conditions of the sewer by using commercially available sensing technologies

[70–72]. For instance, few studies have demonstrated the feasibility of monitoring relative

humidity levels inside the corrosive sewer pipes in different cities of Australia including

Sydney, Melbourne and Perth, where the researchers have reported the daily averages of

relative humidity [73]. Humidity sensors were developed by using advanced sensing

methods such as fibre optic technology for sewer applications like detecting leakages in

sewer tunnels [74]. Recently, humidity measurements near the concrete surface were

measured using Fibre Bragg Grating based sensors for in-sewer applications [29].

However, [64] illustrated a functional relationship between moisture content and relative

humidity, in which higher humidity levels inside sewers does not necessarily imply higher

moisture on sewer walls. Although there are several literatures pertains to monitoring

relative humidity in sewers, there are no reports till date on measuring concrete surface

moisture conditions inside sewers.

This chapter of the dissertation studies the possibility of measuring surface wall moisture

conditions, which is a better proxy that can add value to the current development of

corrosion modelling and data analytics. Therefore, it is important to develop a system that

can measure the surface moisture conditions at different locations in sewers to correctly

estimate the surface moisture distribution of the sewer wall. Since there are no systems

available in the market to readily measure surface moisture conditions in sewers, the sewer

operators defined several requirements in developing the moisture sensor suite. The main

requirements are i) sensing method should not cause any damages to the exposed concrete

sewer surface, ii) no flammable substances inside sewers, iii) easy access to sensor data, iv)

sensor enclosure should accommodate other sensors like temperature sensor, v) enclosure

should possess less-weight and robustness to hostile sewer conditions and vi) easy to carry

and mount design of enclosure.

In this chapter, the development and evaluation of the sensor suite for real-time

measurements of surface moisture conditions in sewers is elucidated. In the laboratory

investigation, the behaviour of concrete moisture with electrical resistance and different

pH aqueous solutions were studied by utilizing a data-driven machine learning approach.

This study led to utilize the Wenner array method to determine the surface moisture
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conditions based on concrete surface electrical resistivity measurements. Once the sensor

suite was tested and packaged in the laboratory, it was deployed in the sewer

environment for studying the sensing performance. From the field testing campaign,

electrical resistivity measurements were obtained from the surface of interest. Then,

on-site calibration was carried out to determine the surface moisture conditions of the

measured sewer surface. After completing the field testing, the sensing suite was

evaluated in the laboratory conditions to examine its sensing capabilities after exposing

the sensor suite to aggressive sewer conditions for about three months. Further, in the

off-line analysis, temporal variations of moisture and the effects of ambient temperature

and surface temperature were investigated. In addition, this chapter investigates the

effects of rebar during measurements. This chapter is distinct from those existing in the

current literatures in a form that it supplies the needed data about the surface conditions

of the concrete sewer rather than the ambient gaseous variable such as relative humidity.

The remainder of this chapter is organised as follows: Section 3.2 presents the scoping

study of sensors for surface moisture measurements. Section 3.3 details the experimental

evaluation to study the behaviour of concrete moisture with electrical resistance and pH

conditions. Section 3.4 describes the specifications of the sensor and pre-deployment

evaluations. Section 3.5 details the procedure adopted to deploy sensor in the field for

real-time evaluation and data collection. Section 3.6 presents the post-deployment

investigations. Section 3.7 studies the effects of rebar during moisture measurements.

Section 3.8 presents the experimental results with analyses and finally, Section 3.9

summarises the main contributions resulting from this chapter with research outcomes.

3.2 Scoping Study: Sensors for Surface Moisture

Measurements

This scoping study of sensors for surface moisture measurements investigates a wide

range of moisture measurement techniques with the aim of selecting a practically feasible

moisture sensor that can potentially be used to measure the surface moisture conditions

in sewers.
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3.2.1 Sensors for Moisture Sensing

Surface moisture is the free water retained on the surface of aggregate particles and

considered to be part of the mixing water in concrete [75]. In this context, this section

covers the review of relevant literatures about the technologies that are associated with

the motivation of this research work for measuring moisture conditions. The sensing

techniques are broadly classified into following types:

1. Gravimetric method

2. Gamma densitometry method

3. Electrical resistivity method

4. Capacitance sensor

5. Resonator based methods

6. Time Domain Reflectometry based sensors

7. Frequency Domain Reflectometry based sensors

8. Fibre optic sensors

9. Micro Electro Mechanical Systems Sensors

10. Hyperspectral Sensing

3.2.1.1 Gravimetric Method

Gravimetric methods are the most simple, but reliable technology for measuring moisture

presence in concrete.

Technology: Gravimetric methods measure weight differences of the mass of water to

dry weight sample. This may also be calculated as the difference of the volume of water

to the total volume of the concrete sample [76]. This generally involves taking full-depth

core sample using a dry-cut process followed by drying in an oven until a constant weight

is reached. Initial and final weights are used to calculate the overall moisture content of
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the sample. The measuring technologies [77, 78] may contain infrared lamps as a heat

source and can measure the moisture content automatically.

Discussion: The gravimetric methods are the most simplistic, direct and reliable

measurements. However, they require a reasonable number of measurements for

averaging to improve the reliability of the measurement. This is one of the few methods

that can be used in high moisture contents [77]. However, it only can provide water

content of the whole sample portion rather than the surface moisture content. The

requirement of a core sample for each measurement is also prohibitive in the sewer

monitoring application. However, this method may be used for validation purposes.

3.2.1.2 Gamma Densitometry Method

Gamma densitometry is used to measure the local variation of water content in the

material.

Technology: The principle of the Gamma densitometry uses a beam of gamma ray

passing through concrete. Gamma rays are emitted by a radioactive source. The mass

variations of the traversed points can be measured as the relative intensity of the

transmitted particles [79]. Assuming that the mass losses due to chemical evolution are

negligible but they are solely due to water evaporation, thereby profile of water content

can be estimated.

Discussion: One advantage of this method is that the technology can be used to measure

moisture at different depths. However, it assumes the same flow interception volume of

material at each measurement [79]. This technology is bulky, expensive and most suited for

lab environments. The testing material should be in-between the radioactive source and

the receiver and hence there are practical limitations in using this technology in sewers.

3.2.1.3 Electrical Resistivity Method

In general, the electrical resistivity of a porous material decreases with an increase of

moisture content. This is due to the low resistivity of the pore fluid than that of the
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solid material. Therefore, it is well known that the changes in moisture content can be

monitored by measuring the changes in the electrical resistivity of the material [80].

Technology: This is a simple technology, where a voltage is applied between two

electrodes embedded in concrete and the resulting current is measured. The ratio of

voltage to current gives a resistance. In general, calibration procedures are utilized to

estimate the moisture content from the measured resistance. The Wenner probe method

uses a four electrode system that applies a sinusoidal current of frequencies from 50Hz to

1kHz [81]. The electrodes can be embedded at desired depths for measuring internal

concrete moisture or can be kept in contact with the concrete surface to determine

surface moisture conditions.

Discussion: This technology can be affected by the variations in the contact between

the electrodes and cement. This variation can be due to electrochemical reactions and

shrinkage cracks [82]. Further, variations in temperature can affect the measurements. For

example, Polder [81] demonstrated that for every degree (Kelvin) of temperature change,

there can be a moisture content variation of 3% for saturated and 5% for dry concrete.

Therefore, this method could be a feasible option that could be used in sewer environments

for determining the moisture conditions based on electrical resistivity measurements.

3.2.1.4 Capacitance Sensor

A dielectric material is an electrical insulator that can be polarized by an applied electric

field. While it is placed in an electric field, it creates dielectric polarization. A common

application is a capacitor. Change in dielectric material causes a change in the capacitance.

Technology: [83] uses a co-planar structure consisting of multiple parallel fingers as part

of the capacitance sensor. It measures the dielectric constant (relative permittivity) of the

material by applying fringing electric fields into the material. Two sensors are used for

the moisture measurement; a meander sensor and a circular sensor. A change in concrete

water content is related to a change in capacitance.

Discussion: In general, capacitive sensors are well suited for moisture measurements

in bulk solids [84]. Presence of water alters the dielectric constant of the material of
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interest. This change can be used to estimate the moisture content. This method needs

a calibration process and can be affected by the chemicals present in the sewers. This

method can also be influenced by foreign particles that can deposit on the plates including

the water droplets which restricts the use of it in harsh sewer conditions.

3.2.1.5 Resonator Based Methods

Resonators naturally oscillate at resonant frequencies [85]. Radio Frequencies (RFs) can

be used in conjunction with resonators to estimate the material properties. The RFs exist

in a wide range of frequencies (3kHz to 300GHz) and hence the measurement method needs

to be customized based on the material of interest. Microwaves (1GHz to 100GHz) are a

popular choice for measuring moisture content. The history of microwave technology goes

back to 1950s, however, it was not a popular sensing technology until 1980s when solid

state devices were invented [80]. The technology can be used to characterize materials

based on permeability and permittivity and hence the quantities such as moisture content.

Nuclear resonators are also used in moisture content measurement applications.

Technology: The microwave attenuation technology uses a transmitter on one side and

a receiver on the opposite side of the sample. When a microwave beam passes through

a porous material, it undergoes an attenuation and a phase change. The presence of

moisture affects both attenuation and phase change [80]. Therefore, real and imaginary

components are often combined to estimate the moisture content independent of density.

It alleviates the need to estimate the density of the material. Microwave resonators are

used to measure the interested frequencies.

Discussion: The requirement of a transmitter and a receiver on opposite sides of the

sample makes the microwave attenuation type technology very challenging to be used in

sewers. Further, it is not desirable to use higher frequencies or higher moisture contents

as both leads to drastic attenuation of the signal. It is possible to use

transmitter/receiver on one side of a sample, however, it is challenging as the microwave

technology finds it difficult to penetrate higher depths while returning high signal back

for analysis [80]. Further, the attenuation of microwave signal increases with higher

frequencies and moisture contents. Therefore, using this technology for measuring higher
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moisture contents is still a challenge. The nuclear resonator based sensors consist of a

certain amount of radioactive materials [85] and hence the manufacturers face

distribution and export restrictions. Further, nuclear based sensors have a stringent

waste disposal process heavily regulated by the government. The users need extra

training and safety procedures and the sensors are in general expensive. Therefore, the

use of nuclear based resonators are not very attractive.

3.2.1.6 Time Domain Reflectometry based Sensors

Time Domain Reflectometry (TDR) can be used to determine the dielectric constant of

an object and hence inferring the volumetric water content of different materials such as

soil [86]. This technology has been heavily used in soil moisture measurements. The first

reported application of this method was in 1980 and hence a relatively new technology

[86].

Technology: This technology is typically used in tele-communication industry to

identify the dis-continuities of cables. A pulse generator was used to generate an

electromagnetic wave and the propagation time of electromagnetic waves were used to

determine the dielectric constant of the material under test [86]. In invasive type,

electrodes need to be inserted into the material. The incident electromagnetic wave

reflects once it reaches an impedance difference between the cable and the probe. The

rest of the wave propagates through the probe and reflects back at the boundary between

the probe and the material. The round trip is measured to estimate the dielectric

constant of the material under test [86].

Discussion: As the dielectric constant of water is larger (about 81) than that of soil

(about 3 - 5), this method is relatively robust to different soil compositions [86]. However,

TDR measurements are affected by the temperature variations. This method is invasive

and could be affected by the distribution of the moisture content within the probe length.

Further, the TDR measurements are affected by the salinity of the pore solutions and

hence the naive use of it is challenging.
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3.2.1.7 Frequency Domain Reflectometry based Sensors

Frequency Domain Reflectometry (FDR) has similarities with the capacitance based sensor

and can be often regarded as the same. FDR is mostly used in soil moisture measurements

and there are not reported in sewer applications [87, 88].

Technology: In the FDR technology, an oscillator is used to generate a high frequency

signal which is propagated through electrodes. It exploits the standing wave principle

and dielectric properties of the water and interested material. The dielectric constant of

water is very high (about 80) and that of soil is about 3, air is 1 and concrete is about 4.

Therefore, any difference in the volumetric ratio of the water and the material results in

a higher dielectric constant. Therefore, once calibrated, moisture content in the material

can be estimated.

Discussion: FDR sensors produce reasonably accurate results. However, they need

calibration with the material in use. It is an invasive method, meaning the electrodes

need to be embedded in the material. However, this could be an option to consider in

sewer applications as it is faster when compared with TDR and less complex hardware

for data acquisition.

3.2.1.8 Fibre Optic Sensors

Fiber optic technologies are used in many sensing applications and often rely on a change

of an optical property of a material. There are several fiber optic sensing technologies

that can be used in high relative humid and moisture measurements. Those can be

categorized as Fiber Grating (FG) sensors, FBG sensors, long period grating sensors,

evanescent wave sensors, interferometric sensors and hybrid (grating and interferometric)

sensors and absorbance sensors [89]. The recent approaches which are related to the

specific sewer environments are discussed as follows.

FBG Sensors Technology: The FBG technology uses a grating inscribed into the

optical fiber to select a particular wavelength of the light from a broadband source. This

particular wavelength is reflected back into the light source producing amplified Critical

Wavelength (CW) [90]. If the grating spaces are shrunk or expanded by any phenomenon,
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there is a shift observed in the CW. This shift in the CW can be qualitatively related to

the source of the strain, for example strain, load and temperature. Therefore, humidity

can be measured by configuring the FBG sensor by applying hygroscopic polymer coating

over a grating inscribed fiber optic cable. Once the polymer coating swells in contact with

water, it causes strain and hence shift in the CW. The response is reversible and therefore

it can be used to measure humidity [90].

In [74], the FBG consists of a bare and polyimide-coated FBG. The polyimide acts as a

hygroscopic coating. It absorbs water molecules and swells causing strains on the FBG.

This experienced strain is linearly proportional to the applied relative humidity. It is a

useful measurement of ambient relative humidity which can be determined by comparing

the shifts in the Bragg’s wavelength with prior calibration values [74]. The accuracy

can be improved by compensating for the temperature effects. Therefore, an uncoated

section is also used in conjunction with the sensor for measuring the temperature and

subsequent compensation. Further, in order to minimize the other environmental effects,

proper packaging including a PEEK tube with a perforated tip is used. A permeable

PTFE membrane is used to protect the permeable tip from dirt and chemicals. Then both

the PEEK tube and the PTFE membrane are covered using a perforated PEEK rod with

a centrally bore hole [74].

Fiber Optic Swellable Polymeric Sensor Technology: The fiber optic swellable

polymeric sensor as reported in [74] consists of hydrogel rod, an optic fiber and a device

to cause micro bending of the fiber. Hydrogel swells in presence of water. Considering the

sewer applications, PVA is used, which is resistant to grease, oil and solvents. A helically

twisted thread is used for micro bending. It covers both the PVA hydrogel and the optical

Single Mode fiber. As the PVA swells in the presence of water, it presses the optical single-

mode fiber against the helically twisted thread leading to attenuation of light transmitted

through fiber. The light attenuation was measured using a power meter. The swellable

polymeric fiber optic sensor is covered with felt wick for extending the area of exposure to

water.

Discussion: In general, fiber optic sensors have the advantages of electrical passivity,

easier in multiplexing and remote operability. There is a considerable amount of research
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work carried out relating to this technology including several US patents [91]. The research

work by Grattan et al (City University London) is significant in this domain and they have

used both the FBG based humidity sensor and a swellable polymer fiber optic sensor in

sewerage tunnel leakage detection [74]. FBG humidity sensors are placed at the bottom

side of the joints and the swellable polymer fiber optic sensor is laid near the inner side

of the sewerage pipe. It is invasive and needs significant infrastructure modifications; may

be more suitable for new sewer pipes. The quantity measured is not a direct measure of

the surface moisture content and it can be affected by other factors such as shrinkage,

thermal strain and diffusivity of the concrete [92]. The response time of the sensor given

in the [74] is 30 minutes which may be another concern, although it is mentioned that the

sensitivity and the response time can be optimized by changing the coating thickness [93].

In a similar US patented humidity sensor document [91], it is mentioned that the sensor

takes longer time for low to high humidity transitions than that of high-to-low transitions.

3.2.1.9 Micro Electro Mechanical Systems Sensors

With the development of MEMS technology, capacitive and cantilever type sensors became

a reality. They have a small form factor, cheaper and provide fast responses.

Technology: Both the capacitive type and cantilever type sensors use thermoset polymer

coating to detect water vapour [94]. In the former type, polyamide or cellulose acetate

polymer thin films are deposited in between conductive electrodes. The absorption of

moisture causes the dielectric constant of the material to change providing a measure

for exposed humidity. The design may involve a porous top metal sheet for allowing the

moisture to reach the polymer. In the latter, polyimide is spin coated on cantilever beams.

Once the polyimide is exposed to humidity (water), the film expands introducing strain

in the structure. Strain gauges are used to measure it and hence the humidity in the

environment can be estimated.

Discussion: The sensors are reasonably priced and provide reliable responses. They are

low power devices which have lots of potential in industrial applications. However, they

are not tested in sewers. It is anticipated that the sensors have challenges due to the

need for exposure of the thin polymer film to the hostile sewer environments. This in
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turn causes the sensor degradation due to the deterioration of the polymer and blockage

of moisture transmission from reaching to the polymer due to foreign particles those can

deposit in sewer environments.

3.2.1.10 Hyperspectral Sensing

Human vision can only see a very limited band (approximately 390nm to 700nm) in the

electromagnetic spectrum. Hyperspectral cameras are able to sense a much wider range in

the electromagnetic spectrum. Therefore, it has been used in many applications including,

remote monitoring, agricultural and biomedical and military applications [95–99].

Technology: This technology works like an advanced camera. A visual camera captures

only three wavelength bands (for example, red, green and blue). In contrast, multispectral

cameras capture several bands of information [100, 101]. The most advanced version, which

is the hyperspectral camera captures both spectral and spatial data. The light entered into

the camera is dispersed to different wavelengths by the spectrograph. The dispersed light

is then incident on a CCD sensor capturing spatial and spectral information. However, it

is to be noted that the input light is only a line as opposed to a scene in a visual camera.

Such information is captured by either moving the camera or object movement.

Discussion: The hyperspectral sensors have been used in soil moisture monitoring [102].

However, there are no reported work on the application of them in sewers to detect the

amount of surface moisture. The sensor has limitations in sewers due to harsh prevailing

conditions such as extremely high humidity. Although this could be used for detecting the

presence of moisture, estimating the amount of moisture is a challenging task.

3.2.2 Feasibility

This section indicates the feasibility aspects of the sensing devices to be used to measure

surface moisture conditions in the sewer system. The section short lists the potential

sensing solutions. The criteria for short-listing includes the technical aspects, cost and non-

invasive approach. Table 3.1 presents the feasibility analysis for comparing the previously

discussed surface moisture measurement modalities.
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Feasibility Analysis: Comparison of surface moisture measurement modalities

Technology Non-
invasive
(Yes/No)

Feasibility
(Yes/No)

Comments

Gravimetric
methods

- Yes Can be used in very high moisture
contents. Several measurements and
hence several core samples are needed
for improving reliability. Provides the
moisture content of the whole sample.
May be used for validation purposes.

Gamma
densitometry

Yes No Moisture profile can be obtained. This
is bulky and expensive, most suitable
for lab environments. Practically
challenging in sewers.

Electrical resistivity Yes Yes Non-invasive and contact type. Needs
on-site calibration.

Capacitive sensors Yes No Need on-site calibration and can be
affected by foreign particles (vapor).

Resonator based
sensors

Yes No Compromise between the depth of
penetration and attenuation. Nuclear
reactor based sensors are possible,
however, they are very restricted and
expensive.

TDR based sensors No Yes Invasive, need calibration and can be
affected by the temperature variations
and distribution of the moisture.

FDR based sensors No Yes Invasive, need calibration, faster and
less complex compared to TDR.

Fiber optic sensors No Yes Invasive and need to be mounted
along the infrastructure, could be
challenging in sewers due to chemicals
and other foreign matter.

MEMS sensors Yes No Challenging to use in sewers due to the
need of exposure the thin film to the
hostile sewer environments.

Hyperspectral
sensing

Yes No High humidity can affect the response,
presence of moisture may be possible,
however estimation of level of moisture
may be very challenging.

Table 3.1: Feasibility: Comparison of surface moisture measurement modalities.
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3.2.3 Concluding Remarks

From the scoping study, it is concluded that electrical resistivity based surface moisture

sensing as a potential solution. This measuring technique will be utilized in developing

the moisture sensor suite.

3.3 Experimental Evaluation to Study the Behaviour of

Concrete Moisture with Electrical Resistance and pH

Conditions

In this section, the behaviour of concrete moisture with electrical resistance and the effects

of pH concentrations on the concrete are studied.

3.3.1 Experimental Approach

3.3.1.1 Concrete Sample Preparation

A total of 10 concrete samples were used for two sets of experiments. All the concrete

samples were dried using a microwave oven and were left to cool for 5 hours at room

temperature of 25°C and each sample had dimensions of 20x10x5 cm3. After cooling, the

mass of each concrete sample in dry condition denoted as md was recorded and the readings

were recorded in Table 3.2. Then, each concrete sample was placed in a 7-litre container

and submerged in different aqueous solutions having different pH values and were left for

15 days. The wet concrete samples were removed from the containers and excess liquid

on concrete surfaces were soaked out gently using a paper towel before the mass of each

concrete sample in wet condition denoted as mw was recorded. The recorded readings are

shown in Table 3.3.
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Experimentation-1 Experimentation-2

Concrete Number md (g) Concrete Number md (g)

1 2211.4 6 2222.8

2 2137.5 7 2207.3

3 2187.7 8 2145.7

4 2163.8 9 2130.4

5 2160.4 10 2150.1

Table 3.2: Mass of concrete samples in dry condition.

Experimentation-1 Experimentation-2

Concrete Number mw (g) Concrete Number mw (g)

1 2275.8 6 2279.3

2 2219.2 7 2290.7

3 2264.5 8 2216.0

4 2250.2 9 2209.6

5 2241.4 10 2217.4

Table 3.3: Mass of concrete samples in wet condition.

3.3.1.2 pH Measurements

It is known that the surface pH is an indication to initiation of the corrosion process. As

mentioned in [19], the rate of acidification has been a strong function of pH concentration.

In [15], it was specified that the neutrophilic bacterial colonization happens when the

concrete surface pH falls approximately to 9 and the activity of acidophilic bacteria lowers
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the concrete surface pH to values around 2. The pH indicator strips were used to determine

the concentration levels of different solutions. Concrete samples were numbered from 1

to 10 and Table 3.4 summarizes how concrete samples were immersed in solutions having

different pH values.

Concrete samples in different pH value of solutions

pH value of solutions 2 5 7 8 9

Concrete Number 1,6 2,7 3,8 4,9 5,10

Table 3.4: Concrete samples in different pH value of solutions.

3.3.1.3 Moisture Measurements

The concrete samples were taken out from the solutions to determine their moisture

content. The surfaces of the concrete samples were soaked with a paper towel gently to

avoid erroneous readings before the masses of concrete samples were recorded on

weighing scale (OHAUS SP-6001), which had a precision of 0.1 gram.

By using the gravimetric method, the determination of wet basis moisture content θG of a

material can be defined as in Equation 3.1 and the volumetric moisture content θV of the

material can be determined by using the formula in Equation 3.2 as given by [83]. Both

θG and θV are expressed in terms of %.

θG =
mw −md

md
× 100 (3.1)

θV =
ρd
ρw
× θG(%) (3.2)

where mw is the mass of the concrete sample in a wet condition, md is the mass of the

concrete sample in a dry condition, ρw is the density of pH solution and ρd is the density

of concrete sample in a dry condition, which can be defined as in Equation 3.3. ρd is

expressed in terms of g/cm3.
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ρd =
md

volume
(3.3)

where the volume of each concrete sample was calculated to be 1000 cm3. When the

bottom surface of a concrete sample was exposed to the solution having neutral pH=7,

the time of arrival of moisture at different depths of a concrete sample was measured and

the readings were presented in Table 3.5.

Depth profile of moisture penetration inside concrete

Depth (cm) 0.5 1.0 1.5 2.0 2.5

Time of arrival of moisture (Hours) 24 60 120 216 360

Table 3.5: Depth profile of moisture penetration inside concrete.

Since the arrival of moisture from the exposed surface was about 2.5 cm in depth, the new

volume of the concrete sample was calculated to be approximately 500 cm3. Therefore,

the ρd of concrete samples were calculated using Equation 3.3 and presented in Table 3.6.

The ρw of concretes are presented in Table 3.7.

Experimentation-1 Experimentation-2

Concrete Number ρd (g/cm3) Concrete Number ρd (g/cm3)

1 4.4228 6 4.4456

2 4.2750 7 4.4146

3 4.3754 8 4.2914

4 4.3276 9 4.2608

5 4.3208 10 4.3002

Table 3.6: Density of concrete samples in dry condition.
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Experimentation-1 Experimentation-2

Concrete Number ρw (g/cm3) Concrete Number ρw (g/cm3)

1 0.960 6 0.960

2 0.980 7 0.980

3 1.000 8 1.000

4 1.025 9 1.025

5 1.030 10 1.030

Table 3.7: Density of pH solution.

3.3.1.4 Electrical Resistance Based Sensor System

A sensor system for moisture sensing application was newly designed and fabricated in this

work. The measurement of electrical resistance between two sensing electrodes determines

the electrical conductivity, which is a property of concrete material [103]. The newly

designed sensor system works on the principle of sensing electrical resistance changes

through electrodes that are in contact with the surface of interest. The measured electrical

resistance data is used to infer volumetric concrete moisture content and thus, the system

behaves as a resistance-based moisture sensor. All the experiments on concrete samples

were conducted in CAS Robotics Research Laboratory located at UTS.

The sensor system includes two electrodes that are made up of conductive carbon steel

and plated with zinc for corrosion protection, a microcontroller board comprising of

ATmega328 microcontroller having 8-bit AVR, a data logger comprising 8GB Ultra

HDSC memory and 12V DC power source. The entire system was enclosed in IP65 rated

housing allowing only electrodes to be in contact with the concrete as in Figure 3.1.

The resistance sensor circuit used by the sensor system consists of a voltage divider with

non-inverting operational amplifier (op-amp) and Analog to Digital Converter (ADC).

Figure 3.2 shows the resistance sensor circuit.
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Figure 3.1: Functional block diagram of the sensor system.

Figure 3.2: Resistance sensor circuit.

The resistance sensor has an input DC voltage Vin=3.3V. The resistance R1 was

analytically estimated as R1=510 kΩ. The resistor R2 gives the measure of electrical

resistance changes of the concrete sample. Due to the low impedance of ADC compared

to the resistance of concrete, a non-inverting op-amp under unity gain was used to buffer

the voltage between the circuit and ADC. The output voltage Vout of the circuit as

shown in Figure 3.2 was computed by using Equation 3.4. Upon simplifying and

rearranging Equation 3.4, the unknown resistance R2 that gives the measure of concrete

resistance was obtained by using Equation 3.5.

Vout = Vin ×
R2

R1 +R2
(3.4)
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R2 = R1× 1(
Vin

Vout
− 1

) (3.5)

The alternative sensor circuit can be Wheatstone bridge circuit for determining the

unknown resistance (concrete resistance). For a given concrete, the changes of moisture

content can be monitored by sensing electrical resistance variations of the material.

However, the resistivity is usually affected by the type of cement and water-cement ratio

[104]. Higher the porosity of the material, the resistivity measurements will be lower

mainly because of less material interfering with current passing through it [81]. Due to

ion transport through the pore solution, the electrical conduction occurs and it is

dependent on both pore solution conductivity and porosity [105]. Likewise, when the

concrete material is more porous, it can hold more water content, i.e., it can increase the

volumetric measure with more moisture. The porosity also reflects on the surface of a

material as it interferes with current passing through a material. Therefore, it can hold

more water content when the surface is more porous and so it reflects on low surface

resistivity measurements.

3.3.2 Data-driven Approach for Predicting Moisture Content

This section describes the data-driven approach for predicting the volumetric moisture

content of concrete using Gaussian Process Regression (GPR). Estimating volumetric

moisture content from electrical resistance and pH measurements can be formulated as

a non-linear regression problem. Gaussian Process (GP) models are an effective tool to

resolve such regression problems. GP modelling approach [106] was used in this work to

train a non-parametric model, which obtains resistance (R) and pH (ph) values as inputs

and predicts the percentage volumetric moisture content (mc). The intention is to learn

a function f in the form of

mc = f(R, ph) + ξ (3.6)
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where ξ is the uncertainty, adapting the GP approach used in [107] learn a similar function.

The adaptation of the GP approach is described from here on in.

Let [X,Y ] be the training data set where X = [x1, x2, x3, ......, xm]T , xi = [Ri phi]
T , and

i(1 ≤ i ≤ m) is an integer and m is the number of captured data pairs.

Y = [y1, y2, y3, ......, ym]T is a vector containing corresponding training targets where

yi = mci. Similarly, [X∗, Y ∗] will be testing data where X∗ = [x∗1, x
∗
2, x
∗
3, ......, x

∗
n]T is a

matrix containing testing inputs and Y = [y∗1, y
∗
2, y
∗
3, ......, y

∗
n]T is a vector containing

predicted outputs corresponding to X∗. Once f has been learned using [X,Y ], f can be

used to predict Y ∗ for a given X∗ as shown in Equation 3.7

mc∗ = f(R∗, ph∗) + ξ∗ (3.7)

To apply the GP framework to this non-linear regression problem, a kernel K(X,X) having

elements given by ki,j = k(xi, xj) has to be selected. This specifies the kind of functions

that are expected before any data have been seen. Technically, the kernel places a prior

likelihood on all possible functions. After evaluating a number of commonly used kernels,

the squared exponential kernel was chosen for this work. It is defined as in Equation 3.8.

k(xi, xj) = α2exp

{
− 1

2β2
‖xi − xj‖2

}
(3.8)

where the α and β represent the hyper-parameters. The GPR model was trained by

minimizing the negative log marginal likelihood in Equation 3.9 with respect to

θ =
{
α, β, σn

}
. The covariance function denoted by

∑
in Equation 3.9 is expressed in

Equation 3.10.

− log p(Y |X, θ) =
1

2
Y T
(∑)−1

Y +
1

2

∣∣∣∑∣∣∣+
m

2
log(2π) (3.9)

∑
= K(X,X) + σ2nI (3.10)



Chapter 3: Robust Sensor Technology for Measuring Surface Moisture in Sewers 75

The basic Gaussian Process Regression model equations are given by Equation 3.11 and

Equation 3.12.

(µ)∗ = K(X∗, X)
{
K(X,X) + σ2nI

}−1
y (3.11)

(∑)∗
= K(X∗, X∗) + σ2nI −

{
K(X∗, X)K(X,X) + σ2nI

}−1
K(X,X∗) (3.12)

The predicted volumetric moisture content (Y ∗) for the testing input vector (X∗) thus

will be given by the mean of the posterior distribution (µ)∗ and the associated uncertainty

will be given by the covariance (
∑

)*.

3.4 Sensor Development and Pre-deployment Evaluation

The experimental evaluation conducted in the previous section demonstrated the

variations of electrical resistance based on the concrete moisture. Following that, this

section describes the sensor development for real-time measurements inside sewer pipes

under hostile conditions. The surface resistivity of the concrete material can be measured

by placing the resistivity meter on the surface of interest. In this work, commercially

available resistivity meter is utilized (Resipod, Proceq), which is shown in Figure 3.3A.

The sensing principle of the resistivity meter used in the sensor development is based on

the Wenner method. This technique uses four electrodes positioned in a straight line with

an equidistant space between the electrodes as shown in Figure 3.3B. A current is applied

to the outer two electrodes that are in contact with the concrete surface and the resultant

potential difference is measured across the two inner electrodes. Based on the ratio of the

injected current and the measured voltage, electrical surface resistivity can be determined.

However, the measured resistivity is dependent on the distance between the electrodes.

Mathematically, the resistivity can be computed by using Equation 3.13:

ρ = 2πa
(V
I

)
(3.13)
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(a) [108]

(b)

Figure 3.3: Surface resistivity measurement. (A) Commercial resistivity meter from
Proceq (B) Wenner method to measure surface resistivity.

where ρ is the resistivity of the concrete material expressed in terms of kΩcm, a = 50mm

is the distance between the electrodes, V is the electrical potential difference measured by

the inner two electrodes and I is the current injected by the outer two electrodes.

Based on the resistance of the concrete material, the resistivity meter automatically

changes its current injection mode through outer electrodes. In general, the device tries

to inject full 200µA current into the concrete. However, if the concrete material has high

resistance, it injects 50µA or if that is not likely to happen because of very high

resistance, it injects less than 50µA.
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The resistivity meter has an in-built non-volatile memory unit, where 500 measurement

values can be stored. In order to utilize the sensor for long-term operations, it is required

to have more memory for storing the real-time measurements. For this reason, an

ODROID based data logger was developed by establishing the data connectivity between

the resistivity meter and storage unit.

A sensing unit was designed to allow only the electrodes of the resistivity meter outside

the sensor enclosure in order to be in contact with the concrete surface. The electrodes

of the resistivity meter uses spring mechanism, so that the electrodes can be on contact

with the concrete surface even in case of concrete surface being not flat (rough). The key

specifications of the resistivity meter is shown in Table 3.8.

Key Specifications: Resistivity Meter

Range 0-2000 kΩcm

Frequency 40 Hertz

Resolution (nominal current 200µA) ±0.2 kΩcm

Resolution (nominal current 50µA) ±2 kΩcm

Resolution (nominal current <50µA) ±2 kΩcm

Operating temperature 0°C to 50°C

Storage temperature -10°C to 70°C

Input power 5V, 100mA

Table 3.8: Specifications of the resistivity meter.

Although, the resistivity meter has its application for infrastructure monitoring, it is not

proclaimed to use in confined sewer systems. Therefore, pre-deployment evaluation was

conducted before deploying it in sewer systems. This evaluation focusses on the

measurement capabilities of the resistivity meter to determine the reproducibility and

limit of detection. The evaluation was carried out by placing the resistivity meter on the

benchmark and taking repeated measurements.
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3.5 Field Application for Real-time Measurements of

Surface Moisture Conditions

This section describes the sensor suite deployment in sewer pipe for real-time measurements

of surface moisture conditions. Then, the section elucidates the sensor data collection and

on-site calibration procedure.

3.5.1 Sensor Suite Deployment

After developing the sensor suite in the laboratory, it was deployed at Sydney Water

based sewer at Thornleigh suburb of Sydney city, Australia during the summer season.

The sensor suite consists of sensing unit and monitoring unit. The sensing unit was

installed near the crown of the confined concrete sewer pipe on 3rd November 2017 and

the monitoring unit was constructed outside the sewer pipe to set up the access station.

Figure 3.4 shows the installation of the sensing unit inside sewers and the access station

set up outside the sewer pipe.

Besides the electrical resistivity based moisture sensor, the sensing unit accommodates

an infrared radiometer and a thermistor sensor for measuring the surface temperature

variations on the concrete sewer. The moisture sensor was activated to measure the surface

resistivity of concrete sewer on 10th November 2017. The sensing unit was mounted on

the sewer pipe in a way such that the electrodes are in contact with the concrete surface,

so that surface measurements are attained. From the sensing unit, the signals from the

moisture sensor were transmitted to the access station by using an Ethernet cable.

In the access station, the transmitted signal from the moisture sensor was processed and

data logged by using an ODROID based Single Board Computer (SBC). The SBC used in

the proposed application was ODROID-XU4. It is a 16GB embedded multimedia controller

module with pre-installed Linux computing and small form factor having a dimension of

82x58x22 mm3. The incoming digitalized signals from the moisture sensor were decoded

from binary format to hexadecimal format. The on-board operating system of the SBC

in the access station was programmed using Python programming language to perform
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(a)

(b)

Figure 3.4: Moisture sensor deployment. (A) Sensing unit near the crown of the concrete
sewer pipe (B) Monitoring unit of the access station constructed outside the sewer pipe.

surface resistivity measurements at an interval of one hour in hour boundaries. From the

SBC at the access station, the logged surface resistivity measurements with the time-stamp

can be downloaded in the form of a text file (.txt).

The field site used for sensor evaluation was located in a remote area, where there is no

access to electrical mains. In order to overcome this issue, the access station was designed

to operate by using battery power. The SBC in the access station was powered by using

a 12V 100Ah rechargeable heavy duty battery. The constructed access station was not

equipped to communicate the measured data remotely and so, once in a week an operator

goes to the access station to check the operating conditions of the sensor and data logging

facilities whilst swapping the batteries with fully charged ones. Every time, the operator

swaps the batteries, the SBC was rebooted and restarted to perform data acquisition at
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desired time intervals.

Other sensors that measure the surface temperature of the concrete sewer pipe and

ambient temperature of the sewer atmosphere were also powered by the batteries in the

access station. The data from those sensors were stored by using a data logger (TSM-1,

ICT International). All the sensors were monitored from the assess station and were

programmed to perform measurements at hour boundaries. All the cables transmitting

measured data signals were protected from the sewer vermins by enclosing with electrical

conduit from the sensing unit to access station. This field deployment application was

carried out for about three months and both the sensing unit and monitoring unit in the

access station were removed from the site on 7th February 2017. The H2S levels during

the field evaluation were approximately ranging between 2-5ppm.

3.5.2 Field Data Collection and On-site Calibration

The free water retained on the surface of the aggregate particles and considered to be part

of mixing water in concrete is known as surface moisture [109]. Depending on the moisture

content, the concrete material behaves either as an insulator or a conductor. From various

studies including [40, 41, 110, 111], it has been proven that the electrical resistivity of

the concrete decreases when the moisture increases and vice-versa. Therefore, the surface

electrical resistivity measurement is said to have a strong function of surface moisture.

In this study, we aim to indicate the moisture on the concrete surface of the sewer pipe.

The electrical resistivity sensor employed in this study was calibrated on the field site by

placing the sensor and taking resistivity measurements in dry and wet surface areas. The

measurement from the dry surface area was 360 kΩcm and from the wet surface area, the

measurement was 16 kΩcm. The surface electrical resistivity measurements range from

360 kΩcm to 16 kΩcm was considered to be 0% to 100% surface moisture range. Besides

surface resistivity data measurements, the surface temperature of the concrete sewer pipe

and ambient temperature of the sewer atmosphere was synchronously measured.
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3.6 Post-deployment Validations of the Moisture Sensor

After Long Exposure to Hostile Sewer Condition

A post-deployment validation study was conducted in the laboratory conditions following

the three months of field evaluation in hostile sewer environment. In this study, the sensing

capabilities of the moisture sensor and the robustness of the enclosure were investigated.

By using the benchmark, the sensing capabilities of the moisture sensor were evaluated by

taking repetitive measurements. Then, MAPD was used as a statistical metrics to compute

the percentage error between the sensor measurements and benchmark. Further, the sensor

enclosure and the sensor electrodes were examined through careful visual inspection to

identify any deteriorations occurred during the field evaluation.

3.7 Locating the Rebar Orientation using Electrical

Resistivity Measurements

This section presents a machine learning model for locating orientation of the reinforcing

bar (rebar) inside the concrete in order to optimally place the sensor for surface moisture

measurements.

3.7.1 Data Collection

In this section, data was collected by using a resistivity meter that was developed in the

laboratory. This device performs measurements based on the Wenner method similar to the

one deployed inside sewers. This device is compact and works on the open-source electronic

prototyping platform (Arduino Nano). The main difference between the developed unit

and sewer deployed unit is the distance between the electrodes. The new unit has a

distance of 4 cm and whereas the other has 5 cm. The newly developed resistivity meter

was evaluated on the benchmark scale and it produced measurements as desired. More

information on the development of this resistivity meter is available in [112]. A concrete

of thickness: 10 cm, width: 35 cm and length: 35 cm was made with a rebar width: 1.2
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cm, height: 1.2 cm and length: 30 cm was embedded into the concrete material at a 2

cm depth from the top surface of the concrete. This concrete was divided into several

cells to perform measurements in those cells. Totally, the concrete was partitioned into 49

cells and each cell have a dimension of 4cm2. The rebar runs through the column 4 of the

(7× 7) partitions.

Electrical resistivity measurements in each cell were obtained by placing the inner two

electrodes of the sensor at different angles such as 0◦, 30◦, 45◦, 60◦ and 90◦. The 0◦

position is perpendicular to the rebar and 90◦ position is parallel to rebar. For each angle,

two sets of data was taken in each cell, which makes two datasets for each angle. From

the 49 cells, only 20 random cells data were used to implement the GMRF for spatial

estimation and remaining 29 cells were used for testing purpose.

3.7.2 Spatial Estimation using Gaussian Markov Random Fields

This subsection presents the Gaussian Markov Random Fields (GMRF) for spatial

estimation and thereby determine the orientation of the embedded rebar inside the

concrete. The proposed machine learning method is a computationally efficient

alternative to the non-parametric Gaussian Process (GP) based models. The

computational advantages coming from the sparsity of the precision matrix, an inverse of

a dense covariance matrix, whose zero elements relate directly to conditional

independence assumptions. This salient feature of the precision matrix motivates this

work to employ GMRF model [113].

3.7.2.1 Gaussian Markov Random Fields

GMRF is a discretely indexed Gaussian Field, which is achieved through the observations

of random variables in the spatial process [106, 113]. It incorporates Gaussian Processes

and also satisfies Markovian property [114]. This makes GMRF a computationally efficient

alternative to Gaussian Processes [115].

Let s = (s1, s2, s3, ..., sn)T with s ∼ N (µ,Q−1) referring to GMRF given by the mean

µ and a symmetric and positive definite precision matrix Q that represents the convex
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polytope in Rd (R denotes real numbers and d is the polytope), and an inverse of the

Gaussian Process covariance matrix,
∑

[113, 116]. So, the density of s will be of the

mathematical form given in Equation 3.14:

p(s) = (2π)−
n
2

(
det(Q)

) 1
2
exp

{
− 1

2
(s− µ)TQ(s− µ)

}
(3.14)

The salient feature of the Markovian property is that the full conditional distribution of

si (i ≤ i ≤ n) is only dependent on the elements set of the neighbourhood structure of the

process and it is given by Equation 3.15

p(si|s−i) = p(si|sNi) (3.15)

where s−i represents the elements in s apart from the element si, and sNi denotes the

neighbourhood elements of si. Therefore, it is established that in the case of given

neighbourhood elements, si element is independent on all other elements in s with the

exception of the element sNi, which defines the conditional independence as

si ⊥ s−i,Ni|sNi (⊥ denotes the independence of two variables) for i ≤ i ≤ n. According to

[114], µ is not related to pairwise conditional independence properties of s and therefore,

afore stated characteristic is limited to the precision matrix Q. Generally, if si and sj are

conditionally independent, si ⊥ s−j |s−i,j is equivalent to Qij = 0. This condition give

rise to Qij 6= 0 when j ∈ {i,Ni} and deduce the sparsity of Q that results significantly in

computation performance.

3.7.2.2 Spatial Field Model by way of Gaussian Markov Random Fields

Let the finite set of spatially observed locations be ψ = (ψT1 , ψ
T
2 , ψ

T
3 , ..., ψ

T
n )T . Each

spatially observed location in ψ comprise of one electrical resistivity measurement data

and consider x(ψ) = (x(ψ1), x(ψ2), x(ψ3), ..., x(ψn))T as the vector of measurements in

the spatial field [113]. In this work, the model utilized is similar to [115, 116], which is a

summation of a large scale component, a random field and an identically distributed noise.

The model is mathematically defined in Equation 3.16:
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x(ψ) = ζ(ψ)β + s(ψ) + ε(ψ) (3.16)

where ζ(ψ)β = E(x(ψ)) is the expectation of (x(ψ)) and E(·) defines the expectation

operator. ζ(ψ) is the covariates determined at spatial location ψ and β is the vector of

mean parameters. s is a GMRF with a n zero mean vector and a n×n precision matrix Q.

ε(ψ) is the measurement noise with µ = 0 and a known covariance matrix σ2ε Iε at spatial

locations ψi (1 ≤ i ≤ n), where σ2ε is assumed to be known and Iε is the identity matrix,

n× n.

As in [117], the GMRF can precisely work as a Gaussian Process when the continuous

domain Stochastic Partial Differential Equations (SPDE) possess a solution with Matern

covariance function [113], which is mathematically given by 3.17.

cov(γ) =
σ2

Γ(v)2v−1
(κγ)vKv(κγ) (3.17)

where γ indicates the Euclidean distance between the spatial locations, γ = ‖vi−vj‖. The

term σ2 denotes the marginal variance and the term κ implies spatial parameters with

v as the Matern smoothness and Kv represents the modified Bessel function [113]. The

term ζ(ψ)β, in this case denotes the mean function in the context of Gaussian Process

[118, 119].

3.7.2.3 Sensor Data Modelled by GMRF Using SPDE Approach

The SPDE approach formulated by [120] demonstrates computational effectiveness while

used in the spatial process. This approach incorporates finite element method [121] to

focus the SPDE onto a basis representation, which includes piece-wise linear basis functions

described by a triangulation that pertains to the interested regions [113]. Assuming that

the spatial process s(p) is observed at N locations where p = (pT1 , p
T
2 , p

T
3 , ..., p

T
n )T , then the

initial vertices of the triangle are set at those spatial locations. Further, in order to achieve

spatial prediction, more vertices of the triangles are added to realize a large triangulation.
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The GMRF model is developed on the basis function representation for the given

triangulation of the domain Q [113]. Therefore, s(p) is given as in Equation 3.18:

s(p) =

n∑
i=1

fi(p)wi (3.18)

where {fi(p)} denotes the basis functions that are piece-wise linear on each triangle [113].

In the ith vertex of the mesh, fi(p) of the functions {fi(p)} is 1 and 0 for all other vertices.

The term {wi} denotes the Gaussian distributed weight. At each triangle vertex i, the

value of the spatial field is given by {wi} [113]. Thus, the SPDE approach incorporating

finite element method establishes the link between the Gaussian Process and GMRF with

feasible computation efficacy. The precision matrix Q of size n × n is determined by

computing Equation 3.19:

Q = τ2(κ4D + 2κ2H +HD−1H) (3.19)

where τ controls the variance, D and H are the n × n matrices with Dij =
〈
fi, fj

〉
and

Hij =
〈
∆fi,∆fj

〉
. The total number of triangulation vertices defines the dimension of

Q in the interested region. Thus, Q can be seen as a function of κ and τ . Lets define

the hyper-parameter vector as Φ = (log(τ), log(κ)). Now, it can be said that the sparse

property of Q is embraced by the GMRF representation built by the linear basis functions.

The inherent random field at the n vertices of the triangulation is defined by GMRF with

µ as

s|Φ ∼ N (µ,Q−1) (3.20)

In the interest of mapping between the basis function representation located at n vertex

of the triangulation and random field at resistivity meter locations having N dimension,

let us consider the projector matrix as B, whose size is N × n. B projects the modelled

inherent random field at the vertices of the triangulation to the data locations.
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In reference to the spatial field model presented in the preceding section, the measurements

at N locations of the spatial field can be given by Equation 3.21:

x|s,Φ, β, σ2ε ∼ N (ζ(p)β +Bs, σ2ε IN ) (3.21)

where ζ(p) refers to N × q matrix of covariates, β and Φ are the estimated parameters of

the maximum likelihood approach [119], IN refers the identity matrix N × N . If all the

model parameters are learned, the joint distributions of x and s are calculated by adopting

the technique in [113, 122], which is given by Equation 3.22:

s|x,Φ, β, σ2ε , B ∼ N

( 0

ζ(p)β

 ,
 Q−1 Q−1BT

BTQ−1 σ2ε I +BQ−1BT

) (3.22)

The full conditional distribution of s given by x is also Gaussian with respective to

probabilistic theory [113]. By suing block-wise inversion approach [123] and the Schur

complement, the Gaussian expressed in Equation 3.22 can be mathematically written as

in Equation 3.23:

s|x,Φ, β, σ2ε , B ∼ N
(
µs|x, Q

−1
s|x

)
(3.23)

where µs|x denotes the vector of posterior means and the term Qs|x denotes the posterior

Q. They are given as follows:

µs|x = ζ(ψ)β +Q−1s|x(σ2ε IN )−1(x− ζ(p)β) (3.24)

Qs|x = Q+BT (σ2ε IN )−1B (3.25)

Equation 3.24 factorizes the sparse matrix Qs|x. However, Qs|x is not dependent on the

collection of sensor measurements [113, 116].
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3.8 Experimental Results

3.8.1 Experimental Evaluation to Study the Effects of Concrete

Moisture with Electrical Resistance and pH

The electrical resistance on the concrete surfaces that were soaked in various pH

solutions was measured. The measured resistance data was interpreted with respective

volumetric moisture content data for the particular pH solution. It can be observed and

clearly evident from the experimental results shown in Figure 3.5 that the electrical

resistance measurements increase with a decrease in volumetric moisture content for all

the concrete samples and pH solutions from Experimentation-1. The concrete samples

that were immersed in pH solutions (pH = 5, 7, 8, 9) tend to show similar trends in

moisture content measurements. However, the concrete samples which were under the

influence of high acidic solution (pH = 2) show less increase in volumetric moisture

content. It may be due to the fact that concrete surface degradation resulting in loss of

concrete mass, which was visible from the residues that were present inside the solution

container.

The experimental data obtained from all the concrete samples that were used in

Experimentation-1 was combined together as the training data input feature for GP

modelling. Figure 3.6 shows the input training data in 3D for GP modelling and Figure

3.7 shows the GP predictions in 3D along with the training data from

Experimentation-1.

The behaviour of predicted values corresponding to training data is shown in Figure 3.8

along with uncertainties. Data from Experimentation-2 were taken as testing data and

the comparison of prediction relative to measured values (testing data) is shown in Figure

3.9. RMSE between prediction and measured volumetric moisture content is 1.44% while

the Mean Absolute Error (MAE) is 1.19%.

It can be observed that the GP predicted data and training data fits within the 2σ

uncertainty bounds for the Experimentation-1 as it reasonably learns the moisture

prediction model. Once the model was evaluated with the testing data from
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Figure 3.5: Electrical Resistance vs. Volumetric Moisture Content.

Figure 3.6: Learned GP model with training data.
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Figure 3.7: GP predictions in 3D.

Figure 3.8: The behaviour of predicted values corresponding to training data.
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Figure 3.9: The behaviour of predictions vs. measured values (testing data).

Experimentation-2, the performance is given in Figure 3.9. There is an RMSE of 1.44%

in prediction, which can be due to many reasons. For example, it may be due to the

precision of the measuring equipment and also due to human error.

3.8.2 Sensor Development and Pre-deployment Evaluation

By using the electrical resistivity meter, a sensor for sewer deployment was developed

and packaged in a PVC material enclosure along with other temperature sensors. The

sensor enclosure was designed in a way such that the electrodes of the resistivity meter

is in contact with the concrete surface when placed near the crown of the sewer pipe.

The accommodation of resistivity meter inside the sensor enclosure is shown in Figure

3.10A and Figure 3.10B displays the electrodes of the resistivity meter for performing

measurements on the concrete surface. In order to establish the data transfer between the

resistivity meter and the specially made data logger, a USB type B to Ethernet cable was

placed inside the sensor enclosure used for transferring measurement data.
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(a)

(b)

Figure 3.10: (A) Accommodation of resistivity meter inside sensor enclosure CAD model
and (B) Sensor enclosure displaying the electrodes of the resistivity meter.

After developing the sensor, pre-deployment evaluation was conducted in laboratory

conditions. In this evaluation, the sensor was placed on the benchmark measures of 120

kΩcm and 16 kΩcm to determine the reproducibility. As an outcome of this evaluation,

all the measurements were identical to the benchmark measures and therefore, the data

reproducibility was 100%. However, if any of the electrodes are not properly in contact

with the concrete surface, the measurements showed the value as 0 kΩcm or error. In

addition, the resistivity meter has the limit of detection, which is between 0 kΩcm to

2000 kΩcm. Overall, from the pre-deployment evaluation, it can be concluded that the

resistivity meter can be deployed inside sewer pipes for measuring the surface resistivity

variations of the concrete with the manufacturer settings.

3.8.3 Field Deployment Application

This section presents the experimental results of the field evaluation conducted inside real

sewer system.
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3.8.3.1 Real-time Sensor Data Showing Temporal Dynamics of Surface

Resistivity Measurements from the Sewer Pipe

The surface resistivity variations measured by using the electrical resistivity meter inside

the concrete sewer pipe is presented in Figure 3.11. The measurement data was obtained

from 10th November 2016 to 20th December 2016 and from 28th December 2016 to 7th

February 2017. From Figure 3.11, it can be observed that there are no significant

differences of surface resistivity measurements between the days. However, it can be

noticed that the diurnal variation pattern relatively varies less than 2 kΩcm. Overall, the

surface resistivity data from the resistivity meter displayed a decreasing pattern from the

month of November 2016 to February 2017.

3.8.3.2 Effects of Concrete Surface Temperature and Sewer Ambient

Temperature Conditions

Figure 3.12 presents the profiles of surface resistivity measurements, surface temperature of

the concrete sewer pipe and ambient temperature of the sewer atmosphere for comparative

analysis. It can be noticed from Figure 3.12 that the surface resistivity profile in general

is having a decreasing trend while the surface temperature profile is showing an increasing

trend. This factor is attributed to the reason that increasing temperature of the concrete

material increases ion mobility, which results in decreasing the electrical resistivity of the

material [124]. In addition, the surface resistivity also showed a decreasing trend while the

ambient temperature of the sewer atmosphere showed an increasing trend. This is due to

the reason that ambient temperature of the sewer has its influence on the concrete surface

temperature. Although both the temperature variables showed a similar trend, there are

slight differences in their pattern.

3.8.3.3 On-site Calibration and Surface Moisture Interpretations

In order to determine the surface moisture conditions of the concrete sewer pipe, an on-site

calibration was conducted at the end of the field trial evaluation by placing the resistivity
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Figure 3.11: Surface resistivity profiles obtained from the concrete sewer pipe.



Chapter 3: Robust Sensor Technology for Measuring Surface Moisture in Sewers 94

Figure 3.12: Profiles of surface resistivity, surface temperature and ambient
temperature.
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meter in wet and dry areas of the concrete sewer pipe and measuring the concrete surface

resistivity.

By using the surface resistivity measurements, the surface moisture conditions can be

mathematically determined by using the equation in 3.26

SM = 100−

(
SRS − SRW

SRD

)
× 100 (3.26)

where SM is the surface moisture condition of the concrete sewer pipe, SRS is the surface

resistivity value measured from the resistivity meter, SRW is the surface resistivity value

measured at wet area of the concrete sewer pipe and SRD is the surface resistivity value

measured at dry area of the concrete sewer pipe. All the surface resistivity measurements

are expressed in terms of kΩcm and the surface moisture conditions are expressed in terms

of %. From the on-site calibration, SRD and SRW were measured to be 364 kΩcm and

16 kΩcm respectively.

The surface moisture conditions determined by using Equation 3.26 is shown in Figure 3.13,

where it can be observed that the surface moisture condition of the concrete sewer pipe is

showing an increasing trend from November 2016 to February 2017, which is the summer

season of the Sydney city of Australia. Overall, it can be concluded that the surface

moisture conditions of the concrete sewer pipe were high during the field evaluation.

3.8.4 Post-deployment Validations

In this post-deployment validation study, the sensing performance of the moisture sensor

was evaluated along with careful visual inspection of sensor enclosure. Figure 3.14 shows

the sensor measurements taken after the field evaluation, where it can be seen from the

plot that sensor has produced continuously 16 kΩcm and 120 kΩcm against the benchmark

measure of 16 kΩcm and 120 kΩcm. This demonstrates that the measurements from the

moisture sensor are produced without any bias. Therefore, the statistical metric MAPD for

the sensing evaluation will have zero value, implying the measurements obtained from the

sewer were reliable. Figure 3.15 shows the condition of the sensor enclosure post-exposure
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Figure 3.13: Surface moisture profiles obtained from the concrete sewer pipe.
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Figure 3.14: Moisture sensor measurements after long exposure to sewer conditions

to hostile sewer environment, where no visual degradation barring slight de-colouration

the enclosure material was observed. From this post-deployment validation study, it can

be concluded that the moisture sensor operates as desired without any apparent bias and

the tailor-made sensor enclosure demonstrated robustness to sewer conditions after three

months of exposure.

3.8.4.1 Spatial Estimation of Rebar Using GMRF

This section presents the results of the GMRF estimation of the rebar orientation based on

non-invasive electrical resistivity measurements. The measurements were taken by placing

the resistivity meter at different angles such as 0◦, 30◦, 45◦, 60◦ and 90◦. The angle 0◦ is

perpendicular to the rebar whereas the angle 90◦ is parallel to the rebar.

Figure 3.16 shows the spatial estimation for the measurements taken at and angle 0◦,

Figure 3.17 shows the spatial estimation for the measurements taken at and angle 30◦,

Figure 3.18 shows the spatial estimation for the measurements taken at and angle 45◦,

Figure 3.19 shows the spatial estimation for the measurements taken at and angle 60◦ and

Figure 3.20 shows the spatial estimation for the measurements taken at and angle 90◦.
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(a)

(b)

Figure 3.15: Sensor enclosure after exposure to hostile sewer conditions for about three
months. (A) Top view of the sensor enclosure displaying the sensor electrodes and (B) Side
view of the enclosure displaying the de-colouration occurred during the field evaluation.

Figure 3.16: Spatial estimation using GMRF by taking resistivity measurements at 0◦.
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Figure 3.17: Spatial estimation using GMRF by taking resistivity measurements at 30◦.

Figure 3.18: Spatial estimation using GMRF by taking resistivity measurements at 45◦.
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Figure 3.19: Spatial estimation using GMRF by taking resistivity measurements at 60◦.

Figure 3.20: Spatial estimation using GMRF by taking resistivity measurements at 90◦.
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In order to evaluate the estimation performance of the GMRF model, MAE and RMSE

were used as metrics, which computes based on the data of measured value and estimated

value. This evaluation was carried out by placing the resistivity meter at an angle 90◦ and

3 sets of data were taken in the 49 partitions. Among the 49, 20 were used for training

and 29 were used for testing. The Dataset-1 was computed to have MAE of 0.50 kΩcm

and RMSE of 1.69 kΩcm, Dataset-2 was computed to have MAE of 0.61 kΩcm and RMSE

of 1.60 kΩcm and Dataset-3 was computed to have MAE of 0.28 kΩcm and RMSE of 1.37

kΩcm. From these result, it can said that the estimation performance of the GMRF is

satisfactory and this model can be used for spatially locating the rebar.

In the figures showing the spatial estimation using GMRF, the low resistivity area

represents the orientation of the rebar. Therefore, it can be concluded that the

measurements taken at different angles such as 0◦, 30◦, 45◦, 60◦ and 90◦ showed that the

rebar orientation can be estimated for optimal sensor placement. However, it can be

observed from the Figure 3.16 that the measurements taken at the angle 0◦ has less rebar

influence compared to other angles. Given the unknown conditions of the rebar at sewer

pipes, the electrical resistivity measurements taken at different angles through GMRF

spatial estimation model can shed light on the rebar location. Therefore, this

information is vital to place the electrical resistivity meter for surface moisture

estimation in sewer systems.

3.9 Summary

The research study presented in this chapter has developed a robust sensor technology

for determining temporal dynamics of the surface moisture conditions in hostile sewer

environments. The author believes that this is the first study to prove non-invasive type

of surface moisture determinations in sewer system. In this regard, this chapter has led to

the following key contributions:

• A scoping study was conducted to review the currently available surface moisture

determining techniques indicating the suitability of using them in sewers. Almost all
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the sensors have their applications in non-sewer conditions, but the scoping study

has short-listed electrical resistivity based devices as the potential sensing solutions.

• A comprehensive evaluation was conducted in the laboratory condition to study

the behaviour of concrete moisture with electrical resistance and pH conditions.

Experimental results show that resistance measurements decrease with increase in

moisture content for all the concrete samples that were influenced by solutions of

different pH concentration levels. By using Gaussian Process regression modelling

technique, the volumetric moisture content of concrete was predicted based on the

resistance data and pH values as inputs. The prediction results indicated that the

resistance sensor measurements are susceptible for different concretes.

• The resistivity meter was deployed inside the sewer system under the aggressive

environmental conditions. The device was fixed near the crown of the concrete

sewer pipe for measurements. This field evaluation was conducted for about three

months and the data was obtained from the monitoring station constructed out

side the sewer pipe. Then, the device was calibrated by taking measurements in

sewer pipe to determine the surface moisture conditions. It can be concluded that

the determination of surface moisture conditions through non-invasive electrical

resistivity measurements is feasible and during the field experimentation, the

surface moisture conditions were high throughout. However, further work need to

be done on this.

• The post-deployment investigations showed the physical robustness of the resistivity

meter and enclosure under the aggressive environmental conditions of the sewer. In

addition, the post-deployment validation lab experiments showed that the electrical

resistivity based moisture sensor was operating as desired and no bias was observed.

Therefore, it can be concluded that the sensor performed reasonably well in sewers

and their data are legitimate.

• GMRF based machine leaning model was proposed in this chapter for optimally

placing the sensor on concrete surface to mitigate the effects of rebar. In this study,

the GMRF model estimates the spatial orientation of the rebar using the

measurements of electrical resistivity meter. The results demonstrated that the



Chapter 3: Robust Sensor Technology for Measuring Surface Moisture in Sewers 103

electrical resistivity measurements taken at different angles such as 0◦, 30◦, 45◦,

60◦ and 90◦ to the rebar shows the feasibility to locate the rebar through

cost-effective and non-invasive techniques. However, it is recommended to take

measurement at 90◦ for locating the rebar, since this angle has maximum influence

of the rebar during measurements.

• It is believed that the real-time continuous measurements from the electrical

resistivity based surface moisture sensor will provide information-rich data to the

analytical models for better prediction of corrosion in sewers. Overall, the

contributions of this chapter can enhance the waste water utilities present sewer

corrosion monitoring capabilities. However, in order to fully utilize the sewer

corrosion prediction model, there is a need to examine the reliability of the sensor

measurements, i.e. whether the sensor provides meaningful legitimate data.

From the works presented in this chapter of the dissertation, the following publications

resulted as an outcome.

• K.Thiyagarajan, S. Kodagoda, R. Ranasinghe, D. Vitanage and G. Iori, “Robust

sensing system for non-invasive estimation of surface moisture conditions in concrete

sewers,” Nature - Scientific Reports. (Under Review)

• K.Thiyagarajan, S. Kodagoda, L.V. Nguyen, and S. Wickramanayake, “Gaussian

Markov Random Fields for Localizing the Reinforcing Bars in Concrete

Infrastructures,” 35th International Symposium on Automation and Robotics in

Construction (ISARC), Berlin, Germany, 2018. pp. 1035-1041.

• K.Thiyagarajan, S. Kodagoda and N. Ulapane, “Data-driven machine learning

approach for predicting volumetric moisture content of concrete using resistance

sensor measurements,” 2016 IEEE 11th Conference on Industrial Electronics and

Applications (ICIEA), Hefei, China, 2016, pp. 1288-1293.



Chapter 4

Smart Predictive Analytics for

Detecting Sensor Failure

4.1 Introduction

Smart predictive analytics integrated with cutting-edge sensor technology is an imperative

component of smart monitoring systems mainly due to the reason that it enables the

practitioners to foresee the future trends and more squarely to answer “What is likely

to happen?” based on the historical or past sensor data. Recently, the relevance of

predictive analytics to tackle real-world problems that are emerging from the sophisticated

mainstream utilities is a paradigm of “How the advancement in data analytics has taken

the ascendency in delivering better solutions?”.

Sensors play a vital role in providing information to predictive models for analysis and

decision-making. They are essential constituents of any critical infrastructure monitoring

system as they are responsible for maintaining the system safety and reliability [125].

However, in real-time systems, sensors can behave differently over time and provide

spurious data owing to different erratic factors including the exposure of the sensor to a

harsh environment and inherent sensing malfunctions [126]. Spurious data emanating

from the sensors can be momentary or long-lasting. Momentary faulty data are likely to

happen randomly due to changes in sensor characteristics over time. Those temporary

104



Chapter 4: Smart Predictive Analytics for Detecting Sensor Failure 105

data should not be attributed to sensor failures. Instead, they need to be isolated as

anomalies. However, the continuous spurious data could probably lead to sensor failure

and result in downgrading the performance of an entire monitoring system, especially in

critical infrastructures.

An urban sewerage system is a paradigm of a critical underground infrastructure system.

The sewer environment conditions are harsh and notoriously capable of spoiling the sensors.

Given the sensor units cannot be manually monitored all the time and they only can

be remotely monitored through communication infrastructure, a mechanism to monitor

and estimate sensor failure is an important aspect. With the increase of the number of

the sensor units in the infrastructure, the need of an automatic sensor failure detection

system becomes paramount. Therefore, early sensor failure detection is highly important

for pertinent intervention strategies while monitoring the environmental phenomena of

critical infrastructure assets like the sewer system.

Currently, there is no sensor system available in the state-of-the-art to monitor the

temporal dynamics of surface temperature and surface moisture in the aggressively

corrosive environmental conditions of the sewer. For that reason, a sensor suite was

developed and deployed in sewers for a little over three months between 3rd November

2016 and 7th February 2017 in the municipal sewer of the Sydney city of Australia. The

field testing campaign has demonstrated that the sensor suite is robust and capable of

monitoring for long-term in sewer conditions. However, the confined sewer systems are a

hostile environment to both sensor monitoring and human inspections. Since the sensor

system cannot be physically monitored every time, Sensor Failure Detection and

Accommodation (SFDA) algorithm can potentially become a salient feature in

ameliorating the present sewer monitoring system.

This chapter of the dissertation focuses on developing a machine learning based

diagnostic toolkit by presenting the SFDA algorithm for sewer monitoring application.

The work motivates the development of a SFDA algorithm that possesses the following

three properties.

• Forecasting: Forecasting is a process of predicting the future trends of data based

on the collected historical data trends by using a mathematical model [127]. The
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surface temperature data measured by the IRR sensor deployed inside the sewers

along with the moisture sensor measuring surface resistivity are represented as a

time-series data. By using the past temporal dynamics of the measured variable,

the future trends will be foreseen by using a mathematical model. The forecast data

will be acting as a virtual sensor to compare against the actual upcoming sensor

data from the sewers for detecting anomalies and sensor failure. Also, in the event of

scheduled sensor maintenance, the forecast data will be used to provide information

to the analytical models that predict the rate of sewer concrete corrosion.

• Anomalies detection and isolation : Anomalies are unexpected patterns in the

data that do not comply with the normal behavioural trends [128]. In this work,

every single data that comes from the surface temperature sensor and moisture sensor

are vital. So, the sensor data that deviates from the normal pattern is flagged as an

anomaly. The presence of anomalies will downgrade the prediction performance of

the forecast model. Therefore, it is important to detect the anomalies and isolate

them before supplying the data for training the forecast model.

• Sensor failure detection and accommodation : Sensors are prone to fail over

time. Detecting early sensor failure will enhance the present sewer monitoring

capabilities for effective management of sewer assets. Also, it prevents the faulty

data to train the forecasting model. Once the sensor failure has been detected, the

faulty sensor data needs to be accommodated with the predicted data [129, 130].

The IRR sensor used in the field study for monitoring the surface temperature

dynamics in sewers will fail only once and the failure is permanent. On the

contrary, the moisture sensor may not fail permanently. It may produce continuous

spurious data when there is any physical degradation in the sensor probes.

The remainder of this chapter is organized as follows: Section 4.2 presents the review of

related work to the SFDA scheme. Section 4.3 presents the methodology for forecasting

temporal dynamics of sensor variable using the SARIMA model. Section 4.4 illustrates

the methodology for the proposed SFDA scheme. Section 4.5 presents the experimental

evaluation results of the SFDA scheme. Finally, Section 4.6 summarizes the main

contributions resulting from the proposed work with research outcomes.
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4.2 Related Works

The state-of-the-art method for implementing the SFDA scheme is through hardware

redundancy, where the particular variable is measured by using several identical sensors

[131, 132]. Then, a voting logic is used to detect and identify the faulty sensor [133, 134].

For example, in a monitoring system with three redundant sensors as illustrated in Figure

4.1, if the measurement from one sensor varies significantly from the remaining sensors,

then that particular sensor is asserted as the faulty sensor. In this approach, the sensor

failure accommodation process is achieved by replacing the faulty sensor with a properly

working one [131].

In the sensing applications where the sensors are expensive, analytical redundancy

approaches are popular. In this approach, the signal between the sensor model and

sensor is compared to generate the residual error. Then, the sensor failure is detected by

setting a threshold logic for the generated residual error values [131, 133]. Figure 4.2

illustrates the block diagram for analytical redundancy approach. In the event of

Figure 4.1: Block diagram of hardware redundancy.
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Figure 4.2: Block diagram of analytical redundancy.

detecting the sensor failure, the predicted data is used for sensor failure accommodation

[131].

Computational modelling using artificial neural networks is widely used for detecting

sensor failures mainly because of its adaptability to dynamic environments

[131, 135, 136]. This method works by training the neurons and develop a structure

based on the training data for comparing with the sensor measurements to detect the

sensor failure [131]. On the other hand, time series forecasting models representing

sensor data for linear time series is used for detecting early sensor failure [137]. There are

several time series forecasting techniques available in the literature like Random

Walk (RW) method, Simple Exponential Smoothing (SES) method and Autoregressive

Moving Average (ARMA) model [138]. In the RW model, the variable value takes the

independent random step. This method takes an assumption that past data is not

informative and only the present observation is useful [139]. The SES model is used in

applications of forecasting seasonal data. However, it is not an appropriate model in

applications where the data has trends [140]. The ARMA method is an important

method in time series forecasting [141]. This method is a stationary stochastic process,

which combines the Autoregressive (AR) model and Moving Average (MA) model.
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G.E.P. Box and G.M. Jenkins extended the ARMA model to Autoregressive Integrated

Moving Average (ARIMA) model, which integrates the AR and MA parts of the model

with differencing [142, 143]. Among the time series forecasting methods, ARIMA model

has been widely used over the last two decades for forecasting applications [144]. The

difference between the ARMA and ARIMA model is that the ARIMA model converts the

non-stationary data into stationary data for predicting the linear time series [141]. For the

data that shows seasonal trends, the ARIMA model is extended to SARIMA model [145–

147]. Although ARIMA and SARIMA model has been used for forecasting applications

in different sectors [148–152], their application in forecasting variables in sewers has not

been reported.

Another forecasting model, which is used for time series forecasting is the Exponential

Smoothing (ETS) model. This model is classified into linear exponential smoothing model

and non-linear exponential smoothing model. The linear exponential smoothing model

is a special case of the ARIMA model. However, the non-linear exponential smoothing

models are not similar to the ARIMA models. Specifically, every ETS model possess a

non-stationary trend whereas the ARIMA models can possess stationary trends [153]. This

implies that the ETS model has a property that is dependent upon the time at which the

data series value is noticed. Therefore, the seasonality will have an influence on the value

of the time series data at different time periods.

In order to make the ETS models stationary, they need different stages of differencing.

The differencing method computes the relative variations between the two consecutive

observed data. Transformations like logarithms can aid to balance the variance of a time

series. Differencing can assist to steady the mean of a time series by eliminating variations

in the different stages of a time series, and therefore eradicating patterns and seasonality.

The ETS models having seasonality trend or non-damped trend or both the trends will

have two unit roots. This means that the ETS model needs two stages of differencing to

make the time series as stationary. All other ETS models will have one unit root implying

that the model needs only one stage of differencing to make the stationary trend [153].

By using the state space model combining with Box-Cox transformation, fourier series

with time changing coefficients and ARMA error minimization another forecasting model
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named TBATS model was introduced in 2011 [154]. The TBATS is an acronym describing

the distinct features of the model, where ’T’ stands for trignometric regressors to the

model, ’B’ stands for Box-Cox transformations, ’A’ denotes the ARMA errors, ’T’ implies

the trend and ’S’ denotes the seasonality. This model utilizes the state space model, which

is the generalization of those underpinning ETS model. The TBATS model allows for

automatic Box-Cox transformation and ARMA errors.

In order to achieve better forecasting results, the forecast model needs to be provided with

anomalies-free data for training the model. Therefore, anomaly detection is vital for the

application motivated in this work. Methods based on clustering, support vector machine

and kernel functions are used for anomalies detection [155–157]. However, those approaches

are dependent on static routing trees or assigning threshold values to the data streams

[126]. In contrast, the work presented in this chapter focuses on detecting anomalies

through statistical techniques for each sensor measurements. By using the stochastic time

series models like SARIMA, anomalies can be detected in the data streams [158, 159].

Once the anomaly is detected, the faulty sensor reading is isolated. Then, the faulty

information needs to be accommodated with the reliable value [160].

4.3 Forecasting Temporal Dynamics of Quantified Variables

from the Sensing Suite

This section of the chapter delineates the methodology adopted to forecast the temporal

dynamics of quantified variables such as surface temperature and surface resistivity. These

variables are forecasted based upon the measurements of IRR sensor and moisture sensor

data sourced from the instrumented sewer infrastructure.

4.3.1 Surface Temperature and Surface Resistivity Data From the

Sensing Suite

The sensor data coming from the instrumented sewer infrastructure can be observed as a

time series St, where the values of the data are at equally spaced times t, t − 1, t − 2, ....
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by St, St−1, St−2, .... The Dt is the time interval between the two sensor measurements.

4.3.2 Formulation of SARIMA Model

The ARIMA model is a combination of two independent models namely AR model and

MA model with finite differencing of data points. Mathematically, the AR part of the

ARIMA model can be defined as in Equation 4.1, which is an autoregressive process of

order p. It can be succinctly expressed as AR(p). This AR(p) regresses the evolving

variable against its prior values in the series.

AR(p)t = c+ φ1S̃t−1 + φ2S̃t−2 + ...+ φpS̃t−p + εt (4.1)

where AR(p)t is the actual value of AR(p) at time period t, φ1, φ2, ..., φp are the finite set

of weight parameters of the AR(p) with c as a constant and p as the order of the model

AR(p) with S̃t−1, S̃t−2, .., S̃t−p as previous deviations from the mean value. The εt is the

random shock and it is assumed to be a white noise process [161]. The εt is identically

distributed i.e. εt ∼ IN(µ, σ2), where the mean µ = 0 and a constant variance σ2 [162].

The MA part of the ARIMA model is mathematically defined in Equation 4.2 and it can

be called as a moving average process of order q or more succinctly MA(q). This MA(q)

model uses its past errors as the explanatory variables.

MA(q)t = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q (4.2)

where MA(q)t is the actual value of MA(q) at time period t, θ1, θ2, ..., θq are the finite set

of weight parameters of the MA(q) with c as a constant and q as the order of the model

MA(q). Similar to AR(p), the εt of MA(q) is assumed to be a white noise process with

identically distributed random variables with zero mean and constant variance.

By combining both AR(p) and MA(q) models together, the ARMA model is formed. It

is mathematically defined in Equation 4.3 and it can be expressed as ARMA(p, q).
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AR(p)t +MA(q)t = c+ φ1S̃t−1 + φ2S̃t−2 + ...+ φpS̃t−p+

θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt

(4.3)

where the predictor is AR(p)t +MA(q)t of the ARMA(p, q) as it includes the prior values

of AR(p) and past errors of MA(q). The AR(p)t + MA(q)t can be denoted as S̃t. In

ARMA(p, q), the order value p of AR(p) model and q of MA(q) model are not greater

than 2 [163]. Upon simplification, Equation 4.3 can reduced to Equation 4.4. The constant

term c is omitted for simplicity [164] and Equation 4.4 is rearranged to Equation 4.5, where

the order of the models p and q denotes the p autoregressive term and q denotes the moving

average term.

S̃t = c+ εt +

p∑
n=1

φnS̃t−n +

q∑
m=1

θmεt−m (4.4)

S̃t −
p∑

n=1

φnS̃t−n = εt +

q∑
m=1

θmεt−m (4.5)

In time series data, the backshift operator (B) governs a value in the series to produce its

prior value [165]. Mathematically, it is defined in Equation 4.6, where k is the time series

backward observation of the time period.

BkS̃t = S̃t−k (4.6)

Generally, the ARMA(p, q) model is manipulated by using Equation 4.6. By using the lag

operator, the ARMA(p, q) model Equation in 4.5 can be expressed as Equation 4.7.

(
1−

p∑
n=1

φnB
n

)
S̃t =

(
1 +

q∑
m=1

θmB
m

)
εt (4.7)

The ARMA(p, q) model is suitable only for stationary time series data. However, the

sensor data emerging from the instrumented sewer infrastructure possess non-stationary

behaviour. In order to process the non-stationary nature of sewer data, the ARIMA model
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is utilized for the application reported in this work to forecast the quantified variables of the

sensing suite. This model obtains homogeneous non-stationary behaviour by supposing a

suitable dth difference value of the process to the stationary ARMA(p, q). The differencing

is mathematically defined in Equation 4.8, where the (1−B)d = ∆d.

S̃t = ∆dS̃t (4.8)

Mathematically, the general form of ARIMA model can be defined as in Equation 4.9 and

it can expressed as ARIMA(p, d, q).

(
1−

p∑
n=1

φnB
n

)
∆dS̃t =

(
1 +

q∑
m=1

θmB
m

)
εt (4.9)

where the p, d and q are the integers referring to the order of autoregressive, integrated

and moving average parts of the ARIMA(p, d, q) model. The integer d governs the level

of differencing.

The SARIMA model is employed in applications where the time series data presents

seasonal changes [165]. The SARIMA is denoted as SARIMA(p, d, q)(P,D,Q)Sp , where

P is the seasonal autoregressive parameter, D is the degree of seasonal differencing

parameter, Q is the seasonal moving average parameter and the subscript Sp denotes the

seasonal period of this stochastic model.

The forecasts of sewer sensing suite variable by using the SARIMA(p, d, q)(P,D,Q)Sp

is given by Equation 4.10, where the Φ and Θ are the weight parameters of seasonal

autoregressive term and seasonal moving average term respectively.

(
1−

p∑
n=1

φnB
n

)(
1−

P∑
n=1

ΦnB
Sp

)
(∆)d(∆Sp)DS̃t

=

(
1 +

q∑
m=1

θmB
m

)(
1 +

Q∑
m=1

ΘmB
Sp

)
εt

(4.10)
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4.3.3 Automatic Selection of SARIMA Model Parameters

For SARIMA(p, d, q)(P,D,Q)Sp model, the order parameters p, d, q, P,D and Q are

automatically determined by using Hyndman and Khandakar algorithm [153, 166]. The

differencing terms d and D are computed by performing the unit root test such as

Kwiatkowski Phillips Schmidt Shin (KPSS) test. The KPSS test is generally used for

evaluating a null hypothesis, where an observable time series is stationary around a

deterministic trend (i.e. trend-stationary) against the alternative of a unit root [167].

If the values of differencing parameters d and D are known, then the Hyndman and

Khandakar algorithm [166] selects the values for p, q, P and Q through minimization of

an Akaike Information Criterion (AIC). The AIC is mathematically expressed as given in

Equation 4.11.

AIC = −2 log(L) + 2(p+ q + P +Q+Kn) (4.11)

where L is the maximized likelihood of the SARIMA(p, d, q)(P,D,Q)Sp model fitted to

the differenced data (∆)d(∆Sp)DS̃t and Kn is the number of parameters estimated to

compute one-step ahead forecasts.

4.3.4 Computing Prediction Intervals of the Forecasts at Any Lead Time

A prediction interval of the forecast is an estimate of an upper and lower bound of an

interval in which the observable sensing suite variable of the future is expected to lie with

a specified probability based on the past observed values [153, 168]. Considering that g′s

are Gaussian distribution with standard deviation σg and weights ψ, then the probability

distribution (St+f |St, St−1, St−2, ...) of a future observable value St+f of the process will

be normal with mean Ŝt(f) and standard deviation σ(f). The σ(f) is given in Equation

4.12 [163].

σ(f) =

(
1 +

f−1∑
j=1

ψ2
j

)1/2

σg (4.12)
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The variate
[[
St+f − Ŝt(f)

]
/
[
σ(f)

]]
will posses a unit normal distribution. Therefore, for

St+f , Ŝf±µλ/2σ(f) will provide the bounds of the prediction interval with probability 1−λ.

µλ/2 is the deviate transcended by a proportion of λ/2 of the unit normal distribution.

Mathematically, the prediction interval for the SARIMA(p, d, q)(P,D,Q)Sp model can be

computed by using Equation 4.13 [163].

Ŝt+f (±) = Ŝt(f)± µλ/2

(
1 +

f−1∑
j=1

ψ2
j

)1/2

σg (4.13)

where µλ/2 are the percentiles of the standard normal distribution. In this section, µλ/2 =

95%. The forecast value Ŝt+f coming from the SARIMA(p, d, q)(P,D,Q)Sp model with

the probability of 1 − λ will lie between the upper interval Ŝt+f (+) and lower interval

Ŝt+f (−), i.e. Probability
{
Ŝt+f (−) < Ŝt+f < Ŝt+f (+)

}
.

4.4 SFDA Algorithm

The SFDA algorithm proposed in this chapter presents a smart predictive analytic

framework by combining predictive analytics and statistical diagnostic method. The

predictive analytics component of the SFDA algorithm features

SARIMA(p, d, q)(P,D,Q)Sp model for forecasting the temporal dynamics of the sensing

suite variable. By utilizing the readings from the IRR sensor and moisture sensor, the

SARIMA(p, d, q)(P,D,Q)Sp model provides a viable alternative to physical sensor

measurements by means of the forecast data Ŝt+f . This Ŝt+f will function as a virtual

sensor. Algorithm 1 presents the pseudocode for the SARIMA forecast.

Algorithm 1 Pseudocode for the SARIMA Forecast

for all i ∈ 1 : length[R(t)i] do

Computing p, d, q, P,D and Q

Forecasting [Ŝt+f ]i

Computing [Ŝt+f (−)]i and [Ŝt+f (+)]i

i = i+ 24

end for
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The forecasting process of the SARIMA(p, d, q)(P,D,Q)Sp model involves three main

steps. They are as follows:

• The first step of the forecasting model is to visualize the time-series data and to

provide the sensor data for training the forecast model.

• In the second step, the SARIMA(p, d, q)(P,D,Q)Sp model parameters are

determined by invoking Hyndman and Khandakar algorithm for automatic

selection of p, d, q, P,D and Q, and eventually building a forecast model using the

determined parameters.

• Finally in the third step, the model forecasts the sensor variable data Ŝt+f for the

next day containing 24 data points with Ŝt+f (−) and Ŝt+f (+) values. The 24 data

points are from the time 00:00 to 23:00 with an interval of one hour of that respective

day.

The diagnostic component of the SFDA algorithm presents statistical techniques for

detecting sensor failure and anomalies by using the data from the instrumented sewer

infrastructure and SARIMA(p, d, q)(P,D,Q)Sp model forecasts. This component

employs statistical hypothesis testing for computing probability value (p-value) to detect

anomalies and sensor failure in the stream of upcoming data from the IRR sensor. In

hypothesis testing, the p-value is the probability for a given statistical model that, when

the null hypothesis is true, the statistical summary (such as the sample mean difference

between two compared groups) would be the same as or of greater magnitude than the

actual observed results [169].

In SFDA algorithm, the p-value is obtained by performing Pearson’s chi-squared test,

which is usually denoted as χ2. This statistical test is applied to the sets of categorical

data to examine the divergence between the data sets. The χ2 determines the divergence

of the observed sensor data from the values that would be forecasted using the

SARIMA(p, d, q)(P,D,Q)Sp model under the null hypothesis of no association. The

distribution of sum of the squares of a set of independent standard normal random

variables in probability theory is known as chi-squared distribution. It is denoted as χ2
df
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Figure 4.3: Illustration of the sliding window mechanism at time period t.

and used in the χ2 for goodness of fit of the observed sensor data distribution to a

distribution of SARIMA(p, d, q)(P,D,Q)Sp model data. The χ2
df is characterized by

degrees of freedom df , which is the number of values that are free to vary in a dynamic

system without violating any constraint foisted to the system. The df value is one less

than the number of total data points in the data set used to compute one χ2 measure.

A technique is adopted in the SFDA algorithm to partition the sequence of the sensor

data and forecasted data with a finite array size. After partitioning, the fixed array is

slided by a position over the stream of data sequence. This event is known as sliding

window mechanism [131, 133]. It is incorporated within the SFDA algorithm framework

to provide a set of data for computing p-value. This mechanism is illustrated in Figure 4.3,

where the sliding window of size WL data points keeps moving as the time t progresses. In

the proposed SFDA algorithm, WL = 6. So, the χ2
df of observed IRR sensor data and the

SARIMA(p, d, q)(P,D,Q)Sp model data takes 6 data points for computing χ2. Therefore,

the df of that χ2 will be WL − 1 for all sliding windows.

The χ2 measure for the testing dataset
∑

of size WL is measured by using Equation 4.14.

χ2 =

i=WL∑
i=1

[
(Rt)i − (Ŝt+f )i

]2
(Ŝt+f )i

(4.14)
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where i is the instantaneous time, χ2 is the cumulative statistic of Pearson’s chi-squared

test, Rt is the observed sensor data used for detecting anomalies and sensor failure, Ŝt+f

is the expected data resulting from the forecast model, SARIMA(p, d, q)(P,D,Q)Sp .

Algorithm 2 presents the pseudocode for the function calculating the χ2 value by

incorporating sliding window mechanism.

Algorithm 2 Pseudocode - Function CHI CALCULATOR

/* FUNCTION PARAMETERS */

[R(t)]i, [Ŝt+f ]i, WL

/* INITIALIZATION OF VARIABLES */

Total = 0

for all i ∈ 1 : (1 +WL) do

Total = Total +
(

[R(t)]i − [Ŝt+f ]i

)2
/[Ŝt+f ]i

end for

return(Total)

Since the value of WL is static for all the computations, df will be same for all the

computations as well, with the value of df = 5. After computing χ2 and df , it is

therefore important to set a critical significance level to determine the p-value for each

sliding window. The critical significance level is the probability of rejecting the null

hypothesis when it is true. They are typical threshold values that define the regions of

the χ2
df , where the test statistic is unlikely to lie. The critical significance level is usually

denoted as α, which defines the sensitivity of the hypothesis testing. The α is an

arbitrary value chosen depending on the application. The χ2
df is an asymmetric

distribution. It is typically skewed with a long tail to the right. This implies that the χ2
df

has only positive values. For instance, Figure 4.4 shows the probability density function

curve to the right, where the shaded area represents the critical region. In that region,

the values of the test statistic is rejected if it is larger than α .

In the proposed SFDA algorithm α is 5% i.e., α = 0.05. This implies that the null

hypothesis is rejected 5% of the time when it is in fact true. Given the α and df , the

contingency table that shows multivariate frequency distribution of the variables will be
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Figure 4.4: Illustration of the chi square.

referred. This table provides values with respect to df and α. Then, by comparing the

measures of χ2 with χ2
df , p-value is given by Equation 4.15.

P − value = P (χ2
df,α ≥ χ2) (4.15)

Algorithm 3 presents the pseudocode for calculating the p-value after determining the χ2

value for the given sliding window frame.

Algorithm 3 Psuedocode - Function P-value CALCULATOR

/* FUNCTION PARAMETERS */

[R(t)]i, [Ŝt+f ]i, WL

/* INITIALIZATION OF VARIABLES */

df = WL − 1

χ2 = chiCalculator(R(t)]i, [Ŝt+f ]i, WL)

P − value = 1− chi2Cdf(χ2, df)

return(P − value)

For the critical level of α, the statistical hypothesis testing provides significant value only

if the is χ2
df,α greater than the χ2. In case of χ2 being greater than the χ2

df,α, the statistical

hypothesis testing provides a non-significant value. The determination of significant and

non-significant value plays a paramount role in the SFDA algorithm for detecting the
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anomalies and sensor failure. The procedural characteristic of SFDA algorithm to the

significant and non-significant value is enumerated as follows:

• In a sliding window, if the p-value is a significant value i.e., p-value > 0.95, then

the sensor data measurements of that particular sliding window will be pushed to

the training dataset of the SARIMA(p, d, q)(P,D,Q)Sp model for forecasting the

future values. Consequently, the sliding window progresses to the next window for

performing statistical testing. This process iterates as long as the sensor provides

measurements from the instrumented sewer infrastructure.

• In the case of sliding window producing a non-significant p-value i.e., p-value < 0.95,

then the sensor data measurements of that particular window is examined to check

the presence of anomalies or any indications of early sensor failure. Each data of

the sensor measurements within that sliding window is evaluated with respect to the

corresponding prediction intervals.

The condition to examine the sensor data of the sliding window that has produced a

non-significant value is defined in Equation 4.16.

[(
Ŝt+f (−)

)
i

]
<

[(
Rt

)
i

]
<

[(
Ŝt+f (+)

)
i

]
(4.16)

where i is the instantaneous time. If the condition in Equation 4.16 is not satisfied,

then there arises three scenarios. In all the scenarios, the SFDA algorithm will look

for continuity of individual data of sensor measurements present outside of Ŝt+f (−) or

Ŝt+f (+).

• In the first scenario where one or two (Rt)i are present outside of Ŝt+f (−) or

Ŝt+f (+), then that respective sensor data is regarded as an anomaly. Subsequently,

the SFDA algorithm performs data accommodation process, where the value of

(Rt)i is accommodated by
(
Ŝt+f

)
i
.

• In the second scenario where there are three or more (Rt)i present outside of

Ŝt+f (−) or Ŝt+f (+) and their continuity is less than three successive times, the
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Algorithm 4 Psuedocode - Detecting Sensor Failure and Anomalies, Data
Accommodation Process

/* FUNCTION PARAMETERS */

P − value, [R(t)]i, [Ŝt+f (−)]i, [Ŝt+f ]i, [Ŝt+f (+)]i,WL

Timestamp

/* INITIALIZATION OF VARIABLES */

COUNTERS : Total = 0;Warning Count = 0;

Failure Count = 0;Previous ID = 0;

FLAG : Failed = FALSE

if (!(P − value > α)) then

for all i ∈ 1 : (1 +WL) do

if (![R(t)]i ≥ [Ŝt+f (−)]i&&[R(t)]i ≤ [Ŝt+f (+)]i) then

/* Evaluating Sensor Failure Condition*/

if (i == Previous ID + 1) then

(Failure Count = Failure Count+ 1)

if (Failure Count >= 3) then

Message: Sensor Failure (Timestamp)

(Failed = TRUE)

end if

end if

Previous ID = i

/* Evaluating Sensor Warning Condition */

if (!Failed) then

(Warning Count = Warning Count+ 1)

if (Warning Count >= 3) then

Message: Sensor Warning (Timestamp)

end if

end if

/* Anomaly Detection & Data Accommodation */

Message: Anomaly Detected (Timestamp)

Data Accommodation: [R(t)]i = [Ŝt+f ]i

end if

end for

end if

return([R(t)]i)
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(Rt)i is still flagged as an anomaly. However, sensor failure warning will be issued

for inspection. In addition to the warning signal, the SFDA algorithm undergoes

data accommodation process to replace the faulty (Rt)i with respective
(
Ŝt+f

)
i
.

• Finally, in the third scenario where there are more than one (Rt)i present outside

of Ŝt+f (−) or Ŝt+f (+) and their continuity is three or more successive times in one

sliding window, then a signal of early sensor failure is issued. Even in this scenario,

the SFDA algorithm will invoke data accommodation process to replace the faulty

(Rt)i with respective
(
Ŝt+f

)
i
.

The SFDA algorithm iterates the data accommodation process until (Rt)i is present within

the Ŝt+f (−) and Ŝt+f (+). Algorithm 4 presents the pseudocode for detection of anomalies,

sensor failure and data accommodation process.

4.5 Experimental Evaluation Results

This section of the chapter presents the experimental evaluation results of the SFDA

algorithm. Firstly, this section investigates the forecasting performance of the SARIMA

model by comparing it with the other two popular forecasting models. Secondly, this

section evaluates the application of the SFDA algorithm to the surface temperature data

and surface resistivity data sourced from the sewer monitoring system for short-time and

long-term detection capabilities. Thirdly, the section evaluates the forecasting performance

of the SFDA algorithm. Finally, this section evaluates the data accommodation process.

4.5.1 Comparative Analysis of Forecasting Models

The performance of sensor data forecasting using SARIMA model is examined by

comparing with ETS and TBATS models by utilizing surface temperature measurements

from the sewer system. The IRR sensor data of 30 days between 4th November 2016 and

3rd December 2016 is used in this evaluation. The total length of data points is

DPtotal = 720 and the data points of the first 24 days containing DPtraining = 576 will be
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used as the training dataset. Remaining data points DPtesting = 144 will be used for

evaluating the performance of sensor data prediction.

Figure 4.5 shows the profile of input training data that were supplied to the different

forecasting models. The training data was from the IRR sensor measurements sourced

from the sewer monitoring campaign from 00:00 hours of 4th November 2016 to 23:00

hours of 28th November 2016. By using the training data, the SARIMA, TBATS and ETS

models were trained to forecast data from 00:00 hours of 28th November 2016 to 23:00

hours of 3rd December 2016. Figure 4.6 presents the forecast data profile for the ETS

model and Figure 4.7 shows the forecast trends determined by using TBATS model along

with the actual sensor measurements. In addition, Figure 4.8 shows the forecast pattern

profile which resulted from the SARIMA model. Figure 4.9 displays the profile comparison

of time series forecasting of sensor variable from 00:00 hours of 28th November 2016 to

23:00 hours of 3rd December 2016 between SARIMA, TBATS and ETS models with the

measured sensor data profile.

To evaluate the performance of the forecast models and to choose a suitable model for the

Figure 4.5: Profile of the training data.
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Figure 4.6: Forecast data profile resulting from the ETS model.

Figure 4.7: Forecast data profile resulting from the TBATS model.
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Figure 4.8: Forecast data profile resulting from the SARIMA model.

Figure 4.9: Comparison of time series forecasting of sensor data using SARIMA, TBATS
and ETS models with the measured sensor data profile.
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sparse data from sewers, statistical performance metrics such as MAE, Mean Percentage

Error (MPE), Mean Absolute Percentage Deviation (MAPD) and RMSE were used to

compute the forecast errors. The statistical metrics used for this evaluation are defined as

follows:

MAE =
1

n

t=n∑
t=1

|Forecast V alue− Sensor V alue| (4.17)

MPE =
100%

n

t=n∑
t=1

Forecast V alue− Sensor V alue
Sensor V alue

(4.18)

MAPD =
100%

n

t=n∑
t=1

∣∣∣∣Forecast V alue− Sensor V alueSensor V alue

∣∣∣∣ (4.19)

RMSE =

√√√√ 1

n

t=n∑
t=1

(Forecast V alue− Sensor V alue)2 (4.20)

where the Forecast V alue is the data forecast from SARIMA, ETS and TBATS model

respectively, Sensor V alue is the data obtained from the sensor measurements, t is the

instantaneous time and n is the number of forecast values.

It can be observed from Table 4.1 that the MAE and RMSE of TBATS model were smaller

than those of ETS model. Thence, the prediction performance of TBATS was better than

ETS. However, the MAE and RMSE of TBATS model were higher than those of SARIMA

model. So, based on MAE and RMSE the prediction performance of SARIMA model was

better than the other two models. Like aforementioned statistical performance metrics, the

MPE and MAPD of TBATS model were smaller than those of ETS model and higher than

those of SARIMA model. To put it in a nutshell, based on the four different performance

metrics for forecasting the sensor data sourced from sewers, SARIMA model had better

performance and it is used as a forecasting model to detect the sensor failure application.
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Statistical Performance Evaluation of Time Series Models

Statistical Metrics SARIMA ETS TBATS

MAE (°C) 0.0962 0.2194 0.1801

MPE (%) 0.3491 1.0087 0.8247

MAPD (%) 0.4481 1.0203 0.8374

RMSE (°C) 0.1228 0.2722 0.2263

Table 4.1: Statistical Performance Evaluation of Time Series Models.

4.5.2 SFDA Algorithm Evaluation: Anomalies and Sensor Failure

Detection

This section evaluates the SFDA algorithm by using the surface temperature and surface

resistivity sensor data sourced from the instrumented sewer infrastructure. During the

course of the sewer monitoring campaign, the surface temperature sensor and moisture

sensor demonstrated robust behaviour and did not generate prolonged spurious data.

However, the sensor has produced continuous stream of spurious data in the interim of

laboratory evaluation. So, for evaluating the SFDA algorithm, we have injected random

anomalies to the time series data along with the observed anomalies during the field

testing. In addition, we have implanted continuous stream of spurious data on two

different time periods of the field experimentation. For detecting the IRR sensor failure,

the SFDA algorithm was trained by using the surface temperature data from 4th to 10th

November 2016 and for detecting the moisture sensor failure, the SFDA algorithm was

trained from 11th to 20th November 2016. For the IRR sensor, the first period is from

22nd to 23rd December 2016 and the second period is from 5th to 6th February 2017 to

simulate sensor failure. Likewise, for the moisture sensor, the first period is from 16th to

17th December 2016 and the second period is from 5th to 6th February 2017.

Figures 4.10 and 4.11 illustrates the implementation of SFDA algorithm to demonstrate

sensor failure detection, anomaly detection and isolation, and data accommodation process

from 11th November 2016 to 23rd December 2016 and from 24th December 2016 to 6th
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February 2017 respectively for the IRR sensor. In this regard, the first plot displays

the SARIMA model forecast within the prediction interval and the second plot shows

the sensor data with some random and continuous spurious measurements. By using

the forecast and sensor data, the p-value is determined and presented in the third plot

along with the critical value of 0.95. For the random and continuous spurious data, the

p-value was observed to be lower than the critical value and finally in the last plot, the

data accommodation process illustrating the replacement of faulty data is shown. The

long-term monitoring performance of sensor data for detecting sensor failure is evaluated.

Figure 4.12 displays the implementation of SFDA algorithm for long-term detection process

between 11th November 2016 and 6th February 2017. Figures 4.13 and 4.14 illustrate

the implementation of SFDA algorithm to demonstrate sensor failure detection, anomaly

detection and isolation, and data accommodation process from 21st November 2016 to

17th December 2016 and from 29th December 2016 to 6th February 2017 respectively for

the moisture sensor. During the field monitoring period on 2nd February 2017 from 1:00

am to 12:00 pm, the moisture sensor data logging system was turned off. So, the sensor

values cannot be recorded. Due to this reason, the SFDA algorithm gives probability

value less than 0.95 in 4.13 on 2nd February 2017. This issue should not be attributed to

sensor failure. However, on evaluation, the SFDA algorithm reported the sensor failure

warning and invoked data accommodation process. The forecasted data during that period

was supplied to the training model of the SFDA algorithm to forecast the values for 3rd

February 2017.

To measure the detection performance of random and continuous spurious data, we use

Successful Detection Rate (SDR) [126] as metrics. The SDR is expressed in terms of %

and it is defined as follows:

SDR =

[
SD

AM

]
× 100 (4.21)

where SD is the number of successful detections and AM is the number of anomalous

measurements. For IRR sensor, the SDR for the injected and observed anomalies of the

periods from 11th November 2016 to 23rd December 2016 and from 24th December 2016

to 6th February 2017 were 100% and 93.34% respectively. The reason for the slightly
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Figure 4.10: IRR Sensor: Short-term Evaluation-1 of SFDA algorithm.
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Figure 4.11: IRR Sensor: Short-term Evaluation-2 of SFDA algorithm.
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Figure 4.12: Long-term evaluation of SFDA algorithm.
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Figure 4.13: Moisture Sensor: Short-term Evaluation-1 of SFDA algorithm.
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Figure 4.14: Moisture Sensor: Short-term Evaluation-2 of SFDA algorithm.
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lower value of SDR in the latter period is due to the closeness of anomaly to the forecast

value. In this case, the p-value remains to be higher than the critical value. The SFDA

algorithm successfully detected anomalies including the two successive ones and thereby

reported the anomalies with time-stamp and accommodated the corresponding forecast

data. In the case of more than three anomalies present in a single window frame with

no three successive spurious data, the SFDA algorithm issues sensor failure warning for

early operator intervention. Further, the sensor failure detection was reported after the

detection of three successive spurious data in a single window frame. Overall for the

entire time period, the SDR is 97.06%. For the continuous spurious data on 22nd to

23rd December 2016 and 5th to 6th February 2017, the SDR were 100% for each period,

indicating the SFDA performance efficacy of IRR sensor failure detection. Similarly, for

the moisture sensor, the SDR for the periods from 21st November 2016 to 17th December

2016 and from 29th December 2016 to 6th February 2017 are 100% and 94.44% respectively.

For the continuous spurious data on 16th to 17th December 2016 and 5th to 6th February

2017, the SDR were 100% for each period, indicating the SFDA performance efficacy of

moisture sensor failure detection.

4.5.3 SFDA Algorithm Evaluation: Forecasting Performance

In order to evaluate the forecasting performance of the SARIMA model, we compared the

forecasting data of two different periods with the anomalies-free sensor measurements of

those respective periods. This evaluation was carried out on both surface temperature

and resistivity data obtained from the sensor suite. For the surface temperature data,

the first period is from 25th to 30th November 2016 and the second period is from 11th to

16th January 2017. Figure 4.15 presents the temporal profile of forecasted and IRR sensor

measurements data. For the resistivity data, the first period is from 26th November 2016

to 1st December 2016 and the second period is from 12th to 17th January 2017. Figure 4.16

presents the temporal profile of forecasted and moisture sensor measurements data. From

Figure 4.15 and Figure 4.16, it can be observed that the profile tends to follow a similar

pattern to each other and this implies that the forecasted data generates a reasonable

alternative to the sensor data.
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Figure 4.15: Illustration of SARIMA model forecasting performance of surface
temperature data.
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Figure 4.16: Illustration of SARIMA model forecasting performance of surface
resistivity data.
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The MAE, MAPE and RMSE were used as a statistical metric to evaluate the forecasting

performance of the SARIMA model. The employed statistical metrics are computed by

using the mathematical formula defined as follows:

MAE =
1

n

n∑
t=1

∣∣∣[R(t)]i − [Ŝt+f ]i

∣∣∣ (4.22)

MAPD =
100%

n

n∑
t=1

∣∣∣∣∣ [R(t)]i − [Ŝt+f ]i
[R(t)]i

∣∣∣∣∣ (4.23)

RMSE =

√√√√ 1

N

N∑
i=1

(
[R(t)]i − [Ŝt+f ]i

)2
(4.24)

where [Ŝt+f ]i is the forecast value, [R(t)]i is the sensor value. Table 4.2 tabulates the

computed statistical metrics for the period evaluated by using IRR sensor measurements

and Table 4.3 tabulates the computed statistical metrics for the period evaluated by using

moisture sensor measurements. This statistical evaluation presented in Table 4.2 and

Table 4.3 demonstrates the higher accuracy of the SARIMA forecast model employed in

this work.

IRR Sensor: Statistical Evaluation of SFDA Model’s Forecasting Performance

Period MAE(°C) MAPE(%) RMSE(°C)

25th to 30th November 2016 0.1828 0.0086 0.2376

11th to 16th January 2017 0.1475 0.0062 0.1744

Table 4.2: IRR Sensor: Statistical Evaluation of SFDA Model’s Forecasting
Performance.
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Moisture Sensor: Statistical Evaluation of SFDA Model’s Forecasting Performance

Period MAE(kΩ cm) MAPE(%) RMSE(kΩ cm)

26th November 2016 to 1st

December 2016
0.3188 0.0137 0.4247

12th to 17th January 2017 0.2476 0.0115 0.2901

Table 4.3: Moisture Sensor: Statistical Evaluation of SFDA Model’s Forecasting
Performance.

4.5.4 SFDA Algorithm Evaluation: Data Accommodation Process

Once the sensor failure is detected, the corresponding forecast data is utilized to replace

the continuous spurious data. Figure 4.17 illustrates the data accommodation process

once the IRR sensor failure has occurred and Figure 4.18 shows the data accommodation

process after the detection of moisture sensor failure. Performance analysis on data

accommodation process was carried out to determine MAE, MAPE and RMSE on the

sensor failure period. The computed values for the IRR sensor and moisture sensor are

tabulated in the Table 4.4 and 4.5 respectively.

From the Tables 4.4 and 4.5, the statistical performance analysis shows that the data

accommodation process is providing reasonable data when the sensor generates spurious

data. However, it can be observed from Figure 4.17 and Figure 4.18 that the difference

between the sensor measurements and estimated values after sensor failure increases over

time. This is mainly due to the reason that the SFDA algorithm is not supplied with the

recent data to capture the daily temporal trends. Hence, the data accommodation process

is recommended only for short-term period.
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Figure 4.17: Illustration of the data accommodation during IRR sensor failure
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Figure 4.18: Illustration of the data accommodation during moisture sensor failure.
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Evaluation of SFDA Model’s Data Accommodation Process for IRR Sensor

Sensor Failure Period MAE(°C) MAPE(%) RMSE(°C)

19th to 20th December 2016 0.2832 0.0130 0.3115

5th to 6th February 2017 0.4637 0.0189 0.5297

Table 4.4: Evaluation of SFDA Model’s Data Accommodation Process for IRR Sensor.

Evaluation of SFDA Model’s Data Accommodation Process for Moisture Sensor

Sensor Failure Period MAE(kΩ cm) MAPE(%) RMSE(kΩ cm)

22nd to 23rd December 2016 0.3887 0.0183 0.4316

5th to 6th February 2017 0.1584 0.0077 0.1752

Table 4.5: Evaluation of SFDA Model’s Data Accommodation Process for Moisture
Sensor.

4.6 Summary

This chapter presented a smart predictive analytics framework for detecting the sensor

failure based upon the real-time operational data sourced from an urban sewer system. In

this context, the SFDA scheme using SARIMA model is proposed with sewer monitoring

system as the application domain. The major contributions of the proposed scheme are

enumerated as follows:

• The SARIMA model based forecasting of quantified sensing suite variable for sewer

application was achieved to comprehend the temporal dynamics of the measured

variable. This forecasting mechanism is used as a framework to provide an alternate

measure to physical sensor measurements. The forecast data from the SARIMA
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model was used as a reference measure in the SFDA algorithm to perform anomalies

detection, early sensor failure detection and data accommodation.

• The early sensor failure detection through SFDA algorithm was implemented by

utilizing smart predictive analytics approach through forecasting mechanism and

statistical diagnostic method. While examining each sensor data, the SFDA

algorithm checks for the presence of anomalies. In the event of detecting the

anomalies, the algorithms isolate the spurious data and accommodate with the

corresponding forecast data. Further, based on the continuity of faulty data, the

early sensor failure is detected and data accommodation process is invoked to

provide an alternate measure for computational model predicting sewer concrete

corrosion.

• The SFDA algorithm was evaluated with the surface temperature and surface

resistivity data sourced from the instrumented sewer infrastructure. The

experimental evaluation demonstrates that the SFDA algorithm can detect

anomalies and early sensor failure with high detection accuracy and efficiency.

Also, on the event of sensor failure, the SFDA algorithm provides reliable

estimates. The forecasting performance of the SFDA algorithm was investigated by

comparing the estimates against the actual sensor measurements. From this

investigation, it can be said that the forecasting performance is deemed

satisfactory. Thus, the SFDA algorithm is applicable to the developed robust

sensing suite for smart sewer monitoring application.

From the works presented in this chapter of the dissertation, the following publications

resulted as an outcome.

• K.Thiyagarajan, S. Kodagoda, L.V. Nguyen, and R. Ranasinghe, “Sensor Failure

Detection and Faulty Data Accommodation Approach for Instrumented Wastewater

Infrastructures”, IEEE Access. (Under Review)

• K.Thiyagarajan, S. Kodagoda, and L.V. Nguyen, “Predictive Analytics for

Detecting Sensor Failure Using Autoregressive Integrated Moving Average Model,”
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2017 IEEE 12th Conference on Industrial Electronics and Applications (ICIEA),

Siem Reap, Cambodia, 2017, pp. 1923-1928.



Chapter 5

Conclusions

The objective of this dissertation is to develop robust sensor technologies to provide reliable

measures of surface temperature and surface moisture conditions inside the concrete sewer

pipes. In this context, the research work reported in this dissertation is the first study to

prove the feasibility of measuring surface temperature in a non-contact way and surface

moisture levels in a non-invasive way for an extended period inside the concrete sewer

pipes with the motive of improving the current sewer monitoring capabilities.

This chapter presents the conclusions of this dissertation. The remainder of this chapter

is structured as follows: Section 5.1 summarises the key contributions of this

dissertation. Section 5.2 discusses the limitations of the proposed work. Section 5.3

presents the implications of this dissertation for water industry and finally, Section 5.4

addresses the future research prospects.

5.1 Summary of Contributions

This section highlights the key contributions in the field of sensor technologies presented

in this dissertation. They are enumerated as follows:

1. Chapter 2 has developed a robust sensor technology for monitoring temporal

dynamics of the surface temperature inside the sewer pipes. From the field testing

144
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experiments, the study has revealed that the IRR sensor with an anti-fog coated

germanium optical window can be used for non-contact surface temperature

measurements in sewer systems. This sensor is more suited for deployments of

about three months period continuously or can be used on moving platforms

during human traversing. For long-term sensing operations using IRR sensor, it is

recommended to replace or coat the optical window with anti-fog material after

three months of use. On the other hand, the thermistor used was also reliable and

was sufficiently robust to be deployed in a sewer environment. It is a contact type

surface temperature measurement sensor, which can be used for long-term

monitoring operations at the hot-spots areas.

2. Chapter 3 has developed a robust sensor technology for determining the temporal

dynamics of the surface moisture conditions of the concrete sewer pipes. As an

outcome of the field experiments conducted inside the sewer pipe, the study has

demonstrated the feasibility of non-invasive determination of surface moisture

conditions based on surface electrical resistivity measurements. The sensor

survived three months of exposure to sewer conditions and the electrodes of the

sensor exposed to sewer atmosphere have shown physical robustness to the

deployed sewer conditions. The developed sensor technology measures through

contact type sensing without damaging the surface conditions. This type of sensing

is suited for both short-term and long-term monitoring applications.

3. Chapter 4 has developed a machine learning based diagnostic toolkit for

instrumented sewer infrastructures. This toolkit has proposed an SFDA algorithm

for an early detection of sensor failure by utilizing smart predictive analytics. The

predictive algorithm of the diagnostic toolkit performs reliable forecasting of sensor

variables, efficient detection of anomalies in the continuous stream of sensor data

and subsequent isolation, effective detection of early sensor failure and finally,

supplies reliable estimates of sensor data to prediction models in the event of

sensor failure. The SFDA algorithm demonstrated its efficient performance when

the toolkit was evaluated with the surface temperature and surface moisture data

sourced from sewers by using the sensor technologies developed in Chapter 2 and

Chapter 3.
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5.2 Discussion of Limitations

Although there are several sensors commercially available to measure surface temperature

variations, their suitability for in-sewer environment has not been investigated until now.

This research study used two different types of temperature sensors: contact and non-

contact. The IRR sensor with anti-fog coated germanium optical window was used for

non-contact type measurements. There was a slight visual degradation observed on the

anti-fog coated optical window after 96 days of exposure to the aggressively corrosive

environmental conditions of the sewer. The degradations were in the initial stages around

the edges of the optics and the central part remains unaffected. As a part of preventive

maintenance, it is recommended to replace the lens once in three months for accurate

measurements. Degradations on the lens may lead to factual measurement (temperature

of the fog on lens) and error. On the other hand, the contact-type sensing using thermistors

can be a cheaper option to measure surface temperature in sewer pipes.

From the post-deployment validation study on temperature sensors, it can be concluded

that all the temperature sensors performed reasonably well in the sewer and the

measurements generated by them were legitimate. However, there were few anomalies

found during the trials. The surface temperature data from the IRR sensor contained

0.35% of anomalies whereas the data from the reference instrument thermistor contained

0.3%. The sewer air temperature variable measured from the thermistor sensor

comprises of 0.3% of anomalies. All the anomalies were removed manually for

computation and analysis in Chapter 2. Further, the IRR sensor data was improved by

correcting the surface temperature measures through the determination of the emissivity

coefficient. It can be further improved by determining the emissivity coefficient at

regular intervals rather than at the seasonal periods. This study has only shown an

approach to improve the surface temperature measure. Further study on determining the

properties that determine emissivity will open the possibilities of improving the surface

temperature measurement automatically.

In spite of the fact that there are various sensor technologies available off-the-shelf for

quantifying concrete moisture conditions, their adaptability to waste water environments

has not been studied until now. This research study utilized resipod meter for measuring
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the surface resistivity of the concrete sewer pipe. Although the sensor has shown physical

robustness to deployed sewer conditions, the measurements were found to be affected by

nearby metals (rebar). Therefore, it needs an on-site calibration for estimating the

moisture levels from resistivity values. In order to determine the surface moisture

conditions automatically based on resistivity measurements, it is important to know the

location of rebar inside the concrete pipe. Also, in the case of field evaluation, a

commercially available sensor was used, which has a fixed operating frequency. However,

the effects of rebar can be minimized by setting an appropriate operating frequency of

the sensor, so that it limits the penetration of electric field into the concrete. In addition,

a sensor placed perpendicular to the rebar during measurements experiences more

influence of the rebar. Therefore, appropriate placement of sensor is recommended for

determining the surface moisture conditions automatically without on-site calibration.

During the phase of field deployment, the resipod data logging system had an issue starting

from the 21st December to the 28th December of 2016. This was apparently due to a

suspected computer restart causing the data logging program to shut down. The data

logging software was restarted after visiting the site on the 28th of December. From

the post-deployment validation study, it can be concluded that the sensor was in working

condition and the resistivity measurements from the sewer concrete surface were legitimate.

However, the surface resistivity data contained 1.28% of anomalies. They were manually

removed for computation and analysis which was conducted in Chapter 3.

For locating the presence of rebar inside the concrete, the laboratory study reported in

this dissertation only focussed on a single rebar presence to demonstrate the feasibility. In

future prospects, investigations will be conducted on the rebar mesh.

The sensor enclosure was visually inspected after the field trial campaign. No visual

damage was apparent on the sensor enclosure other than a slight decoloration of the

material. All the sensors survived the three months period of field trials and the

measurements generated by the deployed sensors were reasonable. The sewer site used in

this study has no access to any electrical mains. In order to operate the sensor system,

other means of supplying power to the monitoring unit was necessary. The option of

using solar panels was not preferred by the sewer operators mainly because of their past
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experiences, where solar panels were damaged or removed by some external party. So, a

DC battery was used to power the sensor system. Due to the high power consumption of

the sensor system, the DC battery was replaced with the recharged ones every week

throughout the field testing. The resistivity measurements were stored on ODROID

based data logger, which was power hungry. To mitigate this issue, presently we are

exploring the options of using micro-controller based data logging instrument. Also,

every time the DC battery was swapped, the ODROID based data logger needed to be

restarted to perform sensing and data logging at desired time intervals.

Finally, in the SFDA algorithm, it requires training data for a few days to forecast the

trends of sensor variables. Presently, the algorithm uses 24 data per day for forecasting the

subsequent day. This is the reason for the SFDA algorithm to forecast 24 steps ahead. This

indeed increases the amount of data utilized for training the forecasting process. However,

this concern may be addressed by incorporating mutual information feature between the

data points and then forecasting the sensor data trends.

The sensor failure detection of the SFDA algorithm is set to a heuristic criterion, which is

based on the continuity of faulty data three successive times or more. This criterion was

based on the reason that the IRR sensor and resistivity meter are most unlikely going to

produce more than 3 successive faulty data unless there is an issue with the sensing system

itself. Hence, this is the reason for the continuity to be three or more successive times.

The size of the sliding window was heuristically chosen as 6 based on the knowledge of

sensor characteristics and therefore, each window takes 6 sensor measurements.

5.3 Implications for the Water Industry

The data from the developed sensor technologies will be valuable to water utilities in

identifying high-risk areas of the sewer pipes through model based predictions. It will

also significantly improve the predictive accuracy of corrosion models by reducing the

large uncertainties associated with data inputs used for corrosion model prediction.

Consequently, this research enables water utilities to better manage their underground

and aboveground sewer assets, whilst reducing on-going maintenances costs associated
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with preventing sewer corrosion. For instance, Sydney Water Corporation, the main

funding partner for the research pursued in this dissertation uses a 3 level sewer

inspection process for asset renewals: i) L1: Prioritize with historical records, ii) L2:

Visual inspection with sensor deployment and iii) L3: New design with an improved

prediction model. The outcomes of this research will enable water utilities such as

Sydney Water Corporation to make a better strategic decision on where to invest $50

Million per year at L1 and inspect at L2 for corrosion maintenance, whilst reducing asset

maintenance and operational costs associated with chemical dosing and sewer pipe

rehabilitation.

Overall, this dissertation has the potential to innovate the current sewer corrosion

monitoring practice by improving the monitoring process and enabling a high-level of

managing control across the sewer network in order to protect the concrete sewer pipes

from structural failure and thereby support the economies and communities dependant

on those essential services.

5.4 Future Research

Research work presented in this dissertation is intended to extend in the following

directions:

• From the conducted research study, it is established that there are differences

between the surface temperature and gaseous temperature conditions near the

crown of the sewer pipe. This finding has led to discussions with Melbourne Water

Corporation to investigate the temperature levels at different heights from the

crown surface of the sewer pipe. This work may shed light on the corrosion

occurrence at different locations of the confined concrete sewers.

• Surface Moisture measurements are influenced by the presence of rebar at different

locations inside concrete. This concern may be addressed by developing a sensing

mechanism by exploiting information-driven machine learning approaches that can

estimate the depth of rebar by using surface resistivity data. Then, Gaussian
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process regression modelling may be used to predict the surface moisture

conditions by making rebar depth as one of the observations.

• The developed new robust sensor technologies along with H2S sensor may be

strategically deployed in sewer pipe locations where the concrete pipes are prone to

a high-risk of corrosion; areas where there is at present low confidence of predictive

modelling and feasibility for water utilities to install the sensors inside sewer pipes.

The monitoring process after deployment can increase the sewer monitoring

capabilities for water utilities.

• Presently, the SFDA algorithm utilizes equally spaced temporal data for training

the forecasting process. In future, this process can be made to utilize only the most

informative temporal data for training purposes. This will minimize the data used

for training whilst attaining the forecasting trends. Then, the SFDA algorithm can

be implemented in real-time to perform cognitive computing in cloud platforms.
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