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A B S T R A C T 
 

A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and   used 
to investigate organic material and nutrient removal rate constants for wastewater treatment and establish     a 
practical predictive model for use. For this purpose, the performance of multiple parameters was statistically 
evaluated during the process and predictive models were suggested. The measurement of the kinetic rate con- stant 
was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow 
reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda,  and  Gold  (LMG) 
analysis and Bayesian model averaging (BMA) method were employed for identifying the relative im- portance of 
variables and their optimal multiple regression (MR). The results showed  that the first-order–PFR  (M2) model did 
not fit the data (P > 0.05, and R2 < 0.5), whereas the first-order–CSTR  (M1)  model  for  the chemical oxygen demand 
(CODCr) and Monod–CSTR (M3) model for the CODCr and ammonium nitrogen (NH4−N) showed a high 
correlation with the experimental data (R2  >  0.5). The pollutant removal rates in the case of M1 were 0.19 m/d 
(CODCr) and those for M3 were 25.2 g/m2∙d for CODCr and 2.63 g/m2∙d for NH4-N. By applying a multi-variable 
linear regression method, the optimal empirical models were established for predicting the final effluent 
concentration of five days' biochemical oxygen demand (BOD5) and NH4-N. In general, the hydraulic loading rate 
was considered an important variable having a high value of relative importance, which appeared  in all  the optimal  
predictive models. 

 
 

 
 

1. Introduction 
 

The processes of eliminating organic matter and nutrients from 
polluted wastewaters are quite complicated. They include chemical, 
physical, and biological factors that demand triply synergistic processes 
for maximum efficiency. These factors of the constructed wetland (CW) 
affect the removal efficiency and are affected by shifting local and re- 
gional conditions (Gholizadeh et al., 2015; Vo et al., 2018; Vo et al., 2017; 
Wu et al., 2018a; b). As a result, an appropriate CW design that 
compares favorably to those of other studies is more difficult to achieve. 
The misunderstanding of the contaminant dynamics of this system can 

 
lead to design failures that usually cause a degraded efficiency of the 
targeted pollutants' removal, clogging, and short circulation in the de- 
sign's fluid dynamics (Davoodi et al., 2016; Samsó et al., 2016; Wu        et 
al., 2018a; b). Therefore, the application of the knowledge of pol- lutant 
removal kinetics to this data could be expected to ensure positive results 
if and when these conclusions are effectively applied to the engineering 
challenges of CW design. 

There are several models and methods for predicting pollution re- 
moval, and the first-order model (Chan et al., 2008; Trang et al., 2010) 
and linear regression (Babatunde et al., 2011b; Gholizadeh et al., 2015; 
Reed and D., 1995; Sheridan et al., 2013) are popular. Some approaches 
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recommended recently are the use of artificial neural networks, multi- 
component reactive transport module, principal component analysis, 
clustering tree diagrams, classification and regression trees, and re- 
dundancy analysis (Akratos et al., 2008; Babatunde et al., 2011b; Dong 
et al., 2012; Hijosa-Valsero et al., 2011; Huang et al., 2014). However, 
these may prove to be overly complicated owing to their numerous 
empirical parameters. 

The multiple regression (MR) method has been considered useful for 
simplified description, analysis of CW performance, and developing 
predictive models (Murray-Gulde et al., 2008; Tomenko et al., 2007). The 
majority of the previous studies that were focused on the evalua- tion 
of the efficacy of MR (Babatunde et al., 2011b; Chan et al., 2008; Hijosa-
Valsero et al., 2011) used the response variables of the effluent 
concentrations while avoiding the application of the removal rate. 

To accurately compute MR, the relative importance and optimal 
models of the given predictors are required, in which relative im- 
portance is the proportionate contribution each predictor makes to R2 

(Johnson, 2000). For selecting the optimal models, the previous re- 
search was based primarily on R2 (Babatunde et al., 2011b; Hijosa- 
Valsero et al., 2011). However, their methods did not involve the 
evaluation of the interaction analysis and multi-collinearity, which can 
influence the accuracy of these results. When a model has a large 
number of variables, it results in a higher R2 value, which might cause 
over-fitting. Bayesian model averaging (BMA) is considered to be a 
good tool for overcoming these limits. By performing averaging over 

several different competing models, BMA integrates model uncertainty 

layers of various particle sizes. The filter layers comprised various 
gravel grades with the total height of the VF being 0.7 m and that of the 
HF being 0.5 m. This corresponded to 2.65, 1.32, and 1.76 days of 
hydraulic retention times for HLR1, HLR2, and HLR3, respectively. More 
details of the characteristics of the sewage, HCW, and operating pro- 
cedures are described in a previous report by Nguyen et al. (2017). 

Wastewater samples were collected from the influent of the VF (SP1) 
and effluent of the VF (SP2) and HF (SP3) as shown in Fig. 1 (Nguyen et 
al., 2017). The sampling rate was once a week for more than 6 months of 
operation. Twenty-three water samples of HCW were ob- tained and 
tested in this experiment. The pH was determined using a multi-
parameter water quality meter (HQ40d, Hach, USA). The CODCr, BOD5, 
total suspended solids (TSS), NH4-N, nitrate nitrogen (NO3-N), 
phosphate (PO4-P), TN, and total coliforms (TCol) were analyzed ac- 
cording to the Standard Methods 5220D, 5210B, 2540D, 4500-NH3 F, 
4500-NO3 B, 4500-P D, 4500-P J, and 9221 B, respectively (APHA/ 
WEF/AWWA, 2005). The spectrophotometer (Cary 60, Agilent Tech- 
nologies Inc., USA) was used to measure the CODCr, NH4-N, NO3-N, and 
PO4-P. 

Owing to the intermittent flow, the aerobic and anoxic conditions 
were dominant in the HCW. Oxygen is a terminal electron acceptor that 
is reduced while electron donors (mainly organic matter and ammonia) 
are oxidized, and CO2 and H2O are formed as end products (1). In the 
bottom layers of the HCW, other reactions (2, 3, and 4) might occur in 
response to the decrease in oxygen and the redox potential (Kadlec and 

Wallace, 2009). 

into the prediction and estimation of the parameters (Fang et al., 2016; 
Hoeting  et  al., 1999). 

 
CH2 O + O2 → CO2 +  H2 O 

5CH O 4NO 2N 4HCO CO +  3H O 

 
(1) 

collinearity  and obtain the precise R2  value. The obtained results  clar- 
 

 

structed wetland (HCW), and the optimal models that have not been 

adequately addressed in previous studies were also selected. 
Furthermore, by applying more response variables such as hydraulic 
loading rates (HLRs), we developed more effective and accurate pre- 
dictive models that contributed significantly in the design, manage- 
ment, and maintenance of the HCW system. 

The main purpose of this study is to clarify the performance of the 
HCW and explore the predictive models using kinetics and MR. This 
study is mainly focused on the comparison of the kinetics, weighting 
correlation, and relative importance and the development of optimal 
predictive models for HCW performance using the BMA method. 

 
2. Materials  and methods 

 
2.1. Description of hybrid constructed wetland and data collection 

 
To clarify the adaptation and removal performance of HCW, a pilot 

system was installed at the sewage treatment plant of Dong Ha city, 

 

 
2.2. Kinetic models 

 
The first-order and Monod kinetic models were used to describe and 

evaluate the pollution degradation in this study. The hydrodynamic 
pattern in the HCW was considered to be the same as that of the plug 
flow reactor (PFR) and continuously stirred tank reactor (CSTR). 
Therefore, the new models have been developed by integrating the first- 
order and Monod models with PFR and CSTR. 

 
2.2.1. First-order k–C* model with PFR (M1) 

By assuming an exponential removal rate to reflect a non-zero 
background wetland concentration (C*) (Ali et al., 2018; Kadlec and 
Knight, 1996), the removal model based on the first-order and C* models 
is expressed as follows (Eq.  (5): 

 
 

Vietnam, and was then tested in over an operating period of 190 days. 1 

The sewer at this location collects the municipal wastewater and runoff 
water from Dong Ha city. The water level of this sewer fluctuates from  

Co − C* (5) 

0.5 m in the dry season to 0.9 m in the wet season. The average water 
flow in the sewer is 181,400 m3/d with a mean velocity of 1.5 m/s. The 
pilot HCW system included a vertical flow (VF) (planted with Canna 
indica  at  a  density  of  20–25  plants/m2)  and  a  horizontal  flow (HF) 
(planted with Colocasia esculenta at a density of 15 plants/m2) in series 
(Fig. 1). Such an arrangement was used to promote the nitrification in 

2.2.2. First-order model  with CSTR (M2) 
To model the correlation between the influents and effluents of CW 

for nutrients and organic matter, the integrated model that combined 
first-order kinetics with CSTR (Saeed and Sun, 2011) was established. 
The combined model is expressed as shown in Eq. (6): 

 

                                                          

In this work, we used the new technique of BMA to overcome multi- 

ified the relative importance of the influent factors of a hybrid con- 
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the VF and denitrification in the HF in order to reduce the nutrient 
content in the effluent. Wastewater was pumped from the sewage 
system (twice a day for an interval of 30 min), stored in the storage 

   

tank, and was allowed to flow intermittently to the VF at various HLRs 
of 0.44 m3/d (first stage, HLR1), 0.88 m3/d (second stage, HLR2), and 
0.66 m3/d  (final  stage,  HLR3).  The  effluent  of  the  VF  was  drained 
continuously by gravity into the HF tank. The characteristics of the  VF 
and HF are presented in Table 1. Each tank was built with three filter 

2.2.3. Monod  kinetics with CSTR (M3) 
This model combined the Monod kinetics, which comprises half the 

saturation constant of the limiting substrate and effluent concentration, 
with the CSTR flow pattern (Saeed and Sun, 2011). It is expressed as 
shown in Eq.  (7): 
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Fig. 1. HCW system (a) and photographs of Canna indica (b) and Colocasia esculenta (c). 

 

Table 1 
Characteristics  of  hybrid  constructed wetland. 

y =β0 + β1x1 + β2 x2 + … +βpxp+ ε (8) 

 
Parameter VF HF VF-HF 

where y is the response variable (Co and Lr), xi,p are the predictor 
variables (Cin, Cib, Li, Cit, Cits, Cip, and pH), βi,p are the regression coef- 

System type Subsurface vertical 
flow 

Subsurface 
horizontal flow 

HCW two 
stages 

ficients, and  ε is the random error. 
In this study, the Lindeman, Merenda, and Gold (LMG) analysis was 

Length × width × height    1.2 × 1.2 × 1.2 m 3.0 × 1.0 × 1.0 m 
Surface 1.44 m2 3.0 m2 4.44 m2

 

Type of plant Canna indica Colocasia esculenta 
Depth of filter 0.7 m 0.5 m 
Filter porosity 0.4 0.4 
Average flow 0.66 m3/d 0.66 m3/d 0.66 m3/ 

d 
HLR 0.46 m/d 0.22 m/d 0.15 m/d 

 
 HLR × (C −  C ) × (C  + C ) 

applied to determine relative importance or ranking, and BMA was 
applied for the optimal model selection process. Consequently, using 
BMA, the optimal MR models that were based on the Bayesian in- 
formation criterion (BIC) and R2 were selected. In general, the best 
models have the lowest BIC value with highest adjusted R2  (Hoeting  et  
al.,  1999). 

 2.2.5.   Statistical analyses 

k3 = i o h o 

Co 

 
(7) 

All the statistical analyses of this study were performed using the 
computing environment R (Version 3.4.0). The statistical differences  of 
the experimental results were evaluated through an analysis of var- 

where k1 (m/d), k2 (m/d), and k3 (g/m2∙d) are the first-order removal rate 
constants, Ci is the inlet concentration (mg/L), Co is the outlet 
concentration (mg/L), C* is the background concentration (mg/L), HLR 
is in m/d, and Ch is half the saturation constant of limiting substrate 
(mg/L). Based on the inlet concentrations, as suggested by Kadlec and 
Wallace (2009), C* for BOD5, COD, NH4-N, and TN were of 6, 10, 0, and 
1.5 mg/L, respectively. In addition, the recommended values of Ch for 
NH4-N, COD, and BOD5 are 0.05, 60, and 20 mg/L, respectively 
(Tchobanoglous et al., 2004; Saeed and Sun, 2011; Vaccari et al., 2006). 

 
2.2.4. Multiple regression 

Multiple regression is a statistical model that has two or more in- 
dependent (predictor) variables (Darajeh et al., 2016; Katz, 2013). This 
model was used because the performance of the HCW is influenced by 
several complicated factors such as climate conditions, hydraulic con- 
ditions, plantings, dissolved oxygen levels, microbiota, periodicity, and 
influent concentrations (Chan et al., 2008). In MR, these factors are 
expressed as “predictor variables,” and the effluent concentrations or 
removed load is considered to be the “dependent (response) variables”. 

The purpose of MR for simulating the operation process of the HCW is to 
find the correlation between the removal of pollutants and the sys- tem's  
inherent  controlling  factors.  Therefore,  the  MR  equation  is as 
follows  (Eq. (8): 
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iance, and a post-hoc test, Tukey's honest significance difference 
(Tukey HSD) test, was used to compare the means at a 95% confidence 
level. The R-package (relaimpo package function) was used to 
determine the predictor's relative importance using the LMG measure 
and boot- strapped confidence intervals. This method of BMA, 
supplemented with the use of the “BMA package”, proved useful for 
selecting the optimal models. 

 
3. Results  and discussion 

 
3.1. System performance 

 
The results of the VF–HF system after more than 6 months of op- 

eration showed that the removal efficiency and the effluents differed 
as the HLR changed (Figs. 2 and 3, and Table 2). The effluent 
strengths fit well with the discharge limits in the first and third 
stages of the mon- itoring period.  The  means  of  the  effluent  
concentrations  were  87 ± 10.6 mg/L of TSS; 31 ± 13.1 mg/L of 
BOD5; 59 ± 17.2 mg/L of CODCr;   5.3 ± 3.0 mg/L   of   NH4-N;   8.4 
± 4.3 mg/L   of   NO3-N; 
7.1 ± 2.7 mg/L of TN; 0.9 ± 0.3 mg/L of PO4-P; and 1485 ± 1184 
of MPN (most probable number)/100 mL of TCol. The average 
treatment 
efficiencies   for   TSS,   BOD5,   TN,   NH4-N,   PO4-P,   and   TCol  were 
28.3 ± 12.2,  74.9 ± 11.5,  79 ± 7,  76.2 ± 12.9,  3.6 ± 43.7,  and 
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Fig. 2. Error bar (95% confidence interval) of BOD5, COD, and TSS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Error bar (95% confidence interval) of NH4-N, TN, and  PO4-P. 

82 ± 11.3%, respectively. The reduction in BOD5 and CODCr can be 
attributed to the biodegradable process that converted the organic 
matter to water and carbon dioxin in the HCW. In comparison with 
Vietnam's discharge limits for sewage wastewater (50 mg-BOD5/L), the 
average effluent of BOD5 in this experiment was quite low and suitable 
for disposal into water bodies that were used for agricultural purposes 
or the equivalent. It is also clear that TN and NH4-N removal were fairly 
high owing to both the nitrification (the conversion of nitrogen to NOx 

in high-oxygen conditions) and denitrification (conversion of NOx into 
N2 in low-oxygen conditions) that occur in the HCW (Vymazal, 2005). 
Furthermore, other mechanisms of nitrogen removal can include as- 
similation by microbial or plant biomass and adsorption onto the filter 
as explained by Keffala and Ghrabi (2005). The removal rate of BOD5 

was similar in both tanks (VF and HF), which was approximately 50.9%. 
The HF unit was considered to have less dissolved oxygen, and yet, it 
achieved 45 ± 13.4% reduction of NH4-N and 44 ± 12% re- duction of 
TN. There were statistically significant differences in the effluent 
concentrations among the three HLRs (P < 0.05) except  for the case of 
PO4-P. 

Table 2 presents the inputs and removal efficiency of the system in 
terms of removal loading rate (Lr) and percentage (%). Lr reached a 
value of 14.5 ± 2.7 g/m2∙d of BOD5  (30 g/m2∙d for the VF unit  and 
6.9 g/m2∙d  for  the  HF  unit).  The  overall  TN  loading  rate  reached 
4.0 ± 1.3 g/m2∙d, with 9.7 g/m2∙d for the VF unit, and 1.2 g/m2∙d for the 
HF unit. The removal rates observed in this experiment were rela- tively 
high as compared with those of the previous studies on HCW. Vymazal 
and Kröpfelová (2015) obtained 4.5 g-BOD5/m2∙d and 1.2 g- TN/m2∙; d, 
Melián et al. (2010)  reported 14 g-BOD5/m2∙; d, Dzakpasu et al. (2011) 
reported 0.28 g-TN/m2∙; d, and Vymazal (2013) reported 2.34–4.24 g-
TN/m2∙d. 

Although the PO4-P removal rate in this study was quite low, the 
results show that the HCW is a promising technology solution for 
treating the sewage in order to meet the current Vietnam's standard 
discharge limits. Based on these influent loading rates and HLR of lower 
0.15 m/d which tested, this HCW system was found to be suitable for 
treating sewage in Dong Ha city or similar types of wastewater. In 
addition, the results obtained for mass-balance analysis during opera- 
tion of this HCW system at a HLR 0.15 m/d indicate that the average 
pollutant load treatments achieved in VF and HF were 14 g/d and 
3.58 g/d for TN, 9.11 g/d and 2.58 g/d for NH4-N, 0.0 g/d and 0.21 g/d 
for PO4-P, and 39.95 g/d and 23.58 g/d for BOD5, respectively. 
However, while TSS removal was not very high, with TSS load removal 
in VF and HF of 3.63 g/d and 20.58 g/d, respectively. The nutrients, 
organic matter, and TSS reduced by HCW were attributable to vegeta- 
tive nutrient uptake, bacterial metabolism, adsorption, and/or accu- 
mulation by various forms of mechanical separation, such as layers of 
filter media. Further information about the simple mass balance esti- 
mation in each working unit of this HCW system can be found in sup- 
plementary data. 

 
 
 

Table 2 
Input and effect of HLR on the HCW system performance. 

Parameter Influent HLR1 = 0.1 m/d 
 

HLR2 = 0.2 m/d 
 

HLR3 = 0.15 m/d 
 

  
Lr (g/m2·d) Removal efficiency (%) Lr (g/m2·d) Removal efficiency (%) Lr (g/m2·d) Removal efficiency (%) 

TSS (mg/L) 123.8 ± 20.5 3.8 ± 1.2 33 ± 8.6 4.3 ± 2.7 18.0 ± 10.0 7.6 ± 3.2 37.0 ± 9.0 
BOD5  (mg/L) 127.7 ± 11.6 11.1 ± 1.3 83.2 ± 3.7 14.8 ± 2.4 62.4 ± 9.3 15.8 ± 1.6 80.0 ± 6.6 
CODCr (mg/L) 186.8 ± 12.3 14.1 ± 1.7 76.0 ± 5.3 19.9 ± 2.4 56.0 ± 5.6 21.8 ± 1.1 74.0 ± 4.0 
NH4-N (mg/L) 23.1 ± 5.8 1.8 ± 0.4 84.2 ± 6.6 2.9 ± 0.8 65.0 ± 11.5 3.1 ± 1.1 82.0 ± 10.5 
TN (mg/L) 33.6 ± 6 2.7 ± 0.2 82.0 ± 4.1 5.0 ± 0.8 74.0 ± 7.5 4.2 ± 1.2 82 ± 5.0 
PO4-P (mg/L) 
TCol (MPN/100 mL) 

1.05 ± 0.4 
8456 ± 4022 

0.0 ± 0.0 1.3 ± 40 
84 ± 6 

0.03 ± 0.06 15.0 ± 49.0 
77 ± 11 

0.04 ± 0.07 23.0 ± 38.0 
86 ± 7 

Average ± SD: Average ± standard deviation. 
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Table 3 
Removal  rate  constants  of three models. 

BOD5 CODCr NH4-N TN 

3.3.1.  Results of correlation analyses 
Fig. 4 shows the correlation coefficients (r) and plots of the useful 

variables. The value  of r ranges from −1–1, with 0 presenting a zero 

   correlation and 1 (or −1) indicating perfectly correlated variables. The 
First-order k–C* model (M1) 
k1 = 0.24 ± 0.06 k1 = 0.19 ± 0.04 k1 = 0.42 ± 0.11 k1 = 0.3 ± 0.08 
R2 = 0.49 R2 = 0.51 R2 = 0.28 R2 = 0.17 
P < 0.05 P < 0.05 P < 0.05 P > 0.05 
First-order model with CSTR (M2) 
k2 = 0.51 ± 0.2 k2 = 0.34 ± 0.1 k2 = 0.65 ± 0.43 k2 = 0.62 ± 0.24 
R2 = 0.04 R2 = 0.03 R2 = 0.04 R2 = 0.12 
P > 0.05 P > 0.05 P > 0.05 P > 0.05 
Monod model with CSTR (M ) 

intersections between the rows and columns are r values (number in the 
square) and scatter plots of the variable pairs and histograms of the 
variables appear along the matrix diagonal. Hence, on investigating the 
relationship between the influents, operation parameters, and effluents, 
we can observe that the HLR had a relatively high correlation with Con 

(r = 0.64), Cob (r = 0.7), Lrn (r = 0.46), and Lrb (r = 0.56). The role of 
HLR in effluent concentration and removal efficiency was also con- 

3 

k3 = 44.4 ± 13.6 k3 = 25.2 ± 5.1 k3 = 2.63 ± 1.0 
R2 = 0.30 R2 = 0.60 R2 = 0.68 
P < 0.05 P < 0.05 P  < 0.05 

 
 

3.2.  The  kinetic  rate constants 
 

R2, P, and k were calculated for each pollutant of BOD5, COD 

 
 
 
 
 

Cr, 

firmed by Kadlec and Knight (1996). A low negative correlation is 
obtained between Cob and Cib (r = −0.37), which contrasts with the 
results of the previous studies. Kadlec and Knight (1996) and 
Babatunde et al. (2011a) stated that Cib had the highest correlation with 
Cob. Some variables such as Cib and Cits had negative correlations with 
Cob and Con (r value from −0.31 to −0.46). In addition, the pH cor- 
related weakly with all the effluents (Lrb, Cob, Lrn, and Con) with a lower 
r  value  at 0.1. 

NH4-N, and TN in three models (M1, M2, and M3), and presented in 
Table 3. The average influent (Ci) and effluent (Co) for BOD5, CODCr, 
NH4-N, and TN were 127.7 mg/L and 31 mg/L, 186.8 mg/L and 59 mg/ 
L, 23.1 m/L and 5.3 mg/L, and 33.6 mg/L and 7.1 mg/L, respectively. 

Table 3 shows that M2 does not completely fit the data of all the 
pollutants (P > 0.05). R2 of M3 for CODCr and NH4-N were higher than 
that of the other pollutants and reached values of 0.60 and 0.68, re- 
spectively. This means that the correlation was not coincidental. In 
general, the models M1 for CODCr and M3  for CODCr  and NH4-N  (R2 

> 0.5), expressed the correlation required for matching the pol- 
lution concentrations and operating parameters well. 

The pollutant removal rates of model M1 for CODCr was 0.19 m/d, 
which is similar to the range mentioned in several studies such as 
Kadlec and Wallace (2009) and higher than the result obtained by Trang 
et al. (2010). For an HLR of 0.086 m/d, Trang et al. (2010) presented k1  of 
CODCr  as 0.07 m/d (R2 = 0.7). For NH4-N, the value of 
k3  obtained (2.63 g/m2∙d) is much lower than that (29.8 g/m2∙d)  re- 

 
3.3.2.  Results of multiple regression for BOD5 

The output obtained from the LMG analysis (Table 5) indicates that 
the 64.9% and 71.7% of the total variation in Cob and Lrb, respectively, can 
be attributed to the seven selected predictor variables. It shows that the 
HLR can be considered as the most important predictor that ex- plained 
39.1% and 35.6% of the total variation of Cob and Lrb, respec- tively. Thus, 
Cits and Cib played a smaller role while the pH, Cin, Cip, and Cit had a weak 
impact on the variation in response variables. These results demonstrate 
that there are several factors that influenced the effluent BOD5 of the 
HCW among which the HLR is an important parameter. Thus, it can be 
said that the HLR is required to be carefully selected for the design and 
operation of the HCW system. 

Using the seven predictor and response variables of Cob and Lrb from 
Table 5, the HCW data was calculated using the BMA method and 
summarized in Table 6. Based on the BMA criteria, four optimal models 
were selected (B –B ), which have low BIC and high R2 results. In re- 

ported by Saeed and Sun (2011). 1     4 ference  to R2, et al.  (2011)  also  stated  that only  an R2
 

 

 
3.3.  Correlation analyses and predictive models 

 
The values of the independent and response variables are presented 

in Table 4. CODCr changed uniformly with BOD5, PO4-P was primarily 
influenced by adsorption and desorption, and TN was treated as a 
lumped category pollutant; therefore, in this study, MR was used for 
BOD5 and NH4-N. 

 
 

Table 4 
Values  of independent  and response variables. 

Hijosa-Valsero 
value greater than 0.50 can be considered as a validation for linear 
models. 

B4 obtained the highest value of R2 (0.7), whereas B3 had the lowest 
BIC (−16.8) which due to fewer variables or more simply. Considering 
the R2 value, these results are lower than those obtained in the study of 
Babatunde et al. (2011a) (R2 = 0.86). It is likely that the HLR was the 
most important factor that influenced the removal efficiency of the 
HCW in the case of all the optimal MR models. This result is not in 
agreement with the study reported by Babatunde et al. (2011a), which 
concluded that the optimal model for Cob consisted of Cib, Cic, Cin, and 
Cip (not including HLR). Although the R2 values reached 0.6–0.7, which 
means that the predictive models explained 60–70% of the variance of 
Lrb, these results prove that B1–B4 are useful models for predicting the 
removal loading rate of BOD5 of the HCW. 

 
3.3.3.  Results of multiple regression for NH4-N 

Table 7 shows that HLR and Cits had high relative importance to Con, 
which showed a 37% and 20% contribution to the total R2, respectively. 
In addition, using the regression model, Cin and HLR explained 60.3% 

concentration) 
Cit (TN inlet concentration) mg/L 22.0 50.2 33.6  ± 6.0 
Cip (PO4-P inlet concentration)  mg/L 0.03 0.38 1.05  ± 0.4 

and 16.2% of the total variation in Lrn, respectively. The pH factor acted 
as the lowest relative “weight” (0.08% and 0.5%) for the variations of 
both Con and Lrn. 

Cob (BOD5 outlet 
concentration) 

mg/L 16.0 62.0 31.3 ± 13.1 
The results of the BMA method for NH4-N are presented in Table 8. 2 

Parameters Unit Minimum Maximum Average ± SD 

pH –  7.05 7.9 7.4 ± 0.2 
Cits (TSS inlet concentration) mg/L 95.0 188.0 123.8 ± 20.5 
Cib (BOD5 inlet concentration) mg/L 103.0 147.0 127.7 ± 11.6 
Cic (COD inlet concentration) mg/L 165.0 206.0 186.8 ± 12.3 
Cin (NH4-N inlet mg/L 12.5 39.0 23.1 ± 5.8 
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Con  (NH4-N outlet mg/L 1.6 11.5 5.3  ± 2.9 Models B8–B9 had the highest value of R   (0.9) and lowest value of BIC 

concentration) (−40.5 to −43.3). This means that the MR models could explain 90% 

Lrb (BOD5 removal loading 
rate) 

g/m2∙d    8.8 18.6 14.5   ± 2.7 of the variation of L 
value of R2  in the 

rn. In addition, the B5–B7 

of 0.64  0.67. The 
tests produced a lower 

of R2 in this study are 

Lrn (NH4-N removal loading g/m2∙d    1.2 5.1 2.7  ± 1.0 
range –  values 

rate) relatively  high  as  compared  with  those  in  the  study  conducted by 

   Hijosa-Valsero et al. (2011) (R2 = 0.55) and (Babatunde et al., 2011a) 
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Fig. 4. Correlation matrix of variables. 

 

Table 5 
Relative importance of BOD5 effluent and removal rate. 

and removal loading rate of the HCW as well as revealing the overall 
performance of the HCW. 

 
Influent Cib HLR Cin Cip Cit Cits pH Total 

 

Cob Relative  importance (%) 7.6 39.1 2.0 1.8 4.3 9.6 0.3 64.9 3.4.  Practical  applications  and  future perspectives 
Lrb Relative  importance (%) 8.8 35.6 3.7 2.1 2.7 18.1 0.7 71.7  

          Previous  instances  of  the  use  of  HCW  for  sewage  wastewater 

Table 6 
Optimal models obtained by BMA method for BOD5 effluent and removal rate. 

treatment in Vietnam is still limited, and therefore, there is some doubt 
regarding the potential of this technology. For the actual conditions of 
the sewer and local materials, this work demonstrated that the HCW 

 
 
 
 
 
 

Table 7 
Relative importance for NH4-N effluent and removal rate. 

Influent Cib       HLR Cin Cip        Cits pH Total 
 

Con Relative  importance (%) 5.7 37 3.5 0.7 20.0 1.0 69.9 
Lrn Relative  importance (%) 2.6 16.2 60.3 7.3 3.7 0.5 90.6 

 

Table 8 
Optimal models of BMA method for NH4-N effluent and removal rate. 

No. Equation R2 BIC 

tralized activated sludge wastewater treatment plants that are popular 
in the cities of Vietnam. Moreover, the use of the statistical method to 
simulate the HCW performance not only facilitates an investigation of 
the processes in the HCW but also clarifies the activity trends and the 
influent parameters. The parameters such as HLR, and TSS had a sig- 
nificant influence on the effluents and will thus be carefully controlled 
in the real operation of HCWs. Engineers and designers may be able to 
apply these predictive models for retrofitting or creating more effective 
HCWs with VF and HF in series. 

The new local plant (Colocasia esculenta) might be the first plant  used 
in such an experiment with HCW for wastewater treatment. Although 
this study might contain insufficient control tests and long- 

   term observations, the results obtained for the HF and Colocasia escu- 
lenta growth demonstrated the great potential of this plant for appli- 
cation to CWs for treating different types of wastewater. Therefore, 
testing Colocasia esculenta in various types of CW flows and regimes 
could  create  more  opportunities  for  enhancing  and  promoting  the 

B9 Lrn = 8.6 HLR + 0.14 Cin+ 0.01 Cits – 0.05 Cib – 2.8 0.9 - 41.0 
   performance of HCWs in the real world. 

By applying the familiar first-order model for predicting the pollu- 
(R2 = 0.69). All the models reveal that the variances in the effluent 
NH4-N and the removal rate were best explained by the predictor 
variables of HLR, Cin, Cits, and Cib. These predictors are quite different 
from those of the optimal model of Babatunde et al. (2011a) which 
included Cits, Cic, and temperature. 

The results of the above analysis indicated that the MR equations of 
B5–B9  can be useful for simulating the variances in the NH4-N effluents 

No. Equation R2 BIC met the current wastewater discharge standards for Vietnam with HLRs 

B1 Cob = 224.3 HLR – 0.22 Cits + 24.9 0.6 −14.9 of 0.1–0.15 m/d. Furthermore, in the experiment performed, we also 
B2 Cob = 247 HLR + 0.14 Cib – 0.24 Cits + 5.2 0.61 −12.4 tested the local and new plant named Colocasia esculenta (elephant ear), 
B3 Lrb = 54 HLR + 0.12 Cib + 0.05 Cits - 15.2 0.67 −16.3 which demonstrated great potential for wastewater treatment. Thus, 
B4 Lrb = 52.2 HLR + 0.1 Cib + 0.05 Cits - 16.3 0.7 −14.85 the use of HCW with local plants and materials can replace the cen- 

 

B5 Con = 47.2 HLR – 0.07 Cits + 7.1 0.64 - 17.5 
B6 Con = 55 HLR + 0.04 Cib – 0.08 Cits + 0.24 0.67 - 16.0 
B7 Con = 46.6 HLR + 0.06 Cin – 0.07 Cits + 5.5 0.66 - 15.1 
B8 Lrn = 9.4 HLR + 0.14 Cin + 0.01 Cits – 3.4 0.9 - 43.3 
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tion removal in the HCW, this work demonstrated that the MR 
method is robust in the modeling of HCW performance as well as for 
selecting the predictive equations. This research also suggests that 
studies on the use of MR with more inputs and out parameters of the 
HCW may im- prove the understanding of HCWs. Furthermore, it 
would be interesting to obtain test results for this method over a 
longer period of operation time in order to develop a superior HCW 
system. 
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4. Conclusions 
 

The results obtained for a high removal rate of organic matter and 
nutrients indicate that the use of HCW can serve as an efficient method 
of sewage treatment. With high R2 values (0.6–0.9) derived from the  MR 
analysis, it is important to note that random noise was not taken into 
consideration in the investigated models. In all the predictive models, it 
was observed that the HLR had a dominant impact on the response 
variables. In general, the MR linear analysis revealed a su- perior ability 
for prediction of the HCW performance than those of the kinetic rate 
constant. Models B1–B9 can be used to evaluate the HCW system 
performance and predict its output. 
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