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Abstract 19 

Remote sensing provides a rapid detection of vehicle emissions under real driving condition, 20 

and is emerging as an attractive emission control technology. Remote sensing studies showed 21 

that diesel NO emissions changed little or were even increasing in recent years despite the 22 

tightened emission standards. To more accurately and fairly evaluate the emission trends, it is 23 

hypothesized that analysis should be detailed for individual vehicle models as each model 24 

adopted different emissions control technologies and retrofitted the engine/vehicle at different 25 

time. Therefore, this study was aimed to investigate the recent nitric oxide (NO) emission 26 

trends of the dominant diesel vehicle models using a large remote sensing dataset collected in 27 

Hong Kong. The results showed that the diesel vehicle fleet was dominated by only seven 28 

models, accounting for 78% of the total remote sensing records. Although each model had 29 

different emission levels and trends, generally all the seven dominant models showed a steady 30 

decrease or stable level in the fuel based NO emission factors (g/kg fuel) over the period 31 

studied, except for BaM1 and BdM2. A significant increase was observed for the BaM1 2.49 32 

L and early 2.98 L models during 2005-2011, which we attribute to the change in the diesel 33 

fuel injection technology. However, the overall mean NO emission factor of all the vehicles 34 

was stable during 1991-2006 and then decreased steadily during 2006-2016, in which the 35 

emission trends of individual models were averaged out and thus masked. Nevertheless, the 36 

latest small, medium and heavy diesel vehicles achieved similar NO emission factors due to 37 

the converging of operation windows of the engine and emission control devices. The findings 38 

suggested that the increasingly stringent European emission standards were not very effective 39 

in reducing the NO emissions of some diesel vehicle models in the real world, and remote 40 

sensing provides a highly effective tool for detecting high-emitters. 41 

Keywords: Nitric oxide; Emission factor; Diesel vehicles; Remote sensing; Real-driving 42 

emissions 43 
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Capsule 44 

The European emission regulations were not very effective in reducing the NO emissions from 45 

some diesel vehicles in the real world.  46 
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1. Introduction 47 

Nitrogen oxides (NOx) emissions, which refer to the combination of nitric oxide (NO) and 48 

nitrogen dioxide (NO2), are one of the major pollutants in the ambient air. NOx emissions are 49 

usually produced from the combustion of fossil fuels via the thermal NO (or Zeldovich) 50 

mechanisms under high-temperature rich-oxygen conditions (Huang et al., 2015). Motor 51 

vehicles, especially diesel vehicles, are the main source of NOx emissions (Anenberg et al., 52 

2017; Font and Fuller, 2016; Suarez-Bertoa and Astorga, 2018). The majority of NOx emissions 53 

(~ 90%) from uncontrolled diesel engines are emitted as NO which will later be oxidized into 54 

secondary NO2 (Gentner and Xiong, 2017). Exposure to NOx emissions has serious adverse 55 

health effects on human respiratory systems, including increased morbidity and mortality 56 

(Amster et al., 2014). Therefore, NOx emissions are strictly regulated in both air quality and 57 

automotive emission standards.  58 

In Hong Kong, the Air Quality Objectives (AQO) define a maximum number of 18 59 

exceedance for 1-h average NO2 of 200 μg/m3 per year and a maximum annual average NO2 60 

of 40 μg/m3. However, like many other megacities around the world, Hong Kong has faced 61 

serious air pollution problem for many years in both street and regional levels (HKEPD, 62 

accessed 02.03.2018). Hong Kong has not fully achieved its AQO. In 2017, air quality data 63 

from roadside monitoring stations showed that the number of exceedance of the 1-h average 64 

NO2 was 272 and the annual average NO2 was 97 μg/m3 in Causeway Bay, which were 15.1 65 

and 2.4 times the AQO values, respectively (HKEPD, accessed 09.07.2018). Air pollution is a 66 

major challenge in Hong Kong and costs the city significantly. The Hedley Environmental 67 

Index estimated that air pollution had caused 1863 premature deaths, 2.71 million additional 68 

doctor visits and 22.4 billion HKD economic loss in 2017 (Hedley Environmental Index, 69 

accessed 29.03.2018).  70 
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One effective and economic tool for use in automotive emissions control is on-road remote 71 

sensing technology (Beaton et al., 1995; Huang et al., 2018b). Remote sensing is a non-72 

intrusive technology that can measure a large number of vehicles at a relatively low cost 73 

(Burgard et al., 2006). It measures the emissions of a vehicle in a half second when it passes 74 

by a measurement site. The instantaneous emissions of a vehicle under real-driving conditions 75 

are highly variable. As a result, such a snapshot measurement cannot fully represent the 76 

emission level of the passed vehicle. However, if the remote sensing readings exceed some 77 

conservative cutpoints concurrently in two sets of remote sensing equipment arranged in 78 

tandem, then the chance of this vehicle being a high-emitter is relatively high. Therefore, the 79 

emissions data can be used to determine if the passing vehicle is dirty or not, and thus 80 

implement targeted emissions control programs such as inspection and maintenance (I/M). The 81 

Hong Kong Environmental Protection Department (HKEPD) pioneered using on-road remote 82 

sensing as a legislative tool to detect high-emitting gasoline and liquefied petroleum gas (LPG) 83 

vehicles for enforcement purposes since 1 September 2014 (Borken-Kleefeld and Dallmann, 84 

2018; HKEPD, accessed 06.04.2018). The program has been proved to be effective in tackling 85 

the excessive emission problems of gasoline and LPG vehicles (Huang et al., 2018b). However, 86 

the current remote sensing technology will likely produce significant false detections of diesel 87 

high-emitters. The underlying reasons include low pollutant concentrations and large variations 88 

in CO2 (not stoichiometric or rich combustion) in the exhaust plume of diesel vehicles. Further 89 

research is being conducted to make the technology effective for the enforcement of diesel 90 

vehicles (Huang et al., 2018b). Firstly, a new generation of remote sensing device with higher 91 

accuracy is under development. Secondly, the cutpoints for diesel high-emitters should be 92 

defined in concentration ratios (QP) or emission factors (g/kg fuel), rather than absolute 93 

concentrations (ppm or %) which are used in the current program. 94 



- 6 - 

Remote sensing is also a very useful tool to monitor and evaluate the effectiveness of various 95 

emissions control programs and technologies under real-driving conditions (Bishop and 96 

Haugen, 2018). Remote sensing data is widely used to analyze the trends of emission factors 97 

as a function of manufacture year. With a large remote sensing database, it can generate 98 

accurate results on the emission average and trends within a vehicle fleet (Ko and Cho, 2006). 99 

One unexpected and concerning finding from recent remote sensing studies was that NO 100 

emissions of diesel vehicles changed little or were even increasing in recent years in spite of 101 

the greatly tightened emission standards. Carslaw et al. (2011); Carslaw and Rhys-Tyler (2013) 102 

reported that there was little evidence of NOx emissions (NOx/CO2) reduction from all types of 103 

diesel vehicles in UK over the past 15-20 years. Lau et al. (2012) observed an increase in the 104 

NO emissions (g/km) of light-duty diesel vehicles in Hong Kong during model years of 2002-105 

2006. Bishop et al. (2013) found that the NOx emissions (g/kg fuel) of heavy-duty diesel 106 

vehicles in California increased in 1990-1995. Bishop and Stedman (2015) reported that the 107 

NOx emissions (g/kg fuel) of Los Angeles diesel truck increased in 1994-2004 and diesel 108 

passenger cars generally increased in 2002-2010. Chen and Borken-Kleefeld (2014) reported 109 

that the NOx emissions (g/kg fuel) of diesel cars and light commercial vehicles in Zurich 110 

increased during model years of 1992-2003. Pujadas et al. (2017) reported that NO/CO2 of the 111 

diesel cars in Spain increased from pre-Euro to Euro 2 and from Euro 4 to 5, and was unchanged 112 

from Euro 2 to 3. Huang et al. (2018a) found that the diesel NO emissions (g/kg fuel) in Hong 113 

Kong showed an unexpected increase for small vehicles (engine size ≤ 3000 cc) during 1999-114 

2006, medium vehicles (3001-6000 cc) during 1997-2002, and large vehicles (≥ 6001 cc) 115 

during 1998-2004. 116 

The above remote sensing all reported that the diesel NO emissions increased during specific 117 

periods. However, previous remote sensing studies usually averaged the emission factors of all 118 

the vehicles in the same manufacture year, regardless of the vehicle models. Although this 119 
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provided a global picture of the whole fleet or a specific vehicle class, the real trends of 120 

individual vehicle models might have been masked and skewed as each model might have 121 

adopted different emissions control technologies and retrofitted the engine/vehicle at different 122 

time. This study shows that there are always a few dominant diesel vehicle models in each class 123 

and each model has very different emission levels and trends. The increase of NO emissions 124 

during a certain period is a model specific problem and is mainly caused by the different engine 125 

combustion and after-treatment technologies adopted. Therefore, analysis is needed to be 126 

detailed for individual vehicle models so as to fairly and accurately assess the emission trends 127 

and effectiveness of various emission standards and control technologies.  128 

This study aims to evaluate the recent NO emission trends of diesel vehicles in Hong Kong 129 

using on-road remote sensing technology. A large remote sensing dataset containing 679454 130 

records was collected in a three-year measurement program from April 2014 to April 2017. 131 

Analysis was performed to identify the dominant diesel vehicle models in each vehicle class 132 

and to investigate the trends of NO emission factors for each dominant model. 133 

 134 

2. Data collection and treatment 135 

In this study, 14 sets of ETC-S420 remote sensing systems were used to collect the vehicle 136 

emissions data. ETC-S420 is assembled in Hong Kong by the Environmental Technology Ltd. 137 

Co. according to the technical requirement of HKEPD. Some specific requirements of HKEPD 138 

on remote sensing measurement are 1) dual remote sensing set-up, 2) customized data filtering 139 

mechanism, 3) customized data filtering in automatic license plate recognition system, and 4) 140 

data structure integrated with HKEPD’s data validation system. These are vital to uphold the 141 

quality of HKEPD’s enforcement program to achieve zero error of commission. The hardware 142 

and operation mechanisms of ETC-S420 are very similar to that of most of the other remote 143 
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sensing systems, such as AccuScan RSD5000 (RSD5000, 2017) and FEAT (Burgard et al., 144 

2006). ETS-S420 has been used by the HKEPD to detect gasoline and LPG high-emitting 145 

vehicles for enforcement since 1 Sep 2014 (HKEPD, accessed 06.04.2018).  146 

Fig. 1 shows the setup of the remote sensing system at one measurement site. The system 147 

consists of infrared (IR) and ultraviolet (UV) beam sources and detectors, speed and 148 

acceleration sensors, a retroreflector and a vehicle plate camera. A measurement is triggered 149 

by the beam being blocked by a passing vehicle. ETC-S420 measures carbon monoxide (CO), 150 

carbon dioxide (CO2) and hydrocarbon (HC) emissions in the IR region and NO emissions in 151 

the UV region. CO and HC are products of incomplete combustion. CO is toxic and HC is a 152 

major contributor to smog. Although CO2 is the product of complete combustion and non-toxic, 153 

it is the most significant long-lived greenhouse gas in the atmosphere. Therefore, all these 154 

emissions are regulated in air quality and automotive emission standards.  155 

Once the remote sensing system is triggered, it records the data at a frequency of 200 Hz 156 

and lasts for a half second. The system measures the difference between each pollutant's 157 

concentration in the ambient air before the car arrives and that in the exhaust plume (∆P = 158 

Pexhaust – Pambient, where P indicates pollutant CO2, CO, HC or NO). For each vehicle, the remote 159 

sensing system records 100 independent ∆P readings for each pollutant. Then, the system plots 160 

ΔCO, ΔHC and ΔNO against ΔCO2. The least square slopes of these lines are the CO/CO2, 161 

HC/CO2 and NO/CO2 ratios which are indicated by QCO, QHC and QNO, respectively. These 162 

concentration ratios are constant for a given exhaust plume (Bishop et al., 1989; Burgard et al., 163 

2006). As remote sensing is an indirect measurement, it can only determine these relative ratios, 164 

but not the absolute concentrations. The measurement uncertainties are about ±15% of the 165 

readings. These ratios are very useful parameters for indicating the performance of a 166 

combustion system. The fuel based NO emission factors (EFNO) in g/kg fuel can be calculated 167 

based on the principle of carbon balance using equation (1) (Bishop, 2014; Huang et al., 168 
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2018b), in which 30 is the molecular weight of NO in g/mol and 0.014 is the molecular weight 169 

of diesel in kg/mol (assuming CH2 for diesel). The fuel volume based EFs (g/L fuel) can be 170 

calculated if the fuel density is known, e.g. 0.85 kg/L for diesel (Chan and Ning, 2005). The 171 

distance based EFs (g/km) can also be calculated if the fuel economy factor (km/L fuel) is 172 

known for the vehicle (Lau et al., 2012; Zhou et al., 2014). 173 

𝐸𝐹𝑁𝑂 =
30

0.014
∗

𝑄𝑁𝑂

1+𝑄𝐶𝑂+6𝑄𝐻𝐶
 [g/ kg fuel]      (1) 174 

Meanwhile, the speed, acceleration and license plate number of the passing vehicle were 175 

also measured. The vehicle information, including the brand, model, fuel type, manufacture 176 

year, engine size, vehicle class and gross weight, was obtained from the registration database 177 

of the Transport Department of the Hong Kong Special Administration Region (SAR) 178 

Government by using the license plate number. During the measurements, calibration checks 179 

were performed every two hours using span gases to ensure the data quality. 180 

The measurements were taken at 158 sites across Hong Kong by the HKEPD from April 181 

2014 to April 2017. The selection of a measurement site is based on the following criteria: 182 

 5-m width single lane traffic, 183 

 slight uphill gradient, 184 

 away from traffic lights or intersections to avoid hard acceleration/deceleration, 185 

 vehicle speeds in the range of 7-90 km/h, and  186 

 sufficient traffic volume. 187 

The three-year measurement program obtained 679454 records of diesel vehicle emissions 188 

with matched licence plate numbers. A measurement was considered valid when the following 189 

criteria are met: 190 
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 measured CO2 exhaust plume size was sufficient to determine the emission ratios 191 

(Carslaw et al., 2011; Chen and Borken-Kleefeld, 2014, 2016), and  192 

 driving conditions were within speed (< 90 km/h) and acceleration (-5 to 3 km/h/s) 193 

envelopes of the Hong Kong Transient Emission Testing (HKTET) cycle 194 

(Commissioner for Transport, 2012), which is the laboratory testing cycle for emission 195 

certificates for in-use vehicles in Hong Kong. 196 

By applying the above criteria, 198690 records were invalid due to insufficient exhaust 197 

plume size and 166608 records were invalid due to speed or acceleration (some records were 198 

invalid for both criteria). Finally, 363287 (53%) valid records for 75450 unique vehicles were 199 

retained, which still represented a large sample of the on-road diesel fleet. The total number of 200 

licensed diesel vehicles in Hong Kong was 138555 by April 2017 (Transport Department of 201 

Hong Kong, 2017). 202 

 203 

3. Results and discussion 204 

3.1. Fleet characteristics 205 

Table 1 shows the characteristics of the most measured diesel vehicle models in the three-206 

year remote sensing program, ranked by the number of records. Hong Kong vehicles are 207 

certified to Euro standards. Unlike private petrol cars, there are always a few dominant diesel 208 

vehicle models in each class.  209 

As shown in Table 1, for light commercial diesel vehicles, the dominant models are BaM1†, 210 

BcM1 and BeM1, with 108559, 21573 and 12290 records, respectively. Their engine sizes are 211 

usually smaller than 3 L and the gross weight is within 3.5 t. These models are mostly used as 212 

light goods vehicles (LGV) in Hong Kong.  213 
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For medium commercial vehicles, the dominant models are BaM2 and BdM1, with 77727 214 

and 20433 records, respectively. Their engine sizes are generally in the range of 4-6 L and the 215 

gross weight is from 4 to 10 t. These models are widely seen as public/private light buses (LB) 216 

and light/medium goods vehicles (LGV/MGV).  217 

For heavy commercial vehicles, the dominant models are BbM1 and BdM2, with 38331 and 218 

4408 records, respectively. Their engine sizes are larger than 7 L and the gross weight is over 219 

15 t. These models are mostly used as public buses (PB) and MGV in Hong Kong.  220 

These seven dominant vehicle models alone have contributed to 283321 valid remote 221 

sensing records, accounting for 78% of the total records. One vehicle model may have different 222 

engine sizes due to the retrofit of engine/vehicle. However, mostly, there is only one engine 223 

size for each dominant vehicle model in one year, as shown in Table 2. In the following section, 224 

the effect of manufacture year on the NO emission factors is investigated for the dominant 225 

diesel vehicle models identified in this section. 226 

 227 

3.2. Emission trends 228 

Fig. 2 shows the trends of the mean NO emission factors of the dominant light commercial 229 

vehicles, namely BaM1 (a), BcM1 (b) and BeM1 (c). Each data point contains at least 100 230 

valid remote sensing measurements to ensure the statistical validity (Chen and Borken-231 

Kleefeld, 2016; Huang et al., 2018a). The NO emission factors reported in this study are in 232 

grams of NO per kg of fuel consumed (g/kg fuel). It should be noted that the emission factors 233 

of remote sensing (g/kg fuel, left y-axis in Fig 2a) and Euro standards (g/km, right y-axis in 234 

Fig. 2a) are different and thus cannot be compared quantitatively.  235 

BaM1 is the most popular diesel vehicle model running on Hong Kong roads and entered 236 

the market since the late 1980s. As shown in Fig. 2a, the NO emission factor of 2.78 L model 237 
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was stable during 1990-1996 and then decreased by 21% from 10.52 g/kg fuel in 1996 to 8.26 238 

g/kg fuel in 1998. After 1998, the 2.99 L model entered the market and replaced the 2.78 L 239 

model, which further reduced the NO emission factors by 24% from 7.81 g/kg fuel in 1998 to 240 

5.93 g/kg fuel 2004. In 2005, the 2.49 L model was introduced into the market. It exhibited a 241 

notably higher NO emission factor by 95% than the 2.99 L model in 2004 and increased from 242 

2005 to 2006 although the NOx limit was reduced significantly by 50% from Euro 3 (0.78 243 

g/km) to Euro 4 (0.39 g/km). Its succeeding 2.98 L model had comparable emission levels to 244 

that of 2.49 L model, but decreased slowly by 8% from 2006 (12.40 g/kg fuel) to 2011 (11.37 245 

g/kg fuel). However, the 2.98 L model showed a significant drop of 52% in NO emission factor 246 

between 2011 and 2012 (5.49 g/kg fuel), so that its emission factor became comparable to that 247 

of 2.99 L model. The NO emissions of 2.98 L model reduced further by 29% from 2012 to 248 

2016. This significant drop could be explained by the introduction of a new Euro 5 BaM1 249 

model in 2012 to replace the old Euro 4 model with an upgraded engine management system 250 

(the two engines were mechanically identical but with different injectors). In addition, the 251 

remote sensing system used in this study could only measure the NO. No account of NO2 was 252 

made and one could not rule out any in cylinder formation of NO2 or post combustion oxidation 253 

of NO although the Euro 4 and Euro 5 models are equipped with DOC and DOC+DPF 254 

respectively (Bishop et al., 2010). 255 

The unusual increasing trends of BaM1 2.49 L and early 2.98 L models would be caused by 256 

the different engine combustion and exhaust after-treatment technologies adopted in different 257 

generations. Table 2 3 shows the specifications of all the BaM1 models running on Hong Kong 258 

roads. For manufacturing years between 1989 and 2004, the Euro 1-3 BaM1 models are 259 

installed with the EM1a†, EM1b and EM1c engines, respectively. These EM1 series diesel 260 

engines adopted the indirect injection (IDI) technology. An IDI engine features a pre-chamber 261 

where the diesel is injected for initial ignition. The pre-chamber is connected to the main 262 
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combustion chamber above the piston through a narrow passage. The compression ratio of an 263 

IDI engine has to be much higher than that of a direct ignition (DI) engine to achieve the desired 264 

air temperature for triggering ignition. The typical compression ratio of IDI and DI engines are 265 

20~24:1 (e.g. EM1a, EM1b and EM1c) and 15~18:1 (e.g. EM2a and EM2b), respectively. The 266 

extra heat loss due to larger surface area-volume ratio in an IDI engine not only decreases the 267 

engine efficiency but also typically requires a glow plug for a cold start. The direct effect of 268 

lower efficiency is the lower torque of IDI engines. IDI technology was widely adopted for 269 

small diesel engines because of its good performance at high engine speeds. DI technology is 270 

a better choice for larger diesel engines that do not require high speed operation. The 271 

introduction of common-rail injection system allows small diesel engines to use DI technology. 272 

It is because the electronically controlled injection provides higher flexibility in controlling the 273 

diesel injection timing and duration, as well as a much higher and more precise fuel pressure 274 

to allow a much smaller nozzle size to improve fuel atomization.  275 

Table 2 3 shows that the more advanced DI engines with common-rail system (EM2a and 276 

EM2b) obviously offer a much better engine torque performance than the earlier IDI engines 277 

(EM1a, EM1b and EM1c). However, remote sensing data (Fig. 2a) shows that the EM2a and 278 

EM2b engines emit at least 80% higher NO than their predecessor (EM1c) in the real world. 279 

This is mainly caused by the different diesel fuel injection technologies adopted by the engines. 280 

EM2a and EM2b engines used the common-rail DI technology, while EM1c engine used the 281 

IDI technology. The common-rail system allows a flexibility in manipulating the engine map, 282 

and hence their torque curves can achieve a plateau over a range of engine speed to improve 283 

drivability. When making a use of this flexibility, one of the possibilities for the higher NO 284 

from the EM2a and EM2b engines than their predecessor EM1c is a tradeoff between torque 285 

and fuel economy performance and pollutant emissions of NO, CO, HC and PM for IDI and 286 

DI engines. The PM emissions may be a more significant concern when there is additional 287 
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loading to the exhaust filtration devices. Huang et al. (2011) experimentally investigated the 288 

performance of two diesel engines of the same model except one was equipped with IDI 289 

technology and the other was equipped with DI technology. The results show that the NOx and 290 

smoke emissions of the IDI engine were significantly lower than those of the DI engine. On 291 

the other hand, the DI engine showed better performance in terms of fuel consumption and 292 

thermal efficiency than the IDI engine did. 293 

Irrespective of any reason, the significantly higher NO emission factors from Euro 4 BaM1 294 

than its Euro 1-3 models shows depicts that the increasingly strengthened emission standards 295 

and its type approval mechanism under the European emission regulations were not very 296 

effective in reducing the NO emissions from diesel vehicles in the real world. Nevertheless, 297 

the Euro 5 BaM1 model emits less than half of NO when compared to its Euro 4 predecessor. 298 

Although the late Euro 4 and Euro 5 BaM1 model shared the same EM2b engine, the two 299 

engines are not identical in terms of engine management and exhaust after-treatment device. 300 

The improvement in NO emission from Euro 1 to 5 illustrated the continuous technology 301 

improvements, as shown in Fig. 2a. 302 

The second most popular diesel light commercial vehicle model in Hong Kong is the BcM1 303 

which started in the market in 2008. As shown in Fig. 2b, the NO emission factor of BcM1 304 

decreased by 32% from 11.31 g/kg fuel in 2008 to 7.72 g/kg fuel in 2016 (the large error bars 305 

for manufacture year of 2016 are mainly due to the small number of measurements for those 306 

new vehicles). The emission level of BcM1 was comparable to that of early BaM1 2.98 L 307 

model during 2008-2011, but a significant decrease was not observed for BcM1 after 2011. As 308 

a result, the emission level of BcM1 was significantly higher than that of BaM1 2.98 L model 309 

after 2012. 310 

BeM1 is the third most popular diesel light commercial vehicle model, which was 311 

introduced into Hong Kong in 2001. There were two sub-models for BeM1, namely 2.95 L 312 
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(2001-2011) and 2.49 L (2012-2016). As shown in Fig. 2c, the NO emission factor of the 2.95 313 

L model decreased by 17% from 2001 (14.83 g/kg fuel) to 2006 (12.29 g/kg fuel), and then 314 

decreased significantly by 52% between 2006 and 2008 (5.96 g/kg fuel) before becoming stable 315 

during 2008-2011. The significant drop of 2.95 L model made its NO emission level 316 

comparable to that of the late BaM1 2.98 L model after 2008. Same as the BaM1 2.98 L model, 317 

this could also be explained by the introduction of new fuel injection and exhaust after-318 

treatment technologies. The 2.49 L model replaced the 2.95 L model in 2012 and its emission 319 

level was kept stable during 2012-2016. Although the level is stable, the newest BeM1 model 320 

emit higher emission than BaM1 with the same model year. It should be noted that the emission 321 

factors of BeM1 were almost unchanged during 2008-2016 although the emission limit had 322 

been reduced by 28% form Euro 4 (0.39 g/km) to Euro 5 (0.28 g/km) during the same period. 323 

This again demonstrates that the increasingly stringent European emission standards were not 324 

very effective in reducing the NO emissions of some vehicle models during specific stages. 325 

Table 3 4 compares the specifications and emissions of the latest dominant Euro 5 diesel 326 

vans in Hong Kong. As shown in Table 34, the real-world NO emission factors from Euro 5 327 

diesel vans vary significantly among different brands. Table 3 4 and Fig. 2 show that BcM1 328 

and BeM1 emit noticeably more NO than BaM1 does although they are equivalent vehicles of 329 

the same age, identical Euro 5 emission standard, and similar body type and vehicle weight. 330 

The remote sensing data also shows an emission deterioration from 3.9 to 5.5 g/kg fuel for 331 

BaM1 vehicles from 1 to 5 years old (Fig. 2a), from 7.7 to 11.5 g/kg fuel for BcM1 vehicles 332 

(Fig. 2b), and from 5.2 to 5.9 for BeM1 vehicles (Fig. 2c). In comparison, the emissions control 333 

system of BcM1 deteriorates more quickly than those of BaM1 and BeM1.  334 

Fig. 3 shows the NO emission factor trends of the two dominant diesel medium commercial 335 

vehicle models, namely BaM2 (Fig. 3a) and BdM1 (Fig. 3b). Compared with light commercial 336 

vehicles in Fig. 2, Fig. 3 shows that medium commercial vehicles generally have higher NO 337 
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emission factors. For both BaM2 and BdM1 models, the NO emission factors did not show 338 

obvious increasing or decreasing trends before 2006, except for an obvious drop of 19% 339 

between 2001 (14.24 g/kg fuel) and 2002 (11.51 g/kg fuel) for BaM2 4.10 L model. However, 340 

after 2006, both BaM2 and BdM1 models showed a steady decrease in NO emission factors. 341 

Fig. 4 shows the NO emission factor trends of the two dominant diesel heavy commercial 342 

vehicle models, namely BbM1 (Fig. 4a) and BdM2 (Fig. 4b). Generally, heavy commercial 343 

vehicles showed higher NO emission factors than those of light commercial vehicles. However, 344 

unlike medium commercial vehicles, the two heavy diesel models showed very different 345 

emission trends. For BbM1, the NO emission factor of 10.82 L model was generally fluctuating 346 

around 9 g/kg fuel during manufacture years of 1998-2006. Then, a decrease of 31% was 347 

observed for 8.90 L model manufactured between 2007 (8.40 g/kg/fuel) and 2009 (5.78 g/kg 348 

fuel). Finally, the emission factor became stable again for the 8.85 L model during 2009-2016, 349 

except for a spike in 2011. The spike was mainly caused by a higher percentage (3.1%) of NO 350 

high-emitters in 2011 than the average BbM1 8.85L fleet (2.0%), using a NO high-emitting 351 

cutpoint of 29.11 g/kg fuel (Huang et al., 2018a). For BdM2, as shown in Fig. 4b, the NO 352 

emission factor increased by 26% from 15.30 g/kg fuel in 2002 to 19.34 g/kg fuel in 2005, and 353 

then decreased continuously until it became stable around 7 g/kg fuel after 2011. 354 

Fig. 5 shows the overall mean NO emission trends of all the diesel vehicles, including both 355 

the dominant and less popular models. The overall NO emission factor increased during 1989-356 

1991, but became stable during 1991-2006. Finally, it decreased steadily from 2006 to 2016. It 357 

is obvious that the emission trends of individual vehicle models were averaged out. 358 

Consequently, emission trends of individual vehicle models were skewed by the other 359 

dominant models that had different trends. For example, NO emission factor of BaM1 was 360 

significantly higher than its previous and succeeding models during 2005-2011 (Fig. 2a), while 361 

this unexpected trend was not shown in the overall emission trend in Fig. 5 at all. Although 362 
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BaM1 was the most popular model, its absolute number was still small compared to all the 363 

remaining models. In this study, the total number of remote sensing records obtained during 364 

2005-2011 was 131632 for the whole fleet and 47962 (36% of the total records) for BaM1. 365 

Therefore, when averaged together, the rest 64% vehicles that showed different emission levels 366 

and trends were still able to average out and thus mask the unexpected emission trends of BaM1 367 

during that period. Comparing the results shown in Figs. 2-5, it is clear that the latest small, 368 

medium and heavy diesel vehicles can achieve similar NO emission factors (around 5 g/kg 369 

fuel). This could be due to the converging of operation windows of the engine and emission 370 

control devices. However, it should be noted that the emission limits and start years of Euro 371 

standards are different for different types of diesel vehicles. The emission limits are distance 372 

based (i.e. g/km) for light duty vehicles and engine work based (i.e. g/kW-h) for heavy duty 373 

vehicles (Williams and Minjares, 2016). In addition, even for light duty vehicles, the limits and 374 

start years are also different for passenger cars and light commercial vehicles with different 375 

reference mass (European Commission, 2012). 376 

 377 

4. Conclusions 378 

This study has evaluated the NO emission factors of diesel vehicles in Hong Kong using a 379 

large remote sensing database collected in a three-year measurement program from April 2014 380 

to April 2017. The dominant diesel vehicle models were identified and analysis was performed 381 

to investigate the variation of NO emission factors as a function of manufacture year for each 382 

dominant vehicle model. The main results are summarized as follows.: 383 

1. The Hong Kong diesel vehicle fleet was dominated by only seven models, namely BaM1, 384 

BcM1 and BeM1 for the light commercial vehicle class, BaM2 and BdM1 for the medium 385 

commercial vehicle class, and BbM1 and BdM2 for the heavy commercial vehicle class. 386 
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These seven dominant vehicle models alone accounted for 78% of the total remote sensing 387 

records. 388 

2. Each dominant diesel vehicle model showed distinctive trajectories in NO emission factors 389 

over the period studied. However, generally NO emission factors of all the seven dominant 390 

models were decreasing steadily or were stable for most of the time, except for BaM1 and 391 

BdM2. BaM1 experienced a significant increase for the 2.49 L and early 2.98 L models 392 

during 2005-2011. This would be caused by the change from IDI to DI in the fuel injection 393 

system, which improved the engine torque and fuel economy performance but the trade-394 

off was an increase in NO emissions. 395 

3. The overall mean NO emission factor of all the vehicles was generally stable during 1991-396 

2006 and then decreased steadily during 2006-2016, in which the emission trends of 397 

individual models were averaged out and thus masked. Except for individual models, the 398 

latest small, medium and heavy diesel vehicles can achieve similar NO emission factors. 399 

This could be due to the converging of operation windows of the engine and emission 400 

control devices. 401 

4. Each dominant vehicle model showed unchanged or even increased NO emissions in 402 

specific periods. This implied that the increasingly stringent emission standards and its 403 

type approval mechanism under the European emission regulations were not very effective 404 

in reducing the NO emissions from some diesel vehicles in the real world, in particular for 405 

BaM1 from Euro 3 to 4 standards. 406 

5. Remote sensing offers a rapid and highly effective detection of most-polluting diesel 407 

vehicles under real driving, therefore playing a crucial role in controlling vehicle 408 

emissions. 409 

 410 
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Table 1. The most measured vehicle models by on-road remote sensing in Hong Kong. 499 

No. 
Vehicle 

model † 

Engine 

size (L) 

No. of 

records 

% of total 

records 

Manufacture 

year 

European 

standards 
Vehicle class ‡ 

1 BaM1 

2.98 69545 19.1% 2006-2016 3, 4, 5 LGV 

2.99 19415 5.3% 1998-2004 2, 3 LGV 

2.49 13715 3.8% 2004-2006 3 LGV 

2.78 5884 1.6% 1989-1998 Pre-Euro, 1, 2 LGV 

2 BaM2 

4.10 43801 12.1% 1997-2006 1, 2, 3, 4 LB, PB 

4.01 30072 8.3% 2000-2016 2, 3, 4, 5 LB, PB 

3.66 3854 1.1% 1993-1998 Pre-Euro, 1, 2 LB 

3 BbM1 

8.85 26613 7.3% 2009-2016 IV, V, VI PB 

10.82 8678 2.4% 1997-2007 II, III, IV PB 

8.90 3040 0.8% 2005-2009 III, IV PB 

4 BcM1 2.50 21573 5.9% 2007-2016 4, 5 LGV 

5 BdM1 
5.19 13933 3.8% 2006-2016 4, 5 LGV, MGV 

4.75 6500 1.8% 1998-2006 2, 3, 4 LGV, MGV 

6 BdM2 7.79 4408 1.2% 2001-2016 III, IV, V MGV, PB 

7 BeM1 
2.95 8227 2.3% 2001-2012 2, 3, 4, 5 LGV 

2.49 4063 1.1% 2012-2016 5 LGV 

†: B’x’M’y’ refers to vehicle Brand x Model y. The real brand and model names are masked out due to 

privacy concerns. This study does not point to or discriminate any specific vehicle models. 

‡: Abbreviations: LB, light bus; LGV, light goods vehicle; MGV, medium goods vehicle; PB, public bus. 
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Table 2. Number of valid records per manufacture year per vehicle model. Blank cell indicates that 501 

no vehicles was measured for that manufacture year. 502 

 Manu. 

year 

BaM1 BaM2 BbM1 BcM1 BdM1 BdM2 BeM1 Total 

fleet 2.78 L 2.99 L 2.49 L 2.98 L 3.66 L 4.10 L 4.01 L 10.82 L 8.90 L 8.85 L 2.50 L 4.75 L 5.19 L 7.79 L 2.95 L 2.49 L 

≤1988                                 146 

1989 69                               155 

1990 103                               224 

1991 203                               470 

1992 228                               546 

1993 283       102                       785 

1994 437       263                       1249 

1995 525       1437                       2498 

1996 882       466                       2422 

1997 2091       1253 101                     4911 

1998 1063 715     333 1260   13       5         6745 

1999   2567       3015   2248       308         10759 

2000   2955       6260 15 3524       793         13100 

2001   3050       7668   680       672   7 219   13411 

2002   2878       1233 6 415       717   141     9772 

2003   3099       10601   262       745   249 307   17086 

2004   4151 1     9035   819       1153   217 876   17885 

2005     6672     3350   352 16     946   229 913   14808 

2006     7042 1282   1278 269 199       1161 32 320 1104   19468 

2007       9177     2859 166 358   1   1138 275 397   17557 

2008       8572     5235   1790   827   1170 533 1384   22923 

2009       2774     1571   876 985 654   644 210 349   11047 

2010       5557     3645     3172 1913   1624 336 1258   23334 

2011       6886     1905     1181 3675   1734 353 1284   22495 

2012       6372     4381     2766 4172   1482 463 136 563 26294 

2013       10483     1975     7992 4351   1886 387   929 35282 

2014       11537     4941     4460 4493   2800 474   1737 40858 

2015       5397     2275     5254 1292   1205 187   723 21938 

2016       1508     995     803 195   218 27   111 5119 

Sum 5884 19415 13715 69545 3854 43801 30072 8678 3040 26613 21573 6500 13933 4408 8227 4063 363287 
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Table 23. Specifications of Euro 1-5 BaM1 models in Hong Kong. 504 

 Euro 1 Euro 2 Euro 3 Euro 3 Euro 4 Euro 5 

Manufacture year 1995 - 1998 1998 - 2001 2002 - 2004 2005 - 2006 2006 - 2011 2011 - 2017 

Engine model † EM1a EM1b EM1c EM2a EM2b EM2b 

Engine displacement (L) 2.78 2.99 2.99 2.49 2.98 2.98 

Power output (kW @ 

rpm) 
60 @ 3800 66 @ 4000 66 @ 4000 75 @ 3600 80 @ 3000 100 @ 3400 

Peak torque (Nm @ rpm) 174 @ 2400 192 @ 2400 192 @ 2400 
260 @ 1600 -

2400 

286 @ 1200 - 

2400 

300 @ 1200 -

3200 

Compression ratio 22.2 : 1 22.2 : 1 22.2 : 1 15.6 : 1 15.0 : 1 15.0 : 1 

Fuel injection system IDI, Mechanical diesel injector DI, Common-rail injection system 

Intake system ‡ No EGR 
Un-cooled 

EGR 
Cooled EGR, Turbocharger 

Exhaust after-treatment ‡ Nil Nil Nil Nil DOC DPF 

Range of NO emission 

factor in Fig. 2 (g/kg 

fuel) 

9.8 - 8.3 7.8 - 6.6 6.4 - 5.9 11.6 - 12.7 12.4 - 11.4 5.5 - 3.9 

†: EM’xy’ refers to engine series x model y. The real engine model names are masked out due to privacy concerns. 

This study does not point to or discriminate any specific engine models. 

‡: Abbreviations: EGR, exhaust gas recirculation; DOC, diesel oxidation catalyst; DPF, diesel particulate filter. 
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Table 34. Comparison of popular Euro 5 diesel vans (LGVs ≤ 3.5 t) in Hong Kong. 506 

 BaM1 BcM1 BeM1 

Year of first registration 2012 - 2017 2012 - 2017 2012 - 2017 

Engine model † EM2b EM3 EM4 

Engine displacement (L) 2.98 2.50 2.49 

Power output (kW @ rpm)) 100 @ 3400 85-125 @ 3600-3800 95 @ 3200 

Peak torque (Nm @ rpm) 300 @ 1200 - 3200 343/441 @ 1500 356 @ 1400-2000 

Compression ratio 15.0 : 1 16.4 : 1 15.0 : 1 

Fuel injection system DI, Common-rail injection system 

Intake system Cooled EGR, Turbocharger 

Exhaust after-treatment DPF DPF, DOC* DPF, DOC 

Range of NO emission factor 

in Fig. 2 (g/kg fuel) 
3.9 - 5.5 7.7 - 11.5 5.2 - 5.9 

†: EM’xy’ refers to engine series x model y. The real engine model names are masked out due to privacy 

concerns. This study does not point to or discriminate any specific engine models. 

*: Some vehicles are equipped with DOC while some are not. 
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 508 

Fig. 1. Setup of a typical remote sensing measurement site in Hong Kong. 509 
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 511 

 512 

 513 

Fig. 2. Mean NO emission factors of dominant light commercial vehicles: (a) BaM1, (b) 514 

BcM1 and (c) BeM1. The error bars indicate 95% confidence interval over the mean. The red 515 

solid line in Fig. 2a indicates the NOx limits defined in the European regulations for light 516 

commercial vehicles within 1760-3500 kg. 517 
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 519 

 520 

Fig. 3. Mean NO emission factors of dominant medium commercial vehicles: (a) BaM2 and 521 

(b) BdM1. The error bars indicate 95% confidence interval over the mean. 522 
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 524 

 525 

Fig. 4. Mean NO emission factors of dominant heavy commercial vehicles: (a) BbM1 and (b) 526 

BdM2. The error bars indicate 95% confidence interval over the mean. 527 

  528 

3

6

9

12

15

18

21

1988 1993 1998 2003 2008 2013 2018

Em
is

si
o

n
 f

ac
to

r 
(g

/k
g 

fu
el

)

Manufacture year

(a)

BbM1 10.82L

BbM1 8.90L

BbM1 8.85L

3

6

9

12

15

18

21

1988 1993 1998 2003 2008 2013 2018

Em
is

si
o

n
 f

ac
to

r 
(g

/k
g 

fu
el

)

Manufacture year

(b)

BdM2 7.79L



- 30 - 

 529 

Fig. 5. Mean NO emission factors of the whole diesel vehicle fleet. The error bars indicate 530 

95% confidence interval over the mean. 531 
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