
This is the peer reviewed version of the following article: Stangenberg, S. , Nguyen, L. T., Al‐Odat, I. , Chan, Y. L., 
Zaky, A. , Pollock, C. , Chen, H. and Saad, S. (2018), Maternal L‐Carnitine supplementation ameliorates renal 
underdevelopment and epigenetic changes in male mice offspring due to maternal smoking. Clin Exp Pharmacol 
Physiol. Accepted Author Manuscript, which has been published in final form at https://
doi.org/10.1111/1440-1681.13038. This article may be used for non-commercial purposes in accordance with 
Wiley Terms and Conditions for Self-Archiving.

http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms


 

1 
 

Maternal L-Carnitine supplementation ameliorates renal underdevelopment and epigenetic 

changes in male mice offspring due to maternal smoking. 

Stefanie Stangenberg1*, Long The Nguyen1*, Ibrahim Al-Odat1, Yik Lung Chan3, Amgad Zaky1, 

Carol Pollock1, Hui Chen2, Sonia Saad1,2.  
 

1 Renal group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 

Australia. 
2 School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW Australia.  
3 RCMB, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia 

*These authors contributed equally. 

 

 

Corresponding author 

Dr. Sonia Saad 

Renal group Kolling Institute, Royal North Shore Hospital, University of Sydney 

Sydney, NSW, Australia.  

Tel: 61 2 9926 4782;  

Fax: 61 2 9926 5715;  

E-mail: sonia.saad@sydney.edu.au 



 

2 
 

Abstract 

Epidemiological and animal studies showed that L-carnitine (LC) supplementation can ameliorate 

oxidative stress-induced tissues damage. We have previously shown that maternal cigarette smoke 

exposure (SE) can increase renal oxidative stress in newborn offspring with postnatal kidney 

underdevelopment and renal dysfunction in adulthood, which were normalised by LC administration 

in the SE dams during pregnancy. Exposure to an adverse intrauterine environment may lead to 

alteration in the epigenome, a mechanism by which adverse prenatal conditions increase the 

susceptibility to chronic disease later in life.  The current study aimed to determine whether maternal 

SE induces epigenetic changes in the offspring’s kidney are associated with renal underdevelopment, 

and the protective effect of maternal LC supplementation.  

Method: Female Balb/c mice (7 weeks) were exposed to cigarette smoke (SE) or air (Sham) for 6 

weeks prior to mating, during gestation and lactation. A subgroup of the SE dams received LC via 

drinking water (SE+LC, 1.5mmol/l) throughout gestation and lactation. Male offspring were studied 

at postnatal day (P)1, P20, and 13 weeks.  

Results: Maternal SE altered the expression of renal development markers glial-cell line-derived 

neurotrophic factor and fibroblast growth factor 2, which were associated with increased renal global 

DNA methylation and DNA methyltransferase 1 mRNA expression at birth. These disorders were 

reversed by maternal L-carnitine administration.  

Conclusion: The effect of maternal SE on renal underdevelopment involves global epigenetic 

alterations from birth, which can be prevented by maternal LC supplementation.     

 

Highlights: 

• Maternal smoking changes developmental markers 

• Maternal smoking induces renal DNA hypermethylation 

• Maternal intake of L-carnitine can normalised DNA methylation and mitigate the adverse 

impact on kidney developmental markers 

 

Key words: maternal smoking, antioxidant, kidney development, global methylation. 
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1. Introduction 

Epigenetics refers to mitotically heritable changes in gene expression and phenotype that are not 

mediated by alterations in the underlying DNA sequence. DNA methylation is the most studied 

epigenetic modification and describes the covalent addition of a methyl group to the 5th carbon of a 

cytosine (5-mC) residue that is located adjacent to a guanine nucleotide (CpG dinucleotide). 

Methylation of DNA can modulate gene transcription by influencing binding of proteins to DNA that 

initiates transcription. DNA hypermethylation is therefore considered an inhibitor of transcription 

while hypomethylation activates transcription. 

 

A specific epigenetic code is necessary for regulated development of the growing foetus. The 

establishment of the epigenetic program starts soon after fertilization when all DNA methylation 

marks are erased in the preimplantation embryo with subsequent resetting of the genome-wide 

methylation pattern in a cell-type specific manner in order to dictate somatic development. The theory 

of foetal programming, which links chronic disease in adulthood to adverse early life conditions, is 

increasingly recognised as an important determinant of individual’s health. The pathophysiology 

underpinning foetal programming may partly be explained by epigenetic modification. Prenatal 

smoke exposure has been associated with reduced kidney volume in the offspring 1,2.  Using an animal 

model of maternal smoking, we have previously demonstrated that maternal smoking induces renal 

underdevelopment and oxidative stress in the offspring from birth and this was associated with renal 

dysfunction at adulthood 3,4.  

 

DNA methylation is an important regulator of gene expression and increasingly recognised as a major 

mechanism of disease pathogenesis, including Chronic Kidney Disease (CKD). DNA methylation 

occurs primarily on cytosine residues in CpG dinucleotides 5 and may promote the development of 

renal disease and its comorbidities either due to environmental factors or inheritance from the mothers 
6. Epigenetic changes caused by maternal smoking during gestation have been reported in human 

foetal liver 7 and in the blood and buccal epithelial cells of newborns and adolescents 8,9, but have not 

been investigated in the kidneys. 

 

Dietary supplementation with antioxidants, has been shown to have a beneficial role in decreasing 

the effect of oxidative stress-caused damage in the lymphocyte DNA due to cigarette smoking 10. The 

amino acid supplement L-carnitine (LC) has been shown to have anti-inflammatory 11, anti-apoptotic 
12 and anti-oxidative 13 effects. In rodents, LC supplementation has been shown to improve 

atherosclerosis 14 and chronic renal failure induced by partial nephrectomy 15. In addition, LC has 

been shown to be essential in foetal development and intrauterine maturation of the brain and lung 16; 
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We have recently demonstrated that maternal LC supplementation during gestation and lactation 

reversed small body weight and kidney weight at birth, as well as normalising renal oxidative stress 

and renal dysfunction due to maternal SE in the male offspring 4. However, the effect of LC on 

epigenetic signatures and renal developmental markers is not known. This study therefore aimed to 

investigate the link between poor kidney development induced by maternal smoke exposure, which 

we have previously confirmed and renal epigenetic changes at various ages. We then determined 

whether the effect of maternal smoking on renal development and associated epigenetic changes in 

the offspring’s kidney can be reversed by maternal LC supplement.  

 

2. Results 

Maternal LC supplementation reversed the effect of maternal SE on the offspring development  

As shown in Table 2, SE offspring have smaller body weight than the sham offspring (P < 0.05) with 

reduced kidney mass (P < 0.05), which was not persistent until adulthood. Such growth delay was 

significantly reversed by maternal LC supplementation (P < 0.05 and P < 0.01 respectively).   

 

We have previously published that maternal SE significantly reduced glomerular development in the 

offspring at birth and this was demonstrated to be reversed by maternal LC administration during 

gestation and lactation 4. Maternal LC also reversed the changes in glomerular size and number due 

to maternal SE in the offspring 4. Here we reported the potential molecular mechanism underlying 

renal development and disorders. 

 

Effect of maternal SE and LC supplementation on renal GDNF level in the offspring 

GDNF signalling is believed to be the most critical factor for early-stage nephrogenesis during foetal 

life 24,25. Maternal SE increased renal mRNA expression of GDNF in the offspring at birth (P < 0.05, 

Figure 2A). Similarly, renal GDNF protein level was increased in SE offspring at P1 (P < 0.05), which 

was nearly doubled at P20, although without statistical significance (Figure 2B). Maternal LC 

supplementation normalised the trend at P20 (Figure 2B).   

 

Effect of maternal SE and LC supplementation on renal FGF2 level in the offspring 

Several members of the fibroblast growth factor (FGF) family can induce renal development  26. FGF2 

is a proliferating and differentiating signalling factor that promotes metanephric mesenchymal 

survival 21. Maternal smoking increases renal FGF2 mRNA and protein levels in the offspring at birth 

and weaning (P < 0.05, Figure 3A). Although maternal LC administration had no effect on FGF2 at 

P1, FGF2 mRNA and protein levels in the offspring due to maternal smoking were reversed by 

maternal LC administration (P < 0.05, Figure 3A and 3B). 
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Effect of maternal SE and LC supplementation on renal Pax2 level in the offspring  

Pax2 is known to regulate mesenchyme condensation around the tips of the ureteric bud and 

metanephric mesenchymal transdifferentiation into epithelial cells 27. Maternal smoking increases 

renal Pax2 mRNA and protein levels in the offspring at birth (P < 0.05, Figure 4A). Maternal LC 

administration significantly reversed the increased renal Pax2 mRNA and protein expression in the 

offspring due to maternal SE (P < 0.05 compared to SE respectively, Figure 4A and 4B). 

 

Effect of maternal SE and LC supplementation on renal global methylation in the offspring 

The foetal environment is considered crucial in the regulation of epigenetic markers and their 

resulting influence on differentiation of cells and organs. We aimed to assess the effect of maternal 

SE on global methylation in the offspring renal tissue and this was measured at three key time points 

from birth to adulthood. Global methylation in the kidney was significantly increased at day 1 in the 

offspring of SE mothers (p<0.01 vs. Sham) and this effect was completely abrogated by maternal LC 

administration during gestation and lactation (p<0.01 vs SE, Figure 5A). The differential change in 

renal DNA methylation of SE offspring was lost by P20 (weaning age) and was not seen during 

adulthood at week 13 (Figures 5B and C). Consistently with the change of global DNA methylation 

at P1, the mRNA expression of DNA methyltransferase (Dnmt) 1 was significantly upregulated by 

maternal SE (Figure 6, P < 0.05). Dnmt3a and 3b showed similar trends of upregulation (Figure 6). 

LC administration significantly reversed the expression of Dnmt1 (P < 0.05). 

 

4. Discussion 

The main finding of this study is that maternal SE induces renal global methylation in the offspring 

at birth in association with kidney underdevelopment and upregulated renal development markers. 

Maternal LC supplementation during gestation and lactation significantly restored normal kidney 

development and epigenetic changes. This in addition to our previous report, which demonstrated the 

LC ameliorated renal injury markers and kidney function at adulthood  18, provides a proof of concept 

for the potential therapeutic role of LC to reduce the risk of renal pathology in the offspring of  

smoking mothers.  

 

We have previously reported renal underdevelopment in early life and albuminuria in adulthood in 

offspring of smoke exposed mothers in a mouse model 3. Using the same mouse model of maternal 

SE, we also demonstrated the restoration of normal kidney development and normalisation of 

albuminuria when SE dams received dietary LC supplementation during gestation and lactation 18. 

Here, we investigated the underlying mechanisms of the beneficial effect of maternal LC treatment 



 

6 
 

in the offspring. This study demonstrated the aberrant expression of several renal developmental 

factors in SE offspring, which was abrogated if mothers received dietary LC. There was an adaptive 

upregulation of FGF2, GDNF and Pax2 in underdeveloped kidneys from the SE offspring, each of 

which is critical for normal renal development in different stages of nephrogenesis. FGF2 for example 

promotes metanephric mesenchyme maintenance and increase in stromal cells population within the 

metanephric mesenchyme 21, the very first steps of nephrogenesis. GDNF on the other hand induce 

ureteric bud branching 23, and Pax2 is involved in nephron differentiation 22. The increased expression 

of these factors at birth may reflect a necessary adaptive response to renal underdevelopment caused 

by an adverse in utero environment, namely maternal SE in this study. Importantly, the mRNA 

expression of those development genes was normalised if LC was administered during gestation in 

the SE mothers in association with normalisation of nephrogenesis. 

 

The fact that FGF2 mRNA and protein levels as well as GDNF protein level remained significantly 

increased until weaning age (P20) supports the notion that in utero cigarette smoke exposure has long 

lasting effects on the offspring and may predispose them to foetal programming resulting in  

susceptibility to kidney disease in the long term. The upregulation of these growth factors was not 

seen in offspring of the SE+LC dams, highlighting again the potentially beneficial role of L-carnitine. 

Despite their important role in early life, if these growth factors remain elevated after renal 

development is complete, they may exert detrimental effects on renal health. FGF2 for example is 

considered as a strong mitogen for cortical renal fibroblasts and may promote autocrine fibroblast 

growth. Increased levels of FGF2 mRNA and protein expression have been shown to be  associated 

with tubulointerstitial fibrosis 28. Our results may suggest that LC mediated reduction of FGF2 at 

weaning may potentially prevent fibrogenesis in the long term. Indeed in our previous study, the renal 

expression of the inflammatory marker MCP-1 in adulthood was significantly reduced in SE offspring 

if the mothers had LC supplementation during gestation and lactation compared to those from the SE 

mothers without intervention 4. The long term anti-inflammatory effect of maternal LC 

supplementation in the kidneys of the adult offspring is consistent with a previous study 29. 

 

Although the maternal effect is still the major focus of fetal programming research, there has been 

emerging evidence regarding the paternal contribution to this process 30,31. In comparison to maternal-

fetal programming, paternal-fetal programming seems to be less potent 32. Particularly in regard to 

the effects of parental smoking on kidney development, it has been demonstrated that while maternal 

smoking during pregnancy is associated with both smaller combined kidney volume and impaired 

kidney function in childhood, paternal smoking only affects kidney volume 33. 
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Although newborn babies from the smokers seem to have similar blood carnitine levels as the non-

smokers 34, the newborns do not have the capacity to biosynthesise sufficient LC for their needs. 

Supplementation in the mother allows them to  source additional LC from the breast milk to fulfil 

metabolic requirements 35. The inability of neonates to synthesize sufficient carnitine is due to 

immature hepatic gamma-butyrobetaine-hydroxlase activity. However, as pregnancy proceeds, blood 

carnitine concentration in the pregnant mother becomes lower than in the non-pregnant condition 

which may affect foetal exposure and hence levels 36. Although no study has been carried out to 

quantify optimal  LC concentrations in breast milk, it has been reported that another antioxidant 

vitamin E concentration is much lower in smokers’ breastmilk 37, while in an animal study, breast 

milk protein concentration is also somewhat lower in the mothers exposed to cigarette smoke during 

lactation 38. In humans, a previous study showed no specific effect of maternal LC supplementation 

(10 mg/kg/d) on the growth and development of premature neonates 39. However, the limitation of 

this study is that only body weight gain was used to assess growth and development, which can’t 

reflect the development of individual organs. This dose is also relatively lower than the regular dose 

of 2g/dose in healthy people 40,41.  Moreover, another animal study showed that dietary LC during 

pregnancy and lactation did not improve the growth of the offspring 42. This may be because that the 

study was carried out in normal animals without growth abnormalities. As such, when LC was used 

in the mothers who had premature neonates, it significantly improved nutrition level and metabolism 

in the infants 43. LC has also been shown to have a beneficial role in embryogenesis in mice embryos 

incubated in harsh environment, such as in the presence of pro-inflammatory tumour necrosis factor 

α and H2O2 44 .  

 

Carnitine deficiency normally correlates with nutritional inadequacies and can be observed in low-

birth weight newborns due to reasons such as maternal smoking, patients with renal tubular disorders, 

and patients with chronic renal failure undergoing haemodialysis 35,45. Our results suggest that if 

mothers continue to smoke during gestation and lactation, LC supplementation during these two 

critical developmental periods can improve renal development in offspring and ameliorate renal 

dysfunction at adulthood 18. 

 

In this study we demonstrated global hypermethylation in the SE offspring which was completely 

abrogated by maternal LC supplementation during gestation and lactation. The gene expression of 

Dnmt1 was upregulated in the kidney of P1 offspring born to smoke-exposed dams and normalised 

by LC administration. The result is consistent with the changes of global DNA methylation levels in 

these offspring, suggesting the effects of LC may be partially mediated via epigenetic modification 

events. However, the specific mechanism requires further investigation.  
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Cigarette smoke is considered a powerful inducer of oxidative stress and DNA methylation 

modification 46. The effect of prenatal smoke exposure on global DNA methylation has been 

investigated in previous studies. While some studies observed global hypomethylation in cigarette 

smoke exposed individuals 47,48, the findings by Terry et al. which reported DNA hypermethylation 

in response to prenatal cigarette smoke exposure are consistent with our observations here 49. 

However, methylation profiles can be tissue and species dependent. Most studies used DNA from 

human peripheral leucocytes, cord blood or buccal cells as these are easy to obtain. To our knowledge, 

we are the first to report cigarette smoke-induced alterations in DNA methylation in offspring’s 

kidneys. We also found that the global methylation changes in the SE offspring did not last during 

the development. At weaning age, the difference in methylation between the SE offspring and Sham 

offspring were not seen. The reason for such age related epigenetic change is not clear although 

environmental factors are known to alter gene methylation 50. Nevertheless, aberrant DNA 

methylation profiles in the early period of life can potentially influence organ development and 

predispose individuals to disease susceptibility at later stages of life. Further investigations to screen 

gene specific methylation patterns are required. Indeed epigenome-wide association studies 

interrogating more than 450.000 CpG sites have become available in recent years. The largest study 

to date was a metaanalysis of 13 cohorts of smokers’ offspring whose DNA was processed with a 

Human Methylation 450k Bead Chip assay. A total of 3000 differentially methylated CpG sites 

corresponding to 2000 genes not previously related to smoking were discovered. Pathway and 

functional analysis revealed that many of the genes are involved in embyogenesis and developmental 

pathways 51. The authors discussed a number of differentially methylated genes in detail of their 

association with orofacial clefts; however we note that some of these genes such as BMP4, BMP6 

and TIMP2 also play key roles in kidney development 52-54, which were not changed in P1 offspring’s 

kidney in this study (data not shown). CpG methylation analysis of other key genes in renal 

development, such as the differentially expressed growth factors in this study, is needed in future 

studies.  

 

This study hereby demonstrated the ability of maternal LC supplementation to normalise 

hypermethylated DNA and the expression of Dnmt1 in the SE offspring. Such de-methylation 

function of LC has also been observed in a previous in vitro study using human cells 55. As L-carnitine 

reduces oxidative stress in the offspring 4, and differential DNA methylation of oxidative stress 

pathways is dominant in the maternal smoking cohort 56, L-carnitine may indirectly regulate the 

global DNA methylation level in the offspring kidney by improving antioxidant/oxidative balance. 

Indeed, previous evidence has suggested a “Free radical theory of development”, which links the 
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redox buffer system and the metabolism of methyl group, and ultimately DNA methylation changes 

during development 57. Further gene-specific investigation is required to fully justify the hypothesis. 

As LC is a readily available over-the-counter supplement with excellent safety profile, its repurposed 

application in mothers who continue to smoke during pregnancy is worthy of consideration. 

 

3. Materials and methods 

Animal model and tobacco cigarette smoke exposure protocol  

The animal experiment was approved by the Animal Care and Ethics Committee at the University of 

Technology Sydney (ACEC#2011-313A). Briefly, female Balb/c mice (7 weeks old, Animal 

Resources Centre, Perth, Australia) were housed at 20 ± 2oC and maintained on a 12:12 hour 

light/dark cycle (lights on 06:00h). After the acclimatization period, the mice were divided into Sham 

exposure group (Sham, n=12), and SE group (SE, n=24). SE was performed as previously described 

(2 cigarettes, twice daily for 6 weeks prior to mating, during gestation and lactation 3). Neither the 

male breeders nor the offspring were exposed to cigarette smoke. A subgroup of the SE dams was 

treated with LC (SE+LC, n=12) via drinking water (1.5mmol/l 17) starting at mating until pup weaning 

at postnatal day (P) 20 as previously described 4. 

 

Tissue collection 

Only male offspring were studied as we have shown that renal developmental and functional disorders 

caused by maternal smoking were only prominent in the male 3 not female offspring 19, reflected by 

changes in glomerular size and number as well as urinary albumin creatinine ratio. Male offspring 

have also been shown to be more susceptible to fetal programming of kidney disorders by maternal 

obesity 20. Male offspring were sacrificed at three different time points; postnatal (P)1 (birth), P20 

(weaning), and at week (W)13 (adulthood). Briefly, the pups were weighed and anaesthetized with 

sodium thiopental (0.1ml/g, i.p., Abbott Australasia PTY. LTD, NSW, Australia). The right kidney 

was harvested, weighed, snap frozen in liquid nitrogen and then stored in -80oC. The left kidney was 

fixed in 10% formalin (Sigma Aldrich, VIC, Australia).   

 

Real-time PCR 

Total RNA was extracted from kidney tissue using RNeasy plus mini kit (Qiagen, Valencia, CA) 

according to the manufacturer’s instructions. The single strand cDNA was synthesised using 

Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics, Mannheim, Germany). 

quantitative real-time PCR was performed using pre-optimized SYBR Green primers (Table 1, Sigma 

Aldrich, VIC, Australia) and SensiFASTTM SYBR Hi-ROX Kit (Bioline, Toronto Canada) in an 

ABI7900HT Sequence Detection System (SDS 2.4, Life Technologies, CA, USA). The target genes 
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were selected due to the previous evidence of their relevance to kidney development 21-23, and 

methylation regulation. The results were analysed by relative quantitation by RQ Manager Software 

(RQ 1.2.1, Applied Biosystems) using ∆∆Ct. The average mRNA expression of the Sham (Control) 

group was used as the calibrator and 18S rRNA was used as the housekeeping gene. 

 

Kidney immunohistochemistry (IHC) staining 

For IHC staining, 4µm kidney sections were de-waxed, dehydrated, and endogenous peroxidase was 

blocked. The sections were incubated with rabbit anti-mouse primary antibodies against proteins 

known to be associated with renal development and which we have previously demonstrated to have 

dysregulated expression in offspring of SE mothers , including glial-cell line-derived neurotrophic 

factor (GDNF, 1:100, Santa Cruz Biotechnology, CA, USA), fibroblast growth factor 2 (FGF2, 1:250, 

Santa Cruz Biotechnology, CA, USA), and paired box transcription factor (Pax2, 1:1750, Santa Cruz 

Biotechnology, CA, USA) at 4oC overnight. Negative controls were prepared by replacing the 

primary antibodies with rabbit IgG. The sections were exposed to Envision & system-HRP labelled 

polymer secondary anti-rabbit antibodies (Dako, CA, USA). On average, 6 different non-overlapping 

fields of the same kidney section were captured and 6-8 mice were used from each group. Quantitation 

of the positive signals in the images was performed using Image J software (Image J, NIH, USA).  

 

Global DNA methylation 

Genomic DNA was extracted from mouse kidneys using the DNeasy blood and tissue kit (Quiagen, 

Hilden, Germany). Offspring samples from control, smoke-exposed and smoke-exposed + L-

carnitine treated mice were used. For the detection of global methylation the MethylFlash Methylated 

DNA quantification kit (Epigentek, Farmingdale, NY, USA), a colorimetric antibody based kit was 

used that detects 5-mC, thus quantifying the relative amount of methylation in the total DNA sample.  

  

Statistical analysis 

The results are expressed as mean ± SEM. The differences between the groups were analysed using 

one-way ANOVA followed by LSD post hoc tests (Prism 6, Graphpad CA, USA). P<0.05 was 

considered significant. 
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Figure legends 

 
Figure 1: Animal model and treatment scheme 
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Figure 2: Effect of maternal smoking and LC administration on renal mRNA and protein expression 

of GDNF in the male offspring at P1, P20 and week 13.  A) GDNF mRNA expression in the renal 

offspring from dams exposed to Sham, SE and SE+LC. B) Representative immunostaining images 

and quantitative images for GDNF proteins in the 3 groups at P1, P20 and Week 13. Results are 

expressed as Mean ± SEM. n = 5-6.  * P < 0.05 SE vs Sham, # P < 0.05 SE+LC vs SE.  
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Figure 3: Effect of maternal smoking and LC administration on renal FGF2 mRNA and protein 

expression in the male offspring at P1, P20 and week 13. A) FGF2 mRNA expression in the renal 

offspring from dams exposed to Sham, SE and SE+LC. B) Representative immunostaining images 

and quantitative images for FGF2 proteins in the 3 groups at P1, P20 and Week 13. Results are 

expressed as Mean ± SEM. n = 6. Mag. 40X. * P < 0.05 SE vs Sham, # P < 0.05 SE+LC vs SE.  
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Figure 4: Effect of maternal smoking and LC administration on renal Pax2 mRNA and protein 

expression in the male offspring at P1, P20 and week 13. A) Pax2 mRNA expression in the renal 

offspring from dams exposed to Sham, SE and SE+LC. B) Representative immunostaining images 

and quantitative images for Pax2 proteins in the 3 groups at P1, P20 and Week 13. Results are 

expressed as Mean ± SEM. n = 6-8. Mag. 40X. * P < 0.05 SE vs Sham, # P < 0.05 SE+LC vs SE. 
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Figure 5: Renal DNA global methylation in the offspring of smoking mother administered with LC 

or vehicle at P1 (A), P20 (B) and Week 13 (C). Results are expressed as Mean ± SEM. * P < 0.05  

 
Figure 6. RNA expression of DNA methyltransferases in the offspring kidney at P1. Results are 

expressed as Mean ± SEM. * P < 0.05 
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Table 1: Forward and reverse sequences of the primers for rt-PCR. 

Primer Forward 5′-3′ Reveres 5′-3′ 

18S CGCGGTTCTATTTTGTTGGT AGTCGGCATCGTTTATGGTC 

GDNF ATTTTATTCAAGCCACCATTA GATACATCCACACCGTTTAGC 

FGF2 GACCCCAAGCGGCTCTACTGC GTGCCACATACCAACTGGAGT 

Pax2 CGCCGTTTCTGTGACACACAATC TGCTTGGGACCAAACACAAGGTG 

Dnmt1 GTGAACAGGAAGATGACAAC CTGGATCCTCCTTTGATTTC 

Dnmt3a ACCAGAAGAAGAGAAGAATCC CAATGATCTCCTTGACCTTAG 

Dnmt3b GACTTCATGGAAGAAGTGAC TATCATCCTGATACTCTGTGC 

 

FGF: fibroblast growth factor; GDNF: glial-cell line-derived neurotrophic factor; Pax: paired box 

gene; Dnmt: DNA methyltransferase. 
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Table 2: Effects of maternal SE on growth and development in male offspring. 

P1 Sham SE SE+LC 

Body weight (g) 1.63 ± 0.07 1.42 ± 0.08* 1.67 ± 0.05# 

Kidney weight (g) 0.0085 ± 0.0005 0.0067 ± 0.0004* 0.0081 ± 0.0005## 

Kidney/Body (%) 0.53 ± 0.03 0.50 ± 0.04 0.51 ± 0.03 

P20 Sham SE SE+LC 

Body weight (g) 10.0 ± 0.21 9.61 ± 0.10 10.1 ± 0.27 

Kidney weight (g) 0.066 ± 0.002 0.060 ± 0.003 0.068 ± 0.002 

Kidney/Body (%) 0.66 ± 0.02 0.63 ± 0.03 0.68 ± 0.01 

W13 Sham SE SE+LC 

Body weight (g) 25.6 ± 0.3 25.0 ± 0.4 25.7 ± 0.4 

Kidney weight (g) 0.19 ± 0.01 0.19 ± 0.01 0.20 ± 0.01 

Kidney/Body (%) 0.76 ± 0.02 0.76 ± 0.02 0.77 ± 0.02 

Results are expressed as Mean ± SEM. n=7-11. One-way ANOVA followed by 

LSD post hoc tests were used to analyze the data among three groups at the same 

age. * P < 0.05 SE vs Sham, # P < 0.05 and ## P < 0.01  SE+LC vs SE 
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