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A B S T R A C T

Mapping high resolution (30-m or better) cropland extent over very large areas such as continents or large
countries or regions accurately, precisely, repeatedly, and rapidly is of great importance for addressing the
global food and water security challenges. Such cropland extent products capture individual farm fields, small or
large, and are crucial for developing accurate higher-level cropland products such as cropping intensities, crop
types, crop watering methods (irrigated or rainfed), crop productivity, and crop water productivity. It also brings
many challenges that include handling massively large data volumes, computing power, and collecting resource
intensive reference training and validation data over complex geographic and political boundaries. Thereby, this
study developed a precise and accurate Landsat 30-m derived cropland extent product for two very important,
distinct, diverse, and large countries: Australia and China. The study used of eight bands (blue, green, red, NIR,
SWIR1, SWIR2, TIR1, and NDVI) of Landsat-8 every 16-day Operational Land Imager (OLI) data for the years
2013–2015. The classification was performed by using a pixel-based supervised random forest (RF) machine
learning algorithm (MLA) executed on the Google Earth Engine (GEE) cloud computing platform. Each band was
time-composited over 4–6 time-periods over a year using median value for various agro-ecological zones (AEZs)
of Australia and China. This resulted in a 32–48-layer mega-file data-cube (MFDC) for each of the AEZs.
Reference training and validation data were gathered from: (a) field visits, (b) sub-meter to 5-m very high spatial
resolution imagery (VHRI) data, and (c) ancillary sources such as from the National agriculture bureaus.
Croplands versus non-croplands knowledge base for training the RF algorithm were derived from MFDC using
958 reference-training samples for Australia and 2130 reference-training samples for China. The resulting 30-m
cropland extent product was assessed for accuracies using independent validation samples: 900 for Australia and
1972 for China. The 30-m cropland extent product of Australia showed an overall accuracy of 97.6% with a
producer’s accuracy of 98.8% (errors of omissions= 1.2%), and user’s accuracy of 79% (errors of commis-
sions= 21%) for the cropland class. For China, overall accuracies were 94% with a producer’s accuracy of 80%
(errors of omissions= 20%), and user’s accuracy of 84.2% (errors of commissions= 15.8%) for cropland class.
Total cropland areas of Australia were estimated as 35.1 million hectares and 165.2 million hectares for China.
These estimates were higher by 8.6% for Australia and 3.9% for China when compared with the traditionally
derived national statistics. The cropland extent product further demonstrated the ability to estimate sub-national
cropland areas accurately by providing an R2 value of 0.85 when compared with province-wise cropland areas of
China. The study provides a paradigm-shift on how cropland maps are produced using multi-date remote sen-
sing. These products can be browsed at www.croplands.org and made available for download at NASA’s Land
Processes Distributed Active Archive Center (LP DAAC) https://www.lpdaac.usgs.gov/node/1282.
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1. Introduction

Accurate, and precise agricultural cropland extent products over
very large areas that map small to large farms are of great importance
to assess and monitor global food and water security. They are a critical
part of land system studies (Verburg et al., 2013). Such products are
also of great importance for assessing global crop water use, crop
productivity (productivity per unit of land), water productivity (pro-
ductivity per unit of water or crop per drop), and food security studies
(Foley et al., 2011; Thenkabail et al., 2010; Teluguntla et al, 2015b;
Matejicek and Kopackova, 2010). Remote sensing based spatially dis-
tributed cropland maps with high spatial resolution provide an efficient
way to monitor croplands (Foley et al., 2011; Fritz et al., 2015; Yu et al.,
2013). Over the last two decades, several global and regional cropland
products have been produced using medium to coarse resolution (250-
m to 1-km) remote sensing data such as the Advanced Very High-Re-
solution Radiometer (AVHRR) and the Moderate-Resolution Imaging
Spectroradiometer (MODIS) data (Biradar et al., 2009; Kumar et al.,
2018; Thenkabail et al., 2009, 2012; Pittman et al., 2010; Portmann
et al., 2010; Siebert and Döll, 2010; Salmon et al., 2015; Waldner et al.,
2015, 2016). These products are very useful for a preliminary under-
standing of agricultural croplands in terms of their spatial distribution
patterns and their characteristics such as crop dominance and cropping
intensities. However, the coarse resolution of these products limits their
usefulness in assessing small agriculture fields (Teluguntla et al., 2015b;
Thenkabail et al., 2010). Further, there are several global to regional
land use/land cover (LULC) products produced using multiple remote
sensing data in which agricultural croplands is one or more classes.
Some examples are: DIScover (Loveland et al., 2000); GLC500m (Friedl
et al., 2010); MCD12Q1 (Liang et al., 2015); Globecover (Defourny
et al., 2009); FROM-GC (Gong et al., 2013); FROM-GLC (Yu et al.,
2013); and Globeland30 (Arsanjani et al., 2016; Chen et al., 2015).
However, these products were focused on LULC in which mapping
croplands in detail was not the primary objective. Hence, the cropland
accuracies suffer (Yang et al., 2017). Further, most of these products are
also coarse resolution. Most of these products fail to map individual
farm fields, especially when they are small and\or fragmented. Defi-
nitions of croplands also vary from product to product, resulting in
different results of cropland extent and their characteristics in each of
these products. Overall, existing cropland extent products are coarse
resolution, lack field level details, and/or are mapped as part of other
LULC classes where specific cropland class focus is missing. As a result,
uncertainties and errors in cropland locations are very high.

In the past, number of advanced remote sensing methods have been
used for mapping agricultural croplands. These studies were conducted
using data from multiple sensors across many spatial, spectral, radio-
metric, and temporal resolutions for both irrigated and rainfed crops
(Biggs et al., 2006; Dheeravath et al., 2010; Funk and Brown, 2009;
Gumma et al., 2011. 2016; Ozdogan and Woodcock, 2006; Pervez et al.,
2014; Teluguntla et al. 2015a; Thenkabail et al., 2009, 2012; Velpuri
et al., 2009; Xiao et al., 2006). These methods consist of pixel-based,
object-based, or a combination of both approaches that used either
supervised or unsupervised classification techniques. Pixel-based ap-
proaches include: a) Random forest algorithm (Tatsumi et al., 2015;
Wang et al., 2015; Gislason et al, 2006); (b) Support vector machines
(Mountrakis et al., 2011; Shao and Lunetta, 2012); (c) decision tree
algorithms (Ozdogan and Gutman, 2008; Waldner et al., 2016); (d)
Tassel cap brightness-greenness-wetness (Cohen and Goward, 2004;
Gutman et al., 2008; Masek et al., 2006); (e) Spectral matching tech-
niques (Gumma et al., 2014; Thenkabail et al., 2007; Teluguntla et al.,
2017a); (f) Phenological approaches (Pan et al., 2015; Teluguntla et al.
2015a; Zhong et al., 2016; Zhou et al., 2016); (g) the Automated
Cropland Classification Algorithms (Thenkabail and Wu, 2012;
Teluguntla et al., 2017a; Waldner et al., 2015); and (h) Machine
learning programming involving a combination of multiple methods
(DeFries and Chan, 2000; Duro et al., 2012; Pantazi et al., 2016).

Object-based approaches (Peña-Barragán et al., 2011; Peña et al., 2014)
include Hierarchical Image Segmentation software or HSeG (Tilton
et al., 2012). A combination of pixel-based and object-based methods
have also been recently attempted (Xiong et al., 2017a; Chen et al.,
2018). However, these methods and approaches were overwhelmingly
applied on: (a) multi-temporal moderate resolution (250-m or higher)
remotely sensed data, and/or (b) small areas, and/or (c) high-resolution
(Landsat 30-m) remotely sensed data with limited multi-temporal
images.

Hitherto, availability of cloud-free, high quality images as well as
use of multi-temporal, high-resolution data over very large areas for
cropland mapping has been challenging and resource intensive.
However, these challenges have been overcome through a paradigm
shift in remote sensing data collection, management, and processing.
First, Landsat-8 Operational Land Imager (OLI) data and Landsat-7
Enhanced Thematic Mapper+ (ETM+) data at 30-m spatial resolution
were utilized every 16-days for 3-years (2013–2015) for entire Aus-
tralia and China. Managing massive volumes of Landsat data for ana-
lysis over very large areas is a big challenge when adopting traditional
remote sensing approaches that use commercial imaging processing
software on workstation PC based systems. No matter how powerful the
systems are, the entire process of data analysis including, pre-proces-
sing, over very large areas involving 1000’s of Landsat images is cum-
bersome, slow, and tedious. However, in the current era of adopting
powerful machine learning algorithms (MLAs) in cloud computing en-
vironments such as Google Earth Engine (GEE) these limitations have
been overcome allowing planetary scale remote sensing at high spatial
resolutions as illustrated by Erickson (2014) and Gorelick et al. (2017).
Gorelick et al. (2017) demonstrated that multi-petabyte archive of
georeferenced datasets can be combined in the GEE catalog that in-
cludes images from Earth observing satellites and airborne sensors (e.g.,
USGS Landsat, NASA MODIS, USDA NASS CDL), weather and climate
datasets, as well as digital elevation models. This system has excep-
tional data organization, and has enabled geo spatial processing over
very large areas. Along with computing and storage resources, GEE also
supports major MLAs useful for image enhancement and, image clas-
sification, and allows batch processing through JavaScript or Python on
Application Program Interfaces (APIs). These capabilities reduce most
of preprocessing steps needed in traditional remote sensing approaches.
Very recently, several studies have used the GEE platform for large-
scale (continental, global) mapping (Xiong et al., 2017a, 2017b).

Thereby, the overarching goal of this study was to map cropland
extent in detail (e.g., showing all individual farms whether small or big)
using high-resolution (30-m) multi-year (2013–2015) time-series (16-
day) Landsat-8 OLI data over the entirety of China and Australia. These
two countries have very large cropland areas with distinct cropping
systems. Australia is a major agriculture producer and exporter with
large scale industrial farm fields. Pastoral farming is another major
agricultural land use in Australia. Australian farmers produce cereals,
legumes and oilseeds on a large scale (ABARES, 2016) for human
consumption and livestock feed. In contrast, an overwhelming pro-
portion of Chinese farms are small, fragmented, but often contiguous
over large areas due to intensive land use for agriculture. Average crop
field size in China is less than a hectare (Samberg et al., 2016); fine
resolution satellite data is required to map such crop fields. Landsat
data with 30-m spatial resolution is ideal dataset to map cropland ex-
tent in China. Whereas the average crop field size in Australia is 100 ha
(Samberg et al., 2016) which is much larger than most crop fields in
China. Medium resolution sensor such as MODIS at 250-m (1 pixel is
approximately 6.25 ha) are highly inadequate to map smaller and/or
fragmented crop fields. High-resolution 30-m (1 pixel is approximately
0.09 ha) Landsat-8 OLI 30-m imagery is expected to map small and
fragmented farms in addition to large farms. Chinese farmlands are also
very diverse, spread across mountains, river banks, and large plains.
China’s agriculture feeds 1.38 billion people whereas Australia’s much
smaller population allows it to be a major exporter of food. China is the
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topmost producer of three major food crops (rice, wheat, and maize) in
the world (FAOSTAT). The best cropland products of Australia and
China known by the authors are derived from other LULC products. For
example, for Australia, croplands were mapped as part of land cover
products such as Dynamic Land Cover Data (DLCD) developed by Geo
Science Australia (Lymburner et al., 2011). Another cropland product
for Australia is from the Australian Collaborative Land Use and Man-
agement Program (ACLUMP) by the Department of Agriculture and
Water resources (http://www.agriculture.gov.au/abares/aclump).
However, there is no unique cropland layer available for Australia and
China like United States Department of Agriculture (USDA) National
Agricultural Statistical Service (NASS) 30m Cropland Data Layer (CDL)
derived from Landsat for USA (Johnson and Mueller, 2010; Boryan
et al., 2011; Han et al., 2012). Due to the above reasons, mapping
croplands at high-resolution of these two countries is of great im-
portance.

Thereby, specific objectives of the study were to develop a precise
30-m cropland extent map of Australia and China using 16-day Landsat-
8 OLI data for the nominal year 2015 using an RF classifier through the
GEE cloud-computing platform. We chose a pixel-based RF MLA ap-
proach for this study because MLAs have been particularly useful in
classifying large datasets with high spatial and temporal resolutions for
large area land cover mapping (Pelletier et al., 2016). Second, this
study used a large collection of reference training and validation data
obtained from: (a) ground-data through extensive field visits, (b)

samples interpreted from sub-meter to 5-m very high-resolution ima-
gery data, and (c) data sourced from reliable secondary sources. These
reference datasets were invaluable in training the RF classifier, as well
as to assess classification accuracies, and establish uncertainties. Third,
computed cropland area statistics from the 30-m cropland product were
compared with national and sub-national cropland area statistics ob-
tained from sources such as the Food and Agricultural Organization
(FAO) of the United Nations (UN) and National Governmental sources.

2. Study area

Our study area consisted of two major cropland areas of the world:
China and Australia. The two regions were further stratified into four
refined agro-ecological zones (RAEZs) (Fig. 1), which helped identify
areas of similar farming practices, soil types, and climatic patterns.
These RAEZs were modifications of the Food and Agricultural Organi-
zation’s (FAO’s) global agro-ecological zones (GAEZs) which are based
on the number of growing degree days, soil, and terrain data, all pro-
vided at 10-km spatial resolution (Fischer et al., 2000). However,
GAEZs has too many zones for cropland classification purposes as many
of these zones only have a very small proportion of crops relative of the
overall land area of the zone. Therefore, we refined GAEZs into RAEZs
by utilizing Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM
V2) 30-m data (https://www.asterweb.jpl.nasa.gov/gdem.asp), slope

Fig. 1. Stratification of the study area into distinct and broad refined agro-ecological zones (RAEZs). The figure also shows the distribution of the reference training
data used in the Random Forest machine-learning algorithm. The Random Forest pixel-based supervised machine learning algorithm used in this study was trained
using reference training data falling within each of these zones to separate croplands from non-croplands.
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derived off 30-m GDEM data, and the proportion of croplands in a zone.
A number of smaller RAEZs were combined into larger zones depending
on the zone’s importance for croplands. This resulted in three broad
RAEZs across China, and a single RAEZ for Australia (Fig. 1). Classifi-
cation using MLAs was carried out in each of these RAEZs separately
and then similar classes across zones were combined.

3. Datasets

Two major types of data were used in the study. First, we will de-
scribe and discuss the satellite sensor data followed by reference
training and validation data of Australia and China.

3.1. Satellite imagery: Landsat-8 and Landsat-7

In order to cover crop dynamics in different time-periods, Landsat-8
OLI Top of Atmosphere (TOA) 16-day satellite sensor data collections
available on GEE cloud for three years (2013–2015) were organized for
Australia and China. In addition, Landsat-7 was used to fill some data
gaps (Irons et al., 2012) over 2013–2015 for China, aiming to provide
seamless cloud-free 30-m wall-to-wall data coverage (Fig. 2a). Specific
image collections used were LANDSAT/LC8_L1T_TOA and LANDSAT/
LE7_L1T_TOA for 2013–2015 (sometimes referred to as nominal 2015).
The Landsat TOA data available on GEE are orthorectified and

corrected for solar angle (USGS TOA product guide). The coefficients
were derived from USGS TOA product guide and Chander et al. (2009).
There is a 16-day revisit time for Landsat-8 OLI and Landsat-7 ETM+
30-m data. It is not possible to get continuous 16-day cloud free time-
series data for wall-to-wall coverage for any part of the region due to
cloud cover. To overcome this limitation and to ensure cloud-free or
near-cloud-free wall-to-all coverage, bi/tri-monthly composites (de-
pending on the cloudiness of the countries/regions), were composed
(e.g., Figs. 2a and 2b). Finally, 30-m mega-file data-cubes (MFDCs)
were created as per the following steps leading to a 48-band MFDC
(Fig. 2a) of Australia for 6 time-periods (time composites) and a 32-
band MFDC of China (Fig. 2b) for 4 time-periods.

We used the multi-year (2013–2015) 16-day Landsat-8 OLI (Fig. 2a)
and Landsat-7 ETM+ (Fig. 2b) data for the study area to: (1) ensure
wall-to-wall coverage of data, and (2) reduce the effects of cloud cover.
The nominal year 2015 was further divided into multiple intervals or
periods (Figs. 2a and 2b) depending on the seasonal variability in the
region and availability of the cloud free Landsat data (Table 1). Bi-
monthly or tri-monthly MFDC cloud-free wall-to-wall collections
(Figs. 2a and 2b) of Australia and China were established.

For Australia, cloud-free or near cloud-free images could be created
for bi-monthly time-periods (Fig. 2a) leading to a total of 6 time-periods
(period 1: Julian days 1–60, period 2: 61–120, period 3: 121–180,
period 4: 181–240, period 5: 241–300, period 6: 301–365; Fig. 2a) over

Landsat-8, 8 Bands of data 
Every 16-days for 2013-2015 

Blue band
(0.45- 0.51 m)
Green band
(0.53- 0.59 m)
Red band
(0.63- 0.69 m)
NIR band
(0.85- 0.88 m)
SWIR1 band
(1.56- 1.65 m)
SWIR2 band
(2.1- 2.29 m)
TIR band
(10.6- 11.2 m)

NDVI

Period 1 (Julian days 1-60): 
8 Median. value bands

Period 2 (Julian days 61-120): 
8 Mean. value bands 

Period 3 (Julian day 121-180 
8 Median. value bands

Period 4 (Julian days 181-240): 
8 Median. value bands

Period 5 (Julian days 241-300): 
8 Median. value bands

Period 6 (Julian days 301-365 
8 Median. value bands

Multi year seasonal composites 30-m Data cube 
Total: 48 bands, all @ 30-m 

Fig. 2a. 30-m Data-cube for Australia composited for 6 time-periods using 2013–2015 Landsat-8 data. For each period (e.g., period 1: Julian days 1–60), eight bands
(blue, green, red, NIR, SWIR1, SWIR2, TIR1, and NDVI) were composited, taking median value of a given pixel over the period. From 6 periods, there was a 48-band
mega-file data cube in Google Earth Engine collection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Landsat-7 & Landsat-8, 8 Bands of data 
Every 16-days for 2013-2015

Blue band (0.45- 0.51 m)
Green band (0.53- 0.59 m)
Red band (0.63- 0.69 m)
NIR band(0.85- 0.88 m)
SWIR1 band (1.56- 1.65 m)
SWIR2 band (2.1- 2.29 m)
TIR band (10.6- 11.2 m)

NDVI

Multi year seasonal composites 

Period 1 (Julian days 1-90): 
8 Median. value bands

Period 2 (Julian days 91-180): 
8 Median. value bands

Period 3 (Julian day 181-270 
8 Median. value bands

Period 4 (Julian days 271-365): 
8 Median. value bands

30-m Data cube
Total: 32 bands, all @ 30-m 

Fig. 2b. 30-m Data-cube for China composited for 4 time-periods using 16-day data of Landsat-8 and Landsat-7 for the years 2013–2015 (e.g., period 1: Julian days 1
to 90). For each period eight bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1 and NDVI) were composited, taking the median value of a given pixel over the period.
From the 4 time-periods, there was a 32-band mega-file data cube in the Google Earth Engine collection. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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a 12-month period. In comparison, tri-monthly time-periods were cre-
ated for China (Fig. 2b) because a greater number of days were required
to achieve cloud-free or near cloud-free wall-to-wall coverage due to
greater number of cloudy days over the country. As a result, there were
only 4 time-periods (period 1: Julian days 1–90, period 2: 91–180,
period 3: 181–270, period 4: 271–365; Fig. 2b) over 12-month period. It
should be noted that for each time-period (e.g., 1–60 days) Landsat data
from multiple years (2013–2015) were used to maximize the chances of
pure cloud free pixels over Australia and China. As a result, the process
involved gathering all the Landsat-8 16-day images over Australia
(Fig. 2a), and all the Landsat-8 as well as Landsat-7 images over China
(Fig. 2b) available for each time-period (e.g., period 1: 1–60 Julian
days). The following bands and indices were used for each time-period:
blue (0.45–0.51 μm), green (0.53–0.59 μm), red (0.63–0.69 μm), NIR
(0.85–0.89 μm), SWIR1 (1.55 1.65 μm), SWIR2 (2.1–2.3 μm), and TIR1
(10.60–11.19 μm); (Table 1, Figs. 2a and 2b) along with Normalized

Difference Vegetation Index (NDVI) were time-composited by taking
median value of each pixel of each band (Roy et al., 2014). Thereby, for
Australia, eight median value bands composed over 6 time-periods re-
sulted in a 48-band MFDC (Fig. 2a). Whereas for China, eight median
value bands composed over 4 time-periods resulted in a 32-band MFDC
(Fig. 2b). The band stack and time-periods leading to MFDC are shown
in Table 1 as well as in Figs. 2a and 2b. All compositions were per-
formed on the GEE cloud-based geospatial platform for planetary-scale
data analysis (Gorelick et al., 2017). Landsat TOA products were used
instead of surface reflectance (SR) due to the limited temporal avail-
ability of Landsat-7 and Landsat-8 SR imagery on GEE for our study
regions.

3.2. Reference croplands samples for training and validation

Reference training and validation data were collected for Australia

Table 1
Characteristics of multi-temporal multi-year Landsat 30-m data used in the study.

Country name Landsat image
series

Years of
data

Julian days over data are time-
compositeda

Bands usedb for each composited
period

Total #of bands used in
mega-file data cube

Data provider
name

Australia Landsat-8 2013,
2014,
2015

C1:1-60
C2:61-120
C3:121-180
C4:181-240
C5:241-300
C6:301-365

blue, green, red, NIR, SWIR-1, SWIR-2,
TIR1, and NDVI

48 USGS

China Landsat-7 and
Landsat-8

2013,
2014,
2015

C1:1-90
C2:91-180
C3:181-270
C4:271-365

blue, green, red, NIR, SWIR-1, SWIR-2,
TIR1, and NDVI

32 USGS

Then each band (e.g., blue) is derived using the median value from these 4 images. Similarly, for all bands.
NDVI=normalized difference vegetation index

a C1:1–60= composite 1 over Julian dates 1 to 60. Given Landsat-8 is acquired over every 16 days, there will be ∼4 images in first 60 days.
b NIR=near-infrared, SWIR= short-wave infrared, TIR= thermal infrared.

Rainfed, Canola Irrigated, Orchards 

Rainfed, Wheat Rainfed, Barley Rainfed, Oats 

Rainfed, Pastures 

Rainfed, Lupin 

Rainfed, Beans Rainfed, Lentils 

Fig. 3a. Ground data for Australia. Illustration of some of the sample reference training and validation data collected during field visit in Australia.
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and China, from three high quality sources as described below. Part of
the training data was used to gather knowledge and train the MLA and
the other part was used to test the classes. Validation data were used to
assess accuracies, errors, and uncertainties. Data were collected keeping
the cropland definition in mind. Croplands were defined in this
study as agricultural lands with annual standing crops+ cropland fal-
lows+ permanent crops (e.g., coffee, tea, rubber) (Teluguntla et al.,
2015b). Samples were collected to cover wide range of cropland and
non-cropland classes (e.g., Figs. 3a and 3b) with excellent spatial dis-
tribution in Australia (Fig. 4a) and China (Fig. 4b). Since the satellite
data were collected for the 2013–2015 time-period there are possibi-
lities that croplands in one year or season may remain cropland fallows
in another year or season (Gumma et al., 2018). The cropland areas of
Australia and China are well established. Hence croplands changing to
non-croplands in Australia and China in such short time period
(2013–2015) was minimal and was estimated by us to be< 1% of the
total cropland areas of these countries. Further, we also observed the
multi-year NDVI patters of the sample areas to see whether the sample
locations were “pure” (unchanged) or “changed” (showed significant
change over time). Reference training and validation data were then
appropriately labeled.

3.2.1. Ground reference and validation data through field visits
First, we conducted an extensive field survey during September and

October of 2014, the peak crop-growing season for crops in Australia.
More than 4400 ground samples (e.g., Figs. 3a and 4a) were collected
from New South Wales (NSW), Victoria (VIC), South Australia (SA), and
Western Australia (WA) states of Australia following the specific
guidelines on collecting ground reference data (Congalton, 2015). The
sampling sites included various crop fields: such as cereal crops (wheat,
barley, and oats), legumes (lupin, lentils, peas, and beans), oilseeds

(canola), vegetables, continuous crops (orchard crops), fodder crops
(alfalfa and sown pastures), some cropland fallow samples and non-
cropland samples. Such data collection over a wide range of crop types
helped us to capture variability across croplands and helped in the
development of robust training datasets. A sample illustration of the
ground reference data acquired across Australia is shown in Fig. 3a and
the spatial distribution of data across Australia is shown in Fig. 4a. The
samples shown in Fig. 4a cover the entire agricultural landscape of
Australia except the northern part of the country where we used sub-
meter to 5-m data.

Similarly, we obtained ground reference data for China through
collaboration with the Chinese Academy of Agricultural Sciences
(CAAS) between 2008 and 2014 time-period. These field data were
spatially well distributed throughout agricultural cropland areas of
China. A total of 2120 ground samples (e.g., Figs. 3b and 4b) including:
(1) location of samples (GPS position, location name, date of collec-
tion); crop properties (2) croplands versus non-croplands; (3) irrigated
or rainfed; (4) crop intensity (single, double, triple, continuous crop-
ping in 12months); (5) crop type (major crop types mentioned above,
others); and (6) digital photographs of each sample. A sample illus-
tration of the ground reference data distribution across China is shown
in Fig. 3b. For both Australia and China, there was a minimum of one-
kilometer distance between each sample to ensure spatial autocorrela-
tion do not occur (Congalton, 2015). We further verified all ground data
samples for croplands versus non-croplands using sub-meter to 5-m very
high-resolution data (also see Section 3.2.2).

3.2.2. Very high spatial resolution imagery (VHRI) data
Second, some samples were obtained throughout Australia, and

China by interpreting sub-meter to 5-meter very high spatial resolution
imagery (VHRI) data of 4 recent years (2012–2015) available to US

Irrigated, Rice

Rainfed, Wheat

Rainfed, Groundnut

Irrigated, VegetablesIrrigated, Sugarcane 

Rainfed, Cassava

Irrigated, Soya been 

Rainfed, Corn

Rainfed, Sweet potato

Fig. 3b. Ground data for China. Illustration of some of the sample reference training and validation data collected during field visit in China obtained in collaboration
with Chinese Academy of Agricultural Sciences (CAAS).
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Government entities through the National Geospatial Agency (NGA)
(Marshall and Thenkabail, 2015) and multiple years of imageries ob-
tained from Google Earth Pro. From this, we collected 1210 reference
and 1710 validation samples (e.g., Fig. 4a for Australia, Fig. 4b for
China).

3.2.3. Tertiary sources
Third, reference data were obtained from national systems and

other reliable sources such as Geo Science Australia, Australian Bureau
of Agricultural and Resource Economics and Sciences (ABARES).

A summary of sample distribution of the reference training and
validation data for Australia and China is provided in Table 2. The

Fig. 4a. Sub-meter to 5-m very high-resolution imagery data for Australia. Illustration of the reference training and validation data of Australia collected using sub-
meter to 5-m very high spatial resolution imagery.

Fig. 4b. Sub-meter to 5-m very high-resolution imagery data for China. Illustration of the reference training and validation data of China collected using sub-meter to
5-m very high spatial resolution imagery.
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reference data were divided into two distinct datasets: roughly 50% for
training and 50% for validation (Table 2). The training data were used
to develop knowledge base and train the machine-learning algorithms
(e.g., Random Forest in this study). The validation data were used to
perform accuracy assessments leading to errors of omissions, errors of
commissions, and overall accuracies.

4. Methodology

The goal of this study was to produce accurate Landsat 30-m derived
cropland extent product for Australia and China. We used a pixel-based
supervised classification approach with the RF classifier on the GEE
cloud computing platform to develop cropland extent product for
Australia, and China using Landsat 30-m, 16-day time-series data
(Figs. 2a and 2b) for the 2013–2015 time-period. An overview of the
methodology is shown in Fig. 5.

4.1. Random forest machine learning algorithm

We selected the pixel-based supervised Random Forest (RF) ma-
chine learning algorithm because it is generally immune to data noise
and overfitting and is extremely useful in classifying remote sensing
data. Furthermore, RF classifiers can successfully handle high data di-
mensionality and typically achieve higher accuracies in comparison
with other approaches such as maximum likelihood, single decision
trees, and single layer neural networks (Belgiu and Drăguţ, 2016;
Lawrence et al., 2006; Na et al., 2010). Random Forest algorithm is a
machine learning method, in which the RF classifiers construct multiple
de-correlated random decision trees that are bootstrapped and ag-
gregated to classify a dataset by using the mode of predictions from all
decision trees (Breiman, 2001). The RF classifier is more robust than

single decision tree (Chan and Paelinckx, 2008) and easier to be im-
plemented than many other advanced classifiers such as Support Vector
Mission (SVM) (Pelletier et al., 2016) as recently established by Xiong
et al. (2017a). It uses bootstrap aggregating (bagging) to form an en-
semble of decision trees by searching random subspaces from the given
data (features) and the best splitting of the nodes by minimizing the
correlation between the trees. Random Forest classifiers also provide a
quantitative measurement of each variable’s contribution to the clas-
sification output, which is useful in evaluating the importance of each
variable. They provide an internal accuracy assessment by using an
‘out-of-bag’ (OOB) technique, in which about a third of the data is kept
aside as a validation dataset to assess accuracy of the classification. This
technique can be used to cross-validate the RF classifier using in-
dependent datasets.

Random Forest classifiers available in GEE use six input parameters:
(1) number of classification trees, (2) number of variables used in each
classification tree, (3) minimum leaf population, (4) bagged fraction of
the input variables per decision tree, (5) out-of-bag mode, and (6)
random seed variable for decision tree construction. When the number
of trees increases, the overall accuracy of classification increases
without overfitting (Breiman, 2001). While training sample imbalance
can affect the RF classification output by over-fitting the majority class
(Breiman, 2001; Chen et al., 2004), various methods such as down-
sampling the majority class or duplicating the minority samples can
provide immunity against over-fitting (Sun et al., 2007). Further, the
choice of optimized parameter values using the OOB outputs can
eliminate overfitting in the RF classifier. The optimized parameter va-
lues were selected by selecting the training samples (Table 2), running
the RF algorithm, and testing the classification output for overall,
producer’s and user’s accuracies in error matrix. The goal is to obtain
not just the high overall accuracies, but also a good balance of produ-
cer’s accuracies (or least errors of omissions) and user’s accuracies (or
least errors of commissions). It is not just the high number of training
samples of a class that help attain optimal accuracies, but the purity
(e.g., pure cropland samples instead of mixed) of the samples as well.

All supervised pixel-based classifications rely heavily on the input
training samples. To discriminate croplands under various environ-
ments and conditions, two criteria are very important:

1. RF classifications need to take place in AEZs or RAEZs (e.g., Fig. 1),
2. The sample size (Table 2) of the initial training dataset for the RF

classifier needs to be large, especially in complex regions.

All samples were selected to represent a 90-m×90-m polygon
(Table 2 and Section 3 and its sub-sections). First, we made extensive
field campaigns in Australia during the 2014-crop growing season when
data were collected on precise cropland locations as well as non-crop-
land locations. This effort led to collection of more than 628 samples
spread across Australia (e.g., Table 2). Second, we utilized the ground
data from previous efforts for China and other reliable sources. Third,
sub-meter to 5-m VHRI, available to us for the entire study region, was
used to generate croplands versus non-cropland interpretations by
multiple analyses across China, Australia, and a total of ∼1490 data
samples were used from these interpretations. To move forward with a
larger sample size, an iterative sample selection procedure was in-
troduced with the following steps for training the RF machine-learning
algorithm as illustrated in Fig. 5 and described step-by-step below:

1. Build RF classifier using existing training samples.
2. Based on the established classifier, classify 30-m MFDC (Figs. 2a and

2b) using the RF algorithm on GEE cloud;
3. Visual assessment of classification results is compared with existing

reference maps as well as sub-meter to 5-m VHRI;
4. Added 'crop' samples in missing area and 'non-crop' samples to over

classified areas by referencing sub-meter to 5-m VHRI from Google
Earth Imagery. For cases hard to tell by interpretation (fallow-land

Table 2
Reference training and validation data. A number of reference samples used for
training the Random Forest machine-learning algorithm and number of vali-
dation samples used for independent accuracy assessment.

Country Class Training samples Validation samples

Australia Cropland 360 80
Pasture 170
Non-cropland 428 820

Total 958 900

China Cropland 1346 340
Non-cropland 784 1632

Total 2130 1972

LC8_L1T_TOA
30m  Data (GEE) 

(2013-2015)   

30m Crop extent 
product

Training samples

Visual 
Verification

No Yes Accuracy 
Assessment

M
od

ify
 /r

ef
in

e
ad

d 
/ r

em
ov

e Random forest 
classifier

Fig. 5. Overview of methodology for cropland mapping. This study used a
pixel-based supervised Random Forest machine learning algorithm for classi-
fication. Analysis executed on Google Earth Engine cloud-computing platform.
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or abandoned fields), historical Landsat Images and MODIS NDVI
time-series are also referenced. All the samples selected to represent
a 90-m×90-m polygon.

5. Loop steps 1–4 with enlarged training dataset until classification
becomes stable and high classification accuracy is achieved.

The number of iterations required for the training sample selection
is a function of the complexity of the area. China was divided into three
zones (Fig. 1) to carry out classification (Fig. 5): the iterative selection
was repeated ∼4–5 times, in each of the 3 zones, to improve the initial
classified results. Initially, we started with a small number of samples
(3 0 0) and slowly increased the sample size till we reached a high level
of accuracies. After each iteration, we visually compared the classifi-
cation result with sub-meter to 5-m VHRI, randomly, at 100 s of loca-
tions. If the classification results were not satisfactory, we increased the
training samples till we attained satisfactory classification results. Once
that was achieved, the accuracy assessment team performed the ac-
curacies using the independent validation data (Table 2). A product was
accepted as final only when the overall, producer’s and user’s ac-
curacies were adequately high (typically above 80%).

4.2. Croplands versus non croplands knowledge capture

Knowledge is very important to train a RF algorithm. First knowl-
edge (e.g., Figs. 6a and 6b) was captured (i.e., extracted values from all
bands used in this study) using training-samples (Table 2, Sections
3.2.1–3.2.3) from Landsat data cube (Figs. 2a and 2b). For illustration,
we have shown knowledge distinguishing croplands, non-croplands,

and pastures for all training samples for Australia plotted in a box plot
(e.g., Fig. 6a). This shows which bands and periods are able to separate
croplands from non-croplands. For example, Fig. 6a shows which
period is more appropriate to separate croplands from non-croplands.
The “Zoom-in” part of NDVI clearly shows that separability of croplands
from non-croplands is maximum during period 4 and period 5, which
are during the peak growing season of crops in Australia. Similarly,
separability of croplands from pastures is maximum during period 3
and period 6.

4.3. Cloud computing on Google Earth Engine/processing platforms

We used GEE cloud computing for the pixel-based RF machine
learning algorithm for cropland classification. The Landsat archive
available on GEE is already pre-processed for atmospheric and topo-
graphic effects, which saved us much effort in data download and pre-
processing time. We used JavaScript API in the GEE code editor. The
zonal boundaries and all training samples were imported into GEE via
Google fusion tables.

5. Results and discussions

There are four distinct components under this section. It starts with
a presentation of the 30-m Landsat derived cropland extent product for
Australia and China. This is followed by an assessment of accuracies,
errors, and uncertainties of the cropland extent products. Then crop-
land areas, at the national and sub-national level are presented and
discussed. Finally, the cropland extent product is spatially compared
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Fig. 6a. Croplands versus non-croplands knowledge capture to train random forest machine learning algorithm in Landsat bands for Australia of the study area (Band
1–6 (blue), band 7–12 (green), band 13–18 (NIR), band 19–24 (red), band 25–30 (SWIR1), 31–36 (SWIR2). 37–42 (TIR1), and 43–48 (NDVI). Note: TIR1 (thermal
infrared band 1) values are scaled for convenience. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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with other cropland products generated with coarser spatial resolution
data.

5.1. 30-m cropland extent product for Australia and China

The study produced a 30-m cropland extent map for the nominal
year 2015 derived using Landsat 16-day time-series data for Australia
(Fig. 7a) and China (Fig. 7b) by using the pixel-based supervised
Random Forest (RF) machine learning algorithm for cropland

classification. Initially, the RF machine learning algorithm, discussed in
Section 4, were trained to separate croplands versus non-croplands for
each of the zones (Fig. 1) based on knowledge generated using re-
ference data (Section 3 and its sub-sections). The machine learning
algorithm described in Section 4 and its sub-sections were then run on
the GEE cloud-computing environment using Landsat data (Figs. 2a and
2b) for each of the zones to separate croplands versus non-croplands.
The process was iterated and the training samples (e.g., Figs. 6a and 6b)
in the algorithms were adjusted several times until we achieved optimal
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Fig. 6b. Croplands versus non-croplands knowledge capture to train random forest machine learning algorithm in Landsat bands for the Zone 2 (China) of the study
area (Band 1–4 (blue), band 5–8 (green), band 9–12 (NIR), band 13–16 (red), band 17–20 (SWIR1), 21–24 (SWIR2). 25–28 (TIR1), and 29–32 (NDVI). Note: TIR1
(thermal infrared band 1) values are scaled for convenience. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

ACT: Australian Capital Territory 

Fig. 7a. Cropland Extent Product at 30-m for Australia (left panel) with illustrative zoom in view for a location (right upper) and corresponding high-resolution
imagery (right lower). This product is made available for visualization at www.croplands.org. The data are downloadable from LP DAAC: https://www.lpdaac.usgs.
gov/node/1282.
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results of croplands versus non-croplands (Figs. 7a and 7b below). The
products are called the Global Food Security-support Analysis Data @
30-m Cropland Extent for Australia (Fig. 7a), and China (Fig. 7b). This
product is available through Land Processes Distributed Active Archive
Center (LP DAAC https://www.lpdaac.usgs.gov/node/1282) for
download (Teluguntla et al., 2017b) and the same dataset is also
available for visualization at www.croplands.org.

5.2. Accuracy assessment

Accuracy assessment is a key component of map production using
remote sensing data. The cropland extent maps for Australia, and China
were assessed for their accuracies using error matrices with in-
dependent validation dataset (Congalton et al., 2017; Yadav and
Congalton, 2017) that was not available to the producer of this dataset.
Accuracy error matrices were produced separately for each of the zones
as well as for the entire country.

Australia: A total of 900 stratified, randomly distributed validation
samples were used to determine the accuracy of the final cropland
extent map of Australia. An error matrix (Table 3) was generated for
Australia providing producer’s, user’s, and overall accuracies
(Congalton, 1991, 2009; Congalton and Green, 2008; Nhamo et al.,
2018).

For the whole of Australia (zone# 1), the overall accuracy was
97.6% with producer’s accuracy of 98.8% (errors of omissions= 1.2%)
and user’s accuracy of 79.0% (errors of commissions= 21%) (Table 3)
for cropland class. These results clearly imply the high level of con-
fidence in differentiating croplands from non-croplands for Australia.
High producer’s accuracy from the statistical assessment using

stratified, randomly distributed samples across Australia (98.8%) sug-
gest that almost all croplands of Australia were mapped accurately
(with only 1.2% missing). However, as a trade-off, there is a commis-
sion error of 21% (meaning non-cropland mapped as croplands). When
using any classification this trade-off is inevitable. If we reduce errors of
commissions, errors of omissions will increase and vice versa. In this
trade-off, it is better to capture almost all croplands even when we have
some non-croplands also mapped as croplands. This provides a more
complete cropland mask for higher level products.

China: A total of 1972 validation samples, combined for all three
zones in China, were used to determine the accuracy of the final
cropland extent map of China. Error matrices (Table 4) were generated
for each of the zones separately and for all of China providing produ-
cer’s, user’s and overall accuracies. For whole of China, the overall
accuracy was 94% with producer’s accuracy of 80% (errors of omis-
sions= 20%) and user’s accuracy of 84.2% (errors of commis-
sions= 15.8%) (Table 4) for the cropland class. When considering all
three zones (Table 4), 95.1% of total cropland area (TCA) of China is in
zone #2 as shown in Table 4, 3.9% of total cropland area of China is in
zone #3, and only 1% of total cropland area of China is in zone #4.
Thereby, the accuracy in Zone #2 is the most important. This zone had
very balanced and high producer’s and user’s accuracies with a pro-
ducer’s accuracy of 83.3% (errors of omission= 16.7%) and user’s
accuracy of 84.2% (errors of commission of 15.8%). The overall ac-
curacies ranged between 91% and 98% for all zones. These results
clearly imply the high level of confidence in differentiating croplands
from non-croplands for China.

Within this project, the accuracy team conducted an assessment to
determine the optimal number of samples required to perform ac-
curacies. They concluded a total of 250 samples per zone as optimal,
beyond which accuracies asymptote. Indeed, the total samples for
training the classifiers and for accuracy assessments were significantly
higher than the minimum of 250 samples. For example, accuracy as-
sessments had: 900 samples for Australia, 1972 samples for China with
the three zones in China having: 1184 for zone 2, 439 for zone 3, and
349 for zone 4. So, all zones have many more validation samples than
the required optimal 250 samples.

It is possible to further increase accuracies of classification- espe-
cially the user’s and producer’s accuracies (Table 3 and 4) through
number of measures. First, by breaking the zones (Fig. 1) to smaller
ones; particularly zone 2 (eastern part of China) which contains approx.

Fig. 7b. Cropland Extent Product at 30-m for China (left panel) with illustrative zoom in view for a location (right upper) and corresponding high-resolution imagery
(right lower). This product is made available for visualization at www.croplands.org. The data are downloadable from LP DAAC: https://www.lpdaac.usgs.gov/
node/1282.

Table 3
Accuracy error matrix. Accuracy assessment error matrix of the 30-m Cropland
Extent Product for Australia.
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95% of the total cropland area in China. This was not done in this study
because of a requirement from the project independent accuracy team
to minimize zones. Increasing the number of zones requires additional
reference data to be acquired. This was not feasible within the scope of
this project; however, is recommended in future work of this magni-
tude. Second, increased collection of reference training and validation
data from agricultural fields of greater diversity (e.g., croplands along
the mountains, flooded rice, fallows of various types, permanent crops
of various types) is required to ensure that the classification algorithms
are robust. Third, in addition to pixel-based RF MLA other pixel-based
classifiers such as the support vector machines (SVMs) as well as the
object-based algorithms such as the recursive hierarchical segmentation
(RHSEG) will help resolve some of the uncertainties from classification
results obtained from single algorithm (Xiong et al., 2017a). Fourth, the
Google Earth Engine (GEE) is a powerful platform for image collection,
organization, and classification over very large areas such as large
countries, continents, and the entire planet through cloud computing
platform. Whereas, GEE helps in powerful big-data management, and
fast computing, there are several limitations on how the GEE processes
the big-data using the MLAs. For example, for some classifiers, instead
of classifying data of every pixel, it does “sampling” of the entire po-
pulation of the big-data resulting in uncertainties in classification
output and reduction in accuracies. There is also certain positional
accuracy issue that sometimes can cause uncertainties on precise geo-
graphic location of a sample, especially when the pixel is 30-m re-
solution. To overcome this, we used a 90-m by 90-m sampling, yet,
some uncertainties still need to be better understood. There are other
ways of further improving accuracies and reducing uncertainties such
as improved temporal resolution of imagery such as integration of
global forest maps (Hansen et al., 2013) and global water mask (Carroll
et al., 2009). Overall, Australia had nearly 2000 and China nearly 4000
training plus validation samples (Table 2). Given that the 30-m Landsat
data over such large areas have billions of pixels, this is not a very large
sample, but probably the best achievable given the complexity of the
large areas and resources required. However, larger sample for both
training and validation, especially from diverse croplands ranging from
high mountains to lowland deltas that take into account various sub-
classes within standing crops, cropland fallows, and permanent crops
will help produce products with even greater accuracies.

Similar methods to those used here were also applied to other con-
tinents of the world. For example, in a recent publication on Africa, Xiong
et al. (2017a) reported a weighted overall accuracy of 94%, with a pro-
ducer’s accuracy of 85.9% (or omission error of 14.1%), and user’s accu-
racy of 68.5% (commission error of 31.5%) for the cropland class across

Africa. Xiong et al. (2017a) used two pixel-based machine learning algo-
rithms (RF and SVM) along with an object-based classification (RHSEG).
However, mapping croplands in Africa is much more complex than
mapping croplands of Australia or China due to fragmented and mixed
cropping in savannas and rainforests. As a result, the user’s accuracies of
Africa were relatively low compared to our study in Australia and China.
Further, uncertainties in cropland training and validation samples is also
somewhat higher in Africa than for Australia or China.

5.3. Cropland areas and comparsion with statistics from other sources

Apart from producing a map, calculation of cropland area statistics
is an important component of the 30-m cropland extent product.
Australia has two distinct cropland classes (croplands and managed
pastures). Total cropland areas of the two classes (croplands+ pasture)
were estimated as 65.7 million hectares (Mha) of which croplands alone
was 35.1 Mha for the year 2015. In contrast, cropland extent area of
China was 165.2Mha. Table 5 shows country-wise cropland area sta-
tistics generated from this study for Australia and China that were
compared with other sources such as the national census data based
MIRCA2005 (Stefan Siebert and Portmann, personal communication;
Portmann et al., 2010) which was also updated in the year 2015
(Table 5) and national level official cropland statistics from Bureau of
Statistics for China and Australia.

Table 4
Accuracy error matrix. Independent accuracy assessment error matrix for the 30-m Cropland Extent Product for China by zone.

Table 5
Cropland area comparisons. Net cropland areas (NCAs) derived based on 30-m
Global Food Security support Analysis Data (GFSAD30) cropland product and
comparison with other cropland products.

Country Land Areaa GFSAD30b MIRCA 20,14c National
statisticsd,e

% of
Total
Land
Area

Name Ha Ha Ha Ha %
Australia 768,851,504 35,105,792 30,615,114 32,078,000 4.6%
China 932,824,512 165,228,334 158,872,013 164,626,929 17.7%

a Total land area is land area excluding area under inland water bodies.
b GFSAD30 current study.
c Monthly irrigated and rainfed crop areas (MIRCA) around the year 2014

derived by Portmann et al. (2010).
d Australian Bureau of Statistics http://www.abs.gov.au/ausstats/abs@.nsf/

mf/7121.0, total planted area for the year 2010–11, which is a good year in
terms of climate.

e China statistical year book 2014 http://www.stats.gov.cn/tjsj/ndsj/2014/
indexeh.htm.
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However, 30-m cropland extent of Australia and China (www.
croplands.org) produced by this study is at high resolution. Every 30-
m pixel is 0.09 ha. Thereby, it is feasible to capture areas at the sub-
national level, indeed even at individual farm level, small or big. This is
a huge advantage over other existing cropland products. As a result, we
calculated cropland areas of China at sub-national level for the 31
provinces of China and compared them with cropland areas from na-
tional statistics of China (http://www.stats.gov.cn/tjsj/ndsj/2014/
indexeh.htm) as shown in Fig. 8. The relation between province wise
areas from both sources show very high correlation with a slope value
of 1.008 and R2 value of 0.85. Among 31 provinces, two provinces
Henan and Gansu shows lower-estimation relative to national statistics.
This was due to some of the mountainous agriculture that was not
completely captured by the RF algorithm in our study. Two provinces in
the northeastern region of Heilongjiang, and Inner Mongolia shows
higher-estimation in our study relative to national statistics (Fig. 8).
This was due to some of the pasture which was classified as cropland in
our cropland product.

5.4. Comparison of croplands mapped at different spatial scales/resolutions

Spatially, we have compared cropland products generated at three
spatial resolutions with sub-meter to 5-m VHRI. The three-different
spatial resolution cropland extent products are:

1. 30-m cropland extent product (this study),
2. 250-m cropland extent product (Teluguntla et al., 2017a), and
3. 1-km cropland extent product (GFSAD1-km, Teluguntla et al.,

2015b)

Comparison of the above three products with VHRI (Fig. 9) showed
the advantage of mapping croplands at 30-m finer spatial resolution
(Fig. 9). We have presented 3 examples in Fig. 9. It is obvious that the
field boundaries so well captured in 30-m cropland extent product (this
study) are missing in 250-m and 1000-m. Further, omissions and
commissions are high in coarser 250-m and 1-km products whereas the
30-m provides near precise estimates.

6. Conclusions

The study demonstrated a “paradigm-shift” in deriving high re-
solution 30-m cropland extent products over very large areas (e.g.,
Australia, China) using multi-year (2013–2015), 16-day Landsat data,
random forest machine learning algorithms, large volume of reference
training and validation datasets from multiple sources by utilizing the
big-data management and processing power of Google Earth Engine
cloud-computing platform. These methods and approaches demon-
strated the ability to map croplands rapidly and accurately at con-
tinental\big-country scale involving petabyte volume big-data. The
resulting 30-m Landsat-derived cropland extent products of Australia
and China for the nominal year 2015 had overall accuracies of over
94%. The cropland class was mapped with producer’s accuracy of
98.8% (errors of omissions= 1.2%) for Australia and 80% (errors of
omissions= 20%) for China. The user’s accuracies were 79% (errors of
commissions= 21%) for Australia, and 84.2% (errors of commis-
sions= 15.8%) for China. The study also demonstrated the ability to
compute sub-national province level cropland area statistics that ex-
plained 85% variability when compared with national statistics of
China. The 30-m cropland extent product mapped complex series of
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small and large farms of entire Australia and China accurately and
precisely and can be viewed at full resolution by browsing in www.
croplands.org. The products are made available for download at NASA’s
Land Processes Distributed Active Archive Center (LPDAAC): https://
www.lpdaac.usgs.gov/node/1282.
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