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A Collective Route to Head and 
Neck Cancer Metastasis
Arutha Kulasinghe1,7, Henri Schmidt1,7, Chris Perry2,7, Bernard Whitfield2, Liz Kenny3,4, 
Colleen Nelson5,7, Majid E. Warkiani6 & Chamindie Punyadeera   1,7

Distant metastasis (DM) from head and neck cancers (HNC) portends a poor patient prognosis. 
Despite its important biological role, little is known about the cells which seed these DM. Circulating 
tumour cells (CTCs) represent a transient cancer cell population, which circulate in HNC patients’ 
peripheral blood and seed at distant sites. Capture and analysis of CTCs offers insights into tumour 
metastasis and can facilitate treatment strategies. Whilst the data on singular CTCs have shown clinical 
significance, the role of CTC clusters in metastasis remains limited. In this pilot study, we assessed 60 
treatment naïve HNC patients for CTCs with disease ranging from early to advanced stages, for CTC 
clusters utilizing spiral CTC enrichment technology. Single CTCs were isolated in 18/60–30% (Ranging 
from Stage I-IV), CTC clusters in 15/60–25% (exclusively Stage IV) with 3/15–20% of CTC clusters 
also containing leukocytes. The presence of CTC clusters associated with the development of distant 
metastatic disease(P = 0.0313). This study demonstrates that CTC clusters are found in locally advanced 
patients, and this may be an important prognostic marker. In vivo and in vitro studies are warranted to 
determine the role of these CTC clusters, in particular, whether leukocyte involvement in CTC clusters 
has clinical relevance.

Head and neck cancers (HNC) accounts for the fifth most common non-skin cancer globally1. Despite the fact 
that primary treatment is usually both intensive and highly morbid, up to 50% of HNC patients still fail locore-
gionally or systemically. The more advanced the locoregional disease, the greater the risk of presenting with 
established metastatic disease, or harbouring micrometastatic disease, resulting in systemic failure at a later point. 
Circulating tumour cells (CTCs), which are shed from primary or secondary tumours and circulate in patients’ 
blood represent an important window into the mechanisms and characteristics of tumour metastasis2–4. They 
may also help direct locoregional and systemic treatment, by stratifying patients’ risk of systemic failure, allowing 
better selection of treatment individually.

CTCs were first described by Thomas Ashworth in 1869, as ‘cells identical with those of the cancer itself ’, and 
the field has rapidly advanced in the last decade5–8. CTCs can be measured non-invasively from the blood and 
have direct clinical application9. In 2004, the FDA approved the first CTC enumeration platform, CellSearch 
(Janssen Diagnostics)10,11. It was demonstrated on this platform that single CTCs, in a number of tumour types, 
had clinical utility10. The enumeration of CTCs and cut off values of 5 or more CTCs in 7.5 ml of blood for meta-
static breast cancer and prostate cancer has been associated with a poor prognosis and predictive of shorter pro-
gression free survival (PFS) and overall survival (OS)2,12. However, due to its inherent pre-selection of epithelial 
tumour cells expressing EpCAM, this system has shown poor sensitivity in detecting CTCs isolated from HNC 
patients bloods13,14.

Of recent, there has been a shift, from marker-based CTC assays to marker-independent assays, to capture a 
greater population of CTCs from circulation, including CTC clusters2,15–17. In a number of studies, CTC clusters 
or circulating tumour microemboli (CTM), composed of platelets, stromal and hematopoietic cells, have been 
reported13,16,18. Critically, these tumour cell aggregates, are protected from the shear stressors in the blood, and 
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are better suited to survive the journey through the circulation by cooperation of heterogeneous cell types within 
the cluster, which can include immune evading cells2,17,19. The prevalence and the number of CTC clusters can be 
underestimated due to their short detection window and lack of appropriate detection methods20. Studies have 
also documented that CTC clusters have a shorter circulation half-life, with faster entrapment within distant 
organs where metastatic growth may initiate10,19,21,22. CTC clusters may provide clues to their evolution during 
the course of cancer treatment and the mechanisms of cluster mediated treatment resistance23. CTC clusters have 
been associated with decreased metastasis-free survival and a greater metastatic capacity than single CTCs16,17,21. 
Notably, it has been shown that CTC clusters, held by plakoglobin-dependent adhesions, have arisen from oli-
goclonal expansion of tumour cell groupings, rather than aggregation or proliferation of single CTCs17. Recent 
studies suggest that CTC clusters have the ability to traverse narrow capillaries in a ‘single-file’ and retain the abil-
ity to re-form the intact cluster upon exiting, highlighting the metastatic seeding capacity of these large cellular 
aggregates that were previously thought to extravasate upon reaching narrow capillaries16,24.

To date, the role of CTC clusters, including CTM, has not been well established. Despite their biological 
importance, in comparison to single CTCs, the data on CTC clusters remains unclear. In this pilot study, we 
investigated whether CTC clusters and CTM were found in the circulation of HNC patients. This study evaluated 
60 treatment-naive HNC patients, with disease ranging from early to advanced stages, for CTC clusters using 
spiral microfluidic CTC enrichment technology. This technology enriches for CTCs by a function of cell size and 
deformability and provides a robust methodology for CTC enrichment15,25,26.

Results
Patients’ HNC disease staging ranged from early to advanced stages of HNC (Stage I-IV). CTCs and CTC clusters 
were successfully isolated using the spiral microfluidic chip. All patients had no evidence of distant metastatic 
disease upon presentation, however, at later time points (3–6 months follow up rescan), 7 stage IV patients devel-
oped lung and/or liver lesions (Fig. 1). CTC clusters were present in the blood of 6/7 patients that progressed 
to have distant disease. The patient demographics and clinicopathological features are presented in Table 1 and 
Table 2 respectively.

Single CTCs.  Single CTCs were detected in 20/60 patients (33.3%) ranging from 1–10 CTCs/5 ml (Fig. 2) 
(CTC positive: 1/6 Stage I, 1/6 Stage II, 1/9 Stage III, 17/39 Stage IV).

CTC Clusters.  CTC clusters were detected in 15/60 patients (25%) ranging from 1–3 clusters/5 ml (consisting 
of 3–13 cells) (Figs 2 and 3) (CTC positive: 0/6 Stage I, 0/6 Stage II, 0/9 Stage III, 15/39 Stage IV), with white blood 
cells present in 3/15 CTC clusters (20%) (Fig. 4).

In 10/20 patients positive for single CTCs, CTC clusters were not present. Whereas, in 5/15 patients positive 
for CTC clusters, single CTCs were not found. Patients presented with both single and CTC clusters in 10/60 
patient samples. No CTC-like (single/clusters) events were observed in the 10 normal healthy volunteer (NHV) 
cohort.

Discussion
Single CTCs have been previously reported in other solid tumour types including HNC5,6,25,27–29. CTC clusters are 
defined as ≥3 tumour cells, held in close proximity by strong cell-cell adhesions, detected in the blood of cancer 
patients2,30,31. Studies have reported that CTC clusters have a shorter half-life in blood, an increased metastatic 
capacity compared to single CTCs21,24,30, and that disrupting the interactions within clusters may provide a strat-
egy to reduce CTC cluster mediated metastasis16. An example of this would be the knockdown of plakoglobin, 
a protein which is highly expressed in CTC clusters that may facilitate in the reduction of cluster generation21,32. 
The observation of CTC clusters or CTMs has been associated with adverse outcomes33.

Figure 1.  Stacked bar graph showing single CTCs (blue), CTC clusters (green) for each of the 25 head and neck 
cancer patients positive for either/both cell types from 5 ml blood draw. CTC positive: 3/22 Stage I-III, 22/39 
Stage IV patients). Asterix (*) represent the CTC clusters with white blood cell involvement. Caret (^) refers to 
patients that developed lung or liver lesions within 3–6 month period.
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To date, the clinical utility of CTCs in HNC remains limited, and few studies have reported on the presence 
of these subpopulations of CTC clusters2,13,14,34–37. In our cross sectional pilot study, single CTCs were found 
in 33.3% of patients (Stage I-IV) and CTC clusters in 25% of patients (Stage IV). Whilst the number of single 
CTCs is comparable to previous HNC studies2,14,26,34,38–41, the presence of CTC clusters in 25% of the cohort 
is of importance42,43. Furthermore, from 7 stage IV HNC patients in the study, that progressed to develop-
ing lung/liver metastasis (3–6 months later), 6 patients presented with CTC clusters (P = 0.0313). In patients 
with the absence of CTC clusters, the predicitive value of not developing distant disease within 6 months was 
found to be 95%. Chalmers et al., 2012 has shown that HNC CTC clusters can co-express Vimentin and CD44, 
epithelial-mesenchymal transition (EMT) and stemness traits which may represent an aggressive phenotype34. It 
is not fully understood whether the expression of mesenchymal traits on CTC clusters is due to single proliferat-
ing CTCs which had undergone EMT or an EMT transformed CTC cluster44. Single CTCs, CTC clusters, or both 
cell types were found in 25/60 of the sampled HNC patient bloods. Importantly, the presence of CTC clusters did 
not depend on single CTCs being present and could be potentially used as an independent prognostic marker44.

Notably, in 3/21 of the CTC clusters from stage IV HNC patients, white blood cells were found within the clus-
ter. This feature in a number of CTC clusters is of importance as the incorporation of white blood cells (WBCs) in 
the CTC cluster may provide a mechanism by which these CTC clusters evade the immune system31,45–47. To this 
end, recent studies have highlighted that PD-L1 is frequently expressed on CTCs and may be involved in immune 
evasion45,46,48. Studies have shown that the presence of non tumour cells (e.g. platelets and leukocytes) within CTC 
clusters promotes metastasis, by protecting the clusters from the shear stressors and immune attacks44,49.

Conclusion
This pilot study challenges the notion of only reporting on individual CTCs in HNC studies. Whilst single CTCs 
were found in the screened population, a comparable population presented with CTC clusters. Whilst the role of 
CTC clusters, including clusters containing WBCs is not fully understood, studies into this area are warranted to 
understand cluster mediated immune escape and their role in metastasis.

Materials and Methods
Study design.  This prospective study was conducted across three major academic hospitals in Brisbane, 
Austrlia. Ethics approval was obtained from the Metro South and Health Service District Human Research Ethics 

Variables N

Total 60 (100%)

Gender

Male 53 (88.3%)

Female 7 (11.7%)

Age (years)

≤60 25

>60 35

Anatomic site of primary

Oral Cavity 24

Oropharyngeal 27

Larynx 5

Hypophaynx 3

Salivary Glands 1

Tumour Staging

I 6

II 6

III 9

IV 39

Distant metastases

M0 60

M1 0

HPV status

HPV-positive 26

HPV-negative 29

HPV status unknown 5

CTC status

CTC-positive (single cells) 20/60 (33.3%) (Range from 1–10CTCs/5 ml blood)

CTC-positive (clusters) 15/60 (25%) (Range from 1–3/5 ml blood)

CTC clusters including WBCs 3/15 (20%)

Table 1.  Patient demographics (n = 60). *WBCs: White blood cells.
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Pt # Gender Age HPV status Staging Site Single CTCs CTC clusters # cells per cluster Follow up FDG Pet Scan

1 f 58 negative I Oral Cavity 0 0 0

2 m 57 negative I Oral Cavity 1 0 0

3 m 69 negative I Oropharynx 0 0 0

4 m 57 negative I Oral Cavity 0 0 0

5 m 71 negative I Oral Cavity 0 0 0

6 f 64 unknown I Oral Cavity 0 0 0

7 m 78 negative II Larynx 1 0 0

8 m 55 negative II Oral Cavity 0 0 0

9 m 62 negative II Oral Cavity 0 0 0

10 m 59 positive II Oral Cavity 0 0 0

11 m 77 negative II Oral Cavity 0 0 0

12 m 64 negative II Oral Cavity 0 0 0

13 m 56 negative III Oral Cavity 0 0 0

14 m 55 negative III Oral Cavity 0 0 0

15 m 69 negative III Larynx 0 0 0

16 m 63 negative III Oropharynx 0 0 0

17 m 63 negative III Oropharynx 0 0 0

18 m 78 negative III Oral Cavity 0 0 0

19 m 66 unknown III Larynx 5 0 0

20 f 62 positive III Oral Cavity 0 0 0

21 m 63 unknown III Larynx 0 0 0

22 m 74 positive IV Oral Cavity 2 2* 13,8 lung lesion

23 m 88 negative IV Oral Cavity 1 0 0 lung lesion

24 m 81 positive IV Oropharynx 0 0 0

25 m 60 Positive IV Oropharynx 4 0 0

26 m 64 negative IV Oral Cavity 4 1 6

27 m 50 Positive IV Oropharynx 0 1 3

28 f 65 negative IV Oral Cavity 4 0 0

29 m 74 positive IV Oropharynx 3 0 0

30 f 45 positive IV Oropharynx 1 0 0

31 m 58 Positive IV Oropharynx 0 2 3,3

32 m 73 negative IV Oropharynx 0 0 0

33 m 73 negative IV Oral Cavity 0 0 0

34 m 55 positive IV oropharynx 0 0 0

35 m 56 negative IV Oropharynx 4 0 0

36 m 69 positive IV Oropharynx 0 0 0

37 m 62 positive IV Oropharynx 0 0 0

38 m 58 positive IV Oropharynx 4 1 5 lung lesion

39 m 66 positive IV Oropharynx 0 0 0

40 m 79 positive IV Oropharynx 0 0 0

41 m 66 negative IV Larynx 4 2 8,10 lung and liver lesions

42 m 50 positive IV Oral Cavity 3 2 3,5

43 m 75 positive IV Oral Cavity 0 0 0

44 m 54 positive IV Oropharynx 0 0 0

45 f 70 positive IV Oropharynx 0 0 0

46 m 53 negative IV Oropharynx 3 1 6

47 m 77 negative IV Hypophaynx 0 0 0

48 m 50 unknown IV Oral Cavity 0 0 0

49 m 65 negative IV Oropharynx 3 2* 5,7 liver lesion

50 m 58 unknown IV Oropharynx 1 1 3

51 m 74 positive IV Oropharynx 0 0 0

52 m 62 positive IV Oropharynx 10 0 0

53 m 23 negative IV Hypopharynx 0 0 0

54 m 61 positive IV Hypopharynx 0 0 0

55 m 50 positive IV Oral Cavity 0 1 3

56 f 59 negative IV Oral Cavity 0 1 4

Continued
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Committee (HREC/12/QPAH/381 and HREC/11/QPAH/331) in accordance with the National Health and 
Medical Research Council’s (NHMRC) guidelines to collect blood from the Royal Brisbane and Women’s Hospital 
(RBWH), Logan Hospital and Princess Alexandra Hospital (PAH). This study also has QUT ethics approval 
(1400000617 and 1100001420). All participants gave written informed consent and 10 ml blood samples were 
collected in BD Vacutainer K2E tubes (EDTA) from 60 HNC patients before treatment and 10 normal healthy 
volunteers (NHV), with CTC assessment made as described below.

Enrichment of CTCs using spiral technology.  An initial red blood cell (RBC) lysis (Astral Scientifix) 
was performed to the 10 ml blood sample to reduce the cellular components passing through the spiral chip. 
Thereafter, cells were centrifuged and the pellet resuspended in 10 ml of sheath buffer (1xPBS, 2 mM EDTA, 0.5% 
BSA). The spiral device was setup as previously described15,26. In brief, after the spiral chip had an initial priming 
run, the sample was loaded onto a syringe and pumped through the spiral chip at 1.7 ml/min. The CTC output 
were collected and spun down at 300 × g for 5 mins.

Pt # Gender Age HPV status Staging Site Single CTCs CTC clusters # cells per cluster Follow up FDG Pet Scan

57 m 59 positive IV Oropharynx 5 3 5,5,7 lung lesion

58 m 50 positive IV Oropharynx 4 1 3

59 m 64 positive IV Oropharynx 0 2* 7,5 lung lesion

60 m 60 negative IV Salivary 
Glands 0 0 0

Table 2.  Clinicopathological findings (n = 60). *CTC clusters with WBCs.

Figure 2.  Box and whisker plot showing the number of single CTCs (blue) and CTC clusters (green) 
(pan-CK + EGFR+ DAPI +) per 5 ml blood for the 25 CTC positive head and neck patient samples and 10 normal 
healthy volunteers. The box and represent the minimum to maximum values with all individual data points.

Figure 3.  Circulating tumour cell (CTC) clusters isolated from a head and neck cancer (HNC) patient stained 
positive for pan-cytokeratin −8, 18, 19 (Red), EGFR (Green), DAPI (Blue) and negative for CD45 (not shown). 
Scale bar represents 10 µm.
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CTC and CTC cluster characterization.  CTC enriched cells were cytospun onto glass slides and 
CTCs/CTM identified using the CellSearch antibody cocktail (Cytokeratin-8,18,19, CD45, DAPI) (Janssen 
Diagnostics). Cells were further characterized for surface EGFR using anti-EGFR antibody (AY13, Biolegend, 
San Diego). Briefly, the glass slides were incubated with an antibody cocktail of CellSearch Reagents (20 µl 
staining reagent, 20 µl permeabilization buffer, 20 µl fixation buffer, 10 µl DAPI in 120 µl PBS) for 1 hour at 
room temperature, washed 3 times in PBS, coverslipped and imaged on the Olympus IX73 epifluorescence 
microscope.

CTC and CTM parameters.  CTCs were visualized using immunofluorescence post enrichment. Cells were 
classified as CTCs after meeting the following criteria (i) high nucleus to cytoplasmic ratio (ii) morphologi-
cally larger than the background cells with intact nuclei (iii) cytokeratin-8,18,19 positive (iv) EGFR positive (v) 
CD45 negative. CTC clusters were reported as 3 or more CTCs in close proximity and CTM when CTC clusters 
included leukocytes (CD45 positive cells). The results were reported as the number of CTCs, CTC clusters, and 
CTM per 5 ml whole blood.

Statistical Analysis.  The development of distant metastatic disease (confirmed by imaging and biopsy 
where possible) were compared to CTC groups using Fisher’s exact test. All statistical analysis were performed 
using Graphpad Prism 7.0 software, were two-sided, and P-values <0.05 considered statistically significant.

Data Availability.  All data generated or analysed during this study are included in this published article.
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