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A Hybrid Evolutionary Preprocessing
Method for Imbalanced Datasets

Ginny Y. Wong∗, Frank H.F. Leung∗, Sai-Ho Ling∗∗

Abstract

Imbalanced datasets are commonly encountered in real-world classification prob-

lems. As many machine learning algorithms are originally designed for well-

balanced datasets, re-sampling has become an important step to pre-process im-

balanced data. It aims at balancing the datasets by increasing the samples of the

smaller class or decreasing the samples of the larger class,which are known as

over-sampling and under-sampling respectively. In this paper, a sampling strategy

based on both over-sampling and under-sampling is proposed, in which the new

samples of the smaller class are created based on fuzzy logic. Improvement of the

datasets are done by the evolutionary computational methodof Cross-generational

elitist selection, Heterogeneous recombination and Cataclysmic mutation (CHC)
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that under-samples both the minority and majority samples.As a result, a hybrid

preprocessing method is proposed to re-sample imbalanced datasets. The evalua-

tion is done by applying the Support Vector Machine (SVM), C4.5 decision tree

and nearest neighbor rule to train a classification model from the re-sampled train-

ing sets. From the experimental results, it can be seen that our proposed method

improves both the F-measure and AUC. The over-sampling rateand complexity

of the classification model are also compared. Our proposed method is found to

be superior to all other methods under comparison, and is more robust in different

classifiers.

1. Introduction

The classification of imbalanced datasets is a popular topicin recent years [22]

and [27]. Most of the machine learning tools, such as neural networks and support

vector machines, are originally designed for well-balanced datasets. If the dataset

is imbalanced, the performance of the classifier can be poor.The reason for this

is apparent. For example, considering a dataset with 99% of data from class A

and only 1% of data from class B, the accuracy is 99% if the classifier ignores

the data from class B and labels the whole dataset as class A. It is already very

hard to achieve an accuracy above 99% by using most of the learning algorithms.

However, the minority class of datasets is usually more important and meaningful.

For example, there are much less samples of people with a particular disease than

2



those of healthy people in a medical problem. If a classifier is needed to label

whether some people are infected or not, it is obvious that the minority class

(people with a particular disease) is the class of interest.

Problems with imbalanced datasets can be easily found in thereal world, such

as intrusion detection [9], speech recognition [26], identification of power distri-

bution fault causes [41], and bioinformatics problems [16]. There are two main

approaches to solve the problems caused by imbalanced datasets. One is the data

level approach and the other is the algorithm level approach. The data level ap-

proaches [3], [8], [18], and [28] include balancing the class distribution by over-

sampling the minority class or under-sampling the majorityclass. The algorithm

level approaches improve the existing machine learning methods by adjusting the

probabilistic estimate [38], modifying the cost per class [32], adding some penalty

constants [25], or learning from one class instead of two classes [35] and [30].

Many experiments [12], [15], and [42] show that re-samplingis a good data

level approach to handle imbalanced data. Moreover, it is more flexible as it does

not depend on the chosen classifier. Therefore, we focus on re-sampling in this pa-

per. There are three main types of strategies for re-sampling data. The first one is

over-sampling, which can be done randomly or by the method ofSynthetic Minor-

ity Over-sampling Technique (SMOTE) [8]. The second one is under-sampling,

which includes Tomek links [37] and Neighborhood Cleaning Rule (NCL) [24].

The last one is the hybrid method, which combines the two previous methods
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(over-sampling and under-sampling methods).

The importance of designing sampling strategies has been discussed in [31],

which may affect the successful learning of different classes. Hybrid re-sampling

methods, reportedly, have advantage on treating datasets with a high imbalanced

ratio [3] and [6]. Although some hybrid methods [3], [34], and [40] have been

proposed to reduce the over-generalization problem from over-sampling methods,

most of these methods are based on SMOTE and the results may belimited by

the synthetic samples of SMOTE. Therefore, a hybrid re-sampling method is pro-

posed in this paper. Fuzzy logic, which is a useful tool to treat imbalanced datasets

[12], is used to over-sample the minority class samples instead of SMOTE. A

fuzzy rule base is formed based on the samples of the minorityclass. Then, a rule

is selected randomly with reference to the effectiveness ofeach rule. The selected

rule is used as the criteria to generate a new sample of the minority class. The

above steps will repeat until the sizes of the majority classand minority class are

the same.

However, the large over-sampled training dataset will increase the complexity

of the classification model and decrease the efficiency of thelearning algorithm.

It will also cause over-generalization easily, especiallyfor some noisy dataset.

This is because the decision boundary could become narrow orthe overlapping

area between the majority class and minority class could become large after the

over-sampling. Therefore, an evolutionary algorithm (EA)is applied to both the
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synthetic samples and majority samples to under-sample thedataset. The chosen

EA is the CHC (Cross-generational elitist selection, Heterogeneous recombination

and Cataclysmic mutation) algorithm [11] since it shows theability of selecting

the most representative instances among many algorithms studied in [5].

Experiments are carried out to compare our proposed method with three SMOTE-

extended over-sampling methods, four hybrid re-sampling methods and one under-

sampling method. They are SMOTE, Safe-Level-SMOTE [4], Adaptive Synthetic

Sampling [21], SMOTE+Tomek Links [3], SMOTE+Rough Set [34], SMOTE+CHC

(sCHC) [40], agglomerative hierarchical clustering [10],and EUSCHC [14]. 44

imbalanced datasets from UCI Repository [2] are used in the experiments. The

Support Vector Machine (SVM) [7], C4.5 decision tree [33], and nearest neighbor

rule (1NN) are used as the tools for reaching a classificationmodel for each re-

sampled dataset so as to evaluate each re-sampling method. The evaluation mea-

sures are based on F-measure and area under the receiver operating characteristic

curve (AUC). Although there exists many hybrid pre-processing methods, only

some of them are like our method that consider and focus on thedata size. In this

paper, CHC is used to reduce the data size and achieve a good performance. Ad-

ditionally, the proposed method enhances the performance in the over-sampling

stage by taking advantage of the fuzzy rule base.

This paper is organized as follows: In Section 2, some preprocessing methods

and CHC are reviewed. Section 3 presents the details of the proposed re-sampling
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strategy and the evaluation method. To show the effectiveness of our proposed

approach, the comparisons with other methods and the results are discussed in

Section 4. A conclusion is drawn in Section 5.

2. Previous Work

This section describes some previous works about re-sampling methods, which

will be used to compare with our proposed method in the experiments later. The

ideas about CHC will also be discussed.

2.1. Re-sampling Methods

As discussed in the previous section, there are three main strategies for re-

sampling data.

2.1.1. Over-sampling Methods

Some instances are produced for the minority class to balance the class dis-

tribution. The simplest one is a non-heuristic method (random over-sampling)

that replicates samples of the original minority class to generate the new in-

stances. This method causes over-fitting easily since the new instances copy ex-

actly from the original minority class. Synthetic MinorityOver-sampling Tech-

nique (SMOTE) [8] is a well-known method which creates the new instances by

interpolating several minority samples that join together. This method makes use
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of each minority class sample and inserts synthetic samplesalong the line seg-

ments joining any/all of thek minority class nearest neighbors to over-sample the

minority class. An example is shown in Fig. 1. Five nearest neighbors are used

in it, wherexi is a selected sample of minority class,xi1 to xi5 are the 5 nearest

neighbors ofxi ands1 to s5 are the synthetic samples created by interpolation.

If the degree of over-sampling required is 300%, three synthetic examples are

selected randomly froms1 to s5.

Figure 1: Example of SMOTE with 5 nearest neighbors.

Since the synthetic samples provide a less specific and larger decision region,

the over-fitting problem can be reduced. However, this method may introduce

more minority synthetic samples in the area of majority class where the minority

class is very sparse with respect to the majority class. Thiscauses the problem of

over-generalization, which means the decision boundary isvery narrow or there is

a large overlapping area between the majority class and minority class. Therefore,

some methods are developed based on SMOTE to overcome this limitation, such

7



as Borderline-SMOTE (sBorder) [19], Adaptive Synthetic Sampling (ADASYN)

[21], Safe-Level-SMOTE (sSafe) [4], and SPIDERS [29].

2.1.2. Under-sampling Methods

Some instances of majority class are eliminated in order to balance the class

distribution. The simplest method is random under-sampling (RUS), which aims

to balance the datasets by randomly removing samples of the majority class. How-

ever, this method may easily remove some useful data. The other representative

methods include (i) condensed nearest neighbor rule (CNN) [20], which elim-

inates the majority class samples that are distant from the decision border, (ii)

Tomek links (TL) [37], which edits out noisy and borderline majority class sam-

ples, (iii) one-sided selection (OSS) [23], which is an integrated method of TL

and CNN, and (iv) neighborhood cleaning rule (NCL) [24], which is based on the

Wilson’s Edited Nearest Neighbor Rule (ENN) [39] to remove the majority class

samples that lead to misclassification.

2.1.3. Hybrid Methods

Although both over-sampling and under-sampling can balance the class dis-

tribution, different drawbacks like over-generalizationand removal of useful data

are also introduced. Therefore, some hybrid methods are developed to combine

SMOTE and under-sampling as a data cleaning method to reducethe problem.

Example hybrid methods include SMOTE+Tomek links (sTL), which uses TL
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to remove samples of both classes to increase the area of decision border, and

SMOTE+ENN (sENN) [3], which uses ENN to remove the samples that are mis-

classified by their nearest neighbors. Rough set theory (sRST) [34] and evolu-

tionary algorithm (sCHC) [40] have also been applied on SMOTE to select the

samples to increase the accuracy of classification.

Most of the above hybrid methods make use of SMOTE to perform over-

sampling. Clustering techniques are also developed to perform under-sampling

and over-sampling, such as agglomerative hierarchical clustering (AHC) [10].

2.2. CHC [11]

CHC is a kind of EAs that combines a selection strategy with a highly dis-

ruptive recombination operator. To avoid premature convergence and maintain

diversity, incest prevention and cataclysmic mutation areintroduced. The process

of CHC can be described as follows. Firstly, a population setof chromosomesP

is created. Each chromosomepi = (pi1, pi2, . . . , pin) is ann-dimensional vector,

which is a set of genes, wherepij is thejth gene value (j = 1, 2, . . . , n) of theith

chromosome in the population (i = 1, 2, . . . , m); m is the population size andn

is the number of genes.

Secondly, the chromosomes are evaluated by a defined fitness function. The

form of fitness function depends on the application. Thirdly, an intermediate pop-

ulation set of chromosomesC, which is of the same size asP , is generated by
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copying all members ofP in a random order.

Then, a uniform crossover (HUX) operator is applied onC to formC ′. HUX

exchanges half of the genes randomly between the chromosomes one by one to

formC ′. CHC also uses an additional method for incest prevention. Before apply-

ing HUX to the chromosomes, the Hamming distance between them is calculated.

If half of that distance is larger than a difference threshold d, HUX is applied;

otherwise these two chromosomes are deleted fromC. Therefore, the size ofC ′

may be smaller than that ofP orC. The initial thresholdd is set atn/4. After C ′

has formed, it is evaluated by the fitness function and an elitist selection is taken.

Only the best chromosomes from bothP andC ′ are selected to form the offspring

population in the next generation. If the offspring population is the same asP , the

difference thresholdd is decreased by one.

CHC is different from the traditional genetic algorithm. Mutation is not per-

formed at the recombination stage. CHC performs partial reinitialization (diver-

gence) when the search becomes trapped (i.e., the difference thresholdd becomes

zero and no new offspring population is formed for several generations). The pop-

ulation is reinitialized, based on the best chromosome, by changing the elements’

values randomly with a user-defined divergence rateDrate. For example, ifDrate

equals to 0.35, the values of 35% elements will be changed randomly. The search

is then resumed with a new difference thresholdd = Drate ∗ (1−Drate) ∗ n. This

process is called cataclysmic mutation.
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CHC has shown the ability of selecting the most representative instances among

the other algorithms studied in [5]. Therefore, it is chosenas the algorithm to im-

prove the outcome of over-sampling in this paper.

3. Methodology

In this section, the proposed hybrid preprocessing method and the evaluation

methods used in this paper are discussed. The proposed method involves two

stages. The minority samples of the training sets are firstlyover-sampled based

on fuzzy logic to form a fuzzy rule base (FRB). To improve the performance, CHC

is then implemented to reduce both the synthetic samples andmajority samples.

3.1. Fuzzy Rule Base (FRB)

In this paper, let thepositive class be the minority class and onlyλ training

samples (Xα) of positive class are considered, whereXα = (xα1, . . . , xαγ) is an

γ-dimensional vector,α = 1, 2, . . . , λ andxαβ is theβth attribute value(β =

1, 2, . . . , γ) of theαth training sample. Theθth fuzzy if-then rule is written as

follows:

Ruleθ : IF z1 isAθ
1 AND . . . AND zγ isAθ

γ

THEN class = positive withwθ (1)

whereAθ
β is a fuzzy term of theθth rule corresponding to the attributezβ, β =

(1, 2, . . . , γ) andz = (z1, z2, . . . , zγ) is aγ-dimensional attribute vector, andwθ
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is the rule weight. The regular triangular membership functions are used for the

fuzzy terms. In this paper, the fuzzy termsAθ
β are derived based on the samples

of positive class. The minimum and maximum values of each attribute are first

found. The fuzzy terms are the triangular membership functions within the range

of each attribute. The fuzzy terms also depend on the number of labels. Since

regular triangular membership functions are used, the fuzzy terms are distributed

evenly within the range of each attribute.

The fuzzy rules are generated based on the samples of positive class. For

each sample, the label with the highest membership value is selected to form the

corresponding rule for each attribute. The maximum number of rules depends on

the number of labels and attributes.

The rule weightwθ is used to reflect the degree of matching of each fuzzy rule

over all the positive samples, so that the importance of eachrule can be evaluated.

First, the fuzzy value of each sample is calculated. The fuzzy value ofXα for the

θth fuzzy rule is defined as follows:

µAθ(Xα) = T (µAθ
1

(xα1), . . . , µAθ
γ
(xαγ)), (2)

where the product T-norm is used. The rule weight (wθ) is calculated by adding

all the fuzzy values of samples.

wθ =
λ∑

α=1

(µAθ(Xα)). (3)
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After the rule base of the positive class is generated, the rules are randomly

drawn based on the rule weight. The rule with a higher rule weight will have a

higher probability to be chosen. Then, a new sample is generated within the area

of the selected rule. These processes are repeated until thenumber of positive

samples is the same as that of the negative samples.

To illustrate the idea more clearly, Fig. 2 shows the distribution of two classes

with two attributes as an example of the formulation of fuzzyrules. The x-axis

and y-axis govern the values of the two different attributesand regular triangular

membership functions with five labels are used. The circle dots correspond to the

negative class and the square dots correspond to the positive class. The dashed

lines show the minimum or maximum value of the correspondingattribute of the

positive samples. As only the attribute vectors of the positive class are considered

to generate fuzzy rules, totally ten rules can be formed in this example:
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Rule1: IF z1 isA1
1 = L1 1 AND z2 isA1

2 = L2 4. THEN class = positive with0.897

Rule2: IF z1 isA2
1 = L1 2 AND z2 isA2

2 = L2 3. THEN class = positive with1.147

Rule3: IF z1 isA3
1 = L1 2 AND z2 isA3

2 = L2 4. THEN class = positive with1.508

Rule4: IF z1 isA4
1 = L1 3 AND z2 isA4

2 = L2 3. THEN class = positive with1.230

Rule5: IF z1 isA5
1 = L1 3 AND z2 isA5

2 = L2 4. THEN class = positive with2.344

Rule6: IF z1 isA6
1 = L1 3 AND z2 isA6

2 = L2 5. THEN class = positive with1.607

Rule7: IF z1 isA7
1 = L1 4 AND z2 isA7

2 = L2 1. THEN class = positive with0.727

Rule8: IF z1 isA8
1 = L1 4 AND z2 isA8

2 = L2 4. THEN class = positive with1.319

Rule9: IF z1 isA9
1 = L1 4 AND z2 isA9

2 = L2 5. THEN class = positive with1.731

Rule10: IF z1 isA10
1 = L1 5 AND z2 isA10

2 = L2 4. THEN class = positive with1.399

wherez1 andz2 represent Attribute 1 and Attribute 2 for the x-axis and y-axis

respectively in Fig. 2,L1 i is thei-th label ofz1 attribute,L2 i is thei-th label

of z2 attribute. Rule 5 has the highest rule weight and rule 7 has the lowest rule

weight in this example.

For generating the synthetic samples, a rule out of these tenrules is chosen

with the probability of selection depending on the rule weight. Then, this rule sets

the criteria of the highest and lowest value of each attribute. The new sample is

generated randomly within these criteria. This process is repeated until the num-
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ber of the positive class is the same as that of the negative class. Fig. 3 shows the

samples distribution after over-sampling. The triangle dots represent the synthetic

samples. It is found that the spread of the synthetic samplesis similar to that of

the original positive samples (shown as the square dots). The synthetic samples in

Fig. 3 are dense in the area of rule 5.

Figure 2: Example of the distribution of imbalanced dataset. The y-axis represents the values of

z2 and x-axis represents the value ofz1.

3.2. Setting of CHC

After the over-sampling, the number of minority samples is the same as that

of majority samples and CHC is then applied. There are two important issues that

need to be addressed before the algorithm is employed: the representation of each
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Figure 3: Distribution of the samples after over-sampling.The y-axis represents the values ofz2

and x-axis represents the value ofz1.

chromosome and the definition of fitness function. Fig. 4 shows the block diagram

of the process of FRB+CHC.

3.2.1. Chromosome Representation

CHC is used to reduce the synthetic samples as well as the majority class sam-

ples. Therefore, the chromosomes are to represent subsets of these samples. It can

be carried out by a binary representation. Each chromosome is ann-dimensional

vector. In this section,n is the number of synthetic samples plus majority class

samples. Each vector element shows whether the corresponding sample exists in

the subset of the training set or not. Therefore, there are two possible values for
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Figure 4: Block Diagram of FRB+CHC.

each element: 0 and 1. If the value is 1, the corresponding sample is included in

the subset of the training set. If the value is 0, the sample does not exist in the

subset.

3.2.2. Fitness function

In this study, the k-NN classifier is used as the evaluation method of CHC to

obtain the subset with the highest classification rate. Normally, accuracy (ratio

of correctly classified samples to total number of samples) would be used as the

measure of classification rate. However, it may cause difficulty for the imbalanced

datasets when doing testing later since the correct classification rate of the major-

ity samples may affect the accuracy more significantly than that of the minority

samples. Therefore, some other measures are used in this paper. These measures

are commonly employed to analyze problems with imbalanced datasets.

Firstly, precision and recall are introduced [17]. Their definitions are given as
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follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

whereTP is the number of true positives,FP is the number of false positives

andFN is the number of false negatives. A high value of precision indicates that

the predicted positive samples are most likely relevant. A high value of recall

indicates that most of the positive samples can be predictedcorrectly.

A popular evaluation metric for imbalanced problems isF − measure [17],

which is a function of precision and recall. In principle,F −measure represents

a harmonic mean between precision and recall. A high value ofF − measure

means both the precision and recall values are high and do notdiffer very much.

It is an important measure for imbalanced datasets since a high value of it can

imply that the method classifies the positive samples correctly at a high rate with

little misclassified negative samples. It is defined as follows:

F −measure =
2 ∗ Precision ∗Recall

P recision+Recall
(6)

The area under the receiver operating characteristic curve(AUC) is also com-

monly used to measure the performance of classification. TheAUC measure [13]

is the probability of correctly identifying a random sample, and it can be defined
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as follows:

AUC =
1 +Recall − FPrate

2
(7)

whereRecall is defined in (5) andFPrate = FP
FP+TN

, TN is the number of true

negatives.FPrate defines the percentage of true negatives cases misclassifiedas

positives. A high value ofAUC implies small values ofFN andFP , meaning

that the corresponding classifier is effective.

Since bothF − measure andAUC are important measures on imbalanced

datasets, a multi-objective fitness function is used here. The chromosome with

both higher values ofF − measure andAUC obviously has a higher rank. If

a chromosomeX has a higher value ofF − measure (FX > FY ) and a lower

value ofAUC (AX < AY ) than that of chromosomeY , the difference between

the chromosomes’F − measure (|FX − FY |) and the difference between the

chromosomes’AUC (|AX −AY |) will be compared. If|FX −FY | > |AX −AY |,

chromosomeX will be regarded as a better one; otherwise chromosomeY will

be regarded as a better one. The above setting is also appliedin sCHC for the

comparison in Section 4.

3.3. Evaluation

3.3.1. F −measure andAUC measures

To show the performance of our proposed method,F − measure in (6) and

AUC in (7) are used. The main drawback of over-sampling or hybridsampling
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methods is that the number of training samples are increasedgreatly. This may

cause the increase of complexity of the learning model. Therefore, the over-

sampling rates of different methods are also compared. Define:

Rateover =
(Nsampled −Noriginal)

Noriginal

∗ 100% (8)

whereNsampled is the number of samples in the re-sampled training set andNoriginal

is the number of samples in the original training set. The over-sampling rate in

(8) shows the increase rate of the number of the training samples. When a sup-

port vector machine is used to form the classification mode, the increase rate of

the support vectors can be used to evaluate the complexity ofthe learning model.

This rate is calculated based on the support vectors generated.

RateSV =
(SVsampled − SVoriginal)

SVoriginal

(9)

whereSVsampled is the number of support vectors trained by the re-sampled train-

ing set andSVoriginal is the number of support vectors trained by the original

training set. It should be noted that the CHC fitness evaluation for data size reduc-

tion (by k-NN) and the training of the classification model based on the resampled

data (by SVM) are two separated processes. K-NN is used in thefitness evaluation

because it is simple with minimal computation effort. SVM isa commonly used

method to obtain the classification model.
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4. Experimental Study

In this section, we present the experiments that are carriedout to compare

our proposed method with other hybrid sampling methods and the CHC under-

sampling method. The datasets used can be found in UCI Repository [2].

The experiments involve different kinds of hybrid methods,including SMOTE,

ADASYN, sTL, sSafe, sRST, sCHC, AHC and our proposed method,which is

named as Fuzzy Rule Base+CHC (FRB+CHC). CHC, which is used asan under-

sampling method in [14] (EUSCHC), is also compared in the experiment. To

measure the performance of the preprocessing methods, the same learning tool

should be applied among all the experiments. In this study, three different tools

are used. They are Support Vector Machine (SVM), 1 Nearest Neighbor (1NN),

and C4.5 decision tree. The programs of all testing methods and the learning tools

are based on KEEL, which is an open source software availablein the Web [1].

F −measure andAUC are used as measures to analyze the results. The average

values of these measures for each method will be calculated.As the expansion of

re-sampled training datasets may increase the computational time and complex-

ity of the classification model, the over-sampling rate and the number of support

vectors formed from SVM will also be compared.
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4.1. Datasets

To study the methods on different datasets, 44 datasets withdifferent imbal-

ance ratio (IR) are chosen. IR is the ratio of the number of majority class to the

number of minority class. Table 1 shows the details of the selected datasets, where

the number of samples (Nsamp.), the number of attributes (Nattr.), the distribution

of the minority and majority classes, and IR for each datasetcan be found.

Table 1: Details of the Selected Imbalanced Datasets.

Dataset Nsamp. Nattr. Min., Maj.(%) IR

ecoli034vs5 200 7 (10, 90) 9

yeast2vs4 514 8 (9.92, 90.08) 9.08

ecoli067vs35 222 7 (9.91, 90.09) 9.09

ecoli0234vs5 202 7 (9.9, 90.1) 9.1

glass015vs2 172 9 (9.88, 90.12) 9.12

yeast0359vs78 506 8 (9.88, 90.12) 9.12

yeast0256vs3789 1004 8 (9.86, 90.14) 9.14

yeast02579vs368 1004 8 (9.86, 90.14) 9.14

ecoli046vs5 203 6 (9.85, 90.15) 9.15

ecoli01vs235 244 7 (9.83, 90.17) 9.17

ecoli0267vs35 224 7 (9.82, 90.18) 9.18

glass04vs5 92 9 (9.78, 90.22) 9.22

ecoli0346vs5 205 7 (9.76, 90.24) 9.25

ecoli0347vs56 257 7 (9.73, 90.27) 9.28

yeast05679vs4 528 8 (9.66, 90.34) 9.35

vowel0 988 13 (9.01, 90.99) 9.98

ecoli067vs5 220 6 (9.09, 90.91) 10
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Dataset Nsamp. Nattr. Min., Maj.(%) IR

glass016vs2 192 9 (8.85, 91.15) 10.29

ecoli0147vs2356 336 7 (8.63, 91.37) 10.59

led7digit02456789vs1 443 7 (8.35, 91.65) 10.97

ecoli01vs5 240 6 (8.33, 91.67) 11

glass06vs5 108 9 (8.33, 91.67) 11

glass0146vs2 205 9 (8.29, 91.71) 11.06

glass2 214 9 (7.94, 92.06) 11.59

ecoli0147vs56 332 6 (7.53, 92.47) 12.28

cleveland0vs4 177 13 (7.34, 92.66) 12.62

ecoli0146vs5 280 6 (7.14, 92.86) 13

shuttlec0vsc4 1829 9 (6.72, 93.28) 13.87

yeast1vs7 459 7 (6.53, 93.47) 14.3

glass4 214 9 (6.07, 93.93) 15.47

ecoli4 336 7 (5.95, 94.05) 15.8

pageblocks13vs4 472 10 (5.93, 94.07) 15.86

abalone918 731 8 (5.65, 94.25) 16.4

glass016vs5 184 9 (4.89, 95.11) 19.44

shuttlec2vsc4 129 9 (4.65, 95.35) 20.5

yeast1458vs7 693 8 (4.33, 95.67) 22.1

glass5 214 9 (4.2, 95.8) 22.78

yeast2vs8 482 8 (4.15, 95.85) 23.1

yeast4 1484 8 (3.43, 96.57) 28.1

yeast1289vs7 947 8 (3.16, 96.84) 30.57

yeast5 1484 8 (2.96, 97.04) 32.73

ecoli0137vs26 281 7 (2.49, 97.51) 39.14

yeast6 1484 8 (2.36, 97.64) 41.4
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Dataset Nsamp. Nattr. Min., Maj.(%) IR

abalone19 4174 8 (0.77, 99.23) 129.44

4.2. Setup of Experiment

For over-sampling, the rules of the minority samples are associated with reg-

ular triangular membership functions with five fuzzy terms.For CHC, the values

of the parameters are:

• Population size: 50.

• Divergence rate: 0.35.

• Threshold decreasing rate: 0.001.

• k of k-NN classifier used as evaluation: 1.

• Number of evaluations: 5,000.

In this paper, SVM, 1NN, and C4.5 are used to weigh the influence of each

preprocessing method. For SVM, a radial basis function (RBF) is used as the

kernel since a non-linear classification model is needed andRBF is a common

kernel to handle this problem. The RBF is defined as follows:

RBF = exp(−
1

σ
‖xi − x‖2) (10)

whereσ > 0 is the parameter to determine the width of the radial basis function.

It controls the flexibility of the classifier. Whenσ decreases, the flexibility of
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the resulting classifier in fitting the training data increases, and this might lead to

over-fitting easily. The value ofσ is set as 0.01. The tradeoff between training

error and margin of SVM is set as 100. The above values are chosen through

experiments. For C4.5, the confidence level is set as 0.25, the minimum number

of item-sets per leaf is set to 2 and pruning is used as well to obtain the final tree.

For 1NN, the Euclidean distance metric is used.

A 5-fold cross validation model is used to compare the classification results

from different preprocessing methods. Each dataset are first divided into five parts

randomly. Four of them are combined to form a training set andthe remaining sub-

set forms a testing set. The process is then repeated five times, so that each subset

is used once as a testing set. All the methods involve some random parameters,

so five experiments are carried out for each 5-fold cross validation model and the

average value are calculated as the results, i.e. totally 25experiments were done.

4.3. Results

4.3.1. F −measure andAUC measures

Tables 2 and 3 show the SVM results onF − measure andAUC for each

re-sampling method on the 44 datasets respectively. The results of the original

datasets are shown in the second column and the best value foreach dataset are

highlighted in bold. The last row shows the average value of each sampling

method for the datasets. The performance of the FRB over-sampling method
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are also included (in the rightmost column) for comparison with FRB+CHC. It

can be seen that the average values ofF − measure andAUC in both FRB

and FRB+CHC are higher than other methods. The performance of sCHC and

FRB+CHC are similar. This shows that CHC has good performance as a data

cleaning method after over-sampling, especially for the results inF −measure.

TheAUC values of SMOTE, sTL, sSafe, sRST and sCHC are similar since they

all use SMOTE to perform over-sampling. ADASYN gets the lowest average val-

ues ofF−measure, which means the precision is low and the difference between

precision and recall is large.

In this experiment, the performance of FRB and FRB+CHC is very similar,

which shows the advantages of FRB over the other hybrid or over-sampling meth-

ods. However, the data size will be very large if only FRB is used as the pre-

processing method. FRB+CHC can reduce the data size withouta large effect to

the performance. Therefore, only FRB+CHC will be considered in the following

section.

Table 4 shows the average rankings by means ofF − measure andAUC

using Friedman’s method [36]. The highest value of each dataset is ranked as 1.

If a certain method obtains the ranking 3, 6, 2, and 1 on four datasets, the average

ranking is(3 + 6 + 2 + 1)/4 = 3. Therefore, a lower average ranking indicates

that the corresponding method is better among the other methods. FRB+CHC

obtains the best ranking byAUC and sCHC obtains the best ranking byF −
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measure. Note that the highest average values ofAUC or F − measure do

not imply the best ranking results since the ranking shows the comparison results

among all the methods of each dataset. For example, EUSCHC has the lowest

AUC average values but its ranking is better than ADASYN. Since EUSCHC

is an under-sampling method, it easily ignores some useful samples of majority

class.
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Table 2: SVM: Average F-measure of Testing Datasets among Different Sampling Methods.

Dataset Original SMOTE ADASYN sTL sSafe sRST sCHC EUSCHC AHC FRB+CHC FRB
ecoli034vs5 0 0.5629 0.2667 0.5901 0.5578 0.5007 0.5054 0.6591 0.3111 0.5829 0.6337
yeast2vs4 0.6384 0.6824 0.5446 0.6683 0.6824 0.6787 0.6996 0.7418 0.6937 0.7015 0.6971

ecoli067vs35 0.0000 0.4540 0.3975 0.5122 0.4609 0.4447 0.5108 0.4758 0.3692 0.4308 0.6171
ecoli0234vs5 0.0000 0.5176 0.2917 0.5240 0.5012 0.4734 0.5577 0.6682 0.2667 0.6142 0.6462
glass015vs2 0.0000 0.3094 0.3181 0.3103 0.3301 0.3419 0.2137 0.1015 0.2850 0.2049 0.2275

yeast0359vs78 0.3481 0.3541 0.2965 0.3379 0.3580 0.3529 0.4117 0.3481 0.3666 0.3470 0.3481
yeast0256vs3789 0.1782 0.5282 0.4391 0.5206 0.5286 0.5325 0.5624 0.6033 0.5263 0.5899 0.2589
yeast02579vs368 0.8152 0.7199 0.5213 0.7179 0.7189 0.7201 0.7437 0.7487 0.7264 0.7747 0.85

ecoli046vs5 0.0000 0.3901 0.2000 0.3958 0.4084 0.4214 0.3827 0.6786 0.0667 0.5225 0.6584
ecoli01vs235 0.0000 0.4325 0.1648 0.4396 0.4352 0.4264 0.4844 0.5691 0.1385 0.4224 0.5536
ecoli0267vs35 0.0000 0.3158 0.2269 0.3257 0.2902 0.3253 0.3856 0.4035 0.1469 0.4592 0.5337

glass04vs5 1.0000 0.8793 0.8679 0.8747 0.9228 0.9209 0.9933 0.7854 1.0000 0.9631 0.9655
ecoli0346vs5 0.0000 0.5446 0.3636 0.6397 0.5741 0.5642 0.5985 0.7382 0.3404 0.6766 0.6768
ecoli0347vs56 0.0000 0.5743 0.4743 0.5628 0.5576 0.5104 0.5913 0.6669 0.1846 0.5176 0.5913
yeast05679vs4 0.0000 0.4327 0.4265 0.4282 0.4333 0.4250 0.5066 0.4996 0.4189 0.4786 0.5355

vowel0 1.0000 0.9936 0.9796 0.9905 0.9890 0.9816 0.9833 0.9396 1.0000 0.9060 0.9387
ecoli067vs5 0.0000 0.3260 0.2973 0.3463 0.3444 0.3225 0.3787 0.6848 0.2308 0.6173 0.6873
glass016vs2 0.0000 0.3196 0.3203 0.2686 0.3048 0.2963 0.2102 0.1395 0.3404 0.2001 0.2857

ecoli0147vs2356 0.0000 0.4230 0.3014 0.4960 0.4354 0.4435 0.5021 0.2230 0.0500 0.4043 0.5074
led7digit02456789vs1 0.7748 0.5707 0.6197 0.5226 0.5766 0.5156 0.7308 0.5691 0.5961 0.6746 0.7224

ecoli01vs5 0.0000 0.4138 0.2588 0.4482 0.4103 0.4946 0.4392 0.4140 0.2069 0.6843 0.7811
glass06vs5 1.0000 0.9057 0.9655 0.8953 0.8857 0.9083 0.9866 0.8654 1.0000 0.9783 0.9474

glass0146vs2 0.0000 0.2463 0.2512 0.2247 0.2473 0.2814 0.2823 0.1747 0.2931 0.2597 0.2768
glass2 0.0000 0.2477 0.2362 0.2329 0.2478 0.2988 0.2484 0.1131 0.3233 0.2019 0.26
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Dataset Original SMOTE ADASYN sTL sSafe sRST sCHC EUSCHC AHC FRB+CHC FRB
ecoli0147vs56 0.0000 0.5757 0.4148 0.6288 0.6022 0.5103 0.5164 0.6148 0.0571 0.6762 0.7609
cleveland0vs4 0.0000 0.1539 0.1556 0.1560 0.1263 0.1600 0.0923 0.2621 0.0000 0.1687 0.2030
ecoli0146vs5 0.0000 0.4280 0.1920 0.4112 0.4356 0.4422 0.3762 0.6993 0.3000 0.7456 0.7758
shuttlec0vsc4 0.9490 0.9740 0.8937 0.9749 0.9740 0.9817 0.9724 0.9707 0.9675 0.7964 0.8763

yeast1vs7 0.0000 0.2926 0.2870 0.2865 0.2939 0.2738 0.3120 0.0000 0.2861 0.3161 0.3381
glass4 0.8560 0.6633 0.6565 0.6590 0.6613 0.6463 0.8190 0.7164 0.8471 0.7273 0.7197
ecoli4 0.7500 0.6352 0.5082 0.6354 0.6389 0.6491 0.7931 0.7372 0.7109 0.7356 0.6617

pageblocks13vs4 0.2270 0.2033 0.1907 0.2010 0.2034 0.1894 0.3563 0.0832 0.2270 0.1816 0.1907
abalone918 0.0444 0.4522 0.4172 0.4206 0.4474 0.4570 0.5221 0.2643 0.5303 0.5732 0.5561
glass016vs5 0.6650 0.5674 0.6592 0.5601 0.5668 0.6551 0.7548 0.4688 0.7273 0.7694 0.6857
shuttlec2vsc4 0.4 0.7152 0.7152 0.7152 0.7152 0.7288 0.6103 0.1593 0.4 0.6126 0.7395
yeast1458vs7 0 0.1318 0.1261 0.1260 0.1323 0.1344 0.1585 0 0.1398 0.1557 0.1187

glass5 0.7 0.5937 0.4551 0.5495 0.5932 0.4838 0.6583 0.3542 0.7 0.7533 0.8
yeast2vs8 0.6967 0.5972 0.2079 0.5905 0.5989 0.5984 0.7068 0.6967 0.6570 0.6967 0.6967

yeast4 0 0.2703 0.2464 0.2648 0.2715 0.2711 0.3076 0.0308 0.2714 0.3533 0.3398
yeast1289vs7 0 0.1395 0.1363 0.1357 0.1397 0.1308 0.1851 0 0.1488 0.1967 0.1776

yeast5 0 0.4843 0.4611 0.4742 0.4818 0.4751 0.5146 0.5802 0.5012 0.4476 0.4415
ecoli0137vs26 0 0.3976 0.2400 0.4681 0.4292 0.3636 0.4306 0.3158 0.1 0.3465 0.3826

yeast6 0 0.2698 0.2014 0.2606 0.2705 0.2670 0.3577 0 0.2756 0.3288 0.2759
abalone19 0 0.0408 0.0406 0.0403 0.0409 0.0486 0.0437 0 0.0411 0.0482 0.0445

Mean 0.2510 0.4711 0.3917 0.4734 0.4733 0.4693 0.5090 0.4492 0.4039 0.5179 0.5451
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Table 3: SVM: Average AUC of Testing Datasets among Different Sampling Methods.

Dataset Original SMOTE ADASYN sTL sSafe sRST sCHC EUSCHC AHC FRB+CHC FRB
ecoli034vs5 0.4972 0.7069 0.5889 0.7236 0.7047 0.6799 0.6747 0.8111 0.5972 0.8217 0.8472
yeast2vs4 0.7362 0.8924 0.8788 0.8900 0.8931 0.8892 0.8656 0.8804 0.8885 0.8757 0.8424

ecoli067vs35 0.5000 0.6860 0.6625 0.7063 0.6790 0.6700 0.6943 0.6675 0.6200 0.7860 0.8325
ecoli0234vs5 0.4972 0.6978 0.6140 0.7081 0.6943 0.6820 0.7181 0.8014 0.5917 0.8289 0.8112
glass015vs2 0.5000 0.7152 0.7352 0.7284 0.7376 0.7496 0.5905 0.4911 0.6484 0.5530 0.575

yeast0359vs78 0.6067 0.7344 0.6936 0.7281 0.7391 0.7334 0.7289 0.6067 0.7371 0.6062 0.6067
yeast0256vs3789 0.5486 0.7960 0.7734 0.7972 0.7965 0.7993 0.8038 0.8064 0.7918 0.7691 0.5761
yeast02579vs368 0.8695 0.9057 0.8610 0.9085 0.9035 0.9071 0.9041 0.9135 0.9052 0.9125 0.9078

ecoli046vs5 0.4973 0.6496 0.5614 0.6488 0.6574 0.6696 0.6395 0.7461 0.5195 0.7880 0.8427
ecoli01vs235 0.4955 0.6606 0.5377 0.6628 0.6598 0.6616 0.6758 0.7423 0.5405 0.7866 0.8659
ecoli0267vs35 0.5000 0.6073 0.5826 0.6093 0.6020 0.6113 0.6405 0.7035 0.5450 0.8176 0.8483

glass04vs5 1.0000 0.9754 0.9754 0.9728 0.9842 0.9830 0.9988 0.9570 1.0000 0.9732 0.9938
ecoli0346vs5 0.4973 0.6974 0.6115 0.7421 0.7124 0.7127 0.7170 0.7878 0.6169 0.8459 0.8656
ecoli0347vs56 0.5000 0.7569 0.7028 0.7594 0.7444 0.7294 0.7511 0.8071 0.5579 0.7888 0.8310
yeast05679vs4 0.5000 0.7869 0.7902 0.7862 0.7861 0.7797 0.7934 0.7860 0.7754 0.7899 0.7786

vowel0 1.0000 0.9993 0.9978 0.9990 0.9988 0.9981 0.9982 0.9933 1.0000 0.9892 0.9933
ecoli067vs5 0.5000 0.6103 0.6100 0.6155 0.6175 0.6106 0.6245 0.8000 0.5725 0.8125 0.845
glass016vs2 0.5000 0.7529 0.7529 0.7106 0.7464 0.7322 0.6239 0.5733 0.7517 0.6114 0.6552

ecoli0147vs2356 0.4984 0.6509 0.6154 0.6920 0.6580 0.6629 0.6891 0.6504 0.5102 0.8054 0.8441
led7digit02456789vs1 0.8788 0.8819 0.8867 0.8799 0.8856 0.8650 0.8946 0.9055 0.8600 0.8844 0.8921

ecoli01vs5 0.4977 0.6602 0.5864 0.6786 0.6566 0.6875 0.6659 0.7091 0.5727 0.8159 0.8432
glass06vs5 1.0000 0.9774 0.9950 0.9574 0.9629 0.9436 0.9895 0.9397 1.0000 0.9840 0.95

glass0146vs2 0.5000 0.6823 0.6849 0.6594 0.6821 0.7142 0.6717 0.5519 0.7153 0.6336 0.6808
glass2 0.5000 0.7132 0.6981 0.6938 0.7127 0.7607 0.6648 0.5248 0.7868 0.6078 0.6875

3
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Dataset Original SMOTE ADASYN sTL sSafe sRST sCHC EUSCHC AHC FRB+CHC FRB
ecoli0147vs56 0.5000 0.7160 0.6352 0.7460 0.7335 0.7053 0.6905 0.7722 0.5167 0.8578 0.9171
cleveland0vs4 0.4969 0.5622 0.5575 0.5526 0.5321 0.5421 0.5210 0.5991 0.4811 0.5857 0.6034
ecoli0146vs5 0.4981 0.6440 0.5654 0.6394 0.6467 0.6558 0.6260 0.7731 0.5962 0.8371 0.8442
shuttlec0vsc4 0.9515 0.9747 0.9872 0.9755 0.9747 0.9845 0.9731 0.9715 0.9749 0.9812 0.9897

yeast1vs7 0.5000 0.7583 0.7744 0.7632 0.7602 0.7500 0.6777 0.5000 0.7261 0.6932 0.7579
glass4 0.9092 0.9148 0.9176 0.9113 0.9143 0.9163 0.9333 0.9251 0.9350 0.9230 0.8942
ecoli4 0.8000 0.9101 0.9149 0.9143 0.9171 0.9426 0.9244 0.9528 0.9279 0.9368 0.9231

pageblocks13vs4 0.5700 0.7528 0.7320 0.7493 0.7531 0.7298 0.6847 0.5609 0.5689 0.7141 0.732
abalone918 0.5125 0.8961 0.8860 0.8863 0.8939 0.8916 0.8745 0.5792 0.9144 0.8597 0.83
glass016vs5 0.8443 0.8856 0.9186 0.8791 0.8853 0.9221 0.8979 0.8071 0.8943 0.9186 0.8886
shuttlec2vsc4 0.7 0.9548 0.9548 0.9548 0.9548 0.9590 0.9440 0.6957 0.7 0.9493 0.9632
yeast1458vs7 0.5 0.6427 0.6373 0.6396 0.6444 0.6539 0.6638 0.5 0.6546 0.5958 0.5954

glass5 0.8451 0.8760 0.8256 0.8807 0.8845 0.8515 0.8515 0.8768 0.8451 0.8967 0.8927
yeast2vs8 0.7739 0.7628 0.7242 0.7614 0.7633 0.7770 0.7852 0.7739 0.8381 0.7739 0.7739

yeast4 0.5 0.8156 0.8102 0.8227 0.8160 0.8124 0.8177 0.5093 0.8127 0.7991 0.7663
yeast1289vs7 0.5 0.7141 0.7145 0.7133 0.7109 0.6968 0.7201 0.5 0.7202 0.6990 0.7453

yeast5 0.5 0.9668 0.9635 0.9655 0.9665 0.9655 0.9683 0.7976 0.9691 0.9621 0.9611
ecoli0137vs26 0.5 0.7118 0.5927 0.7390 0.7413 0.6909 0.7294 0.6427 0.5463 0.6655 0.6945

yeast6 0.5 0.8742 0.8597 0.8716 0.8744 0.8736 0.8735 0.5 0.8761 0.8880 0.8880
abalone19 0.5 0.7177 0.7170 0.7163 0.7180 0.7715 0.7166 0.5 0.6881 0.7016 0.7063

Mean 0.6141 0.7784 0.7519 0.7805 0.7795 0.7801 0.7703 0.7248 0.7339 0.8020 0.8133
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Table 4: Friedman Rankings of AUC and F-measure.

Preprocessing Method AUC F-measure

Original 8.841 7.568

SMOTE 4.636 5.341

ADASYN 6.159 7.341

sTL 4.864 5.636

sSafe 4.624 4.932

sRST 4.659 5.318

sCHC 4.886 3.477

EUSCHC 6 5.659

AHC 5.773 5.5

FRB+CHC 4.455 3.886

Although the hybrid sampling methods can get better results, the main draw-

back of them is that the size of training set is expanded greatly. If IR of the dataset

is large, the size of the re-sampled training set can be nearly double of the original

one. This drawback may increase the computational time and complexity of the

learning model. Table 5 shows the over-sampling rates of different methods on

each dataset and the mean rate of each method. A negative value means the size

of re-sampled training set is smaller than that of original one. A value greater

than 100% means the size of re-sampled training set is more than 2 times of the

original set. Both sCHC and FRB+CHC shrink most of the dataset while the over-

sampling rates of the other methods are similar. This shows that both sCHC and

FRB+CHC can use less training samples to achieve high performance. Table 6
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shows the details of the re-sampled training sets after applying FRB+CHC. It re-

veals the decrease rate of the majority class, the increase rate of the minority class,

and the updated IR. The IR values of re-sampled training setsare not always equal

to one because CHC makes use of a fitness function to select a subset of samples.

The range of IR is between 0.9 and 1.5.

Table 7 shows the increase rate of the number of support vectors used to form

the classification model. The number of support vectors can reflect the complexity

of the classification model formed by SVM. When the number of support vectors

is smaller, the classification model is more easily applied.Some negative values

can be found since the number of support vectors for the re-sampled dataset is less

than that of the original dataset. Both sCHC and FRB+CHC havethe smallest

increase rate of the number of support vectors on average. The average number of

support vectors are only increased by around 0.776 times and0.948 times of the

original datasets; while most of the other methods have the number increased by

over 2 times.

The results of sCHC and FRB+CHC are similar from the above tables. To

show the difference of these two methods, Fig. 5 reveal the averageAUC results

obtained from the training and testing sets (sorted by the nonlinearity of the 1NN

classifier.) The x-axis shows the selected 44 datasets. The solid lines in the figures

represent the averageAUC results for the testing set; the dashed lines represent

the averageAUC results for the training set. FRB+CHC shows the advantage
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Table 5: Over-sampling Rate (%) of Training Sets among Different Sampling Methods.

Dataset SMOTE ADASYN sTL sSafe sRST sCHC AHC FRB+CHC
ecoli0347vs56 80.53 80 77.63 80.53 100.77 -5.60 80 -3.06

yeast2vs4 80.16 80.16 76.85 80.16 80.16 -3.13 80.16 -3.90
ecoli067vs35 80.18 80.18 77.14 80.18 94.13 -5.19 80.18 -4.16
ecoli0234vs5 80.20 80.20 77.10 80.20 89.36 -4.46 80.20 -5.50
glass015vs2 80.23 80.23 70.79 80.23 80.23 -2.06 80.23 -2.28

yeast0359vs78 80.24 80.24 71.49 80.24 80.34 -4.90 80.24 -2.14
yeast0256vs3789 80.28 80.28 74.25 80.28 80.73 -5.70 80.28 -0.92
yeast02579vs368 80.28 80.28 76.97 80.28 80.28 -3.46 80.28 -2.52

ecoli046vs5 80.30 80.30 77.09 80.30 112.06 -3.99 80.30 -2.72
ecoli0147vs2356 84.01 80.33 80.02 84.01 119.57 -4.05 80.33 -1.50
ecoli0267vs35 80.36 80.36 76.56 80.36 94.65 -4.03 80.36 -2.62

glass04vs5 80.44 80.44 77.18 80.44 96.76 -4.40 80.44 -2.91
ecoli034vs5 80.20 80.49 77.72 80.20 86.63 -4.43 80.49 -2.73
ecoli0346vs5 80.39 80.54 78.18 80.39 87.98 -3.54 80.54 -3.12

yeast05679vs4 80.68 80.68 74.48 80.68 80.68 -5.71 80.68 -2.48
vowel0 81.78 81.78 81.78 81.78 84.56 -4.82 81.78 -4.29

ecoli067vs5 81.82 81.82 75.68 81.82 87.27 -4.78 81.82 -1.68
glass016vs2 82.29 82.29 73.18 82.29 82.29 -0.78 82.29 -2.11

ecoli0137vs26 90.48 82.74 87.65 90.48 169.85 -1.33 82.74 0.28
led7digit02456789vs1 83.30 83.30 78.39 83.30 94.02 -3.93 83.30 -7.90

ecoli0147vs56 83.97 83.33 79.91 83.97 137.03 -3.39 83.33 -1.73
glass06vs5 83.34 83.34 80.79 83.34 91.22 -2.71 83.34 -1.67

glass0146vs2 83.41 83.41 74.63 83.41 83.41 -0.94 83.41 -1.40
glass2 84.11 84.11 75.93 84.11 84.11 -2.07 84.11 -0.42

ecoli0146vs5 89.30 84.94 86.00 89.30 139.65 -3.34 84.94 -2.73
cleveland0vs4 84.97 84.97 80.35 84.97 205.49 -3.27 84.97 -1.13

ecoli01vs5 92.75 85.71 90.61 92.75 186.47 -3.58 85.71 -1.22
shuttlec0vsc4 86.55 86.55 86.50 86.55 136.58 -3.32 86.55 -3.17
yeast1458vs7 91.81 86.93 87.16 91.81 91.81 -1.13 86.93 -2.51

glass4 87.85 87.85 83.65 87.85 112.84 -2.68 87.85 -0.95
ecoli4 88.10 88.10 86.46 88.10 88.39 -1.59 88.10 -1.40

pageblocks13vs4 88.14 88.14 86.60 88.14 157.10 -2.88 88.14 -0.86
abalone918 88.58 88.58 83.38 88.58 88.58 -1.72 88.58 -1.44
glass016vs5 90.22 90.22 88.45 90.22 94.57 -2.84 90.22 -1.03

shuttlec2vsc4 90.70 90.70 89.92 90.70 113.19 -3.86 90.70 -3.43
yeast1289vs7 92.32 91.34 88.44 92.32 92.32 -2.50 91.34 -2.35

glass5 91.59 91.59 89.37 91.59 92.76 -1.58 91.59 0.12
yeast2vs8 91.70 91.70 89.83 91.70 98.44 -1.86 91.70 -0.46

yeast4 93.13 93.13 90.09 93.13 93.13 -1.69 93.13 -1.16
yeast1vs7 89.62 93.66 85.04 89.62 89.62 -3.39 93.66 -3.31

yeast5 94.07 94.07 92.62 94.07 94.07 -1.66 94.07 -2.09
ecoli01vs235 82.59 95.02 78.95 82.59 106.04 -4.04 95.02 -0.59

yeast6 95.28 95.28 93.36 95.28 95.28 -2.54 95.28 -1.88
abalone19 98.47 98.47 97.32 98.47 98.47 1.04 98.47 -0.31

Mean 85.70 85.40 81.94 85.70 103.47 -3.13 85.40 -2.17
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Table 6: The Details of the Re-sampled Datasets After FRB+CHC.

Dataset
Decrease Rate of

Majority Class

Increase Rate of

Minority Class
Updated IR

ecoli034vs5 0.474 3.700 1.010
yeast2vs4 0.469 3.865 0.995

ecoli067vs35 0.500 4.224 0.874
ecoli0234vs5 0.488 3.463 1.048
glass015vs2 0.405 2.989 1.369

yeast0359vs78 0.418 3.995 1.064
yeast0256vs3789 0.452 4.005 1.002
yeast02579vs368 0.456 3.841 1.028

ecoli046vs5 0.469 3.900 1.001
ecoli01vs235 0.445 3.939 1.030
ecoli0267vs35 0.500 3.756 0.969

glass04vs5 0.464 4.325 0.934
ecoli0346vs5 0.476 4.188 0.935
ecoli0347vs56 0.452 3.940 1.032
yeast05679vs4 0.441 3.938 1.064

vowel0 0.514 4.619 0.863
ecoli067vs5 0.461 4.025 1.076
glass016vs2 0.393 3.635 1.357

ecoli0147vs2356 0.424 4.651 1.084
led7digit02456789vs1 0.499 4.603 0.983

ecoli01vs5 0.470 4.975 0.978
glass06vs5 0.482 5.339 0.910

glass0146vs2 0.392 4.568 1.212
glass2 0.449 4.826 1.101

ecoli0147vs56 0.475 5.510 0.992
cleveland0vs4 0.442 6.049 0.984
ecoli0146vs5 0.470 5.550 1.053
shuttlec0vsc4 0.507 6.530 0.908

yeast1vs7 0.420 5.525 1.277
glass4 0.489 6.651 1.038
ecoli4 0.463 7.300 1.024

pageblocks13vs4 0.480 7.236 1.003
abalone918 0.478 7.658 0.994
glass016vs5 0.486 9.296 0.974
shuttlec2vsc4 0.514 9.900 0.936
yeast1458vs7 0.391 7.908 1.513

glass5 0.478 10.321 1.052
yeast2vs8 0.452 10.500 1.105

yeast4 0.468 12.397 1.117
yeast1289vs7 0.418 11.967 1.373

yeast5 0.480 14.768 1.081
ecoli0137vs26 0.467 19.633 1.023

yeast6 0.451 17.693 1.217
abalone19 0.487 61.247 1.067
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Table 7: The Increase Rate of Number of Support Vectors of theClassification Model formed by

SVM.

Dataset SMOTE ADASYN sTL sSafe sRST sCHC AHC FRB+CHC
ecoli0347vs56 0.245 0.529 0.418 0.143 0.476 -0.117 0.178 0.026

yeast2vs4 2.662 4.354 2.507 2.981 2.698 1.180 2.377 1.000
ecoli067vs35 0.252 0.506 0.468 0.249 0.465 -0.103 0.215 0.021
ecoli0234vs5 0.272 0.538 0.472 0.122 0.473 -0.097 0.197 0.011
glass015vs2 3.731 3.687 3.193 3.996 3.583 1.705 3.310 1.279

yeast0359vs78 1.384 1.676 1.149 1.434 1.418 0.251 1.361 0.093
yeast0256vs3789 3.555 5.151 3.240 3.669 3.577 1.414 3.416 0.990
yeast02579vs368 2.142 5.240 1.919 2.251 2.188 0.783 1.990 0.521

ecoli046vs5 0.263 0.477 0.460 0.125 0.490 -0.100 0.177 0.031
ecoli0147vs2356 0.229 0.566 0.435 0.170 0.494 -0.103 0.186 0.053
ecoli0267vs35 0.279 0.521 0.490 0.234 0.467 -0.092 0.209 0.040

glass04vs5 1.839 1.477 1.467 4.104 1.242 -0.043 0.122 0.306
ecoli034vs5 0.269 0.526 0.456 0.135 0.477 -0.108 0.163 0.029
ecoli0346vs5 0.286 0.424 0.488 0.140 0.497 -0.094 0.150 0.031

yeast05679vs4 3.500 4.147 3.113 3.561 3.575 1.401 3.474 1.469
vowel0 1.116 1.333 0.752 2.311 0.972 -0.027 0.448 1.631

ecoli067vs5 0.227 0.440 0.391 0.212 0.438 -0.109 0.144 0.055
glass016vs2 3.868 3.927 3.296 4.209 3.660 1.840 3.291 1.530

ecoli0137vs26 0.175 0.404 0.338 0.089 0.439 -0.191 0.160 -0.146
led7digit02456789vs1 3.332 3.322 2.864 4.139 2.838 0.360 2.608 0.563

ecoli0147vs56 0.218 0.487 0.391 0.121 0.522 -0.145 0.147 0.031
glass06vs5 1.494 1.272 1.124 2.924 1.204 0.021 0.077 0.250

glass0146vs2 3.967 4.008 3.396 4.271 3.725 1.915 3.391 1.643
glass2 3.820 3.893 3.221 4.036 3.671 1.881 3.444 1.712

ecoli0146vs5 0.189 0.379 0.361 0.105 0.394 -0.155 0.137 0.014
cleveland0vs4 0.540 0.741 0.712 0.247 0.505 -0.077 0.326 0.008

ecoli01vs5 0.148 0.494 0.309 0.082 0.417 -0.128 0.149 0.032
shuttlec0vsc4 0.221 2.557 0.264 0.001 0.450 -0.109 0.103 1.326
yeast1458vs7 3.121 6.093 2.947 3.233 3.100 1.064 5.311 0.966

glass4 1.968 1.873 0.836 4.223 1.852 0.084 0.675 0.344
ecoli4 2.173 2.998 2.020 2.668 2.394 0.772 1.796 1.012

pageblocks13vs4 0.836 1.042 0.863 0.057 1.198 0.017 0.523 0.110
abalone918 8.586 9.046 8.058 10.025 8.077 3.752 6.750 4.309
glass016vs5 2.084 1.760 1.440 3.498 1.846 0.226 0.492 0.512

shuttlec2vsc4 0.616 1.428 1.388 0.153 1.310 0.282 0.229 0.422
yeast1289vs7 4.846 2.993 4.611 5.170 5.087 1.802 2.825 1.491

glass5 2.307 2.169 1.884 4.623 2.151 0.249 0.524 0.574
yeast2vs8 4.905 8.609 4.920 5.282 5.169 2.101 4.436 1.184

yeast4 3.133 3.547 2.902 3.379 3.173 0.883 2.966 0.919
yeast1vs7 5.196 4.672 4.870 5.523 5.382 2.673 4.088 2.422

yeast5 3.178 3.458 2.617 3.676 3.265 1.578 2.930 2.007
ecoli01vs235 0.286 0.268 0.463 0.153 0.484 -0.096 0.085 0.041

yeast6 6.825 9.553 6.376 7.216 6.900 2.278 6.479 2.632
abalone19 13.156 13.209 12.82914.22112.973 5.535 10.986 8.226

Mean 2.351 2.859 2.198 2.708 2.403 0.776 1.887 0.948
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on relaxing the over-fitting problem since the performanceson training set and

testing set are similar.

Fig. 6 and 7 show an example of the distribution of the positive samples and

negative samples after the re-sampling of FRB+CHC and sCHC respectively. The

circle dots correspond to the samples of the majority class.The square dots corre-

spond to the samples of the original minority class. The triangle dots correspond

to the synthetic samples. Fig. 7 show that the synthetic samples are generated

densely around some of the original minority samples. On thecontrary, the syn-

thetic samples in Fig. 6 are distributed more evenly in the area of the original

minority samples. Therefore, sCHC runs into the over-fitting problem more eas-

ily.

Figs. 8 and 9 show the overall results in terms ofF −measure andAUC for

different classifiers respectively. Only a small difference of the results for 1NN

among all the preprocessing methods is revealed. FRB+CHC obtains the highest

value ofAUC for both C4.5 and 1NN. An improvement by FRB+CHC in terms

of F −measure is shown. In addition, a robust behavior of FRB+CHC is shown

when the results of the three classifiers only have a small difference. Most of the

preprocessing methods can perform better than the originaldatasets in terms of

the average values ofF −measure andAUC. This confirms that preprocessing

is an important step to deal with imbalanced datasets.
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(a) AUC results with FRB+CHC

(b) AUC results with sCHC

Figure 5: Average AUC results obtained from training and testing sets.
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Figure 6: Distribution of the samples after the implementation of FRB+CHC.

Figure 7: Distribution of the samples after the implementation of sCHC.
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Figure 8: Average F-measure for different classifiers.

Figure 9: Average AUC for different classifiers.
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5. Conclusion

A hybrid re-sampling method developed based on both over-sampling and

under-sampling has been proposed. The new synthetic samples of the minority

class are generated based on fuzzy logic. To minimize the size of datasets, CHC

has been employed over the new samples and the majority samples as a cleaning

method to the over-sampled training set.

The proposed sampling method (FRB+CHC) is compared to SMOTE, ADASYN,

sTL, sSafe, sRST, sCHC, EUSCHC, and AHC on 44 datasets. To evaluate the per-

formance of these nine sampling methods, the same SVM classifier has been used

to obtain the experimental results. It is shown that FRB and FRB+CHC outper-

forms the other sampling methods on bothF −measure andAUC. FRB shows

its advantage to act as an over-sampling method. If data sizeis not a consideration,

FRB is a better choice of pre-processing method.

FRB+CHC obtains the best ranking by means ofAUC. FRB+CHC and sCHC

have similar performance inF − measure, which indicates that CHC is a good

choice of data cleaning method. TheAUC results of SMOTE, sTL, sSafe, sRST,

and sCHC are similar since all of them use SMOTE to perform over-sampling. To

show the advantages of the proposed method, the over-sampling rate and the num-

ber of support vectors formed from SVM for different methodsare also compared.

In addition, the C4.5 and 1NN classifiers are used and FRB+CHCshows a robust
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behavior among different classifiers. FRB+CHC achieves good results under the

above criteria, which reflects that FRB+CHC achieves a good balance between

accuracy and over-sampling rate. It also has a low impact to the complexity of the

learning model. The major reason is that CHC only selects thesamples to increase

the performance of the datasets, but not considering the locations of the samples.

Therefore, the most representative samples are selected toform the training sets.
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