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A Hybrid Evolutionary Preprocessing
Method for Imbalanced Datasets
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Abstract

Imbalanced datasets are commonly encountered in reathwiassification prob-
lems. As many machine learning algorithms are originallgigieed for well-
balanced datasets, re-sampling has become an importprtbgpee-process im-
balanced data. It aims at balancing the datasets by inoge#se samples of the
smaller class or decreasing the samples of the larger eldssh are known as
over-sampling and under-sampling respectively. In thgepaa sampling strategy
based on both over-sampling and under-sampling is propasedich the new
samples of the smaller class are created based on fuzzy logicovement of the
datasets are done by the evolutionary computational methGbss-generational

elitist selection, Heterogeneous recombination and Gatiaxic mutation (CHC)
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that under-samples both the minority and majority sampiesa result, a hybrid
preprocessing method is proposed to re-sample imbalaratadats. The evalua-
tion is done by applying the Support Vector Machine (SVM),%decision tree
and nearest neighbor rule to train a classification modet tiee re-sampled train-
ing sets. From the experimental results, it can be seen tiigiroposed method
improves both the F-measure and AUC. The over-samplingaradecomplexity
of the classification model are also compared. Our proposstiod is found to
be superior to all other methods under comparison, and is nobust in different

classifiers.

1. Introduction

The classification of imbalanced datasets is a popular toperent years [22]
and [27]. Most of the machine learning tools, such as newaorks and support
vector machines, are originally designed for well-balahdatasets. If the dataset
is imbalanced, the performance of the classifier can be pidwe.reason for this
is apparent. For example, considering a dataset with 99%ataf flom class A
and only 1% of data from class B, the accuracy is 99% if thesdias ignores
the data from class B and labels the whole dataset as claggsfalready very
hard to achieve an accuracy above 99% by using most of thamegalgorithms.
However, the minority class of datasets is usually more ntgmb and meaningful.

For example, there are much less samples of people with igyartdisease than



those of healthy people in a medical problem. If a classiBemeeded to label
whether some people are infected or not, it is obvious thatntimority class
(people with a particular disease) is the class of interest.

Problems with imbalanced datasets can be easily found irettievorld, such
as intrusion detection [9], speech recognition [26], idferation of power distri-
bution fault causes [41], and bioinformatics problems [IBhere are two main
approaches to solve the problems caused by imbalancectiat@ne is the data
level approach and the other is the algorithm level approdtie data level ap-
proaches [3], [8], [18], and [28] include balancing the sldsstribution by over-
sampling the minority class or under-sampling the majarigs. The algorithm
level approaches improve the existing machine learnindnaust by adjusting the
probabilistic estimate [38], modifying the cost per cla®2][ adding some penalty
constants [25], or learning from one class instead of twesda [35] and [30].

Many experiments [12], [15], and [42] show that re-sampig@ good data
level approach to handle imbalanced data. Moreover, it ierflexible as it does
not depend on the chosen classifier. Therefore, we focussamgling in this pa-
per. There are three main types of strategies for re-sagghta. The first one is
over-sampling, which can be done randomly or by the meth&yothetic Minor-
ity Over-sampling Technique (SMOTE) [8]. The second onendar-sampling,
which includes Tomek links [37] and Neighborhood CleanindeRINCL) [24].
The last one is the hybrid method, which combines the twoipusvmethods
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(over-sampling and under-sampling methods).

The importance of designing sampling strategies has bessked in [31],
which may affect the successful learning of different adssd1ybrid re-sampling
methods, reportedly, have advantage on treating datagétsi\Wwigh imbalanced
ratio [3] and [6]. Although some hybrid methods [3], [34],da[#0] have been
proposed to reduce the over-generalization problem froen-eampling methods,
most of these methods are based on SMOTE and the results mewiteel by
the synthetic samples of SMOTE. Therefore, a hybrid re-siagmethod is pro-
posed in this paper. Fuzzy logic, which is a useful tool tattrmbalanced datasets
[12], is used to over-sample the minority class samplesatsof SMOTE. A
fuzzy rule base is formed based on the samples of the mirdasg. Then, a rule
is selected randomly with reference to the effectivenegsoh rule. The selected
rule is used as the criteria to generate a new sample of therityiclass. The
above steps will repeat until the sizes of the majority ckss$ minority class are
the same.

However, the large over-sampled training dataset willease the complexity
of the classification model and decrease the efficiency ofelwning algorithm.
It will also cause over-generalization easily, especiétily some noisy dataset.
This is because the decision boundary could become narrdieasverlapping
area between the majority class and minority class couldrnedarge after the
over-sampling. Therefore, an evolutionary algorithm (EAapplied to both the
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synthetic samples and majority samples to under-sampléataset. The chosen
EAisthe CHC (Cross-generational elitist selection, Hegeneous recombination
and Cataclysmic mutation) algorithm [11] since it shows @bdity of selecting
the most representative instances among many algorithudiedtin [5].

Experiments are carried out to compare our proposed methbdwee SMOTE-
extended over-sampling methods, four hybrid re-sampliathods and one under-
sampling method. They are SMOTE, Safe-Level-SMOTE [4], g{tl@ Synthetic
Sampling [21], SMOTE+Tomek Links [3], SMOTE+Rough Set [38MOTE+CHC
(sCHC) [40], agglomerative hierarchical clustering [1&3d EUSCHC [14]. 44
imbalanced datasets from UCI Repository [2] are used in xper@ments. The
Support Vector Machine (SVM) [7], C4.5 decision tree [33]danearest neighbor
rule (LNN) are used as the tools for reaching a classificatiodel for each re-
sampled dataset so as to evaluate each re-sampling metheavaluation mea-
sures are based on F-measure and area under the receiaimapeharacteristic
curve (AUC). Although there exists many hybrid pre-proaagsnethods, only
some of them are like our method that consider and focus odétsesize. In this
paper, CHC is used to reduce the data size and achieve a gdochpence. Ad-
ditionally, the proposed method enhances the performanteei over-sampling
stage by taking advantage of the fuzzy rule base.

This paper is organized as follows: In Section 2, some prgasing methods
and CHC are reviewed. Section 3 presents the details of dpoped re-sampling
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strategy and the evaluation method. To show the effectasgené our proposed
approach, the comparisons with other methods and the semdtdiscussed in

Section 4. A conclusion is drawn in Section 5.

2. PreviousWork

This section describes some previous works about re-sagwiethods, which
will be used to compare with our proposed method in the erpants later. The

ideas about CHC will also be discussed.

2.1. Re-sampling Methods

As discussed in the previous section, there are three maitegies for re-

sampling data.

2.1.1. Over-sampling Methods

Some instances are produced for the minority class to baldmecclass dis-
tribution. The simplest one is a non-heuristic method (cemdver-sampling)
that replicates samples of the original minority class toeyate the new in-
stances. This method causes over-fitting easily since tvanmstances copy ex-
actly from the original minority class. Synthetic Minori@ver-sampling Tech-
nique (SMOTE) [8] is a well-known method which creates the mestances by

interpolating several minority samples that join togetidris method makes use



of each minority class sample and inserts synthetic sangites) the line seg-
ments joining any/all of thé minority class nearest neighbors to over-sample the
minority class. An example is shown in Fig. 1. Five neareggimaors are used
in it, wherez; is a selected sample of minority class, to z;; are the 5 nearest
neighbors ofr; ands; to s; are the synthetic samples created by interpolation.
If the degree of over-sampling required is 300%, three stittexamples are

selected randomly from, to ss.

Ti2

Figure 1: Example of SMOTE with 5 nearest neighbors.

Since the synthetic samples provide a less specific andr ldeggsion region,
the over-fitting problem can be reduced. However, this nektmay introduce
more minority synthetic samples in the area of majority €lakere the minority
class is very sparse with respect to the majority class. dduises the problem of
over-generalization, which means the decision boundargrignarrow or there is
a large overlapping area between the majority class andrityiretass. Therefore,

some methods are developed based on SMOTE to overcomentitation, such



as Borderline-SMOTE (sBorder) [19], Adaptive Syntheticrpding (ADASYN)

[21], Safe-Level-SMOTE (sSafe) [4], and SPIDERS [29].

2.1.2. Under-sampling Methods

Some instances of majority class are eliminated in ordeatarize the class
distribution. The simplest method is random under-sanglRUS), which aims
to balance the datasets by randomly removing samples ofdiwity class. How-
ever, this method may easily remove some useful data. Thex cgpresentative
methods include (i) condensed nearest neighbor rule (CI2B), which elim-
inates the majority class samples that are distant from duesihn border, (ii)
Tomek links (TL) [37], which edits out noisy and borderlin@jarity class sam-
ples, (iii) one-sided selection (OSS) [23], which is an gneged method of TL
and CNN, and (iv) neighborhood cleaning rule (NCL) [24], elhis based on the
Wilson’s Edited Nearest Neighbor Rule (ENN) [39] to remokre tnajority class

samples that lead to misclassification.

2.1.3. Hybrid Methods

Although both over-sampling and under-sampling can b&dhe class dis-
tribution, different drawbacks like over-generalizatenmd removal of useful data
are also introduced. Therefore, some hybrid methods arel@@sd to combine
SMOTE and under-sampling as a data cleaning method to ratecgroblem.

Example hybrid methods include SMOTE+Tomek links (STL),ickhuses TL
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to remove samples of both classes to increase the area aiateborder, and
SMOTE+ENN (sENN) [3], which uses ENN to remove the samplas &éne mis-
classified by their nearest neighbors. Rough set theoryTsR33] and evolu-
tionary algorithm (sCHC) [40] have also been applied on SMQ0d select the
samples to increase the accuracy of classification.

Most of the above hybrid methods make use of SMOTE to perfovaer-o
sampling. Clustering techniques are also developed t@pertinder-sampling

and over-sampling, such as agglomerative hierarchicateling (AHC) [10].

2.2. CHC[11]

CHC is a kind of EAs that combines a selection strategy withgali dis-
ruptive recombination operator. To avoid premature cayece and maintain
diversity, incest prevention and cataclysmic mutationiair®duced. The process
of CHC can be described as follows. Firstly, a populatioro$ehromosomeg$’
is created. Each chromosome= (p;1, pi2, - - -, Pin) IS @nn-dimensional vector,
which is a set of genes, whepg is thejth gene valuej = 1,2,...,n) of theith
chromosome in the population & 1,2,...,m); m is the population size and
is the number of genes.

Secondly, the chromosomes are evaluated by a defined fitmestsoih. The
form of fitness function depends on the application. Thirdtyintermediate pop-

ulation set of chromosomes, which is of the same size &3, is generated by



copying all members oF in a random order.

Then, a uniform crossover (HUX) operator is appliedto form C’. HUX
exchanges half of the genes randomly between the chromasoneeby one to
form C’. CHC also uses an additional method for incest preventieforg apply-
ing HUX to the chromosomes, the Hamming distance between thealculated.
If half of that distance is larger than a difference thredhfl HUX is applied;
otherwise these two chromosomes are deleted ftoritherefore, the size af’
may be smaller than that éf or C. The initial threshold! is set atn /4. After C’
has formed, it is evaluated by the fitness function and aistedielection is taken.
Only the best chromosomes from bdtrandC” are selected to form the offspring
population in the next generation. If the offspring popiglais the same aB, the
difference threshold is decreased by one.

CHC is different from the traditional genetic algorithm. dtion is not per-
formed at the recombination stage. CHC performs partiaitralization (diver-
gence) when the search becomes trapped (i.e., the difeetbresholdl becomes
zero and no new offspring population is formed for severakgations). The pop-
ulation is reinitialized, based on the best chromosomehlayging the elements’
values randomly with a user-defined divergence fatg.. For example, ifD,.q.
equals to 0.35, the values of 35% elements will be changetbraly. The search
is then resumed with a new difference threshold D, . * (1 — D,q) * n. This
process is called cataclysmic mutation.
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CHC has shown the ability of selecting the most represemtaistances among
the other algorithms studied in [5]. Therefore, it is choasithe algorithm to im-

prove the outcome of over-sampling in this paper.

3. Methodology

In this section, the proposed hybrid preprocessing methddfze evaluation
methods used in this paper are discussed. The proposed dnetloives two
stages. The minority samples of the training sets are fimstgr-sampled based
on fuzzy logic to form a fuzzy rule base (FRB). To improve teefprmance, CHC

is then implemented to reduce both the synthetic samplesajatity samples.

3.1. Fuzzy Rule Base (FRB)

In this paper, let theositive class be the minority class and onlytraining
samples ) of positive class are considered, whefg = (z,1,...,2Z,,) IS an
~v-dimensional vectorpe = 1,2,...,\ andz,g is the Sth attribute valugs =
1,2,...,v) of the ath training sample. Théth fuzzy if-then rule is written as

follows:

Rule : IF z; is AT AND ... AND z, is A’
THEN class = positive withw, (1)
WhereA% is a fuzzy term of the&th rule corresponding to the attribute, 5 =

(1,2,...,7)andz = (21, 29,...,2,) is ay-dimensional attribute vector, and)
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is the rule weight. The regular triangular membership fiomst are used for the
fuzzy terms. In this paper, the fuzzy term§ are derived based on the samples
of positive class. The minimum and maximum values of eadibate are first
found. The fuzzy terms are the triangular membership fonstiwithin the range
of each attribute. The fuzzy terms also depend on the nunfbabels. Since
regular triangular membership functions are used, theyfterans are distributed
evenly within the range of each attribute.

The fuzzy rules are generated based on the samples of gosléiss. For
each sample, the label with the highest membership valueésted to form the
corresponding rule for each attribute. The maximum numbeules depends on
the number of labels and attributes.

The rule weightu, is used to reflect the degree of matching of each fuzzy rule
over all the positive samples, so that the importance of agdeltan be evaluated.
First, the fuzzy value of each sample is calculated. Theyfwaiue of X, for the

fth fuzzy rule is defined as follows:

a0 (Xa) = T(:“A? (xal)v cee muAi’/ (xa’Y))v (2)

where the product T-norm is used. The rule weigh{)(is calculated by adding

all the fuzzy values of samples.

wp =Y (1ae(Xa)). (3)



After the rule base of the positive class is generated, thes mre randomly
drawn based on the rule weight. The rule with a higher ruleghtewill have a
higher probability to be chosen. Then, a new sample is getraithin the area
of the selected rule. These processes are repeated untilithber of positive
samples is the same as that of the negative samples.

To illustrate the idea more clearly, Fig. 2 shows the distitn of two classes
with two attributes as an example of the formulation of furales. The x-axis
and y-axis govern the values of the two different attribated regular triangular
membership functions with five labels are used. The circts dorrespond to the
negative class and the square dots correspond to the posiéiss. The dashed
lines show the minimum or maximum value of the corresponditigbute of the
positive samples. As only the attribute vectors of the pasitlass are considered

to generate fuzzy rules, totally ten rules can be formedisdékample:
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Rule1:

Rule2:

Rule3:

Rule4:

Ruleb:

Rule6:

RuleT7:

Rules:

Rule9:

Rule10:

IF 21 is A} =

IF z; |SA% =

IF 2y is A3 =

IF 2 is A4

IF 2 |SA? =

IF 2 |SA? =

IF 2y is AT =

IF 2y is A =

IF z; |SA$1) =

IF 21 is A{® = L1.5 AND 2z, is A}’ = L2 4.

L1.1AND 2z, is Al =

L12 AND 2, is A2 =

L12AND 2z, is A3 =

L1 3AND 2z is A =

L1_3AND 2z is A3 =

L1.3 AND 2, is AS =

L1_4AND 2z, is A7 =

L1_4AND 2z is A5 =

L1AAND 2 is A =

L2 4.

L23.

L2 4.

L2_3.

L24.

L2.5.

L21.

L2 4.

L25.

THEN class = positive witly.897
THEN class = positive with.147
THEN class = positive with.508
THEN class = positive with.230
THEN class = positive witR.344
THEN class = positive with.607
THEN class = positive witly.727
THEN class = positive with.319
THEN class = positive with.731

THEN class = positive with.399

wherez; and z; represent Attribute 1 and Attribute 2 for the x-axis and ysax

respectively in Fig. 21 is thei-th label of z; attribute,L2_i is thei-th label

of z, attribute. Rule 5 has the highest rule weight and rule 7 hadatvest rule

weight in this example.

For generating the synthetic samples, a rule out of theseutes is chosen

with the probability of selection depending on the rule vitigrhen, this rule sets

the criteria of the highest and lowest value of each attelbdthe new sample is

generated randomly within these criteria. This processpsated until the num-
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ber of the positive class is the same as that of the negatigs.cFig. 3 shows the

samples distribution after over-sampling. The trianglesdepresent the synthetic

samples. It is found that the spread of the synthetic sanmpkasilar to that of

the original positive samples (shown as the square dot® syhthetic samples in

Fig. 3 are dense in the area of rule 5.
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Figure 2: Example of the distribution of imbalanced data3éie y-axis represents the values of

zo and x-axis represents the valuezpf

3.2. Setting of CHC

After the over-sampling, the number of minority sampleshis $ame as that

of majority samples and CHC is then applied. There are twmmant issues that

need to be addressed before the algorithm is employed: phesentation of each
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Figure 3: Distribution of the samples after over-samplifige y-axis represents the valueszof
and x-axis represents the valuexof
chromosome and the definition of fitness function. Fig. 4 shihw block diagram

of the process of FRB+CHC.

3.2.1. Chromosome Representation

CHC is used to reduce the synthetic samples as well as theitpa@jass sam-
ples. Therefore, the chromosomes are to represent sulbfieese samples. It can
be carried out by a binary representation. Each chromossiaeri-dimensional
vector. In this sectiony is the number of synthetic samples plus majority class
samples. Each vector element shows whether the corresgpsainple exists in

the subset of the training set or not. Therefore, there aoepvgsible values for
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Original 1. Select samples of minority class Size of majority class
e} > p y > jority

Training Set 2. Perform FRB = Size of minority class
. 1. Select synthetic samples and
Tralgggfce;gfter Eedgcgd Idataselt S ¢ samples of majority class
€ original samples of minority class 2. Perform CHC

Figure 4: Block Diagram of FRB+CHC.

each element: 0 and 1. If the value is 1, the correspondinglsaisiincluded in
the subset of the training set. If the value is 0, the sampés et exist in the

subset.

3.2.2. Fitness function

In this study, the k-NN classifier is used as the evaluatiothotof CHC to
obtain the subset with the highest classification rate. Ndlgmaccuracy (ratio
of correctly classified samples to total number of samples)lvbe used as the
measure of classification rate. However, it may cause diffi¢or the imbalanced
datasets when doing testing later since the correct cleaststn rate of the major-
ity samples may affect the accuracy more significantly ttea of the minority
samples. Therefore, some other measures are used in tleis plygese measures
are commonly employed to analyze problems with imbalanegasets.

Firstly, precision and recall are introduced [17]. Theifiiéons are given as

17



follows:

TP

Precision = TP FP (4)
TP
Recall == m (5)

whereT' P is the number of true positives; P is the number of false positives
andF' N is the number of false negatives. A high value of precisiahcates that
the predicted positive samples are most likely relevant. igh tvalue of recall
indicates that most of the positive samples can be predocigdctly.

A popular evaluation metric for imbalanced problemg’is- measure [17],
which is a function of precision and recall. In principle— measure represents
a harmonic mean between precision and recall. A high valué ef measure
means both the precision and recall values are high and ddiffert very much.
It is an important measure for imbalanced datasets sincglavalue of it can
imply that the method classifies the positive samples ctiyrata high rate with
little misclassified negative samples. It is defined as Wadlo

2 % Precision x Recall

F— = 6
measure Precision + Recall (6)

The area under the receiver operating characteristic gd€) is also com-
monly used to measure the performance of classification ALK& measure [13]

is the probability of correctly identifying a random sampad it can be defined
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as follows:

1+ Recall — F'P, g
2

AUC = )

where Recall is defined in (5) and” P, .. = FPFJF%, TN is the number of true
negatives.F'P, ;. defines the percentage of true negatives cases misclassfied
positives. A high value oAUC' implies small values of’ N and F'P, meaning
that the corresponding classifier is effective.

Since bothF' — measure and AUC' are important measures on imbalanced
datasets, a multi-objective fithess function is used hefge dhromosome with
both higher values of' — measure and AUC' obviously has a higher rank. If
a chromosomeX has a higher value of' — measure (Fx > Fy) and a lower
value of AUC' (Ax < Ay) than that of chromosomg, the difference between

the chromosomest’ — measure (|Fx — Fy|) and the difference between the

chromosomesAUC (|Ax — Ay|) will be compared. If F'y — Fy| > |Ax — Ay

chromosomeX will be regarded as a better one; otherwise chromosbmell
be regarded as a better one. The above setting is also appl&ZHC for the

comparison in Section 4.

3.3. Evaluation

3.3.1. F' — measure and AUC measures
To show the performance of our proposed method; measure in (6) and

AUC' in (7) are used. The main drawback of over-sampling or hybaiehpling

19



methods is that the number of training samples are incregigsadly. This may
cause the increase of complexity of the learning model. dfoes, the over-

sampling rates of different methods are also compared. &efin

(Nsampled - Noriginal)

Noriginal

« 100% (8)

Rateyper =

whereNqmpieq IS the number of samples in the re-sampled training sefNang, .

is the number of samples in the original training set. Tha-sanpling rate in
(8) shows the increase rate of the number of the training EEnhen a sup-
port vector machine is used to form the classification mdake jnicrease rate of
the support vectors can be used to evaluate the complexihedéarning model.

This rate is calculated based on the support vectors gederat

(S‘/sampled - S‘/;)riginal)
S‘/original

(9)

Rategv =

whereSV;umpieq IS the number of support vectors trained by the re-sampéaia-tr
ing set andSV,,,inq IS the number of support vectors trained by the original
training set. It should be noted that the CHC fithess evalndtir data size reduc-
tion (by k-NN) and the training of the classification modeséd on the resampled
data (by SVM) are two separated processes. K-NN is used fitless evaluation
because it is simple with minimal computation effort. SVMaisommonly used

method to obtain the classification model.
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4. Experimental Study

In this section, we present the experiments that are caoigdo compare
our proposed method with other hybrid sampling methods bedCHC under-
sampling method. The datasets used can be found in UCI Repofd].

The experiments involve different kinds of hybrid methadsluding SMOTE,
ADASYN, sTL, sSafe, sRST, sCHC, AHC and our proposed metkaddch is
named as Fuzzy Rule Base+CHC (FRB+CHC). CHC, which is used asder-
sampling method in [14] (EUSCHC), is also compared in theeexpent. To
measure the performance of the preprocessing methodsanhe lgarning tool
should be applied among all the experiments. In this studget different tools
are used. They are Support Vector Machine (SVM), 1 Nearegther (1NN),
and C4.5 decision tree. The programs of all testing methodstee learning tools
are based on KEEL, which is an open source software avaiiatitee Web [1].
F —measure and AUC' are used as measures to analyze the results. The average
values of these measures for each method will be calcula®the expansion of
re-sampled training datasets may increase the compuahtiome and complex-
ity of the classification model, the over-sampling rate dr@number of support

vectors formed from SVM will also be compared.
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4.1. Datasets

To study the methods on different datasets, 44 datasetsdifiénent imbal-
ance ratio (IR) are chosen. IR is the ratio of the number obnitgjclass to the
number of minority class. Table 1 shows the details of thectetl datasets, where
the number of samples\(..,.,.), the number of attributes\,..,.), the distribution

of the minority and majority classes, and IR for each dateasete found.

Table 1: Details of the Selected Imbalanced Datasets.

Dataset Niuamp. | Nagtr. | Min,, Maj.(%) | IR

ecoli034vs5 200 7 (10, 90) 9
yeast2vs4 514 8 (9.92,90.08) | 9.08
ecoli067vs35 222 7 (9.91, 90.09) | 9.09
ecoli0234vs5 202 7 (9.9,90.1) 9.1
glass015vs2 172 9 (9.88,90.12) | 9.12
yeast0359vs78| 506 8 (9.88,90.12) | 9.12
yeast0256vs378P 1004 8 (9.86,90.14) | 9.14
yeast02579vs368 1004 8 (9.86,90.14) | 9.14
ecoli046vs5 203 6 (9.85,90.15) | 9.15
ecoli0lvs235 244 7 (9.83,90.17) | 9.17
ecoli0267vs35 224 7 (9.82,90.18) | 9.18
glass04vs5 92 9 (9.78,90.22) | 9.22
ecoli0346vs5 | 205 7 (9.76, 90.24) | 9.25
ecoli0347vs56 257 7 (9.73,90.27) | 9.28
yeast05679vs4| 528 8 (9.66, 90.34) | 9.35
vowel0 088 13 (9.01, 90.99) | 9.98
ecoli067vs5 220 6 (9.09,90.91) | 10
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Dataset Nsamp. | Nattr. | Min,, Maj.(%) | IR
glass016vs2 192 9 (8.85,91.15) | 10.29
ecoli0147vs2356 336 7 (8.63,91.37) | 10.59
led7digit02456789vsl 443 7 (8.35,91.65) | 10.97
ecoli01lvs5 240 6 (8.33,91.67) | 11
glass06vs5 108 9 (8.33,91.67) | 11
glass0146vs2 205 9 (8.29,91.71) | 11.06
glass2 214 9 (7.94,92.06) | 11.59
ecoli0147vs56 332 6 (7.53,92.47) | 12.28
clevelandOvs4 177 13 (7.34,92.66) | 12.62
ecoli0146vs5 280 6 (7.14,92.86) | 13
shuttlecOvsc4 1829 9 (6.72,93.28) | 13.87
yeastlvs7 459 7 (6.53,93.47) | 14.3
glass4 214 9 (6.07,93.93) | 15.47
ecoli4 336 7 (5.95,94.05) | 15.8
pageblocks13vs4 472 10 (5.93,94.07) | 15.86
abalone918 731 8 (5.65,94.25) | 16.4
glass016vs5 184 9 (4.89,95.11) | 19.44
shuttlec2vsc4 129 9 (4.65,95.35) | 20.5
yeast1458vs7 693 8 (4.33,95.67) | 22.1
glass5 214 9 (4.2,95.8) |22.78
yeast2vs8 482 8 (4.15,95.85) | 23.1
yeast4 1484 8 (3.43,96.57) | 28.1
yeast1289vs7 947 8 (3.16, 96.84) | 30.57
yeastb 1484 8 (2.96,97.04) | 32.73
ecoli0137vs26 281 7 (2.49,97.51) | 39.14
yeast6 1484 8 (2.36,97.64) | 41.4
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Dataset | Nuamp. | Nattr. | Min, Maj.(%) | IR
abalonel9 4174 8 (0.77,99.23) | 129.44

4.2. Setup of Experiment

For over-sampling, the rules of the minority samples are@ased with reg-
ular triangular membership functions with five fuzzy terrer CHC, the values

of the parameters are:

Population size: 50.

Divergence rate: 0.35.

Threshold decreasing rate: 0.001.

k of k-NN classifier used as evaluation: 1.

Number of evaluations: 5,000.

In this paper, SVM, 1NN, and C4.5 are used to weigh the inflaesfceach
preprocessing method. For SVM, a radial basis function (RBRused as the
kernel since a non-linear classification model is neededRBE is a common

kernel to handle this problem. The RBF is defined as follows:
1 2
RBF = exp(—;”xi —x||%) (10)

whereo > 0 is the parameter to determine the width of the radial basistion.

It controls the flexibility of the classifier. Whe# decreases, the flexibility of
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the resulting classifier in fitting the training data inceesand this might lead to
over-fitting easily. The value of is set as 0.01. The tradeoff between training
error and margin of SVM is set as 100. The above values aresohitsough
experiments. For C4.5, the confidence level is set as 0.25mthimum number
of item-sets per leaf is set to 2 and pruning is used as welbtaio the final tree.
For 1NN, the Euclidean distance metric is used.

A 5-fold cross validation model is used to compare the digsgion results
from different preprocessing methods. Each dataset atdifiided into five parts
randomly. Four of them are combined to form a training setthademaining sub-
set forms a testing set. The process is then repeated five, tso¢hat each subset
is used once as a testing set. All the methods involve sondonamparameters,
so five experiments are carried out for each 5-fold crosslaabn model and the

average value are calculated as the results, i.e. totakik@ériments were done.

4.3. Results

4.3.1. F — measure and AUC measures

Tables 2 and 3 show the SVM results 6n— measure and AUC for each
re-sampling method on the 44 datasets respectively. Thetses the original
datasets are shown in the second column and the best valaadbrdataset are
highlighted in bold. The last row shows the average valueamhesampling

method for the datasets. The performance of the FRB oveplgagnmethod
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are also included (in the rightmost column) for comparisotin WRB+CHC. It

can be seen that the average valueg'of measure and AUC' in both FRB
and FRB+CHC are higher than other methods. The performahs€ldC and
FRB+CHC are similar. This shows that CHC has good performasca data
cleaning method after over-sampling, especially for trsellts in ' — measure.

The AUC values of SMOTE, sTL, sSafe, sSRST and sCHC are similar simee t

all use SMOTE to perform over-sampling. ADASYN gets the Isiaverage val-
ues ofF' —measure, which means the precision is low and the difference between
precision and recall is large.

In this experiment, the performance of FRB and FRB+CHC iy @milar,
which shows the advantages of FRB over the other hybrid arsampling meth-
ods. However, the data size will be very large if only FRB isdisis the pre-
processing method. FRB+CHC can reduce the data size withlaugie effect to
the performance. Therefore, only FRB+CHC will be considenethe following
section.

Table 4 shows the average rankings by meang' of measure and AUC
using Friedman’s method [36]. The highest value of eachsgtta ranked as 1.
If a certain method obtains the ranking 3, 6, 2, and 1 on fotas#ds, the average
ranking is(3 + 6 + 2 + 1)/4 = 3. Therefore, a lower average ranking indicates
that the corresponding method is better among the otheradsthFRB+CHC
obtains the best ranking btUC' and sCHC obtains the best ranking By—
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measure. Note that the highest average values4ifC' or F' — measure do
not imply the best ranking results since the ranking showstmparison results
among all the methods of each dataset. For example, EUSCKHEhhdowest
AUC average values but its ranking is better than ADASYN. SintkSEHC
is an under-sampling method, it easily ignores some usefuptes of majority

class.
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Table 2: SVM: Average F-measure of Testing Datasets amofigrEnt Sampling Methods.

8¢

Dataset Original | SMOTE | ADASYN | sTL sSafe | sSRST | sSCHC | EUSCHC | AHC | FRB+CHC | FRB
ecoli034vs5 0 0.5629 | 0.2667 | 0.5901| 0.5578| 0.5007| 0.5054| 0.6591 | 0.3111] 0.5829 | 0.6337
yeast2vs4 0.6384 | 0.6824 | 0.5446 | 0.6683| 0.6824| 0.6787| 0.6996| 0.7418 | 0.6937| 0.7015 |0.6971

ecoli067vs35 0.0000 | 0.4540 | 0.3975 | 0.5122| 0.4609| 0.4447| 0.5108| 0.4758 | 0.3692| 0.4308 |0.6171
ecoli0234vs5 0.0000 | 0.5176 | 0.2917 | 0.5240| 0.5012| 0.4734| 0.5577| 0.6682 | 0.2667| 0.6142 | 0.6462
glass015vs2 0.0000 | 0.3094 | 0.3181 | 0.3103| 0.3301| 0.3419 | 0.2137| 0.1015 | 0.2850| 0.2049 |0.2275
yeast0359vs78 0.3481 | 0.3541 | 0.2965 | 0.3379| 0.3580| 0.3529| 0.4117 | 0.3481 | 0.3666| 0.3470 | 0.3481
yeast0256vs3789 | 0.1782 | 0.5282 | 0.4391 | 0.5206| 0.5286| 0.5325| 0.5624| 0.6033 | 0.5263| 0.5899 | 0.2589
yeast02579vs368 | 0.8152 | 0.7199 | 0.5213 | 0.7179| 0.7189| 0.7201| 0.7437| 0.7487 | 0.7264| 0.7747 0.85
ecoli046vs5 0.0000 | 0.3901 | 0.2000 | 0.3958| 0.4084| 0.4214| 0.3827| 0.6786 |0.0667| 0.5225 | 0.6584
ecoli01vs235 0.0000 | 0.4325 | 0.1648 | 0.4396| 0.4352| 0.4264| 0.4844| 0.5691 | 0.1385| 0.4224 | 0.5536
ecoli0267vs35 0.0000 | 0.3158 | 0.2269 | 0.3257| 0.2902| 0.3253| 0.3856| 0.4035 | 0.1469| 0.4592 | 0.5337
glass04vs5 1.0000 | 0.8793 | 0.8679 | 0.8747| 0.9228| 0.9209| 0.9933| 0.7854 | 1.0000 0.9631 | 0.9655
ecoli0346vs5 0.0000 | 0.5446 | 0.3636 | 0.6397| 0.5741| 0.5642| 0.5985| 0.7382 |0.3404| 0.6766 |0.6768
ecoli0347vs56 0.0000 | 0.5743 | 0.4743 | 0.5628| 0.5576| 0.5104| 0.5913| 0.6669 |0.1846| 0.5176 | 0.5913
yeast05679vs4 0.0000 | 0.4327 | 0.4265 | 0.4282| 0.4333| 0.4250| 0.5066 | 0.4996 | 0.4189| 0.4786 | 0.5355

vowelO 1.0000 | 0.9936 | 0.9796 | 0.9905| 0.9890| 0.9816| 0.9833| 0.9396 | 1.0000 0.9060 | 0.9387
ecoli067vs5 0.0000 | 0.3260 | 0.2973 | 0.3463| 0.3444| 0.3225| 0.3787| 0.6848 | 0.2308| 0.6173 | 0.6873
glass016vs2 0.0000 | 0.3196 | 0.3203 | 0.2686| 0.3048| 0.2963| 0.2102| 0.1395 | 0.3404 0.2001 | 0.2857

ecoli0147vs2356 0.0000 | 0.4230 | 0.3014 | 0.4960| 0.4354| 0.4435| 0.5021| 0.2230 | 0.0500| 0.4043 | 0.5074
led7digit02456789vs] 0.7748 | 0.5707 | 0.6197 | 0.5226| 0.5766| 0.5156| 0.7308| 0.5691 | 0.5961| 0.6746 | 0.7224
ecoli0lvs5 0.0000 | 0.4138 | 0.2588 | 0.4482| 0.4103| 0.4946| 0.4392| 0.4140 | 0.2069| 0.6843 |0.7811
glass06vs5 1.0000 | 0.9057 | 0.9655 | 0.8953| 0.8857| 0.9083| 0.9866| 0.8654 | 1.0000 0.9783 | 0.9474
glass0146vs2 0.0000 | 0.2463 | 0.2512 | 0.2247| 0.2473| 0.2814| 0.2823| 0.1747 | 0.2931 0.2597 | 0.2768
glass2 0.0000 | 0.2477 | 0.2362 | 0.2329| 0.2478| 0.2988| 0.2484| 0.1131 | 0.3233 0.2019 0.26




62

Dataset Original | SMOTE | ADASYN | sTL sSafe | sSRST | sSCHC | EUSCHC | AHC | FRB+CHC | FRB
ecoli0147vs56 | 0.0000 | 0.5757 | 0.4148 | 0.6288| 0.6022| 0.5103| 0.5164| 0.6148 | 0.0571| 0.6762 | 0.7609
clevelandOvs4 | 0.0000 | 0.1539 | 0.1556 | 0.1560| 0.1263| 0.1600| 0.0923| 0.2621 | 0.0000| 0.1687 | 0.2030
ecoli0146vs5 0.0000 | 0.4280 | 0.1920 | 0.4112| 0.4356| 0.4422| 0.3762| 0.6993 | 0.3000| 0.7456 | 0.7758
shuttlecOvsc4 | 0.9490 | 0.9740 | 0.8937 | 0.9749| 0.9740| 0.9817 | 0.9724| 0.9707 | 0.9675| 0.7964 | 0.8763

yeastlvs7 0.0000 | 0.2926 | 0.2870 | 0.2865| 0.2939| 0.2738| 0.3120| 0.0000 | 0.2861| 0.3161 | 0.3381

glass4 0.8560 | 0.6633 | 0.6565 | 0.6590| 0.6613| 0.6463| 0.8190| 0.7164 |0.8471 0.7273 |0.7197

ecoli4 0.7500 | 0.6352 | 0.5082 | 0.6354| 0.6389| 0.6491| 0.7931| 0.7372 | 0.7109, 0.7356 | 0.6617

pageblocks13vs4l 0.2270 | 0.2033 | 0.1907 | 0.2010| 0.2034| 0.1894| 0.3563 | 0.0832 | 0.2270| 0.1816 | 0.1907
abalone918 0.0444 | 0.4522 | 0.4172 | 0.4206| 0.4474| 0.4570| 0.5221| 0.2643 | 0.5303| 0.5732 0.5561
glass016vs5 0.6650 | 0.5674 | 0.6592 | 0.5601| 0.5668| 0.6551| 0.7548| 0.4688 | 0.7273| 0.7694 0.6857
shuttlec2vsc4 0.4 0.7152 | 0.7152 | 0.7152| 0.7152| 0.7288| 0.6103| 0.1593 0.4 0.6126 | 0.7395
yeast1458vs7 0 0.1318 | 0.1261 | 0.1260| 0.1323| 0.1344| 0.1585 0 0.1398| 0.1557 | 0.1187

glass5 0.7 0.5937 | 0.4551 | 0.5495| 0.5932| 0.4838| 0.6583| 0.3542 0.7 0.7533 0.8

yeast2vs8 0.6967 | 0.5972 | 0.2079 | 0.5905| 0.5989| 0.5984| 0.7068 | 0.6967 | 0.6570| 0.6967 | 0.6967

yeast4 0 0.2703 | 0.2464 | 0.2648| 0.2715| 0.2711| 0.3076| 0.0308 | 0.2714| 0.3533 0.3398
yeast1289vs7 0 0.1395 | 0.1363 | 0.1357| 0.1397| 0.1308| 0.1851 0 0.1488| 0.1967 0.1776

yeast5 0 0.4843 | 0.4611 | 0.4742| 0.4818| 0.4751| 0.5146, 0.5802 | 0.5012| 0.4476 | 0.4415
ecoli0137vs26 0 0.3976 | 0.2400 | 0.4681| 0.4292| 0.3636| 0.4306 | 0.3158 0.1 0.3465 | 0.3826

yeast6 0 0.2698 | 0.2014 | 0.2606| 0.2705| 0.2670| 0.3577 0 0.2756| 0.3288 | 0.2759

abalonel9 0 0.0408 | 0.0406 | 0.0403| 0.0409| 0.0486 | 0.0437 0 0.0411| 0.0482 | 0.0445

Mean 0.2510 | 0.4711 | 0.3917 | 0.4734| 0.4733| 0.4693| 0.5090| 0.4492 | 0.4039| 0.5179 | 0.5451
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Table 3: SVM: Average AUC of Testing Datasets among Diffe®ampling Methods.

Dataset Original | SMOTE | ADASYN | sTL sSafe | sSRST | sSCHC | EUSCHC | AHC | FRB+CHC | FRB
ecoli034vs5 0.4972 | 0.7069 | 0.5889 | 0.7236| 0.7047| 0.6799| 0.6747| 0.8111 | 0.5972| 0.8217 | 0.8472
yeast2vs4 0.7362 | 0.8924 | 0.8788 | 0.8900| 0.8931 | 0.8892| 0.8656| 0.8804 | 0.8885| 0.8757 |0.8424
ecoli067vs35 0.5000 | 0.6860 | 0.6625 | 0.7063| 0.6790| 0.6700| 0.6943| 0.6675 | 0.6200| 0.7860 | 0.8325
ecoli0234vs5 0.4972 | 0.6978 | 0.6140 | 0.7081| 0.6943| 0.6820| 0.7181| 0.8014 | 0.5917| 0.8289 0.8112
glass015vs2 0.5000 | 0.7152 | 0.7352 | 0.7284| 0.7376| 0.7496 | 0.5905| 0.4911 | 0.6484| 0.5530 0.575
yeast0359vs78 0.6067 | 0.7344 | 0.6936 | 0.7281| 0.7391 | 0.7334| 0.7289| 0.6067 | 0.7371| 0.6062 | 0.6067
yeast0256vs3789 | 0.5486 | 0.7960 | 0.7734 | 0.7972| 0.7965| 0.7993| 0.8038| 0.8064 | 0.7918| 0.7691 | 0.5761
yeast02579vs368 | 0.8695 | 0.9057 | 0.8610 | 0.9085| 0.9035| 0.9071| 0.9041| 0.9135 |0.9052| 0.9125 | 0.9078
ecoli046vs5 0.4973 | 0.6496 | 0.5614 | 0.6488| 0.6574| 0.6696| 0.6395| 0.7461 | 0.5195| 0.7880 | 0.8427
ecoli01vs235 0.4955 | 0.6606 | 0.5377 | 0.6628| 0.6598| 0.6616| 0.6758| 0.7423 | 0.5405| 0.7866 | 0.8659
ecoli0267vs35 0.5000 | 0.6073 | 0.5826 | 0.6093| 0.6020| 0.6113| 0.6405| 0.7035 | 0.5450| 0.8176 | 0.8483
glass04vs5 1.0000 | 0.9754 | 0.9754 | 0.9728| 0.9842| 0.9830| 0.9988| 0.9570 | 1.0000 0.9732 | 0.9938
ecoli0346vs5 0.4973 | 0.6974 | 0.6115 | 0.7421|0.7124| 0.7127| 0.7170| 0.7878 | 0.6169| 0.8459 | 0.8656
ecoli0347vs56 0.5000 | 0.7569 | 0.7028 | 0.7594| 0.7444| 0.7294| 0.7511| 0.8071 | 0.5579| 0.7888 | 0.8310
yeast05679vs4 0.5000 | 0.7869 | 0.7902 | 0.7862| 0.7861| 0.7797| 0.7934 | 0.7860 | 0.7754| 0.7899 | 0.7786
vowelO 1.0000 | 0.9993 | 0.9978 | 0.9990| 0.9988| 0.9981| 0.9982| 0.9933 | 1.0000 0.9892 | 0.9933
ecoli067vs5 0.5000 | 0.6103 | 0.6100 | 0.6155|0.6175| 0.6106| 0.6245| 0.8000 | 0.5725| 0.8125 0.845
glass016vs2 0.5000 | 0.7529 0.7529 | 0.7106| 0.7464| 0.7322| 0.6239| 0.5733 | 0.7517| 0.6114 | 0.6552
ecoli0147vs2356 0.4984 | 0.6509 | 0.6154 | 0.6920| 0.6580| 0.6629| 0.6891| 0.6504 | 0.5102| 0.8054 | 0.8441
led7digit02456789vs] 0.8788 | 0.8819 | 0.8867 | 0.8799| 0.8856| 0.8650| 0.8946| 0.9055 | 0.8600| 0.8844 | 0.8921
ecoli0lvs5 0.4977 | 0.6602 | 0.5864 | 0.6786| 0.6566| 0.6875| 0.6659| 0.7091 | 0.5727| 0.8159 | 0.8432
glass06vs5 1.0000 | 0.9774 | 0.9950 | 0.9574| 0.9629| 0.9436| 0.9895| 0.9397 | 1.0000 0.9840 0.95
glass0146vs2 0.5000 | 0.6823 | 0.6849 | 0.6594| 0.6821| 0.7142| 0.6717| 0.5519 | 0.7153 0.6336 | 0.6808
glass2 0.5000 | 0.7132 | 0.6981 | 0.6938| 0.7127| 0.7607| 0.6648| 0.5248 | 0.7868 0.6078 | 0.6875
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Dataset Original | SMOTE | ADASYN | sTL sSafe | sSRST | sSCHC | EUSCHC | AHC | FRB+CHC | FRB
ecoli0147vs56 | 0.5000 | 0.7160 | 0.6352 | 0.7460| 0.7335| 0.7053| 0.6905| 0.7722 | 0.5167| 0.8578 |0.9171
clevelandOvs4 | 0.4969 | 0.5622 | 0.5575 | 0.5526| 0.5321| 0.5421| 0.5210| 0.5991 | 0.4811| 0.5857 | 0.6034
ecoli0146vs5 0.4981 | 0.6440 | 0.5654 | 0.6394| 0.6467| 0.6558| 0.6260| 0.7731 | 0.5962| 0.8371 | 0.8442
shuttlecOvsc4 | 0.9515 | 0.9747 | 0.9872 | 0.9755| 0.9747| 0.9845| 0.9731| 0.9715 | 0.9749| 0.9812 | 0.9897

yeastlvs7 0.5000 | 0.7583 | 0.7744 | 0.7632| 0.7602| 0.7500| 0.6777| 0.5000 |0.7261| 0.6932 | 0.7579

glass4 0.9092 | 0.9148 | 0.9176 | 0.9113| 0.9143| 0.9163| 0.9333| 0.9251 | 0.9350 0.9230 | 0.8942

ecoli4 0.8000 | 0.9101 | 0.9149 | 0.9143| 0.9171| 0.9426| 0.9244| 0.9528 |0.9279, 0.9368 | 0.9231

pageblocks13vs4l 0.5700 | 0.7528 | 0.7320 | 0.7493| 0.7531 | 0.7298| 0.6847| 0.5609 | 0.5689| 0.7141 0.732
abalone918 0.5125 | 0.8961 | 0.8860 | 0.8863| 0.8939| 0.8916| 0.8745| 0.5792 | 0.9144 0.8597 0.83
glass016vs5 0.8443 | 0.8856 | 0.9186 | 0.8791| 0.8853| 0.9221 | 0.8979| 0.8071 | 0.8943| 0.9186 | 0.8886
shuttlec2vsc4 0.7 0.9548 | 0.9548 | 0.9548| 0.9548| 0.9590 | 0.9440| 0.6957 0.7 0.9493 | 0.9632
yeast1458vs7 0.5 0.6427 | 0.6373 | 0.6396| 0.6444| 0.6539 | 0.6638 0.5 0.6546| 0.5958 | 0.5954

glass5 0.8451 | 0.8760 | 0.8256 | 0.8807| 0.8845| 0.8515| 0.8515| 0.8768 | 0.8451| 0.8967 0.8927

yeast2vs8 0.7739 | 0.7628 | 0.7242 | 0.7614| 0.7633| 0.7770| 0.7852| 0.7739 | 0.8381 0.7739 | 0.7739

yeast4 0.5 0.8156 | 0.8102 | 0.8227 | 0.8160| 0.8124| 0.8177| 0.5093 | 0.8127| 0.7991 | 0.7663
yeast1289vs7 0.5 0.7141 | 0.7145 | 0.7133| 0.7109| 0.6968| 0.7201 0.5 0.7202| 0.6990 | 0.7453

yeast5 0.5 0.9668 | 0.9635 | 0.9655| 0.9665| 0.9655| 0.9683| 0.7976 | 0.9691 0.9621 | 0.9611
ecoli0137vs26 0.5 0.7118 | 0.5927 | 0.7390| 0.7413 | 0.6909| 0.7294| 0.6427 | 0.5463| 0.6655 | 0.6945

yeast6 0.5 0.8742 | 0.8597 | 0.8716| 0.8744| 0.8736| 0.8735 0.5 0.8761| 0.8880 0.8880

abalonel9 0.5 0.7177 | 0.7170 | 0.7163| 0.7180| 0.7715 | 0.7166 0.5 0.6881| 0.7016 | 0.7063

Mean 0.6141 | 0.7784 | 0.7519 | 0.7805| 0.7795| 0.7801| 0.7703| 0.7248 | 0.7339| 0.8020 | 0.8133




Table 4: Friedman Rankings of AUC and F-measure.

Preprocessing Method | AUC | F-measure
Original 8.841] 7.568
SMOTE 4.636 5.341
ADASYN 6.159 7.341

sTL 4.864| 5.636
sSafe 4.624| 4.932
SRST 4.659| 5.318
sCHC 4.886| 3.477

EUSCHC 6 5.659
AHC 5.773 55
FRB+CHC 4.455 3.886

Although the hybrid sampling methods can get better resthiesmain draw-
back of them is that the size of training set is expanded lyrd&iR of the dataset
is large, the size of the re-sampled training set can beydatble of the original
one. This drawback may increase the computational time angplexity of the
learning model. Table 5 shows the over-sampling rates ¢éreifit methods on
each dataset and the mean rate of each method. A negativeniakns the size
of re-sampled training set is smaller than that of origina¢.o A value greater
than 100% means the size of re-sampled training set is marezhimes of the
original set. Both sCHC and FRB+CHC shrink most of the databée the over-
sampling rates of the other methods are similar. This shbatsitoth sCHC and

FRB+CHC can use less training samples to achieve high peafoce. Table 6
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shows the details of the re-sampled training sets aftelyagpFRB+CHC. It re-
veals the decrease rate of the majority class, the incragsefrthe minority class,
and the updated IR. The IR values of re-sampled trainingesetsot always equal
to one because CHC makes use of a fitness function to selebsataf samples.
The range of IR is between 0.9 and 1.5.

Table 7 shows the increase rate of the number of supportrsagsed to form
the classification model. The number of support vectors efi@at the complexity
of the classification model formed by SVM. When the numbemupi®rt vectors
is smaller, the classification model is more easily appl®dme negative values
can be found since the number of support vectors for themgteal dataset is less
than that of the original dataset. Both sSCHC and FRB+CHC hhgesmallest
increase rate of the number of support vectors on averageavérage number of
support vectors are only increased by around 0.776 time$ &4@ times of the
original datasets; while most of the other methods have tineber increased by
over 2 times.

The results of SCHC and FRB+CHC are similar from the aboviesabTo
show the difference of these two methods, Fig. 5 reveal tbeageAU C results
obtained from the training and testing sets (sorted by tméimearity of the 1NN
classifier.) The x-axis shows the selected 44 datasets.dliddises in the figures
represent the averagel/ C results for the testing set; the dashed lines represent
the averagedUC results for the training set. FRB+CHC shows the advantage
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Table 5: Over-sampling Rate (%) of Training Sets among befié Sampling Methods.

Dataset SMOTEJADASYNT sTL [sSafe] SRST [SCHCJAHC[FRB+CHC
ecoli0347vs56 80.53 80 77.6380.53100.77 -5.60| 80 -3.06
yeast2vs4 80.16 | 80.16 |76.8580.16 80.16| -3.13|80.1 -3.90
ecoli067vs35 80.18 | 80.18 |77.1480.18 94.13| -5.19|80.18 -4.16
ecoli0234vs5 80.20 | 80.20 |77.1080.20 89.36| -4.46|80.20 -5.50
glass015vs2 80.23 | 80.23 |70.7980.23 80.23| -2.06|80.23 -2.28
yeast0359vs78 | 80.24 | 80.24 |71.4980.24 80.34| -4.90(80.24 -2.14
yeast0256vs3789 | 80.28 | 80.28 [74.2580.28 80.73| -5.70|80.28 -0.92
yeast02579vs368 | 80.28 | 80.28 [76.97/80.28 80.28| -3.46|80.28 -2.52
ecoli046vs5 80.30 | 80.30 |77.0980.30112.06 -3.99|80.30 -2.72
ecoli0147vs2356 | 84.01 | 80.33 [80.0284.01)119.57 -4.05(80.33 -1.50
ecoli0267vs35 80.36 | 80.36 |76.5680.36 94.65| -4.03|80.36 -2.62
glass04vs5 80.44 | 80.44 |77.1880.44 96.76| -4.40|80.44 -2.91
ecoli034vs5 80.20 | 80.49 |77.7280.20 86.63| -4.43|80.49 -2.73
ecoli0346vs5 80.39 | 80.54 |78.1880.39 87.98| -3.54|80.54 -3.12
yeast05679vs4 | 80.68 | 80.68 |74.4880.68 80.68| -5.71/80.68 -2.48
vowelO 81.78 | 81.78 |81.7881.78 84.56| -4.82|81.78§ -4.29
ecoli067vs5 81.82 | 81.82 |75.6881.82 87.27|-4.78|81.82 -1.68
glass016vs2 82.29 | 82.29 |73.1882.29 82.29| -0.78|82.29 -2.11
ecoli0137vs26 90.48 | 82.74 |87.6590.48169.85 -1.33|82.74  0.28
led7digit02456789vsil 83.30 | 83.30 |78.3983.30 94.02| -3.93(83.30 -7.90
ecoli0147vs56 83.97 | 83.33 [79.9183.97137.03 -3.39|83.33 -1.73
lass06vs5 83.34 | 83.34 |80.7983.34 91.22| -2.71|83.34 -1.67
glass0146vs2 83.41 | 83.41 |74.6383.41 83.41|-0.94|83.41 -1.40
lass2 84.11 | 84.11 |75.9384.11 84.11| -2.07|84.11 -0.42
ecoli0146vs5 89.30 | 84.94 [86.0089.30139.65 -3.34|84.94 -2.73
clevelandOvs4 84.97 | 84.97 |80.3584.97/205.49 -3.27|84.97 -1.13
ecoli0lvs5 92.75 | 85.71 |90.61]92.75186.47 -3.58|85.71 -1.22
shuttlecOvsc4 86.55 | 86.55 [86.5086.55136.58 -3.32|86.55 -3.17
yeast1458vs7 91.81 | 86.93 |87.1691.81 91.81| -1.13|86.93 -2.51
glass4 87.85 | 87.85 |83.6587.85112.84 -2.68|87.85 -0.95
ecoli4 88.10 | 88.10 [86.4688.10 88.39| -1.59|88.10 -1.40
pageblocks13vs4 | 88.14 | 88.14 |86.6088.14157.10 -2.88|88.14 -0.86
abalone918 88.58 | 88.58 [83.3888.58 88.58| -1.72|88.58 -1.44
lass016vs5 90.22 | 90.22 [88.4590.22 94.57| -2.84(90.22 -1.03
shuttlec2vsc4 90.70 | 90.70 [89.9290.70113.19 -3.86(/90.70  -3.43
yeast1289vs7 92.32 | 91.34 |88.4492.32 92.32| -2.50(91.34 -2.35
glassb5 91.59 | 91.59 [89.3791.59 92.76| -1.58|91.59 0.12
yeast2vs8 91.70 | 91.70 |89.8391.70 98.44| -1.86(91.70 -0.46
yeast4 93.13 | 93.13 |90.0993.13 93.13| -1.69(93.13 -1.16
yeastlvs7 89.62 | 93.66 [85.0489.62 89.62| -3.39|93.66 -3.31
yeast5 94.07 | 94.07 |92.6294.07) 94.07| -1.66|94.07 -2.09
ecoli01vs235 82.59 | 95.02 |78.9582.59106.04 -4.04|95.02 -0.59
yeast6 95.28 | 95.28 |93.3695.28 95.28| -2.54|95.28§ -1.88
abalonel9 98.47 | 98.47 ]97.3298.47 98.47| 1.04 |98.47 -0.31
Mean 85.70 | 85.40 [81.9485.70103.47 -313[85.40 -2.17
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Table 6: The Details of the Re-sampled Datasets After FRB&CH

Decrease Rate of

Increase Rate of

Dataset Updated IR
Majority Class | Minority Class

ecoli034vs5 0.474 3.700 1.010
yeast2vs4 0.469 3.865 0.995
ecoli067vs35 0.500 4.224 0.874
ecoli0234vs5 0.488 3.463 1.048
glass015vs2 0.405 2.989 1.369
yeast0359vs78 0.418 3.995 1.064
yeast0256vs3789 0.452 4.005 1.002
yeast02579vs368 0.456 3.841 1.028
ecoli46vs5 0.469 3.900 1.001
ecoli0lvs235 0.445 3.939 1.030
ecoli0267vs35 0.500 3.756 0.969
glass04vs5 0.464 4.325 0.934
ecoli0346vs5 0.476 4.188 0.935
ecoli0347vs56 0.452 3.940 1.032
yeast05679vs4 0.441 3.938 1.064
vowel0 0.514 4.619 0.863
ecoli067vs5 0.461 4.025 1.076
glass016vs2 0.393 3.635 1.357
ecoli0147vs2356 0.424 4.651 1.084
led7digit02456789vs1 0.499 4.603 0.983
ecoli0lvs5 0.470 4.975 0.978
lassO6vs5 0.482 5.339 0.910
glass0146vs2 0.392 4.568 1.212
lass2 0.449 4.826 1.101
ecoli0147vs56 0.475 5.510 0.992
clevelandOvs4 0.442 6.049 0.984
ecoli0146vs5 0.470 5.550 1.053
shuttlecOvsc4 0.507 6.530 0.908
yeastlvs7 0.420 5.525 1.277
glass4 0.489 6.651 1.038
ecoli4 0.463 7.300 1.024
pageblocks13vs4 0.480 7.236 1.003
abalone918 0.478 7.658 0.994
lass016vs5 0.486 9.296 0.974
shuttlec2vsc4 0.514 9.900 0.936
yeast1458vs7 0.391 7.908 1.513
glass5 0.478 10.321 1.052
yeast2vs8 0.452 10.500 1.105
yeast4 0.468 12.397 1.117
yeast1289vs7 0.418 11.967 1.373
eastb 0.480 14.768 1.081
ecoli0137vs26 0.467 19.633 1.023
yeast6 0.451 17.693 1.217
abalonel9 0.487 61.247 1.067
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Table 7: The Increase Rate of Number of Support Vectors o€thssification Model formed by

SVM.
Dataset SMOTEJADASYN] STL [ sSafe [ SRST [sCHC] AHC [FRB+CHC
ecoli0347vs56 0.245 | 0.529 ]0.418]|0.143] 0.476[-0.117/0.178] 0.026
yeast2vs4 2.662 | 4.354 | 2.507|2.981| 2.698|1.180| 2.377| 1.000
ecoli067vs35 0.252 | 0.506 |0.468| 0.249| 0.465|-0.103 0.215| 0.021
ecoli0234vs5 0.272 | 0.538 |0.472|0.122| 0.473|-0.097, 0.197| 0.011
glass015vs2 3.731 | 3.687 |3.193| 3.996| 3.583|1.705| 3.310| 1.279
yeast0359vs78 1.384 | 1.676 |1.149|1.434|1.418/0.251| 1.361| 0.093
yeast0256vs3789 | 3.555 | 5.151 | 3.240| 3.669| 3.577|1.414| 3.416| 0.990
yeast02579vs368 | 2.142 | 5.240 |1.919| 2.251| 2.188|0.783| 1.990| 0.521
ecoli046vs5 0.263 | 0.477 |0.460| 0.125| 0.490|-0.100 0.177| 0.031
ecoli0147vs2356 | 0.229 | 0.566 | 0.435|0.170| 0.494|-0.103 0.186| 0.053
ecoli0267vs35 0.279 | 0.521 |0.490| 0.234| 0.467|-0.092 0.209| 0.040
glass04vs5 1.839 | 1.477 |1.467|4.104| 1.242|-0.043 0.122| 0.306
ecoli034vs5 0.269 | 0.526 |0.456| 0.135| 0.477|-0.108 0.163| 0.029
ecoli0346vs5 0.286 | 0.424 |0.488| 0.140| 0.497|-0.094 0.150| 0.031
yeast05679vs4 | 3.500 | 4.147 | 3.113| 3.561| 3.575|1.401| 3.474| 1.469
vowelO 1116 | 1.333 |0.752] 2.311| 0.972|-0.027| 0.448| 1.631
ecoli067vs5 0.227 | 0.440 |0.391| 0.212| 0.438|-0.109 0.144| 0.055
glass016vs2 3.868 | 3.927 |3.296| 4.209| 3.660| 1.840| 3.291| 1.530
ecoli0137vs26 0.175 | 0.404 |0.338|0.089| 0.439|-0.191 0.160| -0.146
led7digit02456789vsil 3.332 | 3.322 | 2.864| 4.139| 2.838|0.360| 2.608| 0.563
ecoli0147vs56 0.218 | 0.487 |0.391)|0.121| 0.522|-0.145 0.147| 0.031
lass06vs5 1494 | 1.272 |1.124|2.924| 1.204|0.021| 0.077| 0.250
glass0146vs2 3.967 | 4.008 |3.396|4.271| 3.725|1.915| 3.391| 1.643
lass2 3.820 | 3.893 |3.221| 4.036| 3.671|1.881| 3.444| 1.712
ecoli0146vs5 0.189 | 0.379 |0.361| 0.105| 0.394|-0.155 0.137| 0.014
clevelandOvs4 0.540 | 0.741 | 0.712| 0.247| 0.505|-0.077, 0.326| 0.008
ecoli0lvs5 0.148 | 0.494 |0.309| 0.082| 0.417|-0.128 0.149| 0.032
shuttlecOvsc4 0.221 | 2.557 |0.264| 0.001| 0.450|-0.109 0.103| 1.326
yeast1458vs7 3.121 | 6.093 |2.947| 3.233| 3.100|1.064| 5.311| 0.966
glass4 1.968 | 1.873 |0.836|4.223| 1.852| 0.084| 0.675| 0.344
ecoli4 2173 | 2.998 | 2.020| 2.668| 2.394|0.772| 1.796| 1.012
pageblocks13vs4 | 0.836 | 1.042 | 0.863| 0.057] 1.198|0.017| 0.523| 0.110
abalone918 8.586 | 9.046 | 8.058/10.025 8.077|3.752| 6.750| 4.309
lass016vs5 2.084 | 1.760 |1.440| 3.498| 1.846|0.226| 0.492| 0.512
shuttlec2vsc4 0.616 | 1.428 | 1.388|0.153| 1.310|0.282| 0.229| 0.422
yeast1289vs7 4846 | 2.993 |4.611|5.170| 5.087|1.802| 2.825| 1.491
glass5 2.307 | 2.169 |1.884|4.623| 2.151|0.249| 0.524| 0.574
yeast2vs8 4905 | 8.609 |4.920|5.282|5.169|2.101| 4.436| 1.184
yeast4 3.133 | 3.547 |2.902|3.379| 3.173|0.883| 2.966| 0.919
yeastlvs7 5.196 | 4.672 |4.870| 5.523| 5.382|2.673| 4.088| 2.422
yeast5 3.178 | 3.458 | 2.617| 3.676| 3.265|1.578| 2.930| 2.007
ecoli01vs235 0.286 | 0.268 | 0.463| 0.153| 0.484|-0.096 0.085| 0.041
yeast6 6.825 | 9.553 | 6.376| 7.216| 6.900| 2.278| 6.479| 2.632
abalonel9 13.156| 13.209 [12.82914.221112.973 5.535|10.986 8.226
Mean 2351 | 2.859 [2.198]2.708] 2.403]0.77/6] 1.887] 0.948
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on relaxing the over-fitting problem since the performanmegraining set and
testing set are similar.

Fig. 6 and 7 show an example of the distribution of the posisamples and
negative samples after the re-sampling of FRB+CHC and s@&4dfectively. The
circle dots correspond to the samples of the majority cléks.square dots corre-
spond to the samples of the original minority class. Theagia dots correspond
to the synthetic samples. Fig. 7 show that the synthetic k=srgre generated
densely around some of the original minority samples. Orctrgrary, the syn-
thetic samples in Fig. 6 are distributed more evenly in theaaf the original
minority samples. Therefore, SCHC runs into the over-fitfimoblem more eas-
ily.

Figs. 8 and 9 show the overall results in termgof measure andAUC for
different classifiers respectively. Only a small differeraf the results for 1NN
among all the preprocessing methods is revealed. FRB+CHi&inslthe highest
value of AUC for both C4.5 and 1NN. An improvement by FRB+CHC in terms
of £ — measure is shown. In addition, a robust behavior of FRB+CHC is shown
when the results of the three classifiers only have a smédirdiice. Most of the
preprocessing methods can perform better than the origetakets in terms of
the average values &f — measure and AUC. This confirms that preprocessing

is an important step to deal with imbalanced datasets.
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Figure 5: Average AUC results obtained from training andingssets.
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5. Conclusion

A hybrid re-sampling method developed based on both ovepbag and
under-sampling has been proposed. The new synthetic samipthe minority
class are generated based on fuzzy logic. To minimize tleeddidatasets, CHC
has been employed over the new samples and the majority samph cleaning
method to the over-sampled training set.

The proposed sampling method (FRB+CHC) is compared to SM@DASYN,
STL, sSafe, sSRST, sCHC, EUSCHC, and AHC on 44 datasets. Tuedgdhe per-
formance of these nine sampling methods, the same SVM fitadsas been used
to obtain the experimental results. It is shown that FRB aR8FCHC outper-
forms the other sampling methods on béth- measure and AUC. FRB shows
its advantage to act as an over-sampling method. If datassiee a consideration,
FRB is a better choice of pre-processing method.

FRB+CHC obtains the best ranking by meansgléfC'. FRB+CHC and sCHC
have similar performance iR — measure, which indicates that CHC is a good
choice of data cleaning method. TH&/C results of SMOTE, sTL, sSafe, sRST,
and sCHC are similar since all of them use SMOTE to perfornm-eaenpling. To
show the advantages of the proposed method, the over-saymnate and the num-
ber of support vectors formed from SVM for different methads also compared.

In addition, the C4.5 and 1NN classifiers are used and FRB+6&htW/s a robust

41



behavior among different classifiers. FRB+CHC achievesigesults under the
above criteria, which reflects that FRB+CHC achieves a gaddnoe between
accuracy and over-sampling rate. It also has a low impatigcomplexity of the

learning model. The major reason is that CHC only selectsdahgples to increase
the performance of the datasets, but not considering ttagitows of the samples.

Therefore, the most representative samples are selectedrtdhe training sets.
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