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Abstract 
This paper presents an approach to design multiobjective static output feedback 

2H / ∞H / 2GH controller for vehicle suspensions by using linear matrix inequalities 
(LMIs) and genetic algorithms (GAs). A quarter-car model with active suspension 
system is studied in this paper and three main performance requirements for an 
advanced vehicle suspension are considered. Among these requirements, the ride 
comfort performance is optimized by minimizing the 2H norm from the road 
disturbance to the sprung mass acceleration, the road holding performance is 
improved by constraining the ∞H norm from the road disturbance to the tyre 
deflection to be less than a given value, and the suspension deflection is guaranteed 
to be less than its hard limit by constraining the generalized 2H norm from the road 
disturbance to the suspension deflection. In addition, the controller gain can be 
constrained naturally in GAs, which can avoid the actuator saturation problem. A 
static output feedback controller, which only uses the available sprung velocity and 
suspension deflection signals as feedback signals, is obtained. This multiobjective 
controller is realized by using GAs to search for the possible control gain matrix 
and then to resolve the LMIs together with the minimization optimization problem.  
The approach is validated by numerical simulation which shows that the designed 
static output feedback controller can achieve good active suspension performances 
in spite of its simplicity. 

Key words: Multiobjective Control, Active Suspension, Static Output Feedback, 
Genetic Algorithms, Linear Matrix Inequalities 

1. Introduction 

Many different performance requirements are often considered by auto makers for an 
advanced vehicle suspension system. These requirements include ride comfort, handling or 
road holding capability, and suspension deflection limitation, etc. To meet these conflicting 
demands, many types of suspension systems, ranging from passive, semi-active to active 
suspensions, are currently employed and studied. The use of active suspensions has been 
considered for many years and various approaches have been proposed to improve the 
performance of active suspensions design [1]. More recently, multiobjective functional (the 
combination of 2H , ∞H , 2GL , 2GH , etc.) control of vehicle suspensions attracts more 
attention [2]-[8] because it can reduce the conservatism of the approach that minimizes 
different performance requirements in a single objective functional ( 2H or ∞H ). In 
particularly, in most multiobjective active suspensions, 2H or ∞H norm is often used to 
specify the ride comfort performance; generalized 2H ( 2GH ) norm is used to constrain the 
suspension deflection and ∞H norm is used to specify the road holding performance, etc. *Received 30 Aug., 2007 (No. 07-0435) 
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The combination of these performances optimization can emerge as, for example, 
minimizing 2221 GHH αα + subject to ∞∞ < γH , where 1α and 2α are positive weighting 
coefficients, 0>∞γ is a performance index; minimizing ∞H (or 2H ) subject to hard 
constrains (e.g., suspension deflection, tyre deflection, actuator saturation, etc.); 
minimizing 2H subject to ∞∞ < γH , etc.  

Although the aforementioned multiobjective control strategies can improve the 
performance and robustness of active suspensions to some extent, there are still some 
disadvantages. One disadvantage is that the multiobjective control problem is in general a 
non-convex optimization problem and is very hard to solve. Therefore, mixed control 
problem, which requires the Lyapunov matrix to be same in all matrix inequalities, is often 
considered to replace the multiobjective control problem. Therefore, the conservatism is 
introduced due to the same Lyapunov matrix requirement. The other disadvantage is that 
only static state feedback control or dynamic output feedback control is studied in the 
multiobjective control problem by now. The static state feedback control normally requires 
that all the state variables can be measured. However, for a suspension system, some 
variables, such as tyre deflection, etc., can not or are not easy to obtain in practice. Hence, 
observer has to be constructed to obtain the tyre deflection, which often causes difficulties 
in realistic implementation. On the other hand, the dynamic output feedback control always 
requires the controller’s order to be higher than or as high as the generalized plant, which 
makes the control system structure complex and increases the expense in hardware 
realization. Therefore, in order to design active vehicle suspensions for use in realistic 
situations, the static output feedback controller design approach by only using measurable 
signals for suspensions, such as suspension deflection, suspension travel velocity, etc., as 
feedback signals is necessary. 

Following previous discussion, this paper will mainly concern with the multiobjective 
static output feedback controller designs for active vehicle suspension systems. Three main 
performance requirements for advanced vehicle suspensions (ride comfort, road holding 
capability, and suspension deflection limitation) are considered by constructing an 
appropriate static output feedback 2H / ∞H / 2GH controller to provide a trade-off between 
these requirements. Among these requirements, the ride comfort performance is optimized 
by minimizing the 2H norm from the road disturbance to the sprung mass acceleration, the 
road holding performance is improved by constraining the ∞H norm from the road 
disturbance to the tyre deflection to be less than a given value, and the suspension 
deflection is guaranteed by constraining the generalized 2H norm from the road disturbance 
to the suspension deflection to be less than a given value. Here, ∞H norm is used to optimize 
the tyre deflection because it is good measure of the wheel performance but may not be 
good measure of the body performance [2]. A feasible solution for such a static output 
feedback controller is obtained by a new procedure based on linear matrix inequalities 
(LMIs) and genetic algorithms (GAs) and the control gain can be constrained naturally in 
GAs, which can avoid the actuator saturation problem. A quarter-car model is used in this 
study. Numerical simulation shows that the designed static output feedback controller can 
achieve good active suspension performances in spite of its simplicity.  

2. Problem Fomulation 

A quarter-car model consists of one-fourth of the body mass, suspension components 
and one wheel as shown in Figure 1. 
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Fig. 1  Quarter-car model with active suspension 

The governing equations of motion for the sprung and unsprung masses of the 
quarter-car model are given by  

,][][ uzzkzzczm ussussss =−+−+                                  (1)  

,][][][ uzzkzzkzzczm rutsussusuu −=−+−+−+                      (2) 

where sm is the sprung mass, which represents the vehicle chassis; um is the unsprung 
mass, which represents the wheel assembly; sc and sk are damping and stiffness of the 
uncontrolled suspension system, respectively; tk serves to model the compressibility of the 
pneumatic tyre; sz and uz are the displacements of the sprung and unsprung masses, 
respectively; rz is the road displacement input; u represents the active input of the 
suspension system. Note that sz , uz , rz , u are all time dependent variables, i.e., )(tz s , 

)(tzu , )(tzr , )(tu . For brevity, the time variable t  is omitted throughout this paper.  
Selecting the state variables as:  

usruus zxzxzzxzzx ==−=−= 4321 ,,, , 

where 1x  denotes the suspension deflection, 2x  is the tyre deflection, 3x  is the sprung 
mass speed, 4x  denotes the unsprung mass speed, and defining 

r
T zwxxxxx == ,][ 4321 ,  

where w represents the disturbance caused by road roughness, we write (1)-(2) in 
state-space form as 

uBwBAxx 21 ++= ,                                              (3)            
where 
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Three main performance requirements for a vehicle suspension are ride comfort, road 
holding capability, and suspension deflection limitation. It is confirmed that ride comfort 
performance is closely related with the vertical acceleration of the car body. Consequently, 
to improve ride comfort performance amounts to keep the transfer characteristic from road 
disturbance to car body (sprung mass) acceleration small over the frequency range of 0-65 
rad/s [9]. The vehicle handling or road holding capability is related to the tyre deflection, 
which needs to be small to keep a firm uninterrupted contact of wheels to road. To ensure 
good road holding, it is also required that the transfer function from road disturbance to tyre 
deflection ru zz − should be small. The structural feature of the vehicle constrains the 
amount of suspension deflection us zz − with a hard limit. Hitting the deflection limit not 
only results in the rapid deterioration on the ride comfort, but at the same time increases the 
wear of the vehicle. Hence, it is also important to keep the transfer function from road 
disturbance to suspension deflection us zz − small to prevent excessive suspension 
bottoming. 

In accordance with the aforementioned requirements, we formulate a multiobjective 
2H / ∞H / 2GH control problem to deal with the three different objectives for vehicle 

suspensions. In order to satisfy performance requirements, the controlled output is 
composed of szz =1 , ru zzz −=2 , and us zzz −=3 , respectively, for the quarter-car model. 
Hence, the vehicle suspensions control system can be described by equation of the form  

Cxy
xCz
xCz

uDxCz
uBwBAxx

=
=
=

+=
++=

33

22

1211

21

                                              (4)            

where y is the measured output,  
[ ]ssssss mcmcmkC //0/1 −−= , 

smD /112 = [ ]00102 =C , [ ]00013 =C , 







=

0100
0001

C . 

In this paper, the multiobjective static output feedback 2H / ∞H / 2GH control problem of 

vehicle suspension is stated as: find the control gain matrix K such that the closed-loop 
system with control input Kyu = is stable and the performance 

2
1 HwzT is minimized 

subject to ∞<
∞

γ
HwzT 2

and α<
2

3 GHwzT , where wziT denotes the closed-loop transfer 

function from w to iz for 3,2,1=i ; 0>∞γ  and 0>α  are performance indices; and the 

performances, 
2

1 HwzT , 
∞H

wzT 2
, 

2
3 GHwzT are defined in the next section. 

 

3. Multiobjective Design 

In this section, the different performances are expressed by matrix inequalities, and the 
control gain matrix K is obtained by combining the solution of LMIs and the randomized 
search of GAs.   

3.1 2H Performance 
The 2H norm of wzT 1

is defined by [10] 

∫
+∞

∞−
= ωωωπ djTjTtrT wzwzHwz )()(2/1:

11
2

1
,              

which corresponds to the asymptotic variance of the output 1z when the system is driven by 
white noise w . The static output feedback 2H problem for system (4) is presented by finding 
matrices 02 >P , 0>R and control gain matrix K , while realizing the control objective 
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2
2

1
γ<

HwzT  for 02 >γ , such that the following inequalities hold  
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2)( γ<Rtrace                                                    (7)            

3.2 ∞H Performance 
The ∞H norm gives the system input-output gain when both the input and the output are 

measured in the finite energy. The ∞H norm of wzT 2
can be calculated from 

[ ])(sup:
22

ωσ
ω

jTT wzHwz =
∞

.                                            

The static output feedback ∞H problem for system (4) is presented as to find matrix 

0>∞P and control gain matrix K , while realizing the control objective ∞∞
< γwzT 2

for 

0>∞γ , such that the following inequality holds  
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γ                 (8) 

3.3 2GH Performance 
If the input is quantified by its energy and the peak amplitude of the output is kept to a 

certain level, this leads to the so-called generalized 2H ( 2GH ) control problem or 
energy-to-peak control problem. The 2GH norm of system wzT 3

is defined by [6] 

∫
+∞

∞−
= ωωωπλ djTjTT wzwzGHwz )()(2/1:

33
2

3 max
.     

The static output feedback 2GH problem for system (4) is commonly presented as 
finding matrix 02 >GP and control gain matrix K , while realizing the control objective 

α<
2

3 GHwzT  for 0>α , such that the following inequalities hold  

0
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G ,                       (9) 
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α
.                                           (10)            

3.4 Multiobjective Controller Design via GA 
The multiobjective static output feedback 2H / ∞H / 2GH problem presented in this paper 

is to find matrices 02 >P , 0>R , 0>∞P , 02 >GP  and control gain matrix K such that 

2
1 HwzT is minimized subject to ∞<

∞
γ

HwzT 2
and α<

2
3 GHwzT . This requires that the 

inequalities (5)-(10) are satisfied simultaneously. Normally, for inequalities (5)-(10), mixed 
state feedback control problem (where C should be identity matrix) is to 
set 022 >=== ∞ PPPP G and define KPQ = , and to find P andQ to satisfy (5)-(10). It is 

convex optimization problem and can be solved by Matlab LMI toolbox in spite of its 
conservatism. However, when considering the static output feedback problem, (5)-(10) are 
bilinear matrix inequalities (BMIs) and cannot be solved by numerically tractable methods. 
Therefore, genetic algorithm is presented in this paper to find the solutions based on its 
stochastic search capability. Similar to the approach presented in [11] to design a static 
output feedback controller based on GA, the multiobjective 2H / ∞H / 2GH static output 

feedback controller design problem is resolved by a binary-coded GA approach via the 
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following minimization problem: 

αγ << ∞
∈ ∞ 2

32
2

1
..min

GHwzHwzHwz
K

TandTtsT
K

                         (11) 

where { }3,2,1,);(|: == istableisKsTK wziK .  

The GA based scheme is outlined as below (more detailed explanation about the genetic 
algorithms can be found in [12] and references therein, and they are omitted here for 
brevity):   

Step 1: Parameter Encoding. The feedback gain matrix K in the search range (space) is 
converted into a row vector. Each element is then coded as a binary string. Here, we can 
define the search range (space) in a small range to constrain the control gain, which can be 
used to avoid the actuator saturation problem naturally.     

Step 2: Population Initialization. Randomly generate an initial population of 
pN chromosomes.  

Step 3: Objective Function Evaluation and Fitness Assignment. Decode the initial 
population produced in Step 2 into real values for every controller gain matrix 

pj NjK ,,2,1, …= . If the closed-loop system with jK is stable, then determine 

pHwz NjT
j

,,2,1,min
2

12 …==γ by solving LMIs (5)-(10) (note that inequalities (5)-(10) are 

LMIs for 0>R , 02 >P , 0>∞P , 02 >GP  once the control gain matrix jK is known, and 
these LMIs can be solved by using Matlab LMI toolbox), and take every

j2γ as the objective 

value corresponding to jK and associate every jK with a suitable fitness value according to 

rank-based fitness assignment approach, and then go to Step 4.  
Step 4: Tournament Selection. According to the assigned fitness in Step 3, the offspring 

will be chosen for next crossover and mutation steps by using tournament selection 
approach.  

Step 5: Uniform Crossover. The newly selected chromosomes in the new population are 
randomly paired together. In each pair of chromosomes, the bits are probabilistically and 
independently swapped at each bit position with crossover probability cp to produce new 
pair of chromosomes (offspring). 

Step 6: Bit Mutation. The mutation operation simply flips each bit (changing a 1 to a 0 
and vice versa) in the population of chromosomes with a small mutation probability mp .     

Step 7: Elitist Reinsertion. Elitist reinsertion guarantees that the best chromosomes in 
the population always survives and is retained in the next generation.  

Steps 3 to 7 correspond to one generation. The evolution process will repeat for 
gN generations or being ended when the search process converges with a given accuracy. 

The best chromosome is decoded into real values to produce again the control gain 
matrix K . In this approach, we do not require that 022 >=== ∞ PPPP G , and hence, 
conservatism of the mixed control problem is reduced.  

Remark 1: When the disturbance is zero, i.e., 0=w , the closed-loop system is 
expressed as xKCBAx )( 2+= . From Lyapunov stability theory we know that the 
closed-loop system matrix KCBA 2+  is stable if and only if K  satisfies the matrix 

inequality 0)()( 22 <+++ KCBAPPKCBA T  for some 0>P [13]. Now, P can be 2P , ∞P , 
or 2GP . So we can use the proposed design procedure to find K , and then to guarantee the 

closed-loop system stability no matter what the initial conditions of the systems are. 
Remark 2: The efficiency of the proposed approach will be evaluated by simulations in 

the next section. Although it is only applied to a quarter-car model in this paper, the 
approach can be applied to more complicated suspension models [14]. Certainly, the 
computational complexity and time will be different.    

Remark 3: The existence of the static output feedback control gain K  for a given 
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system can be checked by the theorem presented in [13]. The proposed approach only tries 
to find the possibly existing controller gain. However, it does not guarantee to find the 
solutions all the time without any constraint conditions. To increase the opportunity to find 
the feasible solutions, two methods can be used. If the approach does not find a candidate 
solution which can stabilize the closed-loop system at Step 3, a value which is related to the 
feasibility solution of LMIs can be used as fitness value to this candidate so that it can be 
evolved to find the feasible solution at last. The second method is to try different parameters 
setting for GA especially the search range of the controller gain to find a possible solution. 
Nevertheless, as will be shown in the next section, the feasible solution is easily found for 
the given example without resorting to these two methods  

Remark 4: In practice, there are always parameters uncertainties in the system due to 
the modeling problem and components aging etc. When these uncertainties exist, the system 
equation can be expressed as uBBwBBxAAx )()()( 2211 ∆++∆++∆+= , where 21 ,, BBA ∆∆∆ are 
real-valued unknown matrices representing parameter uncertainties and are assumed to be 
the form of 222111 ,, FEHBFEHBFEHA AA =∆=∆=∆ , where 2121 ,,,,, EEEHHH AA are known real 
constant matrices. F  is unknown matrix satisfying IFF T ≤ . Then, the above mentioned 
three performances can be expressed by LMIs with some derivations and the presented 
controller design approach can still be applied to find the appropriate static output feedback 
controller to stabilize the system with required performances. For brevity, these contents 
will not be studied in this paper. 

4. Design Results 

In this section, we will apply the proposed approach to design the static output feedback 
controllers based on the quarter-car model described in Section 2. The quarter-car model 
parameters have the following values  

sm =504.5 kg, um =62 kg, sk =13100 N/m, sc =400 Ns/m, tk =252000 N/m.  

For comparison purpose, we first design a full state feedback controller by 
setting 022 >=== ∞ PPPP G , defining KPQ = , and finding P andQ to satisfy LMIs 
(5)-(10). And for brevity, we denote the active suspension realized by this state feedback 
controller as Active Suspension I. Then, to show the effectiveness of the presented 
approach, we take the case that assumes only the suspension deflection us zz − and the 
velocity of sprung mass sz are measurements available as an example, and we use the 
approach presented in Section 3 to design the static output feedback controller via LMIs and 
GA. For brevity, we denote the active suspension realized by this static output feedback 
controller as Active Suspension II.  

The parameters used in the genetic algorithm are selected as: pN =80, gN =100, 

cp =0.7, mp =0.02, and the performance indices are set as ∞γ =1, α =0.3. Note that the 
parameter selections for ∞γ and α are made by trial and error in terms of the three 

performances realized by the state feedback control. Hence, the static output feedback 
control will also use these parameters to make fair comparison. The parameters for GA are 
selected according to previous experiences and some simulation results. To show the effects 
of GA parameters on the design results, several examples are given in Figures 2 and 3, 
which show, for example, the different settings on population size and search range make 
different effects on the evolution results. It can be seen that GA is really a random 
algorithm. Generally, it needs to run many times to get a fair result (20 times in this study). 
Parameter setting on population size does not affect the results too much. Similar 
observations are found to the parameter settings on crossover probability and mutation 
probability. For brevity, these results are not shown. The search range will affect the result 
largely. However, from the practical point of view, the controller gain cannot be given 
arbitrarily. Also for fair comparison, the search range, which is given as ]10,10[ 44− , is set 
referring to the state feedback control case. The generation size can be selected as a large 
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number, but it will spend more time for the evolution process. Observing the simulation 
experiments, the evolution results will converge to small values after 50 generations for 
most cases, so the generation size is selected as 100 which can satisfy the requirement. Even 
though the different parameter settings may affect the evolution results, it can be seen from 
Figures 2-3 that the proposed approach is able to find the desired result very efficiently with 
the given parameter setting. This validates the efficiency of the proposed approach. 
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Fig. 2  Evolution process with different population size settings. 
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Fig. 3  Evolution process with different parameter search range settings. 
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Because the ride comfort performance is frequency sensitive and the human body is 
much sensitive to vertical vibrations in the frequency range 4-8 Hz according to ISO2361, 
we mainly evaluate the ride comfort performance in frequency domain. The frequency 
responses (magnitude) for the above designed active suspensions from disturbance to 
sprung mass acceleration are depicted in Figure 4. For comparison, the frequency response 
for the passive suspension is plotted in the same figure as well. It can be clearly seen from 
Figure 4 that the designed active suspensions achieve significant improvement on ride 
comfort performance for the active suspension systems. The sprung mass accelerations of 
active suspensions are smaller than the uncontrolled suspension especially in the range of 
sprung mass resonance. Note that the frequency response of body acceleration is invariant 
at the second resonance frequency (10.15 Hz) due to no tyre damping being considered in 
the present model [15]. In spite of the simplicity of active suspension II, active suspension 
II even realizes a better ride comfort performance than active suspension I. The frequency 
responses from disturbance to suspension deflection, tyre deflection for both active 
suspensions and passive suspension are plotted in Figure 5 and Figure 6, respectively. It can 
be seen that active suspensions improve the suspension deflection and the tyre deflection 
performances as well compared with passive suspension.  
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Fig. 4  Frequency response of the sprung mass acceleration.  
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Fig. 5  Frequency response of the suspension deflection.  
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Fig. 6  Frequency response of the tyre deflection.  

 
In order to show the time domain performance of the new designed active suspensions 

(tyre deflection and suspension deflection are normally regarded as time domain 
performances), the time responses of sprung mass acceleration, tyre deflection, and 
suspension deflection for a bump road input are plotted in Figure 7, which shows the sprung 
mass acceleration, tyre deflection and suspension deflection, respectively, for the active 
suspensions and the passive suspension; and the active force for the active suspensions. The 
corresponding displacement for the bump road input is given by 

V
Lt
V
Ltt

L
VA

tzr
>

≤≤





 −=

0

,0

)),2cos(1(
2)(

π
                                   (12) 

where A and L are the height and the length of the bump, and A =0.1m, L =5m and the 
vehicle forward velocity isV =45 km/h.  

It can be seen from Figure 7 that the active suspensions experience smaller body 
acceleration, tyre deflection and suspension deflection, respectively, than those of passive 
suspension for the same bump disturbance input. It proves that, in spite of its simplicity, the 
static output feedback controller realizes the active suspension performances very well.  

5. Conclusion 

This paper presents a multiobjective static output feedback controller design approach 
with application to vehicle suspensions. This multiobjective control problem is expressed as 
minimizing the ride comfort performance ( 2H norm) subjected to the tyre deflection ( ∞H  
norm) and suspension deflection ( 2GH norm) being constrained to given limitations. Due to 
the difficulties in resolving such a multiobjective control problem, genetic algorithm is used 
to search for the final result together with the feasible solution of LMIs. The designed static 
output feedback controller is more applicable in engineering because it just uses the 
measurable variables for the suspension system. Numerical simulation validates that the 
vehicle suspension performances are improved with such a controller in spite of its simple 
structure.  
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Fig. 7  Bump response: Passive suspension (dot-dash line), Active suspension I (dot line), Active 
suspension II (solid line). 
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