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Abstract:

The success of an organization or a particular activity is evaluated through the measurement of 

key performance indicators (KPIs). The aim of this paper is to analyze and predict the indicators 

of healthcare performance using grey systems theory. Recent advancements in science and 

technology have made the healthcare industry extremely efficient at collecting data using 

electronic claims systems such as electronic health records. Therefore, collecting field level 

primary data becomes easier and accumulate them to generate secondary data for research 

purpose and to get an insight of the organization performance is absolutely necessary. Our 

research analyzes the KPIs of a hospital based on a secondary data source. Since, secondary 

data contains uncertainty and sometimes poor information, grey prediction model suits best to 

make a prediction model in this regard. Conventional grey model has considerable drawbacks 

while making a rigorous prediction model. For this, we apply an improved grey prediction 

model to predict the KPIs of the healthcare performance indicators. Several error measures in 

our model give a best fit of the data and allow prediction of the KPIs. The prediction model 

gives good estimates of the quantitative indicators and produced error rate within an acceptable 

range. We observe that the KPIs of bed turnover rate (BTR) and bed occupancy rate (BOR) 

have an increasing trend, whereas the KPIs of average length of stay (ALOS), hospital death 

rate (HDR) and hospital infection rate (HIR) show a decreasing trend over time. The main 

contribution of this research is a grey-based prediction model that can provide managers with 

the information they need to evaluate and predict the performance of a hospital. The research 

indicates that managers should give greater priority to the indicators which will result in better 

patients’ satisfaction and improved profit margin. Healthcare managers striving towards better 



  

performance will now have an empirical basis upon which to formulate and adjust their 

strategies, after analyzing the predicted value.

Keywords: Healthcare performance, improved grey prediction model, hospital key 

performance indicators.

1 Introduction

Performance evaluation of an enterprise is necessary to balance the inputs and outputs (Leggat 

et al., 1998; Wu et al; 2012); it is the process of recognizing and quantifying the quality of 

service provided by an organization (Neely et al., 2002). Performance measurement is the 

evaluation of an organization’s management and the value they give to customers and other 

stakeholders (Moullin, 2007; Toloo and Tichý, 2015). Measuring performance is a perennial 

issue for organizations trying to maintain a standard, requiring an evaluation framework that 

helps managers to understand the extent of any discrepancy between the actual and expected 

outcomes. According to Bassioni et al., (2004), a performance framework is a theoretical 

structure developed in research that acts as a basis for a company’s performance measurement 

system. Key performance indicators (KPIs) form one framework of performance measurement.

In healthcare, performance means maintaining the wellbeing of patient and achieving business 

goals at the same time (Bradea and Mărăcine, 2015). Healthcare staff are always under 

immense pressure to limit costs from increasing expenditure on treatments and to achieve high 

efficiency to sustain the quality of treatment (Aletras et al., 2007, Weir et al., 2009). Periodic 

assessment of healthcare performance is needed to ensure the highest quality of patient care. 

Supeekit et al., (2016) found that the efficiency of three performance groups – patient safety, 

clinical care and supporting processes – are independent and related to each other. Overall 

performance rather than individual performance of these groups should be measured to attain 

patient satisfaction. Elg et al., (2013) found six types of activities that propel performance 

directly or indirectly which can be the driving factors of improvements in healthcare 

organizations. Other factors, such as technical and professional inefficiencies, failure to meet 

customer demands and increasing costs, are continually threatening healthcare systems. Policy-

makers need a framework to evaluate and predict the current and future status and activities of 

the system, respectively. Despite the importance of predicting the performance of healthcare 

facilities, there is a lack of scientific contribution in this field; this paper fills the research gap. 

In a highly competitive environment, any organization should have prescience of upcoming 

events. With increasing costs and decreases in available resources, managers in healthcare 



  

organizations perform additional administrative task alongside operational tasks to compensate 

for the expenditure (Sorup and Jacobsen, 2013). A prescience of future performance could aid 

them to perform their task more efficiently, therefore this paper predicts KPI values which may 

assist managers in planning and acting in the future.

Walburg et al., (2005) investigated the application of the principles of the learning 

organization, performance management, and the theory and practice of quality 

management. Magee et al., (2003) found that people are ambivalent to hospital indicators and 

hospital rankings, and that they tend to distrust government information. A commercial 

information provider is recommended to gain people’s trust, so it follows that a framework is 

necessary to predict performance and rankings of hospitals. Jones and Spiegelhalter, (2012) 

considered an improved probabilistic prediction method for healthcare performance indicators 

using a bidirectional smoothing model; they made a fully probabilistic comparison and checked 

the uniformity of predictions through p-values. Imamgholi et al., (2014) and Bahadori et al., 

(2011) used the Pabon Lasso graphic model for comparing the performance of different 

hospitals or wards within the same hospital. The Pabon Lasso graph divides hospitals into four 

categories according to performance indicators. Supeekit et al., (2016) evaluated hospital 

internal supply performance using the DEMATEL-modified ANP method. Dey et al., (2008) 

proposed a combined AHP- LOGFRAME framework to manage the performance of a 

healthcare organization. Cucciare and O’Donohue, (2006) predicted the future costs of 

healthcare organizations using adjusted associated risk, their research resulting in a better risk 

adjustment model which can predict high-cost patients with chronic medical conditions. 

Khalifa and Zabani, (2016) utilized health analytics to improve the performance of emergency 

room (ER) services. Milstein et al., (2015) found that adoption of an electronic health record 

(EHR) system improves healthcare performance. Grøndahl et al., (2013) predicted patient 

satisfaction based on person-related conditions, external conditions and the patient’s perception 

of actual care received. Bhatia and Sood, (2017) presented a comprehensive assessment 

framework to predict probabilistic vulnerability in the health of patients using an artificial 

neural network (ANN). Bilodeau et al., (2009) performed a quantitative analysis of hospital 

performance in a non-competitive environment.

Previous studies have only considered a single key performance indicator divided into sub-

indicators to predict healthcare facility performance (Ding et al., 2010). These studies 

concentrated on a particular group in a healthcare organization in order to manage performance, 

not to predict future performances. Previous studies were also conducted from a managerial 



  

point of view, with financial indicators gaining priority. Indicators from patients’ point of view 

have been neglected in most of the papers and overall assessment of healthcare organizations 

is absent.

Healthcare facilities are facing enormous challenges and pressure due to increasing numbers 

of patients (Nolte and McKee, 2003). Adaptation of total quality management (TQM) and 

operational flexibility improves the performance of healthcare systems (Alolayyan et al., 

2011). Research focusing on the overall performance indicators of healthcare facilities may aid 

decision-makers in costing and fixing treatment levels for patients. Moreover, prediction of 

performances may assist them in designing the level of TQM. The main contributions of our 

work are now summarized.

 We identify key performance indicators of healthcare units from a review of relevant 

literature

 We propose an improved grey prediction model to analyze and evaluate key 

performance indicators of healthcare units. This model gives decision-makers an 

understanding of how well they are performing, which will guide them in strategic 

planning to improve performance

 We apply the proposed framework in the Bangladeshi healthcare industry, using an 

actual case study

The remainder of the paper is structured as follows: section 2 presents a framework for the key 

performance indicators; section 3 contains the methodology of our research; section 4 presents 

the practical application of our model; and section 5 contains the result and discussion. Our 

study ends with the final conclusions given in section 6.

2. Conceptualization of the KPIs
Key performance indicators (KPIs) are the quantifiable information of an organization that 

demonstrate the activities and structures of the organization (Badawy et al., 2016). In order to 

assess the performance of a service organization like healthcare, significant key performance 

indicators are required (Meier et al., 2013). An evidence-based approach to KPIs is used to 

measure healthcare performance (van der Geer et al., 2009). Identifying and developing 

healthcare performance indicators is important for monitoring, assessing and managing health 

systems to improve efficiency and quality (Arah et al., 2003). Arah et al., (2006) identified two 

major classes of frameworks in healthcare, one of which is the healthcare performance 

framework. The framework contains key performance indicators to assess and develop 



  

performance. Veillard et al., (2005) designed a framework for hospital performance where 

more than 100 indicators were scrutinized through an extensive survey in 20 European 

countries. Performance indicators have great advantages but encounter some problems when 

applied to healthcare systems because there are so many performance indicators. It is important 

to limit the number of performance indicators and select some key performance indicators to 

assess healthcare performance (Gu and Itoh, 2016). A single performance indicator cannot 

represent the whole of an organization, but analyzing a large number of performance indicators 

is time consuming and imposes administrative burdens on managers which can result in 

negative effects on healthcare management services (Furham, 2004). Five key performance 

indicators – bed turnover rate, bed occupancy rate, average length of stay, hospital death rate, 

and hospital infection rate – have been identified. These indicators are operationally 

quantifiable and are calculated after determining several other measures.

2.1 Bed Turnover (BTO) Rate:

According to Osborn (2008), BTO is a measurement of how a hospital’s resources are utilized, 

found by counting the changing occupancy of each bed in a hospital. The BTO rate is calculated 

as:

              Bed turnover rate 

=   
Sum of patients admissions for a given period 
 Average bed counts for the same time period

                        (1)

In the case of hospital “A”, they recorded 2560 admissions in their system during the month of 

January, 2017. Average bed count for the same period was 870; therefore, bed turnover rate 

was 2560/870 ≈ 3, meaning that each bed in the hospital saw three patients treated during the 

month of January, 2017.

BTO is useful for determining the number of vacant beds available to incoming patients if the 

hospital is required to admit more, which helps hospital management to plan accommodation 

accordingly and in advance.

2.2 Bed Occupancy Rate (BOR):

Bed occupancy rate is the financial indicator of a hospital, also called the percentage of 

occupancy. A private hospital generates more revenue when the occupancy rate is high. 

According to Osborn (2008), the inpatient occupancy rate is the percentage of official beds 

occupied by the hospital's patient for a given time period. BOR is a measure of the utilization 



  

of available bed capacity. It compares the number of patients treated by the number of available 

beds during the period of interest. The formula for bed occupancy rate is:

Bed occupancy rate 

=
Sum of inpatient days for a given period × 100

 Number of useable beds × Number of days in that same period
        (2)

The denominator of equation (2) gives the total number of inpatient bed days counted for that 

period. In the case of hospital “A”, the total number of inpatient service days in the month of 

May were 7582 and the inpatient bed days counted were 8920, giving an inpatient bed 

occupancy rate of 7582/8920 = 85%. The bed occupancy rate can be more than 100% during 

an epidemic or disaster when the hospital sets up temporary beds not considered in the official 

record of the bed count. A low BOR indicates that beds remain vacant for a long time period.

2.3 Average Length of Stay (ALOS):

The length of stay is the number of calendar days from a patient’s admission to discharge from 

the system. A longer length of stay indicates longer recovery periods, which may lead to poorer 

long-term health outcomes (Sullivan et al., 2017). ALOS is sometimes used to indicate 

efficiency. If all other variables remain constant, a shorter stay may reduce the cost per 

discharge and shift care from inpatient care to the less expensive post-acute care settings. The 

indicator is presented for all acute care cases and for childbirth without complications (OECD, 

2015). The formula for calculating ALOS is:

  Average length of stay 

=
Total time of a patient staying in the system for a given period
Sum of patient releases (including death) for the given period

   (3)

ALOS varies due to conditions specific to the patient's disease. LOS is considered as one day 

when a patient is admitted and released on the same day, whereas adjustment to the calculation 

is carried out when a patient is admitted in one month and released in another month.

2.4 Hospital Death Rate (HDR):

Death rates are an important factor for management to evaluate the quality of healthcare and 

performance. Hospital death rate is calculated by considering the total number of patients 

released from the system, both dead and alive. Several death rates can determine the overall 

death rate of a healthcare organization, namely the gross death rate, net death rate, new-born 

death rate, fetal death rate, and maternal death rate. The gross death rate is the proportion of 



  

total hospital discharges that resulted in deaths. It is the basic mortality indicator of a healthcare 

facility. New-born death rates are included in the hospital’s gross death rate, although it may 

be calculated separately for each respective department. Stillborn deaths are called fetal deaths 

as they are neither admitted nor released from the facility. Fetal death rate calculation does not 

affect the gross death rate as, like the new-born death rate, it is calculated separately. Maternal 

death is an indicator of prenatal care in a community; healthcare management calculates it 

separately to identify the factors that could lead to a maternal death. Gross death rate is the 

overall death rate indicator of the healthcare facility. The formula to calculate gross death rate 

is:

     Hospital death rate  

=
Sum of inpatient deaths  for a certain period × 100

Sum of released patients from the system in the same period
           (4)

In the case of hospital “A”, they had 31 deaths in May, 2017, including adults, children, and 

new-borns. There were 832 total discharges, including deaths; therefore, the gross death rate 

was 3.73%.

2.5 Hospital Infection Rate (HIR):

Patients in a healthcare facility contract infections when the management fail to properly follow 

guidelines for safe care. Infections affect a patient’s treatment progress and make treatment 

procedures more complex. Controlling hospital infection is a critical KPI for quality and 

service improvement (Love et al., 2008). Continuous observation of each unit in the facility is 

necessary to control the hospital infection rate. Examples of different types of infections are 

respiratory, gastrointestinal, surgical wound, skin, and urinary tract infections, as well as 

septicaemias and infections related to intravascular catheters. The formula for calculating 

nosocomial infection rate is:

Hospital infection rate

=  
Total number of hospital infections for a given period × 100

Total number of discharges (including deaths) for the same period
 (5)

For example, hospital “X” discharged 725 patients during the month of April, 2017. 32 of these 

patients had hospital-acquired infections; therefore, the hospital-acquired infection rate was 

4.4%.

A brief summary of our key performance indicators (KPIs) selected from the literature is 
presented in Table 1.



  

3 Methodology

Grey systems theory was developed by Deng, (1989); it is a relatively new methodology 

focusing on problems involving small data and poor information. It addresses uncertain 

systems with partially known and partially unknown information through generating, 

excavating and extracting useful information from what is available (grey systems research). 

Inexactness, unreliability, and the border with ignorance are the sorts of inadequate information 

which lead to uncertainty of a system or data (Funtowicz and Ravetz, 1990), although 

uncertainty can also exist in a system where a lot of information is available (van Asselt and 

Rotmans, 2002). Grey systems theory has received attention from many researchers in different 

fields dealing with inaccurate and obscure datasets (Kang and Zhao, 2012; Tsai and Lu, 2015; 

Liu et al., 2012; Liao et al., 2013, Unnikrishna Pillai et al., 2018). The theory enables a correct 

description of a system's running behaviour and its evolution law, and thus generates 

Table 1: Papers considering our selected KPIs

Indicators Definition Authors

Bed Turnover 

Rate (BTR)

The number of times each hospitals bed 

changes occupants. It is a measure of 

hospital utilization

Bahadori et al., (2011)

Goshtasebi et al., (2009)

Cunningham et al., (2005)

Average 

Length of Stay 

(ALOS)

A number of calendar days of a patient's 

admission to discharge. It is calculated 

after they are discharged from the hospital

Bahadori et al., (2011)

Goshtasebi et al., (2009)

Sullivan et al., (2017)

Protty et al., (2017)

Bed 

Occupancy 

Rate (BOR)

Percentage of functional beds in a hospital 

occupied by the inpatients for a given 

time period. It is a measure of financial 

performance

Belciug and Gorunescu, 

(2015)

Sun et al., (2015)

Hospital Death 

Rate (HDR)

Percentage of patients discharged from 

the hospital alive or dead. It is the 

indicator of mortality in a healthcare 

facility

Bilow et al., (2016)

Hospital 

Infection Rate 

(HIR)

Percentage of infection that occurs in 

various departments in a hospital. It is a 

common measure to determine morbidity 

rates

Elsamadicy et al., (2016)

Love et al., (2008)



  

quantitative predictions of future system changes. Both the input random variables and the 

output function values contain aleatory or epistemic uncertainty. Uncertainty in the system 

comes from incomplete and inaccurate information. A lack of information about the system, or 

imprecise probabilistic information, evolves into epistemic uncertainty (Zaman and 

Mahadevan, 2013). Liu et al., (2012) point out that pursuing a meticulous model in the presence 

of uncertainty is impossible. In this study, uncertainty exists if the source information of the 

data is unknown because the whole model is applied to a secondary data set. Source 

dependency or data value determination does not affect the grey forecasting model; therefore, 

prediction of periodic assessment of any datasets can be done using the grey model (Rajesh, 

2016; Lee et al., 2014; Tsai and Lu, 2015; Xia et al., 2015). Periodic datasets show a common 

trend, such as increasing or decreasing. The grey prediction model can capture the trend and 

predict the values of periodic measures in the upcoming period. Several error measures are 

used to fit the dataset and produce less error, which results in a good prediction (Liu and Lin, 

2011; Samvedi and Jain, 2013). A number of research have been reported in the literature to 

improve the accuracy of grey prediction. Some proposed methodologies to calculate the 

background value of GM (1, 1) model can be found in Madhi and Mohamed (2017), Xiaofei 

and Renfang (2014), Li (2011), Hua (2009), and Tan (2000). Table 2 shows some research 

where the researchers applied improved grey prediction model to check the model effectiveness 

in different fields.

In a real scenario, there may be some noise in the data that does not represent the true behavior 

of the system. The grey prediction model tackles such noises, and a series of error checks ensure 

best fit of the data. The procedure for forecasting using the improved grey model is presented 

below.

Step 1: Determination of the Periodic Key Performance Indicators

The value of selected key performance indicators can be calculated after obtaining healthcare 

system data using the formulae previously mentioned in this article. KPIs for a certain  𝑡𝑡ℎ

period can be calculated from the dataset where . Let, 1 ≤ 𝑡 ≤ 𝑚

Table 2: Some research using the improved grey prediction model

SL. No. Reference Focused Area
1 Mao and Chirwa, (2006) Vehicle fatality risk estimation
2 Li et al., (2012) Aquaculture water quality prediction
3 Rajesh, (2016) Supply chain performance resilience prediction
4 Hsu and Wen, (1998) Air passenger market prediction
5 Y. Wang et al., (2010) Reliability growth prediction
6 Q. Wang et al., (2017) Prediction of tertiary industry
7 Kang and Zhao, (2012) Load forecasting of power engineering



  

 (6)𝑋(0) = (𝜒(0)(𝑡)) 𝑚
𝑡 = 1

 is the raw data from the secondary source which represents a zero order monthly 𝜒(0)(𝑡)

indicator for the  time period. The time sequence of zero order data is:𝑡𝑡ℎ

 (7)𝑋 = ( 𝜒(1), 𝜒(2), 𝜒(3),………𝜒(𝑚) )

The time sequence for each period is considered as the indicator of that period. Here,  is 𝜒(1)

the KPI for the first period of our concerned time period.

Step 2: Application of Buffer Operators

True changes in the system over time cannot be represented if the periodic data sequence 

evolves too quickly or slowly due to external factors. Data sequences with external 

disturbances cannot be used to build the model. In such cases, to improve the accuracy of the 

prediction model we must apply sequential strengthening operators or weakening sequence 

operators. If  be an ordering sequence on  then,𝐹 𝑋

 (8)𝑋𝐹 =  (𝜒(1)𝑓,  𝜒(2)𝑓, 𝜒(3)𝑓,………,𝜒(𝑚)𝑓)

Weakening and strengthening operators can be applied respectively for the following 

conditions,

 (9)𝜒(𝑢)𝑓 ≥ 𝜒(𝑢);𝑢 = 1,2,3,………,𝑚

 (10)𝜒(𝑢)𝑓 ≤ 𝜒(𝑢);𝑢 = 1,2,3,………,𝑚

If  for the third period, then the ordering sequence F is a strengthening operator 𝜒(3)𝑓 ≤  𝜒(3)

and the function is an increasing function. The opposite of this will be a decreasing function. 

The values expand when we apply strengthening operators and compress when a weakening 

operator is applied. To smooth the values, a second order weakening operator, , is applied.  𝐹2

 (11)𝑋(0)𝐹 = (𝜒(0)(1)𝑓, 𝜒(0)(2)𝑓, 𝜒(0)(3)𝑓,………𝜒(0)(𝑚)𝑓)

Where,

 (12)𝜒(0)(𝑢)𝑓 =  
1

𝑚 ‒ 𝑘 + 1(𝜒(0)(𝑢) +  𝜒(0)(𝑢 + 2) +  𝜒(0)(𝑢 + 3) + … +  𝜒(0)(𝑚))

And

 (13)   𝑋(0)𝐹2 = (𝜒(0)(1)𝑓2, 𝜒(0)(2)𝑓2, 𝜒(0)(3)𝑓2, ………, 𝜒(0)(𝑚)𝑓2)

Where,



  

 (14) 𝜒(0)(𝑢)𝑓2 =  
1

𝑚 ‒ 𝑢 + 1(𝜒(0)(𝑢)𝑓 +  𝜒(0)(𝑢 + 2)𝑓 +  𝜒(0)(𝑢 + 3)𝑓 + … +  𝜒(0)(𝑚)𝑓)

 is introduced to represent the sequential values after applying the second order weakening 𝑋

operator from equation (14),

 (15) 𝑋(0)𝐹2 =  𝑋 = (𝜒(0)(1), 𝜒(0)(2), 𝜒(0)(3),………, 𝜒(0)(𝑚))

Step 3: Calculation of Accumulating Operators

The first accumulation generated sequence (1-AGO) is the sequential aggregation of the KPIs 

within the concerned time period, calculated after determining the second order weakening 

operators. The aggregated values are represented by   as follows:𝑋(1)

 (16)𝑋(1) =  (𝜒(1)(1), 𝜒(1)(2), 𝜒(1)(3),………, 𝜒(1)(𝑚))

Where,

 (17)𝜒(1)(𝑢) =  ∑𝑢
𝑡 =  1𝜒(0)(𝑡);𝑢 = 1,2,3,………,𝑚

Step 4: Calculation of the Adjacent Neighbour Means of the Sequence

The adjacent neighbour means of the data sequence are calculated after applying the first 

accumulated generated sequence in the data. Consecutive neighbouring means of the data for 

each KPI within the concerned time period are presented by  as follows:𝑋

 (18)𝑋 = (𝜒(1)(1), 𝜒(1)(2), 𝜒(1)(3), ………,𝜒(1)(𝑚))

Where,

 (19)𝜒(1)(1) =  
1
2(𝜒(1)(𝑢) +  𝜒(1)(𝑢 + 1));𝑢 = 1,2,3,………,𝑚

An improved method, suggested by Tan (2000) to calculate the mean generating operator when 

data sequences show quick growth, is based on the background value of the grey model GM 

(1, 1) in Eq.(27). GM (1, 1) performs well with equidistance and slow growth of time sequence 

data, but often performs very poorly, making delay errors, with quick growth time sequence 

data. The improved method has increased the acceptability of the GM (1, 1) to many 

researchers.

The improved equation of calculating the mean generating operator is given as,



  

 (20)𝜒(1)(𝑢 + 1) =  
1
𝑛[𝜑(𝑛 + 1)𝜒1(𝑢) + 𝜔(𝑛 ‒ 1)𝜒1(𝑢 + 1) ]

Where,  are the parameters having typical values of both 0.5 and,𝜑, 𝜔

n=  (21)(∑𝑚
𝑡 = 2

𝜒1(𝑡)

𝜒1(𝑡 ‒ 1)
)

1
𝑚 ‒ 1

Step 5: Generate the Sequential Values of the KPIs

The basic form of GM (1, 1) is represented as,

 (22)𝜒(0)(𝑢) + 𝛼𝜒(1)(𝑢 + 1) = 𝛽

Equation (22) is also called the even form of GM (1, 1), which is a first order differential 

equation of the following form,

 (23)
𝑑𝜒(1)

𝑑𝑡 + 𝛼𝜒(1) = 𝛽 

The estimated values of the parameters are then calculated using the least square method 𝛼,𝛽 

as follows,

 24)𝛼𝛼 =  [𝛼,𝛽]𝑇

Where is the sequential representation of the parameters, determined as follows,𝛼 

 (25)𝛼 = ([𝐵𝑇𝐵] ‒ 1𝐵𝑇𝑌)

Matrices  and  are constructed as follows,𝑌 𝐵

 (26)𝑌 =  [ 𝜒(0)(2)
𝜒(0)(3)
𝜒(0)(4)

⋮
𝜒(0)(𝑚)

];  𝐵 =  [ ‒ 𝜒(1)(2)         1   
‒ 𝜒(1)(3)         1   
‒ 𝜒(1)(4)         1   

    ⋮                  ⋮
‒ 𝜒(1)(𝑚)         1   

]
 is the data matrix.where  𝐵

 can also be calculated after replacing appropriate values in equation (25), which results in 𝛼

the following expression,



  

 (27)𝛼 =  [
(( 1

𝑚 ‒ 1(∑𝑚
𝑢 = 2𝜒(0)(𝑢) ×  ∑𝑚

𝑢 = 2𝜒(1)(𝑢))) ‒  (∑𝑚
𝑢 = 2(𝜒(0)(𝑢) × 𝜒(1)(𝑢))))

(∑𝑚
𝑢 = 2[𝜒(1)(𝑢)]

2
‒  

1
𝑚 ‒ 1[∑𝑚

𝑢 = 2𝜒(1)(𝑢)]
2)

( 1
𝑚 ‒ 1(∑𝑚

𝑢 = 2 𝜒
(0)(𝑢) + 𝛼∑𝑚

𝑢 = 2𝜒(1)(𝑢))) ]
The time response sequence of the data can be calculated after determining the solution of the 

whitenization equation (23) and estimating the values of parameters .𝛼,𝛽 

 (28)𝜒(1)(𝑢 + 1) =  ([𝜒(0)(1) ‒ (
𝛽
𝛼)]𝑒 ‒ 𝛼𝑢 + (

𝛽
𝛼));𝑢 = 0,1,2,3,……,𝑚 ‒ 1

 (29)𝜒(0)(𝑢 + 1) =  𝜒(1)(𝑢 + 1) ‒ 𝜒(1)(𝑢)

From the above two equations, the simulated sequence can be obtained from,

 (30)𝑋 =  ((𝜒(0)(𝑢)) 𝑚
𝑢 = 1)

Step 6: Error Checking

After simulating the data sequence, we obtain data closer to the original data, which is the case 

here after applying a second order weakening operator, . The closer these two values 𝑥(0)(𝑘)

are, the more accurate a prediction model we will get. Therefore, error checking is carried out 

to increase the accuracy of the model. Sequential error of the data is calculated as,

 (31)𝜀(0) =  (𝜀(0)(𝑢)) 𝑚
𝑢 = 1

Where,

 (32)𝜀(0)(𝑢) =  (𝜒(0)(𝑢) ‒  𝜒(0)(𝑢))

Next, relative error is calculated.   represents the sequence of relative errors,∆

 (33)∆ =  (𝛿𝑢) 𝑚
𝑢 = 1

Where,

 (34)𝛿𝑢 =  
|𝜀(0)(𝑢)|
𝑥(0)(𝑢)

Average relative error is then determined as follows,



  

 (35)∆ =   
1
𝑚(∑𝑛

𝑖 = 1𝛿𝑖)

And the filtering error,

 (36)∅ =  𝛿𝑚

We set a permissible limit on the relative error as 0.02. The exactness of simulated data can 

then be calculated, which should be greater than 0.9. When these two conditions are satisfied, 

the absolute degree of grey incidences  of and  can be computed as,(𝜖) 𝑋 𝑋

 (37)|𝑠| =  |(∑𝑚 ‒ 1
𝑢 = 2[𝜒(𝑢) ‒  𝜒(1)]) +  (1

2[𝜒(𝑚) ‒  𝜒(1)])|
 (38)|𝑠| =  |(∑𝑚 ‒ 1

𝑢 = 2[𝜒(𝑢) ‒  𝜒(1)]) +  (1
2[𝜒(𝑚) ‒  𝜒(1)])|

|𝑠 ‒ 𝑠| =  
 (39)|(∑𝑚 ‒ 1

𝑢 = 2([𝜒(𝑢) ‒  𝜒(1)] ‒  [𝜒(𝑢) ‒  𝑥(1)]))  +  (1
2([𝜒(𝑚) ‒  𝜒(1)] ‒  [𝜒(𝑚) ‒  𝜒(1)]))|

Thus,

 (40)𝜖 =  
1 +  |𝑠| +  |𝑠|

1 +  |𝑠| +  |𝑠| +  |𝑠 ‒ 𝑠|

If , then the degree of incidence is in level 1.𝜖 > 0.90

The ratio of mean square deviations, or the variance ratio , is computed as follows,(𝐶)

 (41)𝜒 =
1
𝑚∑𝑚

𝑢 = 1𝜒(0)(𝑢)                   

 (42)𝑆2
1 =

1
𝑚∑𝑚

𝑢 = 1[𝜒(0)(𝑢) ‒  𝜒] 

 (43)𝜀 =
1
𝑚∑𝑚

𝑢 = 1𝜀(0)(𝑢)

 (44)𝑆2
2 =

1
𝑚∑𝑚

𝑢 = 1[𝜀(0)(𝑢) ‒ 𝜀]2

 (45)𝐶 =
𝑆2

𝑆1

If < 0.35, then it is in level 1.𝐶



  

The small error probability can be determined from the following equation,

 (46)∃ = 0.6745 ×  𝑆1

Then, we check that,

, (47)𝑝 =  (𝑃|𝜀(0)(𝑘) ‒ 𝜀| <  ∃ )

If the condition ( ) is true, the accuracy is checked and we can apply the grey model 𝑝 > 0.95

for prediction.

The standard of judgement is presented in Table 3.

Step 7: Making the Prediction

Now we can predict the values of KPIs as the errors checks have been satisfied. The predicted 

values of the next  periods can be calculated from equations 12 and 13.𝑖

 (48)𝑋 =  (𝜒(0)(𝑡))𝑚 + 𝑖
𝑡 = 𝑚

A flow diagram is presented in Figure 1 so the reader can understand the steps involved.

Table 3: Standard to judge the error measurement
Precision grade Excellent Pass Likely to pass No pass
Little error probability (p) > 0.95 > 0.80 > 0.75 ≤ 0.70
Variance ratio (C) < 0.35 < 0.60 < 0.65 ≥ 0.65



  

Identify key performance 
indicators (KPIs)

Measure KIPs

Apply strengthening/weakening 
operator

Construct first aggression 
generator sequence

Construct second aggression 
generator sequence

Construct improved mean 
generator sequence

Simulate the performance 
indicators for predicted sequence

Calculate small error 
probabilities

Calculate mean 
relative error

Estimate ratio of mean 
squared deviations

Calculate the filtering 
errors

Absolute degree of grey 
incidences

Ensure a level one 
prediction model

Estimate the sequence indicators for future 
periods

Estimate 
measures of 

error

Figure SEQ Figure \* ARABIC 1: Flowchart of improved grey prediction model (ADDIN 
CSL_CITATION { "citationItems" : [ { "id" : "ITEM-1", "itemData" : { "DOI" : 

"10.1016/j.elerap.2016.09.006", "ISSN" : "15674223", "author" : [ { "dropping-particle" : 
"", "family" : "Rajesh", "given" : "R.", "non-dropping-particle" : "", "parse-names" : false, 
"suffix" : "" } ], "container-title" : "Electronic Commerce Research and Applications", "id" 

: "ITEM-1", "issued" : { "date-parts" : [ [ "2016", "11" ] ] }, "page" : "42-58", "title" : 
"Forecasting supply chain resilience performance using grey prediction", "type" : "article-

journal", "volume" : "20" }, "uris" : [ 
"http://www.mendeley.com/documents/?uuid=142ae485-0706-4538-abcc-abbdaa2795c3" ] 

} ], "mendeley" : { "formattedCitation" : "Rajesh, 2016", "plainTextFormattedCitation" : 
"Rajesh, 2016", "previouslyFormattedCitation" : "Rajesh, 2016" }, "properties" : { 

"noteIndex" : 0 }, "schema" : "https://github.com/citation-style-
language/schema/raw/master/csl-citation.json" }Rajesh, 2016)



  

4 Grey model, GM (1, 1), application in healthcare performance prediction

4.1 Descriptive background

Healthcare involves a diverse set of public and private data collection systems. These data 

collection systems includes health surveys, administrative enrolment and billing records, and 

medical records which are used by various entities, including hospitals. The prediction model 

is applied here to a public hospital in Bangladesh.

Bangladesh, the eighth most populous country in the world, has the lowest expenditure (US$ 

27 per capita annually) and is now facing unprecedented demands on public and private 

hospitals. Despite poverty, Bangladesh has achieved tremendous improvements in healthcare 

(Ahsan and Bartlema, 2004); however, increasing costs of diagnostic and treatment procedures 

are creating confusion in an ageing population over whether the cost is worth it or not. Over 

the last few years, health providers in both private and public sectors focused on increasing the 

amount of physical infrastructure (hospitals, clinics, diagnostic centers, etc.) which gave a 

greater benefit to the people as they had more access to healthcare systems.

Hospitals and healthcare systems are full of information; however, in Bangladesh, information 

collection is not satisfactory and the gathered data contains a lot of missing data and distorted 

information. GM (1, 1) is the best model to predict performance in such an uncertain 

environment. We applied this model to a secondary dataset as hospitals generally do not share 

primary information, because these data are confidential. The authority did not reveal the main 

source of data but they confirmed their formula to measure indicators were the same as 

described in Section 2 of this article. The collected data shows monotonically increasing and 

decreasing orders for the indicators, due to adaption of total quality management (TQM).

4.2 Data collection and aggregation

We collected data from a hospital in Bangladesh for the period of five months from January, 

2017 to May, 2017. They are specialized in detecting birth defects and thus help women to 

deliver healthy babies. In case of complex situation, they monitor the genetic conditions 

through ultrasound and provide special care for the mother and to-be-born babies in their 

facility. The hospital is equipped with state-of-the-art technologies and the management is set 

to adopt continuous improvement strategies that will help them to reduce the values of the KPIs 

having a negative impact on hospital performance and increase the values of those KPIs which 

will generate more profit and reputation. Therefore, a prediction model based on accumulated 



  

data will help them to deduce their future actions. Secondary data to analyze using improved 

grey model for each KPIs calculated using Eq. (1) to Eq. (5) are presented in Tables 4, 5, 6, 7 

and 8.

Table 4: KPI 1- Bed Turnover Rate (BTR) value from January, 2017- May, 2017

Table 5: KPI 2- Bed 
Occupancy Rate (BOR) 

value from January, 
2017- May, 2017

Table 6: KPI 3- Average 
Length of Stay (ALOS) 

value from January, 
2017- May, 2017

Table 7: KPI 4- Hospital 
Death Rate (HDR) value 

from January, 2017- May, 
2017

Table 8: KPI 4- Hospital 
Death Rate (HDR) value 

from January, 2017- May, 
2017

4.3 Analyzing data to make 

a prediction

The methodology 

described in section 3 was 

implemented to predict the 

performance of the 

hospital in future periods. 

GM (1, 1) employs a lot 

of complex algebra. We 

used MATLAB 2015a to 

write down codes for the 

evaluation of our case. 

The KPIs are used with their reference code as shown in Table 9.

Time period Bed Turnover Rate (BTR)
Month Total patients Avg. bed counts BTR
Jan-17 670 103 6.5
Feb-17 956 121 7.9
Mar-17 1144 133 8.6
Apr-17 966 105 9.2
May-17 882 90 9.8
Time period Bed Occupancy Rate (BOR)
Month Inpatient Days Inpatient bed days BOR
Jan-17 2586 3193 0.810
Feb-17 2948 3388 0.870
Mar-17 3711 4123 0.900
Apr-17 2914 3150 0.925
May-17 2631 2790 0.943
Time period Average Length of Stay (ALOS)
Month Inpatient Days Discharges ALOS
Jan-17 2586 202 12.8
Feb-17 2948 254 11.6
Mar-17 3711 379 9.8
Apr-17 2914 317 9.2
May-17 2631 310 8.5
Time period Hospital Death Rate
Month Total deaths Discharges HDR
Jan-17 7 202 3.3
Feb-17 7 254 2.8
Mar-17 10 379 2.6
Apr-17 7 317 2.1
May-17 6 310 1.8
Time period Hospital Infection Rate (HIR)
Month Total infections Discharges BTR
Jan-17 9 202 4.4
Feb-17 9 254 3.5
Mar-17 12 379 3.1
Apr-17 9 317 2.7
May-17 7 310 2.1



  

The evaluation steps 

are as follows:

Step 1: Table 10 

shows the secondary 

data we obtained 

from the hospital 

authority. Five key 

performance indicators from the data, namely Bed Turnover Rate (BTR), Average Length of 

Stay (ALOS), Bed Occupancy Rate (BOR), Hospital Death Rate (HDR), and Hospital Infection 

Rate (HIR), have been provided for this research.

Step 2: We applied a first order 

weakening operator to Equations 8-

12 to smooth the indicator values 

(see Table 11). To further smooth 

out the values, we applied second 

order weakening operators to 

Equations 13-15 to make our 

predictions more reliable and 

accurate (see Table 12).

Table 9: Key performance indicators (KPIs) with reference code

Key performance indicators Reference code

Bed Turnover Rate (BTR) KPI 1

Bed Occupancy Rate (BOR) KPI 2

Average Length of Stay (ALOS) KPI 3

Hospital Death Rate (HDR) KPI 4

Hospital Infection Rate (HIR) KPI 5

Table 10: Key performance indicator (KPI) data

SL no 𝜒(0)(1) 𝜒(0)(2) 𝜒(0)(3) 𝜒(0)(4) 𝜒(0)(5)

KPI 1 6.5 7.9 8.6 9.2 9.8

KPI 2 0.81 0.87 0.9 0.925 0.943

KPI 3 12.8 11.6 9.8 9.2 8.5

KPI 4 3.3 2.8 2.6 2.1 1.8

KPI 5 4.4 3.5 3.1 2.7 2.1

Table 11: Data sequence of first order weakening operator

SL no 𝜒(0)(1)𝑓 𝜒(0)(2)𝑓 𝜒(0)(3)𝑓 𝜒(0)(4)𝑓 𝜒(0)(5)𝑓

KPI 1 8.4000 8.8751 9.2 9.5 9.8

KPI 2 0.8896 0.9095 0.9227 0.9340 0.943

KPI 3 10.3800 9.7750 9.1667 8.8501 8.5

KPI 4 2.5210 2.3250 2.1667 1.9500 1.8

KPI 5 3.1600 2.8500 2.6333 2.4000 2.1



  

Step 3: First 

accumulating 

generator 

sequence is 

obtained from 

Equations 16 and 

17 (see Table 13).

Step 4: The 

adjacent neighbors mean 

sequences, as presented 

in Table 14, of the data 

are determined from 

Equations 18-21.

Step 5: Sequence 

indicators for the last five months 

(January-May) are simulated using 

Equations 22-30. The time response 

sequence and simulated sequence of the 

data are given in the Table 15 and Table 

16, respectively.

Step 6: Five measures of 

errors are calculated using 

Equations 31-47; the values 

are presented in Tables 17, 

18, 19, 20, 21 and 22.

Table 12: Data sequence of second order weakening operator

SL no 𝜒(0)(1)𝑓2 𝜒(0)(2)𝑓2 𝜒(0)(3)𝑓2 𝜒(0)(4)𝑓2 𝜒(0)(5)𝑓2

KPI 1 9.1550 9.344 9.5 9.6500 9.8

KPI 2 0.9197 0.9272 0.9332 0.9385 0.943

KPI 3 9.3343 9.0729 8.8389 8.6750 8.5

KPI 4 2.1523 2.0604 1.9722 1.8750 1.8

KPI 5 2.6287 2.4958 2.3778 2.2500 2.1

Table 13: First accumulating generating sequence of the KPIs

SL no 𝜒(1)(1) 𝜒(1)(2) 𝜒(1)(3) 𝜒(1)(4) 𝜒(1)(5)

KPI 1 9.155 18.49875 27.99875 37.64875 47.44875

KPI 2 0.919753 1.847045 2.780267 3.718767 4.661767

KPI 3 9.334333 18.40725 27.24614 35.92114 44.42114

KPI 4 2.152333 4.21275 6.184972 8.059972 9.859972

KPI 5 2.628667 5.1245 7.502278 9.752278 11.85228

Table 14: Adjacent neighbours mean sequences

SL no 𝜒(1)(1) 𝜒(1)(2) 𝜒(1)(3) 𝜒(1)(4)
KPI 1 12.8080 22.5800 32.6465 42.9153
KPI 2 1.2833 2.2503 3.2366 4.2326
KPI 3 12.9202 22.2988 31.5805 40.7282
KPI 4 2.9695 5.0894 7.1441 9.1111
KPI 5 3.6204 6.1850 8.6592 11.0042

Table 15: Data sequence of time response

SL no. 𝜒(1)(1) 𝜒(1)(2) 𝜒(1) (3) 𝜒(1) (4) 𝜒(1)(5)
KPI 1 9.1550 18.5180 28.0237 37.6743 47.4719
KPI 2 0.9198 1.8480 2.7812 3.7193 4.66249
KPI 3 9.3343 18.3704 27.2248 35.9011 44.4029
KPI 4 2.1523 4.2034 6.1683 8.0507 9.85401
KPI 5 2.6287 5.1203 7.4824 9.7219 11.8451
Table 16: Simulated sequence of the data

SL no. 𝜒(0)(1) 𝜒(0) (2) 𝜒(0)(3) 𝜒(0)(4) 𝜒(0)(5)
KPI 1 9.1550 9.3630 9.5057 9.6506 9.79764
KPI 2 0.9198 0.9282 0.9332 0.9382 0.94317
KPI 3 9.3343 9.0361 8.8544 8.6763 8.50183
KPI 4 2.1523 2.0511 1.9649 1.8824 1.80332
KPI 5 2.6287 2.4916 2.3622 2.2395 2.1232



  

Table 17: Sequential data of estimated errors

SL no. 𝜀(0)(1) 𝜀(0)(2) 𝜀(0)(3) 𝜀(0)(4) 𝜀(0)(5)
KPI 1 0 -0.0193 -0.0057 -0.0006 0.0024
KPI 2 0 -0.0009 0.0000 0.0003 -0.0002
KPI 3 0 0.0368 -0.0155 -0.0013 -0.0018
KPI 4 0 0.0094 0.0073 -0.0074 -0.0033
KPI 5 0 0.0042 0.0156 0.0105 -0.0232
Table 18: Relative errors

SL no. 𝛿1 𝛿2 𝛿3 𝛿4 𝛿5

KPI 1 0 0.0021 0.0006 0.0001 0.0002
KPI 2 0 0.0010 0.0000 0.0004 0.0002
KPI 3 0 0.0041 0.0018 0.0002 0.0002
KPI 4 0 0.0045 0.0037 0.0039 0.0018
KPI 5 0 0.0017 0.0066 0.0047 0.0110
Table 19: Average relative error and filtering error

SL no. Mean relative error Filtering error

KPI 1 0.0006 0.00024
KPI 2 0.0003 0.00018
KPI 3 0.0012 0.00022
KPI 4 0.0028 0.00184
KPI 5 0.0048 0.01105
Table 20: Absolute value degree of grey sequence incidences ( )𝜖 > 0.90

SL no. |𝑠|  𝑠 |𝑠| 𝑠 |𝑠 ‒ 𝑠| 𝜖
KPI 1 1.3513 1.3513 1.3756 1.3756 0.0243 0.9935
KPI 2 0.0514 0.0514 0.0520 0.0520 0.0006 0.9994
KPI 3 1.8334 -1.8334 1.8525 -1.8525 0.0191 0.9959
KPI 4 0.7255 -0.7255 0.7332 -0.7332 0.0076 0.9969
KPI 5 1.0267 -1.0267 1.0455 -1.0455 0.0187 0.9939



  

Step 7: Simulated time response sequence and simulated sequence for the next five months 

are obtained using Equations 48 (see Tables 23 and 24).

4.4 Sensitivity Analysis

Sensitivity analysis is 

done to ensure the 

robustness of the model 

(Schmidt and Finan, 

2018, Civan, 2007). The 

modification of the model 

based on manipulating 

different parameters is done 

in sensitivity analysis to 

find out the model with 

optimum parameter values 

(Liang, 2013). Adjacent neighbor means are calculated from Eq. (20) where  are the two 𝜑, 𝜔

parameters that we will tune to minimize mean relative error and filtering error. The range for 

the parameters was set at 0.1 to 0.9, a total of 81 combinations was tested to find out the best 

combination that gives the minimum error. For example,  0.1 was kept constant while  𝜑 = 𝜔

was varied from 0.1 to 0.9. Each combination presents an increasing trend of error, and plotting 

all combinations generate a bell curve for each combination as the value drops when error 

Table 21: Variance ratio (C<0.35)

SL no. 𝜒 𝑆2
1 𝜀 𝑆2

2 𝐶
KPI 1 9.4898 0.0511 -0.0046 0.0001 0.0344
KPI 2 0.9324 0.0001 -0.0001 0.0000 0.0519
KPI 3 8.8842 0.0863 0.0036 0.0003 0.0596
KPI 4 1.9720 0.0159 0.0012 0.0000 0.0501
KPI 5 2.3705 0.0340 0.0014 0.0002 0.0727
Table 22: Check value and little error probability (p>0.95)

SL no. ε(0)(1) ‒ ε ε(0)(1) ‒ ε ε(0)(1) ‒ ε ε(0)(1) ‒ ε ε(0)(1) ‒ ε
Check 
value

P 
value

KPI 1 0.0046 0.0146 0.0011 0.0041 0.0070 0.1526 1
KPI 2 0.0001 0.0008 0.0002 0.0005 0.0000 0.0055 1
KPI 3 0.0036 0.0332 0.0191 0.0050 0.0055 0.1983 1
KPI 4 0.0012 0.0082 0.0061 0.0086 0.0045 0.0850 1
KPI 5 0.0014 0.0028 0.0142 0.0091 0.0246 0.1245 1

Table 23: Prediction of time responses for the next five periods

SL no. χ(1)(6) χ(1)(7) χ(1)(8) χ(1)(9) χ(1)(10)
KPI 1 57.4189 67.5174 77.7699 88.1786 98.7459
KPI 2 5.6107 6.56397 7.52233 8.48582 9.45444
KPI 3 52.7338 60.8971 68.8963 76.7346 84.4153
KPI 4 11.5816 13.2366 14.8221 16.341 17.7961
KPI 5 13.8581 15.7665 17.5758 19.2911 20.9173
Table 24: Predicted values of KPIs for the next five periods

SL no. χ(0)(6) χ(0)(7) χ(0)(8) χ(0)(9) χ(0)(10)
KPI 1 9.94696 10.0986 10.2525 10.4087 10.5673
KPI 2 0.94821 0.95327 0.95836 0.96348 0.96863
KPI 3 8.33086 8.16333 7.99917 7.83831 7.68068
KPI 4 1.72758 1.65502 1.5855 1.51891 1.45511
KPI 5 2.01293 1.90839 1.80928 1.71532 1.62624



  

values of a new combination starts. From Figure 2, the height of each curve depicts the 

maximum error length, and therefore, curve having the lower heights fulfil the error criteria.
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Figure 2: Sensitivity analysis

We set a threshold value of 2% for mean relative error and filtering error. Therefore, Figure 2 

was re-plotted in Figure 3 by restricting Y-axis value to 2% to have an insight of the 

combinations that satisfy the error condition.
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Figure 3: Sensitivity analysis, Y-axis restricted to threshold value



  

From Figure 3, while  was kept constant at 0.5 and 0.6 and  was varied, we found 𝜑 𝜔

considerably low mean relative error. The combinations of (0.5, 0.1), (0.5, 0.2), (0.5, 0.3) and 

(0.6, 0.9) failed to satisfy error condition (see Figure 4 below and Table A1 in Appendix 

section).
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From Figure 4, it is clear that, mean relative errors for each KPIs are the lowest for (0.5, 0.7). 

Therefore, (𝜑, 𝜔) = (0.5, 0.7) is chosen as optimized parameters for the model.

4.5 Model Comparison

Different forecasting models can be compared with our proposed model. However, moving 

average, exponential smoothing and linear regression are the most popular methods to 

implement a time series forecasting model (Guidolin and Pedio, 2018) . We have compared all 

these models and found that linear regression gave a reasonable outcome. Linear regression is 

useful in determining the relationships between two continuous variables, and it is one of the 

most commonly used basic types of predictive model (Schmidt and Finan, 2018). Selecting the 

right number of cases has been a dilemma for establishing a linear regression model with less 

bias. Several rule-of-thumb have been given by many researchers. Austin and Steyerberg 

(2015) suggested that a minimum of two samples per variable is enough to make a regression 

analysis with a relative bias of less than 10%, and it is sufficient to determine adequate 

estimation of regression coefficients. Increasing the sample number provides higher coefficient 

of correlation, and thus increases data fitting of the model. Green (1991) suggested that 

minimum number of subjects for each predictor should be 5 to make a prediction model using 

Figure SEQ Figure \* ARABIC 4: Mean relative error for the KPIs with 
different weighing schemes



  

linear regression. In linear regression, a new value is calculated using the following equation 

of straight line-

(49)χ(0)
𝑝 (𝑘) = 𝑎 +  𝑏𝑢k

(50)𝑎 =  
1
𝑚(∑𝑚

𝑘 = 1χ(0)(𝑘) ‒  ∑𝑚
𝑘 = 1𝑢k) 

(51)𝑏 =  
∑(𝑢k ‒

1
𝑚∑𝑚

𝑘 = 1𝑢k )(χ(0)
𝑎 (𝑘) ‒

1
𝑚∑𝑚

𝑘 = 1χ(0)
𝑎 (𝑘))

∑(𝑢k ‒ ∑𝑚
𝑘 = 1𝑢k)2

Here,

Actual known values of the KPIsχ(0)
𝑎 (𝑘) =

Predicted values of the KPIsχ(0)
𝑝 (𝑘) =

Corresponding time period (January = 1, February = 2 … … … May =5)𝑢k =  

We developed the linear regression model using Excel 2016 and used FORECAST function. 

Multiple linear regression model fits our data very well as depicted in Figure 5. Several 

statistical error measurement technique are available to measure the accuracy of a prediction 

model. Since, all the actual and forecasted data are positive and are greater than zero, we used 

mean absolute percent error (MAPE) and relative percent error (RPE) for simplicity (Hyndman 

and Koehler, 2006). RPE and mean absolute percentage of error MAPE are calculated for this 

model using the following formulae:

(52)𝑅𝑃𝐸 =
|χ(0)

𝑎 (𝑘) ‒  χ(0)
𝑝 (𝑘)|

χ(0)
𝑎 (𝑘)

× 100%

(53)𝑀𝐴𝑃𝐸 = ( 1
𝑚∑𝑚

𝑘 = 1

|χ(0)
𝑎 (𝑘) ‒  χ(0)

𝑝 (𝑘)|
χ(0)

𝑎 (𝑘) ) × 100%
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Figure 5: Data fitting of linear regression model

KPI 1 and KPI 3 show strong positive linear correlation between the datasets whereas KPI 2, 

KPI 4 and KPI 5 show strong negative linear correlation between the datasets. As our 

considered datasets are linearly correlated, it is evident from Table 25 that model with lower 

percentage of error should be chosen to make this prediction model. A comparison between 

GM (1, 1) and linear regression is presented in Table 25,

Table 25: Comparison of MAPE between GM (1, 1) model and linear regression model

From Table 25, it is 
evident that GM (1, 
1) model has much 
lower percentage 
of error than linear 

regression approach. Grey model can conduct forecasting efficiently without data distribution 
information or large sample size (Qian Wang et al., 2014) and data fitting in GM (1, 1) model 
is higher because of higher coefficient of correlations.
4.3 Model Evaluation

Error criterion MAPE
KPIs BTR BOR ALOS HDR HIR
GM(1, 1) 0.06% 0.03% 0.12% 0.28% 0.48%
Linear regression 2.57% 2.66% 1.20% 2.20% 3.04%



  

The result of our prediction model were validated by a panel of experts consisting of six 

members. They judged the model and rated it on a five point scale varying from excellent to 

very poor, as shown in Table 26. Their responses were converted into grey scale using the 

conversion scale as shown in Table 27. Grey average values were converted using mean value 

whitening (Deng, 1989) and averaged with equal weight. In the view of the analysts, the 

indicator values seem realistic and do not deviate much from actual values based on a threshold 

of 0.5.

5. Results and 

discussion

Health information 

technology (Health IT) 

supports health 

management systems 

and secure information 

sharing between consumers, payers, and quality monitors. Hospital or healthcare facilities in 

Bangladesh do not publish these data in a public domain for research. The process of collecting 

healthcare data has some limitations as data are only collected for service improvement 

purposes, to ensure compliance with civil rights provisions. Moreover, analyzing a large 

amount of data is time-consuming and sometimes produces inaccurate results. Selecting and 

analyzing the correct indicators with the right amount of data can produce a good result and 

improve decision-making capabilities. The source of data available to us here was unknown, 

hence choosing grey theory to analyze the data. Grey theory works best when data is not 

referred to a source, which adds uncertainty. The future value of the selected key performance 

indicators (KPIs) can be predicted using the GM (1, 1) model.

Table 26: Grey values for the assessment

Linguistic representation Corresponding grey values

Very Inaccurate (VI) (0,2)

Inaccurate (I) (2,4)

Moderate Accuracy (MA) (4,6)

Good Accuracy (GA) (6,8)

Excellent Accuracy (EA) (8,10)

Table 27: Crisp value and evaluation results

Indicators

Expert 

1

Expert 

2

Expert 

3

Expert 

4

Expert 

5

Expert

6

Average 

grey value

Crisp 

value

BTO [8,10] [6,8] [6,8] [8,10] [8,10] [6,8] [7,9] 8

ALOS [6,8] [8,10] [6,8] [8,10] [8,10] [8,10] [7.33,9.33] 8.33

BOR [6,8] [6,8] [8,10] [6,8] [6,8] [8,10] [6.67,8.33] 7.5

HDR [6,8] [6,8] [8,10] [6,8] [6,8] [8,10] [6.67,8.67] 7.67

HIR [6,8] [8,10] [8,10] [8,10] [8,10] [6,8] [7.33,9.33] 8.33



  

The methodology described in section 3 was evaluated by analyzing a case study of a hospital 

in Bangladesh. The secondary data collected was considered as raw data and representative 

KPIs were used as inputs from months January 2017- May 2017. We analyzed the data using 

an improved grey prediction model. The simulated values were checked to ensure better 

accuracy using five measures of error, as presented in section 3, step 6. The errors are within 

the threshold limit so the simulated data can be conceived as a true sequence of the periodic 

KPIs; therefore, the model represents an actual evaluation of the data in the system. We used 

this model to predict values of the next five periodic values of KPIs from June – October, 2017. 

Data with increasing or decreasing trends fit well in the grey prediction model. As the data 

sources are unknown, we applied buffer operators to remove possible distortions in the data. 

Successive application of first order and second order weakening operators smooth data, which 

is visible in Figures 6, 7 and 8. Variations in the data are affected after applying weakening 

operators. A clearer common trend is visible after using an accumulating generator operator, 

as even raw data show increasing or decreasing evolution. The first aggregated generator 

sequence in the data is provided in Figure 9. Stochastic fluctuation in the original data series 

was weakened by applying the aggregated generator operator, with the result representing the 

inherent nature of the data. The mean generator sequence of the data was calculated to 

smoothen the values, as shown in Figure 10. A new method of constructing the data sequence 

as made by applying a mean generator operator when there is missing data in the system. 

Figures 9 and 10 show similarity in their trends, although their values changed when we took 

the mean value of the 1-AGO sequence, due to our ignorance of missing data.



  

Figure 7: First order weakening of KPI values

Figure 6: Periodic KPI values



  

Figure 8: Second order weakening of KPI values

Figure 9: 1-AGO sequence of KPIs



  

We obtained aggregate time response sequences for the concerned time period from the 

simulation shown in Figure 11; a simulated sequence of the data is shown in Figure 12. From 

Figure 12, it is clear that the simulated data sequence shows similarity with the data sequence 

Figure 10: Mean generator sequence of KPIs

Figure 11: Time response sequence of KPI values



  

obtained by applying a second order weakening operator; therefore, the model has a lower 

probability of fitting errors. The predicted values for the KPIs are shown in Figures 13 and 14. 

Figure 14 shows the true representation of the key performance indicators sequence for the 

next five months; hence, the model seems to understand the nature of the system and our 

prediction model is reliable.

Figure 12: Simulated sequence of KPI values

Figure 13: Predicted time response sequence of KPI values



  

Error measurement has been checked by comparing the simulated values and actual values of 

the KPIs. Estimated errors are shown in Figure 15 and the relative errors are presented in Figure 

16. From Figure 15, KPI 3 and KPI 5 generate large sequential error in the dataset; however, 

KPI 3 produces a small relative error, which is shown in Figure 16.

We set a threshold limit of 0.02 for the mean relative error and filtering error. Figure 17 shows 

that the errors are well below the threshold value; hence, they achieve Level 1 for prediction. 

The absolute degree of grey incidences are much higher than the check value, as shown in 

Figure 18, which means the model is effective in analysing grey sequence incidence. From 

Figure 18, it is visible that the absolute degree of grey incidences are closer to 1 for all the 

KPIs, which guarantees all the KPIs are changing their magnitude the same amount. From 

Table 3, a small error probability and variance ratio of > 0.95 and < 0.35 is needed, respectively, 

for excellent prediction. From Figure 19 and Figure 20, it is seen that both the terms satisfy the 

condition to achieve Level 1; therefore, our model generates a lower margin of error. The model 

is very satisfactory in terms of precision.

Figure 14: Predicted values for the next five periods
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Figure 16: Sequential relative errors of simulated data

Figure 15: Estimated errors of simulated data sequence



  

    

Figure 17: Filtering and mean relative error with check value

Figure 18: Absolute degree of grey incidences of the data sequence
: Absolute degree of grey incidences of the data sequence
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The predicted values of the KPIs can assist a manager to redesign the service system. To 

illustrate this, the predicted bed turnover for the sixth period is 9.9469, which is 1.5% higher 

than the previous period. A higher BTO rate means each bed will treat more patients. 

Considering the number of service days and available beds for the sixth period, managers can 

Figure 20: Small error probability check of the prediction model

Figure 19: Ration of mean squared deviations of data sequence



  

estimate the total number of patient admissions in that period; therefore, they will be able 

optimize the available resources. Similarly, BOR increases only by 0.55% which means 

inpatient occupancy rate will increase only a small amount. Increasing bed occupancy 

generates more revenue. Average length of stay (ALOS) decreases by 1.99% from the previous 

period. Length of stay will decrease when the service rate of the hospital is fast and post-

operation complexity is absent. From this information, managers can assess whether their 

system is working properly and further quality improvement tools can be applied to give a 

faster service and decrease the length of stay. Hospital death rate (HDR) decreases by 4.02%. 

Gross death rate is the overall death rate indicator of the facility. A decreasing trend in HDR 

can assist managers to identify activities that lead to decreased death rate and put more effort 

on those to further decrease the death rate. Hospital infection rate (HIR) also decreases by 

4.14%. A low HIR means the authority is monitoring infections in different healthcare units 

properly. Furthermore, managers can initiate different tidiness program to follow up on in order 

to decrease infection rate further. For some cases, like increasing ALOS of the patients, this 

will increase BOR which will not be a good choice as the patients may be turned away, not 

finding any bed, which will result in patient dissatisfaction. Managers need to find a perfect 

strategy to mitigate this dilemma.

Constant effort to improve treatment processes is needed to sustain performance in the market 

and maintain patient trust, especially in the context of Bangladesh. The findings of this research 

can help the management to predict the key performance indicators which will determine how 

well they are performing. In every organization management use different programs to improve 

their service or product. Healthcare managers can implement a new service improvement 

program and utilize this model to determine the effectiveness of their program. The results of 

this analysis can be very useful for the managers trying to achieve their strategic goals, and 

certain values of the indicators are needed comply with government rules.

6 Conclusions, Implications of this research, Limitations and future research scope

6.1 Conclusions

In modern healthcare management systems, data analytics is gaining attention from the 

decision-makers. The selection of input data is very important to obtain usable output. This 

article demonstrates an improved GM (1, 1) model to predict the performance of a healthcare 

facility. A real case is elucidated to predict the performance of a hospital. Successful 

implementation of both GM (1, 1) model and linear regression model show that our proposed 



  

predictive model is reliable and efficient. Moreover, one of the main advantages of the grey 

prediction model is that is does not depend on system data or how the data are generated. When 

sample size is relatively small, GM (1, 1) model is more efficient than other existing forecasting 

models.

6.2 Implications of this research

This article presents two scientific contributions to predict healthcare performance. The first is 

to identify the key performance indicators, namely Bed Turnover Rate (BTR), Bed Occupancy 

Rate (BOR), Average Length of Stay (ALOS), Hospital Death Rate (HDR), and Hospital 

Infection Rate (HIR). Identifying key performance indicators helps managers to analyze their 

investments and customer satisfaction, as well as to comply with government rules and 

regulations. Managers can replace these indicators according to their organization’s key 

performance indicators. Prediction of strategic-level performance enables managers to identify 

healthcare’s future trends and assist in giving greater priority to the indicators with problematic 

trends. Appropriate strategic and operational-level actions such as elimination of unnecessary 

activities, merge activities, implementing latest medical technologies can be adopted if any 

indicators do not show satisfactory performance.

For the hospital we studied, the indicators of ALOS, HDR, and HIR showed decreasing trends, 

whereas BTR and BOR show increasing trends over the time period. The hospital operates in 

a competitive environment where they need to comply with many regulations and in the 

meantime generate profit. Increasing BTR is good for management but it is not always 

accepted. Based on the combination of direct and indirect costs, turnover can be high or low. 

The management should address what is the perfect turnover rate for the hospital. Decreasing 

attributes of ALOS, HDR, and HIR in the actual model and in our prediction are preferred from 

the patients’ point of view, while increasing BOR is profitable for the management. High BOR 

indicates that patients may be turned away due to insufficient availability of beds, but an 

increasing trend of BTR indicates that patients are released quickly. An optimum number of 

BTR and BOR is necessary to maintain a good service, so these measures deserve attention in 

healthcare management systems.

6.3 Limitations and future research scope

There are some shortcomings in this research. The data do not consider the actual source of 

data, but rather secondary sources; therefore, field level analysis may be needed to check the 



  

predicted values in order to gain more insight. Moreover, data keeping issues due to 

administrative or inputting errors may result in under-estimation of the predicted value. 

Increase or decrease in the data sequence is small in some cases; therefore, breakdown of the 

predicted value of secondary data may be necessary to determine the actual values.

Sustainability in healthcare management can be considered to achieve a rigorous prediction 

model. In addition, different types of optimization algorithms can be applied to improve the 

values of adjacent neighbour mean and thus make grey model more improved (Tamiloli et al., 

2016). Different machine learning techniques like linear regression, neural network, and 

support vector machine can be used to predict the values of the KPIs if primary source of data 

is available (Abdelaziz et al., 2018). Moreover, these techniques can be incorporated with grey 

model to make different hybrid models like grey-ANN (Zhou et al., 2017), grey- linear 

regression and non-linear multivariable models (Z.-X. Wang and Ye, 2017) and so on to make 

robust forecasting models.

This research can be extended by considering each departmental KPIs of a healthcare unit 

rather than considering overall KPIs of the organization. Additionally, patients’ KPIs can also 

be determined using related formulae to predict their future health condition using this model 

and thereby taking required strategic measures.
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Appendix

Table A1: Mean relative error and filtering error checking with different 
values of the parameters
(𝜑, 𝜔) Mean Relative Error (%) (𝜑, 𝜔) Mean Relative Error (%)



  

Highlights:
 A grey 

approach to 

predicting key 

healthcare 

performance 

indicators is 

used.

 Key 

performance 

indicators for 

healthcare 

units are 

proposed.

 Sensitivity analysis is performed to check the robustness of the approach.

 Managerial implications are suggested.
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