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Abstract 

In the formulation of finite elements, the variation of elemental internal forces and displacements 

are interpolated. The force interpolation functions are known to reproduce the variations of forces 

better than the interpolation functions on the displacements. Layered section beam model is not 

as complicated as the fiber model and yet it is much more accurate than ordinary beam model. 

The force-based finite element is revisited in this paper with its application in the numerical 

studies of a damage detection strategy for a reinforced concrete beam under static load. Two 

kinds of damages are studied including the cracking or other local damage of the concrete and the 

bonding between the concrete and the steel bar. Both kind of damages in an element can be 

detected separately or in combinations with the proposed strategy. The force-based layered finite 

element is shown to be a practical, accurate and efficient representation of the bonding damage of 

steel bars in concrete structures. 
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1. Introduction 

The damage identification of structures has drawn active attention from various engineering 

fields in recent years. Existing approaches in this area can be classified into two major categories, 

i.e. the dynamic identification methods and the static identification methods. The dynamic method 

has been developed more maturely as reported in Zimmeman and Smith [1], Doebling et al. [2] and 

Salawu [3]. Research topics have been highlighted for further development into practical methods 

for damage identification, such as the mass change and damping variation associated with the local 

damage and the need to remove the noise effect in the measured higher vibration modes. 

Banan and Hjelmstad [4,5] have proposed a recursive quadratic programming method for the 

parameter estimation of structures with measured displacements from static loads. This approach 

has received considerable attention from many researchers (Di Paola and Bilello [8], Wang et al.[7], 

Liu and Chian [6]). The authors have also contributed to further development of this approach (Zhu 

et al.[10], Zhu and Law[9]).  

Common defects with reinforced concrete structure are cracking and spalling as visualized in 

the inspection of the structural components. However, the bonding between concrete and steel bars 

is, in fact, the most influential factor for different kinds of damages, and it can be taken as the 

primary indicator on any damage with a structural component. Such bonding has been investigated 

widely with the development of several models [11-15]. All studies showed that the load-carrying 

capacity of the structure will drop dramatically when de-bonding occurs. Many research have been 

conducted on the detection of local defects at the interface of concrete structures [16-18]. There are 

also a few reports of global approaches on debonding detection. Zhu and Law [9] developed a 

displacement-based interface finite element for detecting the de-bonding of steel bars in concrete 

structures using static test data. However, multiple damage in concrete and debonding have not 

been investigated which may probably due to the complexity of the beam model and method of 

damage detection. Recently, Biswal and Ramaswamy [19] considered the uncertainties in 

measurements using interval bounds and the damage index with interval parameters was used to 

quantify the damage. 

 The forced-based finite element and the displacement-based finite elements are two numerical 

models of structures. The latter is commonly used with the development of computation facilities. 

However, the former has been shown to have better accuracy in the representation of the variation 

of the internal forces compared to the latter which is based on the displacement interpolation 

functions. Force-based finite element model for the bond slip analysis of the concrete structures has 

been proposed by Salari and Spacone [20,21]. Since the contribution of the bonding stiffness to the 
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global stiffness of the beam element is very small, a refined model is needed to represent this 

contribution accurately and properly such that the identification in the inverse problem can be 

conducted more effectively and appropriately. However, no work has been done in this aspect for 

damage identification of structures. 

This paper attempts to improve the accuracy and robustness of de-bonding identification of 

concrete structures using the force-based finite element with the development of an identification 

strategy and a layered finite element. The proposed method detects both local damage and de-

bonding in a beam element simultaneously. Results shown indicate that both single and multiple 

damages can be effectively identified from noisy static measurements with the proposed strategy. 

The system identification method is based on the existence of debonded segment in reinforcement 

and a cracked region in the concrete beam to get the force-deformation relationship. The latter is 

then used for the damage detection. This is different from the usual approach with stress analysis 

starting with the constitutive equation of material and the stress-strain relationship to trace the 

development of concrete cracks and debonding in reinforcement. The stress-strain relationship such 

as that on the transverse shear stress [23] and others not listed can, however, be included in the 

formulation if stress or strain measurements are available for the damage detection. All these 

additional inclusions in the formulation will enhance the resolution of the algorithm with relevant 

additional measurements. 

2. The force-based approach 

2.1 The cross-section of the element 
The cross-section of a rectangular beam element is shown in Fig. 1.  Table 1 gives the 

parameters of the steel bars in the cross-section. Subscript s on the variables denote the steel 

layer and the superscript i denotes the i th steel bar. 

2.2 Equilibrium and compatibility 
 Fig. 2 shows a schematic representation of an incremental length of the beam element. The 

vector of forces acting on the cross-section is 

( ) ( ) ( ) ( ){ }, ,( )
T

B B s bottom s topD x N x M x N x N x= , where ( )BM x  and  ( )BN x  are respectively 

the bending moment and axial force acting on the beam section， ( ),s topN x  and ( ),s bottomN x  are 

the axial forces carried by the equivalent steel layers and the subscripts top and bottom denote the 

top and bottom of the beam respectively. Subscript s denotes the steel layer and B denotes the 

beam. ( ) ( ) ( ){ }, ,

T

b b bottom b topD x D x D x= is vector of interface forces, where subscript b denotes 
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the bonding at the interface. Since only the self-weight ( )yp x  exists in the finite element, the 

load vector may be written as ( ) ( ){ }0 0 0
T

yp x p x= . The equilibrium equation of the beam 

segment becomes  

 ( ) ( ) ( ) 0T T
b bD x D x p x∂ − ∂ − =   (1) 

where 
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0 0 0

d
dx

d
dx

d
dx

d
dx

 
 
 
 
 

∂ =  
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The displacement vector of the section is ( ) ( ) ( ) ( ){ }, ,( )
T

B B s bottom s topu x u x v x u x u x= , where 

( )Bv x  and ( )Bu x  are the transverse and axial displacements of the beam section and ( ),s topu x  

and ( ),s bottomu x  denote the axial displacement of the equivalent steel layer at the top and bottom 

respectively of the beam. The associated vector of deformation of the beam section is 

( ) ( ) ( ) ( ){ }, ,( )
T

B B s bottom s topd x x x x xε κ ε ε= . The two vectors are related as ( ) ( )d x u x= ∂  with 

the small deformation assumption. The bond-interface slips are determined through the following 

compatibility relationship between the beam section and the displacement of the bar layers as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, ,

, ,

B
b bottom s bottom B bottom

B
b top s top B top

dv x
u x u x u x y

dx
dv x

u x u x u x y
dx

= − +

= − +

 (2) 

The compatibility relation of the interface between concrete and steel layers can be written 

in matrix form as ( ) ( )b bd x u x= ∂ , where ( ) ( ) ( ){ }, ,

T

b b bottom b topd x u x u x= is the slip vector  with 

u denotes the slip at the interface around the steel layers.  

2.3 Force-deformation relation 
The force-deformation relations of a reinforced concrete section and its bond interfaces 

depend on the properties of the constituent material and the cross-sectional geometry of the 

component. Such relations can be expressed as 
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( ) ( ) ( )
( ) ( ) ( )

B

b b b

d x f x D x
d x f x D x

=
=

 (3) 

in which ( )bf x  and ( )Bf x  are the flexibility matrices of the bond interface and the beam section 

respectively. They can be written as follows based on the Euler-Bernoulli beam theory: 

 

( ) ( )
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i i
n n

b bottom s bottom
i i i iB b

i i b top s top

s bottom s bottom

s top s top

EA EA y

E PEA y EA yf x f x
E P

E A
E A

′ ′

= =
−′ ′

= =

  −  
  
    − = =       
 

  
    

∑ ∑

∑ ∑

 

with iA  denotes the area of the ith concrete layer; E denotes the elastic modulus of the concrete 

iy denotes the distance between the ith concrete layer and the neutral axis of the beam section; n′  

is the number of the concrete layer; ,s bottomE , ,s topE and ,b bottomE , ,b topE denote the elastic modulus 

and the equivalent bond stiffness of steel respectively. 

2.4 Force-based element 
The generalized forces on the force-based layered element in local reference coordinates 

without rigid body displacement modes are shown in Fig. 3. The layered force-based finite 

element can be formulated from the principle of minimum complementary potential energy as 

 ( ) ( ) ( )
0

T

L b

Q UN x f x N x dx
Q

      =                    
∫  (4) 

where ( )N x   is the force shape function matrix, and 

 ( ) ( ) ( )
( ) ( )

BB Bb

bB bb

N x N x
N x

N x N x
 

=  
 

 (5) 

with ( )BBN x , ( )BbN x , ( )bBN x and ( )bbN x  defined in the Appendix. ( )f x   is the flexibility 

matrix of the beam, and  

 ( ) ( )
( )
0

0
B

b

f x
f x

f x
 

=  
 

 (6) 
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and the elemental nodal force vector without considering the rigid body modes is written as  

 { }1 2 3 , , , ,

TI I J J

s bottom s top s bottom s topQ Q Q Q Q Q Q Q=  (7) 

where 1Q is the element nodal axial force; 2Q and 3Q  are the element nodal moments as shown in 
Fig. 3; the superscripts I and J  denote the node numbers of the element.  

U is the nodal displacement vector without considering the rigid body modes, with 

 { }, , , ,1 2 3

TI I J J
s bottom s top s bottom s topU U U U U U U U=  (8) 

1U , 2U and 3U are the nodal displacement corresponding to  1Q , 2Q and 3Q . 

bQ is the bond interface force at 1m −  selected reference points as defined below, and 

 { }2 2

, , , ,

Tm m

b b bottom b bottom b top b topQ Q Q Q Q=    (9) 

In this element, the shape function for the force is the most important factor for the 

determination of the bond interface force distribution along the steel layers. The assumed bond 

interface force distribution along the interface between the beam component and the steel layers 

can be written in term of the bond interface forces at m points using the Lagrange interpolation 

function as follows 

 ( ) ( ) ( ) ( ), ,, ,
1 1

,
= =

= =∑ ∑
m mi i

b top i b bottom ib top b bottom
i i

D x l x Q D x l x Q  (10) 

where  ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

1 1 1

1 1 1

( 1, 2, , )− +

− +

− − − −
= =

− − − −
 


 

i i m
i

i i i i i i m

x x x x x x x x
l x i m

x x x x x x x x  

        The bond-interface forces at selected reference points are not totally independent because 

one of them can be expressed in terms of the remaining bond-interface forces of the steel layer 

nodal forces after enforcing the external axial force equilibrium condition in the steel layer 

 , ,, , , ,( ) , ( )
L LI J I J

b bottom b tops bottom s bottom s top s topx x
D x dx Q Q D x dx Q Q= + = +∫ ∫               (11) 

The axial force in the steel layers, the bending moment and axial force in the beam section 

are determined from 
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( )

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( )

, , ,0
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, ,2 3 , , , ,
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B
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= +

∫

∫

( ), ,, , 0 0
( ) ( )

x xI I

b bottom b tops bottom s topQ D x dx D x dx+ − −∫ ∫
(12) 

From Eqs. (10) to (12), all of the force shape functions can be determined [14] and they are 

listed in the Appendix of this paper. 

Then Eq. (4) can be written as 

 
( ) ( )
( ) ( ) 0

BB Bb

bB bb b

QF x F x U
F x F x Q

        =    
      

 (13) 

where  
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T T

BB BB B BB bB b bB

L L
T T T

Bb BB B Bb bB b bb bB

L L
T T

bb Bb B Bb bb b bb

F N x f x N x dx N x f x N x dx

F N x f x N x dx N x f x N x dx F

F N x f x N x dx N x f x N x dx

=

= + =

= +

∫ ∫

∫ ∫

∫ ∫

 (14) 

The element flexibility matrix without considering the rigid body modes can be obtained 

from Eqs. (12) and (13) as 

 1e

BB Bb bb bBF F F F F−= −  (15) 

and the elemental stiffness matrix without considering the rigid body modes can be obtained as 
1e e

K F
−

 =    . 

The above relation between element stiffness matrix with and without considering the rigid 

body modes is derived with the assumption of no energy loss in the element modes. When the 

rigid body modes are included, this relation can be written as 

 
ee T

RBM RBMK T K T=  (16) 
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In this paper, four points along the element are taken to construct the Lagrange interpolation 

function, and matrix RBMT is listed in the Appendix. 

3. Damage identification 

The steel bars are assumed to have deficiency in bonding with the surrounding concrete. The 

equivalent steel layers are therefore intact while the bonding interface layers and the concrete are 

damaged. 

The stiffness matrix of the beam with damage can be assembled from the elemental stiffness 

matrix eK  as 

 
1

n eT T
ii RBM RBM i

i
K T T K T T

=

=∑  (17) 

where iT is the transformation matrix. 

The force-displacement of the damaged structure are related by 

 ( )( )F K K U U= −∆ −∆  (18) 

where F is the force vector. K∆ is the stiffness reduction matrix of the system due to the damage. 

K  and U are the stiffness matrix and nodal deformation vector of the intact beam. The latter can 

be computed from 1U K F−=  under the static load. 

The vector of displacement differences U∆ obtained from the structures with and without 

damage can be obtained from Eq. (18) as 

 1 1 1 1 1U K KK F K K U K KK F− − − − −∆ = ∆ + ∆ ∆ ≈ ∆  (19) 

 For the de-bonding in steel bar, the associated stiffness changes K∆  can be expressed as 

 , ,
1 , ,

e e en
T i i i

i b bottom b top i
i b bottom b top

K K KK T E E E T
E E E=

 ∂ ∂ ∂
∆ = ∆ + ∆ + ∆  ∂ ∂ ∂ 

∑  (20) 

where n is the number of finite element, and e
iK is the ith elemental stiffness matrix; increments 

,b bottomE∆ , ,b topE∆  and E∆  denote respectively the change of the bond stiffness and the elastic 

modulus of concrete obtained from the intact and damaged states of the beam. 
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 -
ee e eTi i

RBM i i RBM
K FT K K T
E E

∂ ∂
=
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 (21) 
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The identification is conducted with a model of the local elemental damage whereby the 

damage from cracking and local bond damage are separated modelled without considering the 

coupling effect. The problem then becomes a parameter identification problem. Two types of 

damage indicators, bB αα , , are defined to describe those two types of damage. Success 

identification of these damage indicators would mean successful identification of the two types of 

damages. 

Eqs. (19) and (20) can be combined to give 

 
( )1 1

i
1

1 1

n
T e e
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∑ ∑
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where   1 1 1 1
i i

1 1
,

n n
T e T e
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= =
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 (24) 
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The practical scenario with limited displacements is studied.  Let the Boolean matrix, Q, 

relates the vector of measured response to all the degrees-of-freedom of the system. The error 

vector between the measured and predicted displacement differences is then expressed as: 

( ),B b se Q U Uα α = ∆ −∆                                                         (25) 

where sU∆  is the vector of measured displacement differences obtained from the two different 

states of the structures.  

4. Damage identification algorithm 

4.1 When only one type of damage exists in the structure 

If only one type of damage exist in the structure, Eq. (25) can be expressed as. 

 ( ) se Q U Uα = ∆ −∆                                                  (26) 

where α represents one of Bα  and bα ; U∆ and sU∆ represent, respectively, the analytical and the 
measured displacement difference associated with α . 

The solution of the damage identification problem is via the minimization of a least-squares 

error function with the quadratic programming technique [22], and the error function is written as  

 ( ) 1 1
2 2

= + + ∆ ∆T T T
s sJ A C U Uα α α α                                        (27) 

with ( ) ( )1 1 1 1T
A QK KK F QK KK F− − − −= ∆ ∆ ; 1 1T

sC U QK KK F− −= −∆ ∆ ; and 0 1α≤ ≤ . The algorithm 

is iterative as shown below. 

1) Initially assume that { }0 0,0, ,0 Tα =  ; 

2) Identify damage index jα  with j=1 by minimizing ( ) 1
2

′ = +T TJ A Cα α α α   

3) Check the convergence of computation with the following two errors as  

( )

1

11
2

2 100%

T
s s

j j

j

Error J U U

Error

α

α α

α
+

 ′= + ∆ ∆

 −
 = ×


                                                   (28)  
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where 1,j jα α + are the indices obtained in the jth and j+1th iterations. Solution is 

considered converged when both the above errors are smaller than the pre-defined 

threshold of 201 10−× and 61 10−×  respectively. 

4) If the computation does not converge, let 0 1jα α +=  and repeat Steps 1 to 3 until 

convergence is achieved. 

4.2  When both types of damages exist in the structure 

If both types of damages exist in the structure, Eq. (25) becomes 

 ( )
1 1

,
n n

B
B b Bi bi s

i i b

e Q K K U
α

α α
α= =

  = − ∆     
∑ ∑

 
                                (26) 

Since the bonding stiffness is very small compared with that from the beam itself, the bonding 

damage would be difficult to detect using the above method when both types of damages exist in 

the beam element.  In this study, the Newton iteration method is applied to solve this problem, and 

the increment of the bonding damage index bα∆  will be normalized with multiplier β  as 

 1

1

n

Bi
i
n

bi
i

Q K

Q K
β =

=

=
∑

∑




                                                       (27) 

5. Verification with numerical simulations 

     The numerical simulations are based on data generated from a 4m long rectangular uniform 

simply supported reinforced concrete beam with 300 mm high and 200 mm wide cross-section. 

Three 16-mm diameter mild steel bars and two 6-mm-diameter steel bars are located respectively at 

the bottom and top of the beam section. Shear reinforcements are in the form of 6-mm diameter 

links at 195 mm spacing. The compression strength, tensile strength, Poisson ratio, modulus of 

elasticity and density of concrete and bonding stiffness between steel and concrete are respectively 

54.4 MPa, 3.77 MPa, 0.16, 30.2 GPa, 2351.4 kg/m3 and 9.05 MPa/mm. The yield stress and elastic 

modulus of the steel bars are 300.07 MPa and 181.53 GPa respectively. There are twelve equal 

layered force-based finite elements in the beam model.  

A single 5.0kN static force is applied at one third, half and two-third span of the beam in turn 

to check on the effect of different loading locations. Displacements at 5 and 11 locations evenly 
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distributed along the beam are used for the identification. These loading and sensor arrangements 

are adopted for the following studies unless otherwise stated. 

Three different bonding loss scenarios are studied: (a) 10% reduction in element 4; (b) 15% 

reduction in element 4 and 10% reduction in elements 3 and 5 to simulate bonding loss in a smeared 

zone; and (c) 10% reduction in elements 4 and 9. The identification problem is conducted according 

to the procedure described above. 

5.1  Identification of local bonding loss  

Displacements from five locations are used for the identification. Figures 4 to 6 give the 

identified damage index, bα , alongside the true values for the three bonding loss scenarios with 

different loading positions. The damage indices match the true values very well and the loading 

position is found not significant to the accuracy of identification. 

Although the contribution of the bonding stiffness to the overall stiffness of the beam 

element is small, yet the single and multiple bonding damages can be estimated accurately with the 

proposed refined model. The bond interface distribution in a smeared zone can also be estimated 

satisfactory as shown. It may be concluded that the proposed strategy is accurate and effective to 

determine the bonding damage location and extent with different loading position.   

5.2  Identification of local bonding loss with noisy measurements 

The parameters for this study are the same as those used above with the static load applied 

at one-third length of the beam. 1%, 5% and 10% normal random noise are included in the 

measurements. The identified results for the different bond loss scenarios are shown in Figures 7 to 

9. The identified bonding damage indices, bα , is found not sensitive to the noise level when single 

bond loss is involved. The noise effect does affect the identified results when the de-bonding occurs 

in a zone over several beam element as shown in Figure 8. However, the set of results can be 

improved significantly when the number of measured data is increased to eleven. The measurement 

noise also has some effect on the identified results in the multiple loss scenario. 

5.3  Identification of local beam damage and bonding loss in a single element 

The parameters for this study are the same as those used above with the static load applied at 

one-third length of the beam. The same noise levels as for last study are considered, and the static 

displacements measured at eleven locations are used for the identification. Figures 10 to 12 show 

the identified results for the different damage scenarios. The identified damage indices are found 

close to the true values while the identified results for the bonding loss is slightly poorer than those 
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for the beam damage. This is due to the small contribution of the bonding stiffness to the stiffness 

of the beam element, and the normalization of the damage index in Eq. (27) is useful in improving 

the effectiveness of the proposed strategy to identify the de-bonding loss. It may be concluded that 

the proposed method is effective to estimate the damage location and extent even with the existence 

of both the local bonding loss and local beam damage.  

5.4 Identification of beam and bonding damage with finer finite element mesh size 

In order to study the effect of the finite element mesh size on the identified results, the 

same parameters of local beam damage and bonding loss are adopted, but the element size is 

reduced to 50% of the original, which means there are 24 beam elements in total and the number of 

candidate damaged elements is doubled in this case. The noise levels considered in previous studies 

are adopted, and static measurements from eleven points evenly distributed along the beam are used 

for the identification. The identified results are shown in Figs. 13 to 15 for the same three damage 

scenarios studied earlier. The identified results are close to the true values with acceptable accuracy. 

Compared with results in Figs. 10 to 12, the error of identification is larger when there is the same 

number of measurements. This shows that a finer finite element mesh would give less accurate 

results compared to those from a rougher finite element mesh as shown in Section 5.3, especially 

for the case with beam and bonding damage in multiple elements in a group. Figs. 16 to 18 show 

the identified results from 23 displacement measurements along the beam. The identified results 

have similar accuracy with the results in Figs. 10 to 12. This show that more sensors are needed 

with a finer mesh model to give similar identification accuracy.  

There is also a dilemma in the solution of the algorithm with a more complex model of the 

damages. The computation technique generally adopted is based on singular value decomposition or 

regularization to improve the estimate of the solution whereas the accuracy depends on the 

condition of the measurement matrix. There is no guarantee that more measurements would lead to 

better estimates. This is also noted in this section that a finer finite element mesh does not 

necessarily yield better results. The resolution of the solution technique is not capable to 

differentiate small differences in different types of damages, and only an ‘equivalent’ damage is 

given representing the anomaly modelled and other side effects that have not been modelled in the 

algorithm. 

 

6. Conclusions 
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A damage identification strategy on the occurrence of de-bonding of steel bars in concrete is 

formulated in this paper with the development of a layered force-based finite beam element to 

refine and describe the behavior of de-bonding loss under static load. Static measured displacements 

are used for the identification. An error function on the displacements is least-squares minimized. 

Numerical simulations show that the de-bonding of the steel bar as well as local damage in the 

beam can be estimated effectively with the proposed method. Bonding damage in the form of a 

smeared zone is noted more difficult to estimate accurately than the local de-bonding at single or 

multiple locations, and more measured data are required for better estimation. The proposed method 

of normalization on the damage index when two parameters of highly different sensitivity are 

identified together is shown to be effective for the present study. The proposed refined layered finite 

element model for beam structure may be more suitable for the evaluation of the bond interface 

conditions in reinforced concrete.  Further experimental verification is needed for its application in 

practice. 
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Table 1 - Characteristics of the steel bars 
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Fig. 1. Sectional view of the layered beam element  

 

 

 

Fig.  2. Incremental length of the element with bonding 

 

 

 

Fig. 3. Generalized forces at the beam column in local reference coordinates  
without considering the rigid body displacement modes 

py(x) 
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Fig. 4. Identified single bonding damage from different load locations 
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Fig. 5. Identified multiple bonding damage in a zone from different load locations 
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Fig. 6. Identified local bonding damage in separate element from different load locations 
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Fig. 7. Identified single bonding damage with different noise level 
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a) Five sensors b) Eleven sensors 

Fig. 8. Identified bonding damage in a zone with different noise level 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12
0.00

0.02

0.04

0.06

0.08

0.10

Bo
nd

in
g 

Da
m

ag
e 

In
de

x

No. of Element

 True Value
 1% Noise
 5% Noise
 10% Noise

 
1 2 3 4 5 6 7 8 9 10 11 12

0.00

0.02

0.04

0.06

0.08

0.10

Bo
nd

in
g 

Da
m

ag
e 

In
de

x

No. of Element

 True Value
 1% Noise
 5% Noise
 10% Noise

 

c) Five sensors d) Eleven sensors 

Fig. 9. Identified local bonding damage in separate elements with different noise level 
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 a) Beam damage index b) Bonding damage index 

Fig. 10. Identified beam and bonding damage in a single element 
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a) Beam damage index b) Bonding damage index 

Fig. 11. Identified beam and bonding damage in multiple elements in a group 
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a) Beam damage index b) Bonding damage index 

Fig. 12. Identified beam and bonding damage in two separate elements 
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a) Beam damage index    b) Bonding damage index 

Figure 13 Identified beam and bonding damage in a single element with 11 sensors 
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a) Beam damage index     b) Bonding damage index 

Figure 14 Identified beam and bonding damage in multiple elements with 11 sensors 
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a) Beam damage index    b) Bonding damage index 

Figure 15 Identified beam and bonding damage in two separate elements with 11 sensors 
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a) Beam damage index    b) Bonding damage index 

Figure 16 Identified beam and bonding damage in a single element with 23 sensors 
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a) Beam damage index      b) Bonding damage index 

Figure 17 Identified beam and bonding damage in multiple elements with 23 sensors 
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a) Beam damage index     b) Bonding damage index 

Figure 18 Identified beam and bonding damage in two separate elements with 23 sensors 
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