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Abstract

Several metrics have been proposed to assess the visual quality of 3D triangular meshes during the last decade. In this
paper, we propose a mesh visual quality metric by integrating mesh saliency into mesh visual quality assessment. We use
the Tensor-based Perceptual Distance Measure metric to estimate the local distortions for the mesh, and pool local distortions
into a quality score using a saliency weighting-based pooling strategy. Three well-known mesh saliency detection methods
are used to demonstrate the superiority and effectiveness of our metric. Experimental results show that our metric with
any of three saliency maps performs better than state-of-the-art metrics on the LIRIS/EPFL general-purpose database. We
generate a synthetic saliency map by assembling salient regions from individual saliency maps. Experimental results reveal
that the synthetic saliency map achieves better performance than individual saliency maps, and the performance gain is closely
correlated with the similarity between the individual saliency maps.

Keywords: Mesh visual quality assessment, Mesh saliency, Tensor-based Perceptual Distance Measure, Saliency
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1. Introduction1

With the advance of 3D acquisition techniques, 3D triangu-2

lar mesh has become a standard digital representation of 3D3

object surface and is widely used in various human centered4

applications. A 3D triangular mesh is always subject to5

geometric distortions during common processing operations,6

such as compression, watermarking and smoothing. Since the7

geometric distortions may degrade the visual quality of 3D8

triangular meshes, it is critical to assess the perceptual quality9

of 3D triangular meshes. It is inappropriate to ask human sub-10

jects to evaluate the visual distortion of 3D triangular meshes11

in most practical applications since it is both time-consuming12

and tedious. Thus, it is necessary to develop computational13

metrics to assess the perceptual quality of 3D triangular14

meshes accurately. Some well-performing metrics have been15

proposed for mesh visual quality (MVQ) assessment, such as16

Mesh Structural Distortion Measure (MSDM) [1], Multiscale17

Mesh Structural Distortion Measure (MSDM2) [2], Fast Mesh18

Perceptual Distance (FPDM) [3], Dihedral Angle Mesh Error19

(DAME) [4], Tensor-based Perceptual Distance Measure (T-20

PDM) [5], Dong [6].21

As another important research area of visual perception,22

mesh saliency detection [7] has also attracted much attention23
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in the community. Many computational saliency methods 24

[8–12] have been proposed to detect perceptually important 25

regions where human visual attention is focused on the mesh. 26

Since the receptor of both mesh visual quality and mesh 27

saliency is the human visual system, we believe that it is 28

possible to improve the performance of MVQ metrics by 29

incorporating mesh saliency. Actually, in the community 30

of image quality assessment, there are already some works 31

[13–17] that investigated incorporating either visual attention 32

or computational visual saliency into image quality metrics 33

(IQMs). Zhang et al. [18] presented a statistical evaluation 34

to investigate the added value of integrating computational 35

saliency into IQMs. They concluded that the computational 36

saliency models can yield a performance gain statistically 37

when integrating computational saliency into IQMs though 38

the specific amount of performance gain depends on the com- 39

bination of saliency model and IQM [18]. Compared with the 40

works in image quality assessment, there are relatively fewer 41

works that investigated the relationship between mesh salien- 42

cy and mesh visual quality, not to mention the incorporation 43

of mesh saliency in MVQ metrics. In [13–18], either visual 44

attention or computational visual saliency was incorporated 45

in image quality metrics to improve the performance based 46

on the assumption that distortions occurring in more salient 47

areas of an image are more visible and thus more annoying, 48

which was finally verified by the experimental results. Since 49

the ultimate assessors of both mesh quality and image quality 50
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are human visual system, in this paper we similarly assume1

that, in mesh visual quality assessment, distortions appearing2

in more salient regions of a mesh are more annoying. Based3

on this assumption, we propose a MVQ metric by integrating4

mesh saliency into MVQ assessment.5

As mentioned in [7], many methods have been proposed6

to detect mesh saliency. But the problem is which saliency7

detection methods we should choose to perform the analysis8

of integrating mesh saliency into MVQ assessment. Kim et9

al. [19] conducted an user study with five 3D models based10

on eye-tracking experiment and quantified the correlation11

between the mesh saliency computed by the method [8] and12

fixation locations acquired from an eye-tracking experiment.13

However, to the best of our knowledge, until now there is not14

yet a publicly accessible ground-truth eye-tracking database15

that records fixation points of visual attention on 3D triangular16

meshes. Chen et al. [20] introduced a benchmark with17

pseudo-ground truth saliency on the mesh based on Schelling18

points, and used a regression model to predict mesh saliency19

with the benchmark. Tasse et al. [21] proposed three metrics20

to quantitatively evaluate 3D computational saliency models21

based on the benchmark [20]. The evaluation involves three22

3D computational saliency models which were previously23

proposed in [9, 22, 23]. But there is a lack of comprehensive24

quantitative analysis to reveal the accuracy and reliability of25

state-of-the-art mesh saliency detection methods. In [8–12],26

the effectiveness of the mesh saliency detection methods was27

justified mostly through either application-guided evaluation28

[8–10] or subjective visual analysis [11, 12]. Since the29

three mesh saliency detection methods proposed in [8–10]30

were demonstrated to be capable of enhancing the results31

of graphics applications, such as mesh simplification and32

viewpoint selection, we use them [8–10] to evaluate the33

benefits of incorporating mesh saliency into MVQ metric in34

this paper. We firstly generate a distortion map with the35

TPDM metric [5], which is one of the best-performing MVQ36

metrics until now, then generate a saliency map with each37

of three mesh saliency detection methods [8–10], and finally38

derive the overall quality score for the mesh via saliency39

weighting-based pooling of local distortions.40

The remainder of this paper is organized as follows: We41

review related work on MVQ metrics, mesh saliency detection42

methods and the incorporation of visual saliency in IQMs43

in Section 2. We introduce our proposed MVQ metric in44

Section 3. We give a brief description of three mesh saliency45

detection methods used in this paper and present an analysis46

of the saliency maps generated by three methods in Section 4.47

We present the experimental results and analysis in Section 548

and conclude the paper in Section 6.49

2. Related work50

In the last decade, some MVQ metrics have been de-51

signed to predict human judgement on the quality of 3D52

triangular mesh. Detailed reviews of MVQ metrics can be53

found in [24, 25]. The classical geometric distances, such54

as Hausdorff Distance and Root Mean Squared Error, are 55

demonstrated to have weak correlation with human visual 56

perception [25]. There is still no clear consensus on the 57

suitability of image-based metrics in MVQ assessment. The 58

literature [26] argues that image-based metrics [27, 28] are 59

not suitable for evaluating the quality of meshes while the 60

literature [29] suggests that image-based metrics can be used 61

for evaluating the quality of distorted meshes of the same 62

object under a single type of distortion. Some model-based 63

perceptual metrics have been proposed for MVQ assessment 64

by exploiting geometric features. Karni and Gotsman [30] 65

measured the distance between the distorted mesh and the 66

reference mesh by comparing both vertex coordinates and 67

geometric Laplacian values of two meshes. Sorkine et al. 68

[31] improved the method [30] by assigning a greater weight 69

to geometric Laplacian values. Corsini et al. [32] developed 70

two perceptual metrics, 3DWPM1 and 3DWPM2, based on 71

the roughness difference between two meshes. Bian et al. 72

[33] proposed a physically-inspired metric based on strain 73

energy that induces the deformation to the reference mesh. 74

Lavoué et al. proposed the MSDM metric [1] by extending 75

structural similarity index [34] in image quality assessment to 76

MVQ assessment. Later, a multiscale version MSDM2 [2] 77

was proposed to address the issue of changed connectivity 78

of distorted meshes based on the work [1]. Wang et al. 79

[3] introduced the FMPD metric to compute the perceptual 80

distortion between two meshes based on global roughness 81

derived from the Laplacian of Gaussian curvature. Váša 82

and Rus [4] developed the DAME metric by computing the 83

differences of oriented dihedral angles between two meshes. 84

Torkhani et al. [5] proposed the TPDM metric based on the 85

measurement of the distance between curvature tensors of 86

two meshes. Dong et al. [6] proposed a MVQ metric by 87

integrating roughness distortion and structure similarity. 88

Liu et al. [7] provided a survey on mesh saliency de- 89

tection methods and their applications in computer graphics. 90

The mesh saliency detection methods are classified into two 91

categories, namely local contrast-based methods and global 92

contrast-based methods [7]. Interested reader can find a 93

detailed description of advantages and drawbacks of state-of- 94

the-art mesh saliency detection methods in [7]. Lee et al. [8] 95

developed a mesh saliency detection method using a center- 96

surround operator on Gaussian-weighted mean curvatures. 97

Song et al. [9] proposed a method for detecting mesh saliency 98

by analyzing the properties of the log-Laplacian spectrum 99

of the mesh. Limper et al. [10] proposed a mesh saliency 100

detection method, named Local Curvature Entropy, by apply- 101

ing Shannon entropy to the mean curvature of vertices of 3D 102

meshes. Nouri et al. [11] proposed a local surface descriptor 103

based on adapative patches to characterize the perceptual 104

saliency of each vertex of the mesh. Tao et al. [12] proposed 105

to detect mesh saliency via manifold ranking in a descriptor 106

space that is composed of patch descriptors based on Zernike 107

coefficients. In this paper, we use three well-known mesh 108

saliency detection methods [8–10] and TPDM metric [5] to 109

investigate the added value of utilizing mesh saliency in MVQ 110
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assessment.1

Several works [13–17] have been done to investigate the2

added value of including visual attention or computational3

visual saliency in IQMs. Moorthy et al. [13] proposed weight-4

ing local quality measurement by visual fixation and demon-5

strated improved performance for image quality assessment.6

Liu and Heynderickx [14] included visual attention in the7

design of IQMs based on eye-tracking data and achieved8

performance gain with the modified metrics. Farias and9

Akamine [15] concluded that the performance gain depends10

on the precision of visual saliency model and the distortion11

type when incorporating computational visual saliency mod-12

els into image quality metrics. Liu et al. [16] investigated13

the effect of image content on the performance gain when14

adding visual attention in image quality assessment. Zhang15

et al. [17] used the visual saliency as a feature to compute16

the local quality map of distorted image and employed visual17

saliency as a weighting function to reflect the importance of18

local image region. In the community of MVQ assessment,19

however, there are relatively fewer works that investigated20

the benefit of integrating visual saliency into MVQ metrics.21

Nouri et al. [35] proposed a MVQ metric, Saliency-based22

Mesh Quality Index (SMQI), by using multiscale saliency23

map to compute local statistics that reflect the structural24

information. The literature [35] reveals that there exists a link25

between mesh saliency and MVQ assessment. Though the26

SMQI method [35] also involves mesh saliency in the MVQ27

metric, our work in this paper differs from the SMQI method28

in several aspects. The SMQI method uses a saliency map29

generated by the mesh saliency detection method in [12] to30

compute local structural distortions, which are then pooled31

via weighted Minkowski summation. We firstly generate a32

distortion map with the TPDM metric [5] and a saliency map33

with each of three state-of-the-art mesh saliency detection34

methods [8–10], and then weight the local distortion by the35

saliency value for each vertex of the mesh before pooling local36

distortions into an overall quality score. Thus, the role of37

mesh saliency in MVQ metric in our work is different from38

that in the SMQI method [35]. Moreover, our method inherits39

the merit of detecting perceptual distortions that reflect the40

mechanism of human visual system, and the merit of detecting41

perceptually important regions that reflect the preference of42

human perception.43

Our contributions can be summarized as follows: Firstly,44

we investigate the benefit of integrating mesh saliency into45

MVQ assessment and propose a MVQ metric using a salien-46

cy weighting-based pooling strategy. Experimental results47

demonstrate the superiority and effectiveness of our metric.48

Secondly, we analyze the influence of surface area in the met-49

ric on the performance. The performance comparison reveals50

that it is inappropriate to include the surface area in the metric51

for the LIRIS/EPFL general-purpose database [1]. Thirdly,52

we assemble salient regions from individual saliency maps53

to generate a synthetic saliency map for saliency weighting.54

Experimental results show that the synthetic saliency map55

achieves better performance than individual saliency maps56

when used in our metric, and the performance gain is closely 57

correlated with the similarity between the individual saliency 58

maps. 59

3. Our proposed mesh visual quality metric 60

In this section, we propose a mesh visual quality metric 61

by integrating mesh saliency into mesh visual quality assess- 62

ment. As we mentioned in Section 1, we are inspired by the 63

works [13–18] in image quality assessment and assume that 64

distortions appearing in more salient regions of a mesh are 65

more annoying. We use a saliency weighting-based pooling 66

strategy at the pooling step to emphasize the distortions on 67

the salient regions. 68

Among state-of-the-art MVQ metrics [1–6], the TPDM 69

metric [5] correlates well with the human perception of mesh 70

quality and is one of the best-performing MVQ metrics so 71

far. The TPDM metric consists of a two-step computation 72

process: firstly constructing a distortion map for the mesh, 73

and then pooling local distortions via Minkowski summation. 74

In our metric, given a reference mesh and a distorted mesh, we 75

firstly use the TPDM metric [5] to generate a distortion map 76

for the reference mesh, then generate a saliency map for the 77

reference mesh with a mesh saliency detection method, and 78

finally compute an overall quality score for the distorted mesh 79

via the saliency weighting-based pooling of local distortions. 80

The flowchart of our proposed mesh visual quality metric is 81

illustrated in Fig. 1. 82

We follow the first-step computation process of the TPDM 83

metric [5] to compute the local distortion for each vertex 84

of the reference mesh. The TPDM metric computes the 85

perceptual difference between the reference mesh and the 86

distorted mesh based on the distance between curvature ten- 87

sors of two meshes. It establishes a correspondence between 88

the reference mesh and the distorted mesh to allow changed 89

connectivity of distorted meshes. It performs the vertex 90

projection from the reference mesh Mr to the distorted mesh 91

Md using the AABB tree data structure. Each vertex vi in the 92

reference mesh corresponds to a point v′i in the distorted mesh. 93

There are three vertices v′i,1, v′i,2 and v′i,3 on the triangular facet 94

T ′i that contains the point v′i. 95

A number of excellent methods [36, 37] have been pro- 96

posed to estimate the curvature tensor for polyhedral surfaces. 97

By following the TPDM metric, we use the method proposed 98

in [36] to estimate the curvature tensor of each vertex on the 99

meshes Mr and Md . Let Tvi and Tv′i,k
(1 ≤ k ≤ 3) denote the 100

curvature tensors of the vertices vi and v′i,k respectively. The 101

correspondence relationship between the principal curvature 102

directions / amplitudes of Tvi and Tv′i,k
is established based 103

on the minimum angular distance criterion. For the minimum 104

principal curvature direction γmin of Tvi , the principal curva- 105

ture direction γ ′1 of Tv′i,k
that has the smallest angular distance 106

to γmin is found as the corresponding direction. Accordingly, 107

the minimum curvature amplitude κmin of Tvi corresponds to 108

the curvature amplitude κ ′1 of Tv′i,k
that is associated to γ ′1. 109
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Fig. 1. Flowchart of our proposed mesh visual quality metric

By using the criterion, for the maximum principal curvature1

direction γmax and maximum curvature amplitude κmax of2

Tvi , the corresponding principal curvature direction γ ′2 and3

curvature amplitude κ ′2 of Tv′i,k
can be found in a similar way.4

Then the local distance LPDvi,v′i,k
between the vertex vi in the5

reference mesh and the vertex v′i,k of triangular facet T ′i in the6

distorted mesh is computed as:7

LPDvi,v′i,k
= RW (γ)

i ·RW (κ)
i ·

(
θmin

(π/2)
δκmin +

θmax

(π/2)
δκmax

)
,

(1)
where θmin is the angle between the principal curvature8

directions γmin and γ ′1, θmax is the angle between the principal9

curvature directions γmax and γ ′2, δκmin is the Michelson-like10

contrast of the curvature amplitudes κmin and κ ′1, and δκmax is11

the Michelson-like contrast of the curvature amplitudes κmax12

and κ ′2. RW (κ)
i and RW (γ)

i are the roughness-based coeffi-13

cients [5]. On one hand, the principal curvature directions14

in the 1-ring neighborhood of vi are projected on the tangent15

plane of vi, and then a local roughness value LRγ

i of vi is16

computed as the sum of two angular standard deviations of17

the projected minimum and maximum curvature directions.18

After mapping all the local roughness values LRγ

i to [0.1,19

1.0], LRγ

i is taken as the coefficient RW γ

i . On the other20

hand, another local roughness value LRκ
i of vi is computed21

by normalizing the Laplacian of mean curvature amplitudes22

in the 1-ring neighborhood of vi by the mean curvature of23

vi. After mapping all the local roughness values LRκ
i to24

[0.1, 1.0], LRκ
i is taken as the coefficient RW (κ)

i . A detailed25

description of RW (γ)
i and RW (κ)

i can be found in [5]. Let26

bk(v′i) denote the k-th barycentric coordinate of point v′i within27

the triangular facet T ′i . The local distortion di of vertex vi28

is computed through barycentric interpolation of three local29

distances between vertex vi and vertices v′i,1, v′i,2 and v′i,330

respectively:31

di =
3

∑
k=1

bk(v′i)LPDvi,v′i,k
. (2)

We compute the overall quality score of the distorted mesh32

Md via saliency weighting-based pooling of local distortions. 33

We firstly use the Minkowski exponent p to highlight the 34

contributions of severe distortions to the quality judgement, 35

then weight the local distortion by the saliency value for 36

each vertex to emphasize the distortions on salient regions, 37

and finally pool the weighted local distortions into an overall 38

quality score. Our proposed MVQ metric TPDMVS is shown 39

in Eq. (3): 40

T PDMV S =

(
1
N

N

∑
i=1

sid
p
i

) 1
p

, (3)

where si is the saliency value of vertex vi and di is the 41

local distortion of vertex vi computed through Eq. (2). The 42

Minkowski exponent p is set as p = 4. The Minkowski pool- 43

ing method has been used in several MVQ metrics [1, 2, 5], 44

where the Minkowski exponent p was chosen empirically 45

in order to achieve the best performance. A typical value 46

of p lies in the range [2.0, 4.0] as suggested in [2]. We 47

investigated the influence of the value of p on the performance 48

in a preliminary experiment and found that the overall best 49

performance is achieved when p is set to 4. N is the number 50

of vertices of the reference mesh. We generate a saliency map 51

s, either individual saliency map or synthetic saliency map, 52

for the reference mesh using the saliency methods [8–10] as 53

we describe in Section 4 and Section 5. The saliency map is 54

normalized so that the saliency value si of each vertex vi of 55

the mesh lies in the range [0, 1]. 56

Note that we do not include the surface area in our metric 57

while the TPDM metric [5] uses surface area to weight local 58

distortion for each vertex. We provide an analysis of the 59

influence of surface area on the performance of the metric in 60

Section 5.3. 61

4. Mesh saliency detection methods 62

Many computational methods have been proposed to detect 63

mesh saliency [7–12]. In this paper, we employ three well- 64

known mesh saliency detection methods [8–10] to investigate 65
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the benefit of integrating mesh saliency into MVQ metric1

since they were demonstrated to be effective in graphics2

applications. We generate a saliency map for the reference3

mesh with each method. We denote the method in [8] as MS,4

the method in [9] as MSSP and the method in [10] as MSLCE.5

A detailed description of each method can be found in [8–10].6

4.1. Mesh saliency (MS)7

In [8], Lee et al. proposed a mesh saliency detection8

method MS using center-surround operators on Gaussian-9

weighted curvatures. The MS saliency method uses Taubin’s10

method [37] to generate a mean curvature map C that maps11

from each vertex v of the mesh to its mean curvature C (v).12

Let N (v,σ) = {x| ||x−v||< σ ,x is a mesh point} denote the13

neighbourhood points for vertex v within Euclidean distance14

σ . The Gaussian-weighted average of mean curvature of15

vertex v, G(C (v),σ), is computed from the neighbourhood16

points. The saliency S (v) of vertex v is derived as the17

absolute difference between the Gaussian-weighted averages18

that are computed at fine and coarse scales. The saliency of19

vertex v at scale level t is defined as20

St(v) = |G(C (v),σt)−G(C (v),2σt)|, (4)

where σt is the standard deviation of the Gaussian filter at21

scale t.22

After each saliency map St at each scale level is normal-23

ized, the maximum saliency value Mt and the average m̄t of24

local maxima excluding the global maximum at scale t are25

computed. Then the normalized saliency map St is multiplied26

by the factor (Mt − m̄t)
2. Finally, the final saliency map s27

of the mesh is derived by adding the saliency maps at all28

scales after applying a non-linear suppression operator O to29

each saliency map at each scale: s = ∑t O(St), where the30

suppression operator O suppresses the saliency maps with a31

large number of similar peaks while promoting the saliency32

maps with a small number of high peaks, and thus will reduce33

the number of salient vertices on the mesh.34

4.2. Mesh saliency via spectral processing (MSSP)35

Song et al. proposed a method MSSP to detect mesh36

saliency by analyzing the spectral properties of mesh [9]. The37

MSSP method firstly decomposes the geometric Laplacian38

matrix L of mesh M via eigenvalue decomposition: L =39

BΛBT , where Λ denotes a diagonal matrix whose entries are40

eigenvalues of L, and B denotes an orthogonal matrix whose41

columns are the eigenvectors of L. Let R denote a diag-42

onal matrix whose entries are exponentials of the elements43

of spectral irregularity matrix, and W denote the distance-44

weighted adjacency matrix. A matrix S in spatial domain is45

generated via S = BRBT ·W , where “ · ” denotes the element-46

by-element multiplication. A saliency value S(vi) for vertex vi47

is generated by summing all the elements in i-th row of matrix48

S. Then the spectral saliency value S(vi, t) of vertex vi at49

scale t is computed in the Difference of Gaussian scale space.50

Let k(i) denote the multiplicative factor computed from the51

one-ring neighbour vertices of vertex vi. The scale saliency 52

value S̃(vi, t) of vertex vi at scale t is computed as the absolute 53

difference between S(vi,k(i)t) and S(vi, t). 54

Since the eigenvalue decomposition of Laplacian matrix 55

has a high computational complexity with respect to the 56

number of vertices of the mesh, QSlim [38] is typically 57

employed to simplify the original high-resolution mesh M to a 58

low-resolution mesh M′. The saliency map S̃′t of the simplified 59

mesh M′ at each scale t is computed and then the saliency 60

map S̃t of mesh M at scale t is obtained by mapping S̃′t to the 61

mesh M using a k-d tree. After the saliency map S̃t of mesh 62

M at each scale is obtained, a saliency map S̃ of mesh M is 63

computed by adding the saliency maps S̃t at all scales and 64

then smoothed using Laplacian smoothing. The final saliency 65

map s of mesh M is produced by performing a logarithmic 66

operation on S̃: s = log S̃. 67

4.3. Mesh saliency analysis via local curvature entropy (M- 68

SLCE) 69

Limper et al. proposed a method MSLCE [10] to detect 70

mesh saliency via computing local curvature entropy for each 71

vertex of the mesh within the geodesic neighborhood. The 72

mean curvature C (vi) for each vertex vi of the mesh is firstly 73

computed in the same way as in [8]. By considering the 74

neighbourhood vertices N (vi,r) = {v′0,v′1, · · · ,v′m} of vertex 75

vi within geodesic distance r, the curvature values of N (vi,r) 76

are partitioned into n1 bins using a uniform sampling, which 77

results in a set of discrete symbols {ρ0,ρ1, · · · ,ρn1}. Let Ak 78

denote the surface area of each vertex v′k within N (vi,r). 79

The probability of symbol ρ j (0 ≤ j ≤ n1) within local 80

neighbourhood of vertex vi is computed by the surface area 81

and the affiliation of each neighbourhood vertex. 82

By applying Shannon entropy to the set of symbols ρ j, the 83

saliency value of vertex vi is computed as its local curvature 84

entropy. In order to detect salient regions at multiple scales, 85

the radius parameter r is varied up to a maximum value 86

rmax. The saliency maps are computed at multiple levels 87

l0, · · · , lt0−1, where the radius parameter for each level lt is 88

defined as rt = 2−trmax. A final saliency map s is generated for 89

the mesh by combining the saliency maps at all levels using 90

an average weighting scheme. 91

4.4. Analysis of mesh saliency detection methods 92

In this section, we perform an analysis of three mesh 93

saliency detection methods [8–10] with the Dinosaur mod- 94

el and the RockerArm model in the LIRIS/EPFL general- 95

purpose database [1]. We generate a normalized saliency 96

map for the reference mesh of each model with each mesh 97

saliency detection method, and provide a visual illustration 98

of each saliency map in Fig. 2. The colormap is used to 99

map the saliency value to RGB color for each vertex of the 100

mesh. As indicated by Fig. 2(e), for each vertex in the 101

mesh, the red color represents a high saliency value, the green 102

color represents a median saliency value, and the blue color 103

represents a low saliency value. When the saliency value of 104
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 2. Visual illustration of individual saliency maps on two models. (a) Reference mesh of the Dinosaur model. (b)-(d)
Saliency map of MS, MSSP and MSLCE respectively on the Dinosaur model. (e) Rainbow colormap. (f) Reference mesh of
the RockerArm model. (g)-(i) Saliency map of MS, MSSP and MSLCE respectively on the RockerArm model.

a vertex is higher than the mean value of the saliency map of1

the mesh, we consider the vertex as salient in the mesh.2

From Fig. 2, we observe that, on the same model, the3

saliency map of MSLCE is overall warmer than the saliency4

map of MSSP while the saliency map of MSSP is overall5

warmer than the saliency map of MS. We also observe6

that three saliency methods detect some common vertices as7

salient at some regions though the salient vertices that each8

saliency method [8–10] detects are not exactly the same.9

Particularly, there is a relatively higher similarity between10

the saliency maps of MSSP and MSLCE since MSSP and11

MSLCE detect more common vertices as salient among the12

three saliency methods. On the Dinosaur model, all the three13

saliency methods detect the vertices at the #1 region (the left14

eye region) as salient, as shown in the blue rectangles of Fig.15

2(b) - Fig. 2(d). Besides, at some other regions, such as16

the #2 region (the neck region) and the #3 region (the tail17

region) as shown in the red rectangles of Fig. 2(b) - Fig.18

2(d), both MSSP and MSLCE detect the vertices as salient19

which however are detected as non-salient by MS. On the20

RockerArm model, at the #1, #2, and #3 regions as shown21

in the blue rectangles of Fig. 2(g) - Fig. 2(i), both MSSP and22

MSLCE detect generally high saliency while MS detects high23

saliency only at some parts of these regions and low saliency24

at the remaining part of these regions.25

In order to observe the statistical distribution characteristics26

of each saliency map, we plot a histogram of each saliency27

map generated by three saliency methods on two models28

in Fig. 3. We list the statistical characteristics of three29

individual saliency maps on the Dinosaur model and the 30

RockerArm model respectively in Table 1 and Table 2, where 31

Mean and Std represent the mean and standard deviation of 32

the saliency map. We sort the saliency map in ascending 33

order. Then Q1, Q2 and Q3 stand for the first quartile, the 34

second quartile, and the third quartile of the sorted saliency 35

map respectively. We observe that three saliency maps show 36

different statistical distributions on the same model. When 37

comparing the statistical characteristics of three saliency maps 38

in terms of Q1, Q2, Q3 and Mean, on either the Dinosaur 39

model or the RockerArm model, MSLCE always has greater 40

value than MSSP while MSSP always has greater value than 41

MS. Thus, the saliency map of MSLCE has overall greater 42

values than the saliency map of MSSP while the saliency map 43

of MSSP has overall greater values than the saliency map of 44

MS. This conclusion is consistent with the visual illustration 45

in Fig. 2.

Table 1. Statistical characteristics of three individual saliency
maps on the Dinosaur model

Saliency map Q1 Q2 Q3 Mean Std
MS 0.0959 0.1574 0.2442 0.1859 0.1236

MSSP 0.3651 0.4821 0.6316 0.4938 0.1880
MSLCE 0.5497 0.7059 0.7958 0.6526 0.1884

46

We use the Pearson linear correlation coefficient (PLCC) 47

to measure the similarity between two saliency maps on each 48

model. The PLCC has been used to evaluate the similarity 49

6



(a) (b)

Fig. 3. Histograms of saliency maps of three saliency methods on two models. (a) Dinosaur model. (b) RockerArm model

Table 2. Statistical characteristics of three individual saliency
maps on the RockerArm model

Saliency map Q1 Q2 Q3 Mean Std
MS 0.0835 0.1411 0.2251 0.1642 0.1065

MSSP 0.2744 0.3896 0.4864 0.3935 0.1679
MSLCE 0.3588 0.5202 0.6527 0.5098 0.1888

Table 3. PLCC values (%) for each pair of saliency maps on
two models

Dinosaur model RockerArm model
MS vs. MSSP -1.95 36.34

MS vs. MSLCE -19.92 34.13
MSSP vs. MSLCE 63.66 79.80

between two saliency maps in the image saliency detection1

[7, 39, 40]. We list the PLCC values for each pair of saliency2

maps on two models in Table 3. The PLCC value lies in the3

range [-1, 1], and a greater PLCC value indicates a higher4

similarity between two saliency maps. We observe that the5

rank of three PLCC values is the same for two models though6

there is a significant difference in the PLCC values between7

two models. On either the Dinosaur model or the RockerArm8

model, the PLCC value between the saliency maps of MS9

and MSLCE is smallest, the PLCC value between the saliency10

maps of MSSP and MSLCE is greatest, and the PLCC value11

between the saliency maps of MS and MSSP is median. This12

indicates that, relatively speaking, the similarity between the13

saliency maps of MSSP and MSLCE is greatest, the similarity14

between the saliency maps of MS and MSLCE is lowest, and15

the similarity between the saliency maps of MS and MSSP is16

median.17

5. Experimental results and analysis 18

5.1. Experiment protocol 19

In this paper, we use the LIRIS/EPFL general-purpose 20

database [1] as a test bed to validate the superiority and 21

effectiveness of our MVQ metric. The LIRIS/EPFL general- 22

purpose database consists of four models, and for each model 23

there are one reference mesh and 21 distorted meshes. The 24

distorted meshes are generated by applying either noise ad- 25

dition or smoothing distortion with different strengths either 26

locally or globally to the reference mesh. The observer was 27

asked to remember the mesh that was considered to have 28

the worst quality among the distorted meshes. Then the 29

observer provided an opinion score that reflects the degree of 30

perceived distortion for each mesh of each model, including 31

the reference mesh and distorted meshes. The opinion score 32

ranges from 0 (best quality) to 10 (worst quality). Twelve 33

observers participated in the subjective evaluation. Finally, 34

a normalized Mean Opinion Score (MOS) was computed 35

for each mesh by averaging the opinion scores of all the 36

observers. 37

We use our metric TPDMVS to compute objective quality 38

scores for the meshes in the LIRIS/EPFL general-purpose 39

database. We evaluate the performance of our metric by mea- 40

suring the correlation between the quality scores and MOSs 41

with two coefficients: Pearson linear correlation coefficient 42

(PLCC) that measures the prediction accuracy of quality met- 43

ric and Spearman rank-order correlation coefficient (SROCC) 44

that measures the prediction monotonicity of quality metric 45

[27, 41]. Both values of PLCC and SROCC range from -1 46

to 1, where -1 indicates fully negative correlation, 1 indicates 47

fully positive correlation, and 0 indicates no correlation. Since 48

the nonlinear quality rating compression may exist at the 49

extremes of the test range during the subjective testing, there 50

is typically a nonlinearity between the subjective ratings and 51

objective predictions [42]. Thus, in many works on both mesh 52
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quality metrics and image quality metrics [1, 3, 5, 6, 43],1

a psychometric fitting was performed between the objective2

quality scores and MOS values to remove the nonlinearity. In3

this paper, we also conduct a psychometric fitting to remove4

the nonlinearity between the set of objective quality scores5

and the set of MOS values before computing the correlation6

coefficients. We apply the cumulative Gaussian function7

[5, 44] for psychometric fitting:8

g(a,b,Q) =
1√
2π

∫ +∞

a+bQ
e−(t

2/2)dt, (5)

where Q is the objective quality score. Each mesh in9

the LIRIS/EPFL general-purpose database [1] has a MOS10

value and a calculated objective quality score, both of which11

constitute a sample pair. We conduct the psychometric12

fitting on the sample pairs using the nonlinear least squares13

method and thus obtain the values for parameters a and b.14

In this paper, we use the curve fitting toolbox of Matlab15

to implement the psychometric fitting. After obtaining the16

values for a and b, we transform the set of objective quality17

values to a set of predicted MOS values, and then compute18

the correlation coefficients between the predicted MOS values19

and the actual MOS values to evaluate the performance of the20

metric. Note that g is assigned the actual MOS value during21

the psychometric fitting and will be the predicted MOS value22

after the values of a and b are determined.23

We provide the correlation coefficients of our metric in24

three cases. In each case, we use one of the three saliency25

methods described in Section 4 to generate a saliency map s26

for each reference mesh in the LIRIS/EPFL general-purpose27

database and then generate quality scores for the distorted28

meshes using the saliency map s in our metric through Eq.29

(3). Note that the MS saliency method [8] takes a long time to30

compute the saliency map particularly for the high-resolution31

mesh. Thus, in the case of MS saliency method [8], we use32

QSlim [38] to simplify the original mesh M to a simplified33

mesh M′, and then generate a saliency map s′ for M′. The34

saliency map s of mesh M is finally obtained using a closest35

point matching strategy as in [9].36

5.2. Performance comparison37

We compare our metric TPDMVS with state-of-the-art38

MVQ metrics, including Hausdorff Distance (HD) [45], Root39

Mean Square Error (RMS) [45], GL1 [30], GL2 [31], SF [33],40

3DWPM1 [32], 3DWPM2 [32], MSDM [1], MSDM2 [2],41

FMPD [3], DAME [4], TPDM [5], Dong [6]. We obtain the42

results of existing metrics shown in Table 4 from literatures43

[3–5, 24, 25] and the erratum of MVQ metrics [46]. The44

performance values of the TPDM metric are generated with45

the code released online [5], which are officially confirmed by46

the authors. Table 4 lists the values of PLCC and SROCC for47

our metric with the three saliency methods [8–10] as well as48

state-of-the-art metrics on the LIRIS/EPFL general-purpose49

database. TPDMVS(MS) indicates the performance of our50

metric with the MS saliency method [8], TPDMVS(MSSP)51

indicates the performance of our metric with the MSSP52

saliency method [9], and TPDMVS(MSLCE) indicates the 53

performance of our metric with the MSLCE saliency method 54

[10]. From Table 4, we observe that our metric with each 55

saliency method achieves significant performance gain over 56

the TPDM metric [5] and achieves the best performance 57

among all the metrics in Table 4. This indicates that incor- 58

porating mesh saliency in mesh quality metric can improve 59

the performance of quality prediction, and thus supports the 60

assumption that we made in Section 1. 61

From Table 4, we also observe that our metric shows 62

similar performances for three saliency methods despite the 63

significant differences in the generated saliency maps as 64

illustrated in Fig. 2 and Fig. 3. The reason may be that the 65

performance of the TPDM metric [5] is already relatively high 66

as shown in Table 4 and there is a performance bottleneck for 67

the LIRIS/EPFL general-purpose database [1] that consists 68

of a small number of meshes. Note that any of the existing 69

subjective image quality databases [34, 47–50] consists of 70

hundreds or even thousands of image samples while the 71

LIRIS/EPFL general-purpose database which is the largest 72

available subjective mesh quality database consists of only 73

88 mesh samples. Even though it is hard to achieve further 74

performance gain over the TPDM metric, our proposed metric 75

by incorporating mesh saliency still achieves a performance 76

improvement and the performances for three saliency maps 77

are similar. As pointed out in [18], how human attention 78

affects the perception of visual quality is still unknown and 79

there is a lack of solid theoretical basis for the investigation on 80

the relationship between human attention and visual quality. 81

Thus, it is still difficult to explain in a theoretical way how 82

much the performance improvement would be when incorpo- 83

rating human attention or visual saliency in a visual quality 84

metric. In this paper, we have demonstrated the added value 85

of mesh saliency empirically by incorporating three well- 86

known saliency methods [8–10] in the mesh quality metric 87

in a similar way as previous scholars did in the community of 88

image quality assessment [13–18]. 89

For each saliency method, we use our metric to compute 90

quality scores for all the meshes in the LIRIS/EPFL general- 91

purpose database [1] and then perform psychometric fitting 92

between the quality scores and MOSs using the cumulative 93

Gaussian psychometric function in Eq. (5). We plot the psy- 94

chometric function curves with scatter plots of QualityScore- 95

MOS pairs for three saliency methods in Fig. 4, where we 96

observe that the QualityScore-MOS pairs are fitted well by 97

the psychometric function curve for each saliency method. 98

In order to demonstrate the generalization capability of 99

our metric on a variety of models, we use our metric T- 100

PDMVS(MS) to compute the quality scores of some rep- 101

resentative distorted models in the LIRIS/EPFL general- 102

purpose database [1]. For each of the four 3D objects in 103

the LIRIS/EPFL general-purpose database, we select four 104

distorted models with various distortion levels which are gen- 105

erated by applying the smoothing filter or adding noise with 106

different strengths either locally or globally on the reference 107

model. As stated in [1], these distortions reflect the distortions 108
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(a) (b) (c)

Fig. 4. The psychometric function curves with scatter plots of quality scores versus MOSs for the meshes in the LIRIS/EPFL
general-purpose database for each saliency method. (a) MS saliency method. (b) MSSP saliency method. (c) MSLCE saliency
method.

that generally appear in common mesh processing operations,1

such as mesh simplification, mesh compression, and mesh2

watermarking. We illustrate the reference model and distorted3

models of each 3D object in Fig. 5 and provide a description4

for each distorted model on how the distortion is applied5

on the reference model in Table 5. At the subcaptions of6

Fig. 5, we provide the MOS value and the quality score (QS)7

computed by our metric TPDMVS(MS) for each distorted8

model. We denote the distorted models of Venus as V1, V2,9

V3, V4, the distorted models of RockerArm as R1, R2, R3,10

R4, the distorted models of Armadillo as A1, A2, A3, A4,11

and the distorted models of Dinosaur as D1, D2, D3, D4,12

respectively. From Fig. 5, we observe that the MOS values13

of four distorted models have exactly the same rankings with14

the QS values of four distorted models for each 3D object15

despite the variations in the distortion type, distortion area and16

distortion strength in the distorted models. This indicates that17

our metric has a good generalization capability in evaluating18

the visual quality of different models with various distortions.19

Note that though we use the MS saliency method [8] to20

demonstrate the generalization capability of our metric, we21

can find a similar consistency between the MOS values and22

QS values of the distorted models when using the other two23

saliency methods [9, 10] in our metric.24

5.3. Analysis of the influence of surface area25

In [5], the surface area is used as a weighting coefficient26

for the local distortion of each vertex in the TPDM metric.27

However, we do not include surface area in our metric in Eq.28

(3). The LIRIS/EPFL general-purpose database [1] involves29

two types of distortion: noise addition and smoothing. The30

smoothing operation usually introduces perceptually more31

significant distortion on the rough regions than on the smooth32

regions. The surface areas on the rough regions are generally33

smaller than the surface areas on the smooth regions because34

the rough regions generally need small-area triangles to char-35

acterize highly curved shape while the smooth regions typi-36

cally consist of large-area triangles to characterize flat shape.37

Thus, in the case of smoothing distortion, weighting the local38

Table 4. PLCC and SROCC (%) of our metric with three
saliency methods as well as state-of-the-art metrics on the
LIRIS/EPFL general-purpose database

Metrics PLCC SROCC
HD 11.4 13.8

RMS 28.1 26.8
GL1 35.5 33.1
GL2 42.4 39.3
SF 7.0 15.7

3DWPM1 61.8 69.3
3DWPM2 49.6 49.0
MSDM 75.0 73.9

MSDM2 81.4 80.4
FMPD 83.5 81.9
DAME 75.2 76.6
TPDM 84.1 84.3
Dong 87.7 86.6

TPDMVS(MS) 89.0 89.3
TPDMVS(MSSP) 89.6 89.2

TPDMVS(MSLCE) 89.4 89.3

distortion by the surface area will lead to overemphasis on 39

the local distortions on the smooth regions and then result in 40

overestimation of quality degradation of the mesh. Finally, 41

the correlation between the quality scores and MOSs of the 42

meshes in the entire database may decline to some extent. If 43

the surface area is used as a weighting coefficient for the local 44

distortion, the metric incorporating the surface area will be 45

T PDMV S-W =

(
N

∑
i=1

wisid
p
i

) 1
p

, (6)

where wi = ai/∑
N
i=1 ai is the surface area weighting coefficient 46

of vertex vi with ai one-third of the total areas of all the 47

incident facets of vertex vi in the reference mesh. 48

We use the TPDMVS-W metric with three saliency meth- 49

ods to generate quality scores for the meshes and provide 50

a performance comparison among the TPDM metric [5], 51
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(a) Reference model (b) MOS=3.722, QS=0.084 (c) MOS=5.530, QS=0.091 (d) MOS=5.774, QS=0.111 (e) MOS=8.867, QS=0.144

(f) Reference model (g) MOS=4.044, QS=0.085 (h) MOS=5.288, QS=0.103 (i) MOS=6.206, QS=0.124 (j) MOS=8.106, QS=0.164

(k) Reference model (l) MOS=4.134, QS=0.088 (m) MOS=5.978, QS=0.098 (n) MOS=6.412, QS=0.114 (o) MOS=8.335, QS=0.129

(p) Reference model (q) MOS=3.429, QS=0.079 (r) MOS=4.278, QS=0.084 (s) MOS=6.540, QS=0.106 (t) MOS=8.011, QS=0.139

Fig. 5. MOS values versus quality scores of some representative distorted models in the LIRIS/EPFL general-purpose
database. (a)-(e) The reference model and four distorted models V1, V2, V3, V4 of Venus. (f)-(j) The reference model and
four distorted models R1, R2, R3, R4 of RockerArm. (k)-(o) The reference model and four distorted models A1, A2, A3, A4 of
Armadillo. (p)-(t) The reference model and four distorted models D1, D2, D3, D4 of Dinosaur.

the TPDMVS-W metric and the TPDMVS metric on the1

LIRIS/EPFL general-purpose database in Table 6. From2

Table 6, we observe that, for each saliency method, the3

TPDMVS metric always achieves better performance than the4

TPDMVS-W metric while the TPDMVS-W metric always5

achieves better performance than the TPDM metric. The com-6

parison validates the effectiveness of the saliency weighting- 7

based pooling strategy and also reveals that it is inappropriate 8

to include the surface area in the metric for the LIRIS/EPFL 9

general-purpose database. 10

10



Table 5. Descriptions on the generation of the distorted models from the reference models

Model MOS QS Distortions

Venus

V1 3.722 0.084 Applying the Taubin smoothing filter with 20 iterations on the rough areas
V2 5.530 0.091 Applying the Taubin smoothing filter with 30 iterations on the rough areas
V3 5.774 0.111 Adding noise on the intermediately rough areas
V4 8.867 0.144 Adding noise on the smooth areas

RockerArm

R1 4.044 0.085 Applying the Taubin smoothing filter with 20 iterations on the rough areas
R2 5.288 0.103 Applying the Taubin smoothing filter with 15 iterations uniformly on the surface
R3 6.206 0.124 Adding noise on the rough areas
R4 8.106 0.164 Adding noise uniformly on the surface

Armadillo

A1 4.134 0.088 Applying the Taubin smoothing filter with 10 iterations on the intermediately rough areas
A2 5.978 0.098 Applying the Taubin smoothing filter with 15 iterations on the rough areas
A3 6.412 0.114 Adding noise on the rough areas
A4 8.335 0.129 Adding noise uniformly on the surface

Dinosaur

D1 3.429 0.079 Applying the Taubin smoothing filter with 20 iterations on the rough areas
D2 4.278 0.084 Applying the Taubin smoothing filter with 30 iterations on the rough areas
D3 6.540 0.106 Adding noise on the intermediately rough areas
D4 8.011 0.139 Adding noise on the smooth areas

Table 6. Performance comparison among the TPDM,
TPDMVS-W and TPDMVS metrics on the LIRIS/EPFL
general-purpose database

Metric PLCC SROCC
TPDM 84.1 84.3

MS
TPDMVS-W 87.5 88.3

TPDMVS 89.0 89.3

MSSP
TPDMVS-W 89.0 88.5

TPDMVS 89.6 89.2

MSLCE
TPDMVS-W 88.2 87.5

TPDMVS 89.4 89.3

5.4. Synthetic saliency maps1

As we analyzed in Section 4.4, there is a significant differ-2

ence among the saliency maps generated by the three saliency3

methods [8–10]. When some vertices are detected as salient4

by one saliency method, they may be detected as non-salient5

by the other two saliency methods. In spite of the difference6

among three saliency maps, each saliency method leads to7

performance gain when used in our metric, as we described in8

Section 5.2. Therefore, we come up with a question naturally:9

is it possible to further improve the performance using the10

synthetic saliency map generated by assembling the salient11

regions from different saliency maps? We firstly assume that12

better performance can be obtained if the salient regions from13

individual saliency maps are assembled together. In order to14

validate the assumption, we firstly merge the saliency maps by15

selecting the relatively higher saliency value for each vertex16

of the mesh and then observe if there is any performance gain17

over each individual saliency map when using the synthetic18

saliency map in our metric. Since three saliency maps have19

different statistical distributions, we standardize each saliency20

map s by transforming it to have mean of zero and standard21

deviation of one: 22

s′i = (si− smean)/sstd , (7)

where si is the saliency value for vertex vi before standard- 23

ization, s′i is the saliency value after standardization, smean 24

and sstd are the mean and standard deviation of the saliency 25

map s respectively. We use the max function to assign the 26

higher saliency value from the standardized saliency maps as 27

the saliency value for each vertex. Let sa′ and sb′ denote two 28

standardized saliency maps obtained via Eq. (7), the synthetic 29

saliency map is generated by applying the max function to 30

each element value of saliency maps sa′ and sb′
31

sm′
i = max(sa′

i ,s
b′
i ), (8)

where sa′
i and sb′

i are the saliency values for vertex vi in the 32

saliency maps sa′ and sb′ respectively, and sm′
i is the saliency 33

value for vertex vi in the synthetic saliency map. The saliency 34

values in the synthetic saliency map are normalized into the 35

range [0, 1] before the synthetic saliency map is used in our 36

metric.

Table 7. Statistical characteristics of the synthetic saliency
maps on the Dinosaur model

Saliency map Q1 Q2 Q3 Mean Std
MS-MSSP 0.1637 0.2397 0.3277 0.2504 0.1171

MS-MSLCE 0.1969 0.2596 0.3028 0.2555 0.1030
MSSP-MSLCE 0.4497 0.5795 0.6716 0.5527 0.1723

MS-MSSP-MSLCE 0.2117 0.2711 0.3336 0.2741 0.1061

37

We provide a visual illustration of the synthetic saliency 38

maps on the Dinosaur model and the RockerArm model in 39

the LIRIS/EPFL general-purpose database [1] in Fig. 6. MS- 40

MSSP indicates the synthetic saliency map by merging the 41

saliency maps of MS and MSSP, MS-MSLCE indicates the 42

11



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Visual illustration of synthetic saliency maps on two models. (a)-(d) Synthetic saliency maps MS-MSSP, MS-MSLCE,
MSSP-MSLCE, MS-MSSP-MSLCE respectively on the Dinosaur model. (e)-(h) Synthetic saliency maps MS-MSSP, MS-
MSLCE, MSSP-MSLCE, MS-MSSP-MSLCE respectively on the RockerArm model.

(a) (b)

Fig. 7. Histograms of synthetic saliency maps on two models. (a) Dinosaur model. (b) RockerArm model

Table 8. Statistical characteristics of the synthetic saliency
maps on the RockerArm model

Saliency map Q1 Q2 Q3 Mean Std
MS-MSSP 0.1336 0.2001 0.2700 0.2105 0.1066

MS-MSLCE 0.1311 0.2110 0.2755 0.2107 0.1025
MSSP-MSLCE 0.3128 0.4416 0.5370 0.4328 0.1659

MS-MSSP-MSLCE 0.1483 0.2233 0.2831 0.2247 0.1028

synthetic saliency map by merging the saliency maps of MS1

and MSLCE, MSSP-MSLCE indicates the synthetic saliency 2

map by merging the saliency maps of MSSP and MSLCE, 3

and MS-MSSP-MSLCE indicates the synthetic saliency map 4

by merging the saliency maps of MS, MSSP, and MSLCE. In 5

order to determine if a vertex is salient on the mesh for each 6

synthetic saliency map, we plot a histogram of each synthetic 7

saliency map on two models in Fig. 7 and list the statistical 8

characteristics of the synthetic saliency maps on the Dinosaur 9

model and the RockerArm model respectively in Table 7 and 10

Table 8. From Fig. 6, we observe that the synthetic saliency 11

map MSSP-MSLCE is overall warmer than the other three 12
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Table 9. Performance comparison between the individu-
al saliency maps and the synthetic saliency maps on the
LIRIS/EPFL general-purpose database

Saliency map PLCC SROCC
MS 89.0 89.3

MSSP 89.6 89.2
MSLCE 89.4 89.3

MS-MSSP 89.8 90.8
MS-MSLCE 90.1 91.2

MSSP-MSLCE 89.7 89.5
MS-MSSP-MSLCE 89.9 91.2

synthetic saliency maps on two models. This observation1

is consistent with the histograms of synthetic saliency maps2

in Fig. 7, where the saliency values of MSSP-MSLCE3

are generally greater than the saliency values of the other4

three synthetic saliency maps on either the Dinosaur model5

or the RockerArm model. When comparing the statistical6

characteristics of the synthetic saliency maps in terms of Q1,7

Q2, Q3 and Mean in Table 7 and Table 8, we also observe that8

MSSP-MSLCE always has significantly greater value than the9

other three synthetic saliency maps on both models.10

By comparing Fig. 2 and Fig. 6, we observe that the salient11

regions on each individual saliency map are preserved well12

on the synthetic saliency maps. We use the synthetic saliency13

map MS-MSSP to elaborate the preservation of salient regions14

on the synthetic saliency map on two models, and a similar15

phenomenon can also be observed for both MS-MSLCE and16

MSSP-MSLCE.17

- On the Dinosaur model, MS detects high saliency at the18

#1 region (in the blue rectangle) and the #4 region (in19

the black rectangle), and low saliency at the #2 and #320

regions (in the red rectangles) as shown in Fig. 2(b).21

MSSP detects high saliency at the #1, #2 and #3 regions,22

and low saliency at the #4 region as shown in Fig. 2(c).23

Finally, the synthetic saliency map MS-MSSP shows24

high saliency at the #1, #2, #3 and #4 regions in Fig.25

6(a).26

- On the RockerArm model, MS detects high saliency at27

the #4 region (in the black rectangle) and low saliency28

at some parts of the #1, #2, and #3 regions (in the29

blue rectangles) as shown in Fig. 2(g). MSSP detects30

generally high saliency at the #1, #2, and #3 regions and31

median saliency at the #4 region as shown in Fig. 2(h).32

Finally, the synthetic saliency map MS-MSSP shows33

high saliency at the #1, #2, #3, and #4 regions as shown34

in Fig. 6(e).35

We provide a performance comparison between the indi-36

vidual saliency maps and the synthetic saliency maps on the37

LIRIS/EPFL general-purpose database [1] in Table 9. From38

Table 9, we observe that all the synthetic saliency maps39

achieve performance gain over each individual saliency map,40

and MS-MSLCE has the best performance among all the41

synthetic saliency maps. Among the three synthetic saliency 42

maps that merge only two individual saliency maps, the per- 43

formance gain achieved by MS-MSLCE over corresponding 44

individual saliency maps (MS and MSLCE) is the greatest 45

while the performance gain achieved by MSSP-MSLCE over 46

corresponding individual saliency maps (MSSP and MSLCE) 47

is the least. As we analyzed in Section 4.4, the similarity 48

between the saliency maps of MS and MSLCE is the lowest 49

while the similarity between the saliency maps of MSSP 50

and MSLCE is the highest. So we conclude that there 51

is a close correlation between the performance gain of the 52

synthetic saliency map over individual saliency maps and the 53

similarity between the individual saliency maps. Specifically, 54

our analysis based on three saliency methods indicates that the 55

lower the similarity between two individual saliency maps is, 56

the greater the performance gain of the synthetic saliency map 57

over the individual saliency maps will be. From Table 9, we 58

also observe that MS-MSSP-MSLCE does not achieve better 59

performance than MS-MSLCE. The reason is that there is 60

already a high similarity between the saliency maps of MSSP 61

and MSLCE, and thus it is hard to achieve performance gain 62

over MS-MSLCE by further merging the synthetic saliency 63

map MS-MSLCE with the saliency map of MSSP. Due to a 64

lack of sufficient knowledge of human visual system [13–18], 65

a perfect theoretic interpretation for the performance gain of 66

the synthetic saliency map over individual saliency maps is 67

not yet available. However, we believe that our work in this 68

paper will facilitate the investigation on how human attention 69

or visual saliency affects the perception of mesh quality and 70

on the correlation analysis among different mesh saliency 71

methods. 72

Based on the aforementioned analysis, we draw the fol- 73

lowing conclusions: (1) After standardizing two individual 74

saliency maps and applying the max function to the stan- 75

dardized saliency maps, the salient regions of each individual 76

saliency map will be preserved in the synthetic saliency map. 77

(2) The synthetic saliency map achieves better performance 78

than each individual saliency map when used in our metric. 79

(3) There is a close correlation between the performance gain 80

of the synthetic saliency map over the individual saliency 81

maps and the similarity between individual saliency maps. If 82

the similarity between two individual saliency maps is lower, 83

the performance gain of the synthetic saliency map over the 84

individual saliency maps will be greater. 85

6. Conclusion 86

In this paper, we have proposed a mesh visual quality 87

metric using a saliency weighting-based pooling strategy. We 88

have demonstrated the superiority and effectiveness of our 89

metric with three well-known mesh saliency detection meth- 90

ods. The performance comparison shows that our metric with 91

any of the three saliency maps achieves better performance 92

than state-of-the-art MVQ metrics. The experimental result 93

reveals that it is inappropriate to include the surface area 94

in the metric for the LIRIS/EPFL general-purpose database. 95
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Our analysis shows that there is a significant difference in1

the statistical distribution for the saliency maps generated2

by three mesh saliency detection methods. We generate a3

synthetic saliency map by assembling salient regions from4

individual saliency maps. The experimental results show5

that the synthetic saliency map achieves better performance6

than the individual saliency maps when used in our metric,7

and the performance gain of the synthetic saliency map over8

the individual saliency maps will be greater if the similarity9

between the individual saliency maps is lower. Our work10

on the incorporation of mesh saliency into MVQ assessment11

in this paper will benefit the design of better perceptual12

mesh quality metrics. The proposed metric can be used13

to guide the algorithm design in other mesh processing op-14

erations, such as mesh smoothing, mesh simplification and15

mesh watermarking, in order to achieve the optimal algorithm16

performance with least visual degradations. One typical17

practical application of our metric is to evaluate the visual18

quality of the transmitted 3D models over the network at19

the receiver ends or client terminals efficiently. The visual20

quality data can be used as a feedback for the content and21

service providers to optimize the quality of user experience.22

One of our future projects involves the following works: to23

build a large database that consists of more geometric models,24

to investigate a more advanced feature representation that25

reflects the local distortions of a mesh better, and to explore26

the relationship between mesh saliency and mesh quality27

assessment in a theoretical way. It will also be interesting to28

integrate visual attention instead of mesh saliency into MVQ29

assessment when the eye-tracking data of mesh becomes30

available in the future.31
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