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ABSTRACT 

Atherosclerosis is characterised by the infiltration of macrophages at sites of inflammation within 

the vessel wall and the release of myeloperoxidase (MPO), which forms hypochlorous acid (HOCl) 

and hypothiocyanous acid (HOSCN). HOCl is a damaging oxidant strongly implicated in the 

development of atherosclerosis. Preferential formation of HOSCN occurs under conditions where 

thiocyanate ions are elevated, as is the case in the plasma of smokers. HOSCN reacts selectively 

with thiols, which can result in a greater extent of enzyme inactivation leading to more extensive 

cellular damage than HOCl at susceptible sites; this may contribute to the increased risk of 

atherosclerosis seen in smokers. In this study, we show that the exposure of macrophages to 

HOSCN results in a time- and dose-dependent increase in the mRNA expression and release of pro-

inflammatory cytokines and chemokines, including monocyte chemotactic protein 1, tumour 

necrosis factor alpha, and interleukins 6, 8 and 1β. Only at high oxidant concentrations (>200 µM) 

is a significant loss of cellular thiols and increased cell death observed. HOSCN-induced cytokine 

and chemokine expression and cell death were decreased on pharmacological inhibition of nuclear 

factor kappa B. These data highlight a potential mechanism by which the formation of HOSCN 

could promote inflammation and the development of atherosclerosis, in the presence of supra-

physiological levels of the precursor thiocyanate, which are achievable by cigarette smoking. 

 

Keywords: Macrophage; Atherosclerosis; Myeloperoxidase, Oxidative Stress, Inflammation, 

Cytokine 
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ABBREVIATIONS 

BSA, bovine serum albumin; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; HOCl, 

hypochlorous acid; HOSCN, hypothiocyanous acid; HUVEC, human umbilical vein endothelial 

cells; ICAM-1, intercellular adhesion molecule 1; IL-1β, interleukin 1 beta; IL-1R, interleukin-1 

receptor; IL-6, interleukin 6; IL-8, interleukin 8; JC-1; tetraethyl-benzimidazolyl-carbocyanine 

iodide; LDH, lactate dehydrogenase; LDL, low-density lipoprotein; MAPK, mitogen activated 

protein kinase; MCP-1, monocyte chemotactic protein; MPO, myeloperoxidase; NF-κB, nuclear 

factor κB; qPCR, quantitative real-time polymerase chain reaction; PMA, phorbol myristate acetate; 

PVDF, polyvinylidene fluoride; SCN-, thiocyanate; TBST, Tris-buffered saline containing 0.1% 

(v/v) Tween-20; TLR, Toll-like receptors; TNFα, tumour necrosis factor α; TNFR, tumour necrosis 

factor receptors; TrxR, thioredoxin reductase; VCAM-1, vascular cell adhesion molecule 1; 18S, 

18S ribosomal RNA; β2M, β2-microglobulin. 

 

HIGHLIGHTS 

• HOSCN upregulates cytokine and chemokine expression in THP-1 macrophages 

• Expression of cytokines and chemokines is driven by NF-κB activation 

• NF-κB activation by HOSCN leads to cell death in THP-1 macrophages  
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INTRODUCTION 

Atherosclerosis is a chronic inflammatory disease that is characterised by the accumulation 

and infiltration of leukocytes within the vessel wall, which trigger lipid deposition resulting in 

lesion formation and the progressive narrowing of affected blood vessels [1]. Macrophages 

comprise the largest subset of leukocytes within the lesion, and are responsible for accumulating 

excessive lipid resulting in “foam cell” formation, with macrophage cell death contributing to 

necrotic core formation, lesion destabilisation and ultimately thrombosis [1, 2]. In addition, 

macrophages release a battery of cytokines and chemokines, including monocyte chemotactic 

protein 1 (MCP-1), tumour necrosis factor alpha (TNFα), interleukin 6 (IL-6), interleukin 8 (IL-8) 

and interleukin 1β (IL-1β), which propagate disease by exacerbating inflammation and vascular cell 

dysfunction [3]. Tissue-resident macrophages (together with neutrophils) have also been implicated 

in the release of the peroxidase enzyme, myeloperoxidase (MPO) [4], which is present in elevated 

amounts in atherosclerotic tissue [5]. 

MPO is a heme enzyme that catalyses the reaction of halide and pseudo-halide ions with 

hydrogen peroxide (H2O2) to form hypohalous acids. Hypohalous acids are oxidants, and play an 

important role in the immune system by killing bacteria and other invading pathogens [6, 7]. The 

overproduction of hypohalous acids by MPO during chronic inflammation, has however, been 

strongly linked with the host tissue damage and the development of disease, particularly 

atherosclerosis [7, 8]. MPO is also recognised as both a risk factor for the development of coronary 

artery disease [9] and a prognostic factor determining patient outcome following cardiovascular 

events [10]. Under physiological conditions, MPO utilises predominantly chloride ions (Cl-) to 

produce hypochlorous acid (HOCl), which is a potent and indiscriminate oxidant, that reacts rapidly 

with most biological molecules [7, 11]. MPO also utilises thiocyanate (SCN-) to produce 

hypothiocyanous acid (HOSCN) [12]. SCN- has a very high specificity for MPO (~730-fold higher 

than Cl-) [13], and is therefore able to compete effectively with the more abundant Cl- ions present 

under physiological conditions, which reduces the amount of HOCl formed [11, 14]. Unlike HOCl, 
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HOSCN is a selective oxidant, which reacts predominantly with free Cys or thiol (R-SH) residues 

[11, 12, 15]. Therefore, conditions that favour HOSCN production will result in an altered pattern 

and extent of cellular damage to that which occurs with HOCl (reviewed [11, 16]).  

Currently, the role of HOSCN in the development atherosclerosis is unclear and 

controversial. The detoxification of cyanide on inhalation of cigarette smoke results in elevated 

plasma SCN- levels [14], which is associated with a higher incidence of cardiovascular disease [17]. 

In smokers, it is reported that serum SCN- levels correlate with an increased deposition of lipid and 

expression of markers of foam cell formation in the arterial wall [18, 19]. However, SCN- 

supplementation of transgenic mice that are both genetically predisposed to develop atherosclerosis, 

and over-express human MPO, results in decreased in lesion formation [20]. Moreover, high plasma 

SCN- levels have been associated with improved long-term survival in patients following 

myocardial infarction [21]. Similarly, comparison of the reactivity of HOCl and HOSCN in 

different cellular models gives mixed results (reviewed [16]). There are clear examples where 

increased targeting of susceptible thiol-containing proteins by HOSCN results in more extensive 

enzyme inactivation compared to HOCl, for example, GAPDH and other glycolytic enzymes [15, 

22], protein tyrosine phosphatases [23, 24], caspases [25, 26], ATPases [27, 28], which can lead to a 

greater extent of cell death [25, 29]. However, the addition of SCN- to enzymatic MPO/H2O2/Cl- 

systems can also protect cells from HOCl-mediated cytotoxicity [30-32]. 

It has been shown previously that HOSCN can stimulate the increased expression of the 

cellular adhesion molecules E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular 

cell adhesion molecule 1 (VCAM-1) on exposure to human umbilical vein endothelial cells 

(HUVEC), which is attributed to the activation of redox-sensitive transcription factors, including 

nuclear factor κB (NF-κB) [33]. In light of this, and the conflicting data regarding the role of SCN- 

in the pathogenesis of atherosclerosis, we performed experiments to assess the effect of HOSCN on 

the activation of pro-inflammatory signalling and survival pathways using a well-characterised 

human macrophage cell model, the THP-1 monocytic cell line, differentiated to macrophages by 
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exposure to phorbol myristate acetate (PMA). This is of importance as macrophages play an 

integral role in lesion development, and it is well established that exposure to HOSCN can perturb 

the redox environment in this cell type to promote cellular dysfunction [15, 22, 25].  

 

MATERIALS AND METHODS 

Materials and Reagents – All aqueous reagents were prepared using nanopure water, filtered 

through a four-stage milli-Q system. All reagents were from Sigma-Aldrich (Castle Hill, NSW, 

Australia) unless otherwise noted. HOSCN was prepared enzymatically with lactoperoxidase (LPO; 

from bovine milk: Calbiochem, Kilsyth, VIC, Australia) using LPO/H2O2/SCN- as described 

previously [25, 34]. The concentration of HOSCN was determined by quantifying the consumption 

of 5-thio-2-nitrobenzoic acid (TNB) at 412 nm using a molar absorption coefficient ε of 14,150 M-1 

cm-1 [35, 36]. Experiments were also performed with HOSCN that had been allowed to decompose 

(at 22 °C, in the dark, > 2 weeks; dHOSCN) to assess the contribution from decomposition 

products. 

 

Cell culture and treatment – The human monocytic cell line THP-1 (TIB-2; ATCC, Manassas, 

Virginia), was cultured under sterile conditions in RPMI media supplemented with 10% (v/v) foetal 

bovine serum (Bovogen Biologicals, Keilor East, VIC, Australia), 2 mM L-glutamine (Lonza, 

Basel, Switzerland), 100 units/mL penicillin (Sigma-Aldrich), and 10 µg/mL streptomycin (Lonza) 

in 175 cm2 cell culture flasks (Corning, NY, USA) at 37 °C in a humidified atmosphere of 5% CO2 

with routine passaging every 2 – 4 days. The monocytes were differentiated into macrophages by 

seeding at density of 1 x 106 cells/well in 12 well tissue culture plates in culture media containing 

50 ng/mL PMA for 72 h [37]. Cells were washed in HBSS prior to treatment with patho-

physiological HOSCN concentrations (0 – 250 µM) for 1 h at 37 °C in a humidified atmosphere of 

5% CO2. Following treatment, the cells were washed with HBSS and re-cultured in cell media for 

either 3, 6 or 24 h at 37 °C in a humidified atmosphere of 5% CO2. 
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Assessment of cellular function – Cell viability was determined by the lactate dehydrogenase 

(LDH) release assay [38]. Quantification of total cellular thiols following treatment with HOSCN 

was assessed using the ThioGlo assay, using a reduced glutathione (GSH) standard curve [35] and 

was normalised to the cell protein concentration assessed by the BCA assay. Mitochondrial function 

was assessed by measuring alterations in mitochondrial membrane potential using the Mitoprobe 

JC-1 (tetraethyl-benzimidazolyl-carbocyanine iodide) assay kit (Life Technologies, Carlsbad, CA, 

USA) with flow cytometry as previously described [29]. Secretion of various cytokines / 

chemokines was quantified in clarified cell culture supernatants by ELISA, according to the 

manufacturer’s instructions (Peprotech, Rocky Hill, NJ, USA). 

  

RNA extraction and cDNA synthesis – RNA was extracted using ReliaPrep RNA Cell Miniprep 

System kits following the manufacturer’s instructions (Promega, Madison, WI, USA). Quantity and 

yield of total RNA extracted was assessed using a Nanodrop 2000C spectrophotometer (Thermo 

Scientific, Waltham, MA, USA). RNA samples were normalised to 500 ng total RNA per reaction 

using RNase free water (Promega, Madison, WI, USA) and cDNA synthesised using an iScript 

cDNA synthesis kit following manufacturer’s protocol (Bio-Rad, Hercules, CA, USA).  

 

Quantitative real-time polymerase chain reaction (qPCR) – The expression of mRNA for the 

inflammatory cytokines were assessed by qPCR using the primer sequences outlined in Table 1, 

designed using the National Centre for Biotechnology Information (NCBI; Bethesda, MD, USA) 

nucleotide database and accompanying primer design software, coupled with iQ SYBR Green 

Supermix following manufacturer’s protocol (Bio-Rad, Hercules, CA, USA). Cycling consisted of 

an activation step of 95 °C for 3 min, followed by denaturation at 95 °C for 30 s annealing at 60 °C 

for 30 s, and extension at 72 °C for 30 s repeated over 40 cycles, before a final denaturation at 95 

°C for 2 min. Relative mRNA concentrations of the genes of interest were normalised against the 
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corresponding relative mRNA concentrations of the 18S ribosomal RNA (18S) and β2-

microglobulin (β2M) house-keeping genes, with the resultant data expressed as a fold increase in 

the genes of interest over cells incubated in the presence of decomposed HOSCN [39]. 

 

SDS-PAGE and Western blotting – Nuclear and cytoplasmic cellular fractions were prepared 

using a NE-PER nuclear and cytoplasmic extraction kit (Thermo Fisher Scientific, Waltham, MA, 

USA) before separation by SDS-PAGE and transfer to a polyvinylidene fluoride (PVDF) membrane 

using the iBlot 2 Dry Transfer System (Thermo Fisher). Membranes were blocked with 5% (w/v) 

bovine serum albumin (BSA) in Tris-buffered saline containing 0.1% Tween-20 (TBST; 20 mM 

Tris-HCl, pH 7.4, 135 mM NaCl, 0.1% (v/v) Tween) for 1 h and then incubated with primary 

antibodies raised against the p65 subunit of NF-κB (sc-372; Santa Cruz Biotechnology, Dallas, TX, 

USA), total and phosphorylated p38 (8690, 4511; Cell Signaling), ERK1/2 (sc-93, Santa Cruz; 4370 

Cell Signaling), JNK (9258, 4668; Cell Signaling) or the loading controls β-actin (sc-47778; Santa 

Cruz) and histone H3 (4499; Cell Signaling) diluted in 1% (w/v) BSA in TBST overnight at 4 °C. 

Results were visualised following incubation with goat anti-rabbit or mouse HRP (7074, 7076; Cell 

Signaling) secondary antibody, prior to washing and exposure to Western Lighting 

chemiluminescence reagents as per manufacturer’s instructions (Perkin Elmer, Sydney, NSW, 

Australia). Membranes were imaged using an ImageQuant LAS4000 (GE Healthcare, Notting Hill, 

VIC, Australia) and band densitometry performed using ImageJ software (NIH, Bethesda, 

Maryland). 

 

Statistical analyses – Statistical analyses were performed using GraphPad Prism software 7.0 

(GraphPad Software, San Diego, USA) using one-way or two-way ANOVA with Dunnett’s, 

Tukey’s or Bonferroni’s multiple comparison post-hoc test with p < 0.05 taken as significant as 

outlined in the Figure Legends. 
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RESULTS 

HOSCN is consumed by macrophages resulting in loss of thiols and cell viability 

Initial studies examined the consumption of HOSCN by THP-1 macrophages exposed to the 

HOSCN (250 µM) for 1 h at 37 °C by measuring the residual oxidant concentration in the cell 

media over the course of the incubation. Exposure of THP-1 macrophages to HOSCN resulted in 

the loss of ~ 70 % of the initial oxidant added to the cells within 15 min, which decreased by a 

further 10 % over the 1 h treatment time (Fig. 1A). A loss in HOSCN concentration was also 

observed on incubation of the oxidant in HBSS in the absence of cells, but this occurred to a lesser 

extent than that seen in the presence of cells (Fig. 1A). Treatment of THP-1 macrophages with 

HOSCN also resulted in a decrease in intracellular thiol levels compared to control cells, which was 

statistically significant following 1 h exposure with > 200 µM HOSCN (Fig. 1B).  

The extent of LDH release from THP-1 macrophages following exposure to a range of 

HOSCN concentrations (0 – 250 µM) was assessed as a surrogate measure of cell death both 

immediately following oxidant exposure and following 24 h re-incubation in complete media in the 

absence of HOSCN. No evidence was obtained for cell death following 1 h HOSCN exposure, 

whereas significant LDH release, consistent with cell lysis, was apparent with ≥ 200 µM HOSCN 

following 24 h re-incubation in the absence of oxidant (Fig. 1C). The losses in intracellular thiols 

and viability were not seen in experiments performed with decomposed HOSCN.  

The effect of HOSCN on mitochondrial membrane permeability was examined using flow 

cytometry with the probe JC-1. However, no significant change in the ratio of red : green JC-1 

fluorescence was observed on exposure of the THP-1 macrophages to HOSCN, in contrast to 

experiments performed with the mitochondrial uncoupling agent, carbonyl cyanide m-chlorophenyl 

hydrazone (CCCP), which was used as a positive control (data not shown). This contrasts with 

previous work with other cell types (e.g. [29]). 
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HOSCN upregulates pro-inflammatory cytokines and chemokines 

Exposure of THP-1 macrophages to increasing concentrations of HOSCN (0 – 250 µM) 

resulted in a dose- and time-dependent increase in the mRNA expression of MCP-1, IL-6, IL-8, 

TNFα and IL-1β measured at 3 h (open bars), 6 h (grey bars) and 24 h (black bars) post-treatment 

by qPCR (Fig. 2). With IL-1β and the chemokines MCP-1 and IL-8, the most pronounced increase 

in mRNA expression was apparent 24 h post-HOSCN treatment, whereas with cytokines IL-6 and 

TNFα, a greater extent of mRNA expression was seen 6 h post-HOSCN treatment (Fig. 2). The 

effect of HOSCN treatment on the ability of THP-1 macrophages to secrete MCP-1, IL-6, IL-8 and 

TNFα was also assessed. A significant increase in the concentration of each cytokine / chemokine 

in the cellular supernatant compared to the non-treated control cells was observed 24 h after 

exposure of the THP-1 macrophages to HOSCN (250 µM) by ELISA. This is consistent with 

increased expression and secretion of MCP-1, IL-6, IL-8 and TNFα by THP-1 macrophages 

exposed to HOSCN (Fig. 3). 

 

HOSCN-induced upregulation of cytokine / chemokine expression is dependent on NF-κB 

The effect of HOSCN treatment on the activation of MAPK signalling cascades and the 

transcription factor NF-κB was examined as these pathways are redox-sensitive [40] and known to 

promote cytokine and chemokine release [41]. Western blotting studies to assess the extent of 

phosphorylation of ERK1/2, p38 and JNK as a measure of MAPK activation were performed on 

THP-1 macrophages exposed to HOSCN (0 – 250 µM) for 15 min. However, high basal MAPK 

protein phosphorylation was seen in the untreated control cells, which did not alter with HOSCN 

treatment (data not shown). This may be associated with the addition of PMA to the cells to 

promote macrophage differentiation, which makes it difficult to assess the effect of HOSCN on 

MAPK signalling. In contrast, increased nuclear translocation of the p65 subunit of NF-κB was 

apparent on treatment of macrophages with HOSCN (250 µM) for 1 h (Fig. 4A), consistent with 

activation of this transcription factor.  
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To examine whether NF-κB played a role in the elevated cytokine and chemokine 

expression, experiments were performed to examine MCP-1, IL-6, IL-8, TNFα and IL-1β 

expression in THP-1 macrophages that had been pre-incubated with the specific inhibitor 

BAY117085 (20 µM) for 30 min prior to exposure HOSCN. This resulted in a reduction in the 

mRNA expression of all of the cytokines and chemokines, which was statistically significant in the 

case of IL-8, TNFα and IL-1β (Fig. 4B). Pre-treatment of the THP-1 macrophages with 

BAY117085, also significantly attenuated cell death (Fig. 4C) as measured by LDH release at 24 h 

post-exposure to HOSCN (250 µM).  

 

 

DISCUSSION 

 Macrophages play an integral role in promoting inflammation and the formation of lesions 

within the arterial wall, which together drive the development of atherosclerosis [1]. Lesions are 

enriched with enzymatically-active MPO, which co-localises with macrophages [5], suggesting that 

these cells will be key targets for MPO-derived oxidants. It is well established that HOCl causes 

significant disruption to macrophage function, including perturbing intracellular Ca2+, depleting 

antioxidants, and inactivating enzymes, which culminate in both necrotic and apoptotic cell death 

[25, 42, 43]. The presence of SCN- promotes the formation of HOSCN by MPO, which can also 

disrupt macrophage function, by selectively targeting thiol-dependent enzymes [15, 22, 25]. In this 

study, we show for the first time that HOSCN can upregulate the expression of pro-inflammatory 

cytokines and chemokines in macrophages via activation of the transcription factor NF-κB, which 

also plays a role in promoting cell death.  

This could be a pathway that contributes to exacerbation of inflammation in the arterial wall, 

and accelerated lesion development. The concentrations of HOCl and HOSCN formed in vivo in a 

chronic inflammatory setting are not known. The concentration of HOCl produced in vivo can be 

estimated as ca. 200 – 500 µM from calculations based on either the activation of a circulating 
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concentration of human neutrophils [44] or from the reported levels of MPO present in human 

lesions [5], though higher mM doses have been reported at inflammatory sites [45]. The 

concentration of HOSCN produced in vivo will be dependent on the availability of the precursor 

SCN-. It is noted that the concentrations at which HOSCN stimulates the activation of NF-κB and 

cytokine / chemokine release (> 100 µM) are likely only to be formed in the presence of supra-

physiological amounts of SCN-, which are generally only achievable with supplementation or on 

cigarette smoking [14]. 

 The THP-1 macrophages consumed HOSCN over a period of 1 h, which is a similar time 

course to previous studies with murine J774A.1 macrophage-like cells, though the total extent of 

oxidant consumption differed, with the THP-1 macrophages consuming 80% of the initial HOSCN 

after 1 h, compared with 30% in the experiments with the murine cells [25]. The greater oxidant 

consumption seen with the THP-1 macrophages did not appear to result in more extensive depletion 

of intracellular thiols or cell death compared to the J774A.1 cells under comparable treatment 

conditions. This may reflect that HOSCN is more readily metabolised by THP-1 macrophages 

compared to J774A.1 cells. Thus, thioredoxin reductase (TrxR) has been implicated as a key 

pathway responsible for the cellular metabolism of HOSCN, with inhibition of this enzyme shown 

to sensitise mammalian cells to HOSCN-mediated toxicity [30]. In this study, the expression and 

activity of TrxR in the THP-1 macrophages in the presence and absence of HOSCN was not 

assessed, though J774A.1 cells have been reported to have reduced TrxR activity compared to other 

macrophage cell lines [46]. That concentrations of HOSCN > 100 µM are required to see activation 

of NF-κB may reflect the point at which this antioxidant defensive pathway becomes overwhelmed. 

Alternatively, there may be differential reactivity of HOSCN with cell membrane components, 

including extracellular membrane receptors, which could also vary on THP-1 macrophages 

compared to J774A.1 cells. 

 We demonstrate that exposure of THP-1 macrophages to HOSCN results in the increased 
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expression of pro-inflammatory cytokines (IL-6, TNFα, IL-1β) and chemokines (MCP-1, IL-8) in a 

dose- and time-dependent manner (Fig. 2), which is concomitant with the release of active forms of 

these signalling molecules by the macrophages (Fig. 3). MCP-1 and IL-8 promote the migration of 

leukocytes and activation of the endothelium, which together can contribute to lesion development 

by increasing the uptake of low-density lipoprotein (LDL) [47]. The cytokines IL-6, TNFα and IL-

1β are critical mediators of both acute and chronic inflammation [41] and have also been implicated 

as strong independent risk factors for the development of cardiovascular disease [48]. The cytokines 

IL-6, TNFα and IL-1β are reported to signal through type 1 cytokine receptors, whereas the 

chemokine IL-8 interacts with G protein-coupled receptors (GPCRs) [41], suggesting that HOSCN 

could potentially influence multiple pro-inflammatory signalling cascades relevant to lesion 

formation in atherosclerosis. 

 The increased expression of cytokines and chemokines is attributed to the HOSCN-mediated 

activation of NF-κB, as pre-treatment with BAY117085 prevents the increased cytokine and 

chemokine expression and the associated loss in cell viability (Fig. 4), though the ability of this 

inhibitor to prevent the translocation of the p65 subunit of NF-κB was not directly measured in this 

study. NF-κB is regulated by IκB proteins, which bind to the protein subunits and mask their DNA 

binding domains. The activity of the IκB proteins, including IκBα, is controlled by phosphorylation 

by upstream IκB kinases (IKK) [49]. BAY117085 is an irreversible inhibitor of IκBα 

phosphorylation [50], suggesting that HOSCN acts on the canonical (classical) pathway of NF-κB 

activation, leading to phosphorylation of IκBα and subsequent release and nuclear translocation of 

NF-κB [51]. These data support previous studies in HUVEC exposed to HOSCN, where increased 

expression of E-selectin, ICAM-1 and VCAM-1 is attributed to activation of NF-κB [33].  

In light of the previous studies showing targeting of thiols in macrophages exposed to 

HOSCN [15, 25], the mechanism involved in the activation of NF-κB is likely to be related to 

alterations in the cellular redox environment. Reactive oxygen species (ROS) are known to 
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influence the activation of NF-κB via the canonical signalling pathway, which is characterised by 

binding of inflammatory molecules, including cytokines, to Toll-like receptors (TLR), tumour 

necrosis factor receptors (TNFR) and interleukin-1 receptors (IL-1R) [40, 49, 52]. Exogenously 

added oxidants such as H2O2, can regulate NF-κB activation by inducing the phosphorylation of 

IκBα, or by influencing the activity of IKK (reviewed [49]). It has also been demonstrated that the 

extracellular Cys-rich domains of TNFR are sensitive to oxidation by externally generated oxidants 

[53], which can promote the activation of NF-κB [54]. This could be important in THP-1 

macrophages exposed to HOSCN, particularly as the increased expression of cytokines and 

chemokines is observed under treatment conditions where no intracellular thiol loss is apparent.  

In this study, it was not possible to assess whether HOSCN increased the phosphorylation of 

the MAPK proteins ERK1/2, p38 or JNK, owing to the relatively high extent of phosphorylation of 

these proteins, when assessed following 1 h incubation of the macrophages in the presence and 

absence of oxidant. However, evidence for MAPK activation has been reported in previous 

experiments with J774A.1 macrophages and HUVEC exposed to HOSCN [23, 33, 55]. The 

significant basal level of MAPK phosphorylation seen in the THP-1 macrophages may be related to 

the pre-treatment of the cells with PMA to promote differentiation. This is a limitation of the 

current study, as PMA is an activator of protein kinase C, which is also reported to influence NF-κB 

activation (reviewed [51]). However, HOSCN clearly increases the extent of nuclear translocation 

of the NF-κB p65 subunit over and above that seen in the control, non-treated cells. Similarly, a 

transcriptional upregulation of cytokine and chemokine expression and secretion is not seen to the 

same extent in control cells, which is analogous to the activation of NF-κB and cell adhesion 

molecule upregulation seen in HUVEC exposed to HOSCN [33]. 

Exposure of THP-1 macrophages to HOSCN for 1 h did not cause a significant extent of cell 

death, when viability was determined immediately after oxidant treatment, in agreement with 

previous studies with murine macrophages [15, 25]. However, cell death reflected by increased 



15 
 

leakage of LDH, was observed with ≥ 200 µM HOSCN, following re-incubation of the 

macrophages in the absence of oxidant for 24 h. Again, this could reflect the concentration at which 

the TrxR activity within the macrophages becomes saturated. In this study, the specific pathway 

responsible for cell death was not examined, though a role for NF-κB is apparent, as pre-treatment 

of the cells with BAY117085 mitigated the cytotoxicity induced by HOSCN (Fig. 5). NF-κB is an 

important regulator of programmed cell death, by both apoptotic and necrotic pathways (reviewed 

[56]). Binding to the TNFR in particular, triggers the activation of a complex series of signalling 

cascades that can determine cell fate by either promoting survival or death by programmed 

apoptosis and necrosis [56]. Evidence for cell death by both apoptotic and necrotic pathways was 

apparent in previous work with murine macrophages exposed to HOSCN, which was associated 

with increased mitochondrial release of cytochrome c [25]. However, this is consistent with 

HOSCN inducing changes in mitochondrial membrane permeability, which is not seen in analogous 

experiments with THP-1 macrophages. 

 In summary, we provide evidence for a critical role of NF-κB as a mediator of both cell 

survival and pro-inflammatory signalling on exposure of human THP-1 macrophages to HOSCN. 

This is a novel pathway by which HOSCN could act to promote inflammation within the vascular 

setting in the presence of elevated levels of SCN-, and is particularly significant given the strong 

association between elevated circulating levels cytokines, including IL-1β, IL-6 and TNFα, and risk 

of developing atherosclerosis [48]. These results highlight a role for HOSCN as an inducer of 

stress-related, survival, signalling cascades, which can activate both repair and adaptive pathways, 

or promote apoptotic signalling and necrosis. Low concentrations of HOSCN may therefore have a 

protective function, but high amounts can promote cellular dysfunction. Overall, these data help to 

rationalise the accelerated development of atherosclerosis seen in smokers, and provide a greater 

understanding as to how SCN- could potentially modulate the development of disease during 

chronic inflammation. 
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Table 1: Primer sequences used for qPCR 

Gene Forward sequence Reverse sequence NCBI Reference 

Sequence 

18S 5′ - GAG GAT GAG GTG 

GAA CGT GT-3′ 

5′ - TCT TCA GTC GCT 

CCA GGT CT-3′ 

NM_022551.2 

 

β2M 5′ -AGA TGA GTA TGC 

CTG CCG TG-3′ 

5′ - GCG GCA TCT TCA 

AAC CTC CA-3′ 

NM_004048.2 

 

MCP-1 5′ - TTG GGT TTG CTT 

GTC CAG GT-3′ 

5′ - AGC CAC CTT CAT 

TCC CCA AG-3′ 

X14768.1 

 

IL-8 5′ - TCT GCA GCT CTG 

TGT GAA GG-3′ 

5′ - TTC TCC ACA ACC 

CTC TGC AC-3′ 

NM_000584.3 

 

TNF-α 5′ - AAC CTC CTC TCT 

GCC ATC AA-3′ 

5′ - CCA AAG TAG ACC 

TGC CCA GA 

NM_000594.3 

 

IL-6 5′ - CCA GAG CTG TGC 

AGA TGA GT-3′ 

5′ - AGC TGC GCA GAA 

TGA GAT GA-3′ 

M54894.1 

 

IL-1β 5′ - CAG GCT GCT CTG 

GGA TTC TC-3′ 

5′ - GTC CTG GAA GGA 

GCA CTT CAT-3′ 

NM_000576 
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FIGURE LEGENDS 

Figure 1 – HOSCN is consumed by THP-1 macrophages resulting in loss of intracellular thiols 

and viability. (A) THP-1 macrophages (1 x 106 cells) were exposed to HOSCN (250 µM) for 15 

min - 1 h at 37 °C with the concentration of HOSCN in supernatant (HBSS) determined in the 

presence (solid line) and absence of cells (dotted line) using the TNB assay. (B) Intracellular thiol 

levels following 1 h incubation of THP-1 macrophages with HOSCN (25 – 250 µM; black bars) 

compared to untreated cells (white bar) and decomposed HOSCN (De; grey bar) using the Thioglo 

assay. (C) Cell viability was determined by LDH release on exposure of THP-1 macrophages to 

HOSCN (0 – 250 µM) or decomposed HOSCN (De) for 1 h (white bars) and at 24 h post exposure 

to HOSCN (black bars). Data represent 3 independent experiments performed in triplicate. *, ** 

and *** show a significant (p < 0.05, 0.01, and 0.001, respectively) difference compared to non-

treated controls using either a one-way ANOVA with Dunnett’s post-hoc test or two-way ANOVA 

with Bonferroni post-hoc test. 

 

Figure 2 – Exposure of THP-1 macrophages to HOSCN increases inflammatory cytokine and 

chemokine mRNA expression. THP-1 macrophages (1 x 106 cells) were exposed to HOSCN (0 –

250 µM) or decomposed HOSCN (De) for 1 h at 37 °C before determination of mRNA expression 

of (A) MCP-1, (B) IL-6, (C) IL-8, (D) TNFα and (E) IL-1β, following re-incubation in complete 

media for 3 h (white bars), 6 h (grey bars) or 24 h (black bars) by qPCR. Data are normalised to the 

expression of 18S and β2M house-keeping genes, and represented as the fold change compared to 

the decomposed HOSCN (De) treatment for 3 individual experiments performed in triplicate. *, **, 

*** and **** show a significant (p < 0.05, 0.01, 0.001, 0.0001, respectively) difference compared 

to respective non-treated controls using a two-way ANOVA with Tukey’s post-hoc test. 

 

Figure 3 – Exposure of THP-1 macrophages to HOSCN increases inflammatory cytokine and 

chemokine secretion. THP-1 macrophages (1 x 106 cells) were exposed to HOSCN (250 µM) for 1 
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h at 37 °C before determination of (A) MCP-1, (B) IL-6, (C) IL-8 and (D) TNFα in the cellular 

supernatants following re-incubation in complete media 24 h by ELISA. Data represent 3 individual 

experiments performed in triplicate. * and ** show a significant (p < 0.05 and 0.01, respectively) 

difference compared to respective controls by a one-tailed t-test. 

 

Figure 4 – HOSCN-induced THP-1 macrophage cytokine/chemokine expression and cell 

death occurs through NF-κB activation. (A) The extent of cytosolic (white bars) and nuclear 

(black bars) accumulation of the p65 subunit of NF-κB was assessed following 1 h exposure to 250 

µM HOSCN; inset: representative images of Western blot images analysed. (B) The extent of THP-

1 macrophage mRNA expression of MCP-1, IL-6, IL-8, TNFα and IL-1β was assessed by qPCR 

with (grey bars) or without (black bars) pre-treatment with BAY117085 (20 µM for 30 min). (C) 

THP-1 cell death as indicated through the extent of LDH release at 24 h following exposure to 250 

µM HOSCN with and without pre-incubation of cells with BAY117085 (20 µM for 30 min). Data 

represent at least 3 individual experiments performed in triplicate. * and *** show a significant (p < 

0.05, and 0.001, respectively) difference in the presence and absence of NF-κB inhibition by two-

way ANOVA with Bonferroni’s post-hoc test. 
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