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Abstract—Analog Least Mean Square (ALMS) loop is a
promising method to cancel self-interference (SI) in in-band full-
duplex (IBFD) systems. In this paper, the steady state analyses
of the residual SI powers in both analog and digital domains
are firstly derived. Eigenvalue decomposition is then utilized to
investigate the frequency domain characteristics of the ALMS
loop. Our frequency domain analyses prove that the ALMS loop
has an effect of amplifying the frequency components of the
residual SI at the edges of the signal spectrum in the analog
domain. However, the matched filter in the receiver chain will
reduce this effect, resulting in a significant improvement of
the interference suppression ratio (ISR). It means that the SI
will be significantly suppressed in the digital domain before
information data detection. This paper also derives the lower
bounds of ISRs given by the ALMS loop in both analog and
digital domains. These lower bounds are joint effects of the loop
gain, tap delay, number of taps, and transmitted signal properties.
The discovered relationship among these parameters allows the
flexibility in choosing appropriate parameters when designing the
IBFD systems under given constraints.

Index Terms—IBFD, self-interference cancellation, ALMS
loop, frequency-domain analysis, matched filter, and eigenvalue
decomposition.

I. INTRODUCTION

SPectral efficiency is always a critical issue in wireless
communications as the number of mobile devices has been

booming recently. In-band full-duplex (IBFD) transmission
is a promising solution for this problem because it allows
simultaneous transmission and reception in the same frequency
band [1]. Moreover, IBFD transmission provides other bene-
fits, such as avoiding collision due to hidden terminal problems
in carrier sense multiple access networks and reducing the end-
to-end delay in multi-hop networks [2]. However, a critical
challenge encountered in implementing IBFD transceivers is
that the strong self-interference (SI) imposed by the transmitter
prevents its co-located receiver from receiving the signal of
interest emitted from the far-end. Hence, SI cancellation (SIC)
is a fundamental issue in IBFD communications.
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Numerous approaches have been proposed in the litera-
ture to tackle the problem of SI. These approaches can be
classified as passive suppression, analog cancellation, and
digital cancellation [3]. Passive suppression methods intend
to attenuate the level of SI in the propagation domain by
separating transmit and receive antennas [4]–[6], or using a
circulator to share one antenna [7], [8]. Analog cancellation
attempts to generate a reference signal which is a replica of
the SI to subtract it from the received signal at the input
of the receiver. Digital cancellation is implemented after the
Analog-to-Digital converter (ADC) where the residual SI is
estimated and subtracted from the received digital signal
samples [5]. Note that no single method of cancellation can
be sufficient to remove the effect of the SI, but a combination
of them is always required [2]. However, analog cancellation
plays a critical role in the above mentioned three steps of
mitigating the SI. The reason is that passive suppression is
limited by the device size, and the level of suppression is
not sufficient to protect the ADC from being saturated by
the strong SI. As a result, the digital cancellation cannot be
solely implemented without the analog domain cancellation.
Among many different analog domain SIC techniques, the
radio frequency (RF) multi-tap finite impulse response (FIR)
adaptive filtering approach [9], the multiple RF bandpass
filter (BPF) approach [10], and the RF FIR frequency-domain
equalization approach [11] are some of the notable ones.
The approaches proposed in [10], [11] directly synthesize the
frequency domain characteristics of the SI channel, but the
RF BPFs and FIR filter are all static though they can be
reconfigurable. Due to practical impairments, such as non-
linearity of the transmit power amplifier (PA), as well as the
variation of the SI channel, an adaptive mechanism which can
adjust the phase and amplitude of the cancellation signal seems
more effective.

An obvious problem here is how to synthesize the weighting
coefficients of the multi-tap adaptive filter in order to minimize
the power of the residual SI after cancellation. A promising
method is to utilize a least mean square (LMS) loop in the
adaptive filter. Unlike conventional LMS algorithms in the
digital domain, it is very challenging to implement an LMS
loop in the RF domain due to the lack of RF integrators.
Therefore, many existing SIC filters implement the LMS algo-
rithm at the baseband stage. Besides the baseband integrator,
additional down-conversion and ADC circuits have to be added
to digitize the residual SI for the LMS filter in baseband
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[3], [9], [12], [13]. Unfortunately, these additional blocks not
only consume more power, but also produce further noise and
interference to the receiver. Other SIC methods synthesize the
weighting coefficients from the digitalized residual SI after the
ADC in the receiver chain and generate the RF cancellation
signal by an additional transmit chain [14]–[16]. However,
in a conventional receiver, an automatic gain control (AGC)
amplifier is always required to avoid the problem of fading and
ensure the wide dynamic range of the receiver. Since the level
of residual SI is stabilized by the AGC amplifier, the weight
coefficients synthesized in the digital domain are inaccurate.
Furthermore, the involvement of the transmitted baseband
signal in the control algorithm also makes the cancellation
circuit become more complicated in practice.

A novel analog LMS (ALMS) loop purely implemented
at the RF stage is proposed in [17]. By employing a simple
resistor-capacitor low-pass filter (LPF) to replace the ideal in-
tegrator, the weighting coefficients can be synthesized without
any involvement of the complicated digital signal processing.
The performance and convergence of the ALMS loop are com-
prehensively investigated by examining the weighting error
function in both micro and macro scales. The spectra of resid-
ual SI obtained from experiment results show that the ALMS
loop enhances the SI at the two edges of the signal spectrum.
However, this phenomenon has not yet been analyzed and
its impact on the SIC performance is not fully understood.
As further studied in [18], [19], the properties of transmitted
signals have significant impacts on the performance of the
ALMS loop, but the roles of the tap delay and the number of
taps in ALMS loop in relation to the SIC performance have not
been considered. As we all know, as long as the level of passive
suppression and analog cancellation is sufficient to allow the
received signal to be digitized within the ADC’s dynamic
range, the SIC performance in the RF stage does not show
the real impact on the performance of information detection
since further optimal receiver algorithms including matched
filtering and equalization will be performed in the digital
domain. Therefore, it would make more sense to consider
the performance of the ALMS loop in the digital domain
after the matched filter. However, the analyses on ALMS loop
performance in [17]–[19] are all conducted at the RF stage.

To overcome the aforementioned shortcoming, in this paper,
we analyze the performance of the ALMS loop proposed in
[17] by evaluating the interference-suppression-ratios (ISRs)
in both analog and digital domains in the receiver chain.
In particular, the ISRs before and after the matched filter
are firstly derived by a steady state analysis, and eigenvalue
decomposition is then performed to derive the frequency do-
main presentation of the ALMS loop. We prove that although
the ALMS loop has an effect of amplifying the frequency
components of the residual SI at the edges of the signal
spectrum, this effect is significantly reduced by the matched
filter, leading to a much lower ISR at the output of the matched
filter. Hence, unlike [17], the real effect of the ALMS loop on
the SI suppression should be considered after the matched filter
in the digital domain instead of before it in the analog domain.
Furthermore, the lower bounds of ISRs in both analog and
digital domains are derived to characterize the performance of

the ALMS loop with regards to the transmitted signal property,
the loop gain, the tap spacing, and the number of taps. From
the relationship among these parameters, the full potential of
SIC given by the ALMS loop can be determined.

Contributions of this paper are twofold. First, this paper
characterizes the phenomenon of frequency component en-
hancement produced by the ALMS loop to the residual SI,
and proves mathematically that the matched filter reduces
this enhancement, leading to a significant improvement of
ISR in the digital domain. Second, the lower bound of ISR
given by the ALMS loop in the digital domain derived in
this paper allows the designer to determine the expected level
of suppression from the parameters of the transceiver and
the cancellation circuit. More importantly, this expected level
can be achieved by adjusting the remaining parameters when
others are under constraints.

The rest of this paper is organized as follows. Section II
describes the system architecture and the signal models and
performs the steady state analysis to find the expressions of
ISRs in both analog and digital domains. In Section III, the
ISRs are analyzed in the frequency domain and their lower
bounds are derived respectively. In Section IV, simulations are
conducted to verify the theoretical findings. Finally, conclu-
sions are drawn in Section V.

II. STEADY STATE ANALYSIS OF ALMS LOOP

A. IBFD Transceiver with ALMS LOOP

The architecture of an IBFD transceiver employing an
ALMS loop in the analog domain proposed in [17] is shown
in Fig. 1. The ALMS loop works as follows. A copy of
the transmitted signal is passed through the ALMS loop,
which includes L taps. In each tap, the transmitted signal
is delayed and multiplied by the amplified and looped-back
residual SI with an I/Q demodulator. This product is then
filtered with the LPFs to obtain the weighting coefficient
wl(t). These weighting coefficients modulate again the same
delayed transmitted signal. The outputs of the L-taps are added
together to produce the cancellation signal y(t), which is then
subtracted from the received signal r(t) at the input of the
receiver.

Signal models are described as follows. Assuming a single
carrier system, the transmitted signal x(t) at the output of the
power amplifier (PA) is modeled as x(t) = Re{X(t)e j2π fc t }
where fc is the carrier frequency, and X(t) is the baseband
equivalent which can be mathematically modeled as

X(t) =
∞∑

i=−∞

aiVXp(t−iTs) (1)

where ai is the i-th complex data symbol, Ts is the symbol
interval, VX is the root mean square (RMS) value of the
transmitted signal, and p(t) is the pulse shaping function
with unit power 1

Ts

∫ Ts

0 |p(t)|
2dt = 1. The transmitted data

symbols ai are assumed to be independent of each other,

i.e., E{a∗i ai′} =

{
1, for i = i′

0, for i , i′
where E{.} stands for en-

semble expectation. The average power of X(t) is defined as



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, AUGUST 2018 3

 

  

 Td  

 

 

  

 

LNA

 Gain 2µ

PA

d(t)=r(t)-y(t)

y(t)
r(t)

Tx Rx

x(t)

DAC

ADC

1
st
 Tap

l-th Tap

 

 

 

 

 

LPF

LPF

900
900

Re{wL-1(t)}

Im{wL-1(t)}

Td

Td

Matched 

filter

Pulse 

shaping

ai

L-th Tap

Equalizer

âi

Up-

conversion
Down-

conversion

 

Fig. 1. The ALMS loop structure.

1
Ts

∫ Ts

0 E{|X(t)|2}dt = V2
X over 1 Ω load. Due to the IBFD

operation, at the input of the receiver, there are presences of
the SI z(t), the desired signal s(t), and the additive Gaussian
noise n(t), i.e., r(t) = z(t)+s(t)+n(t). The baseband equivalents
of these signals are denoted as R(t), Z(t), S(t) and N(t)
respectively. The cancellation signal y(t) is combined from
the L taps as

y(t) = Re
{ L−1∑

l=0
w∗l (t)X(t−lTd)e j2π fc (t−lTd )

}
(2)

where wl(t) is the complex weighting coefficient at the l-th tap
obtained by filtering the outputs of the I/Q demodulator, Td is
the delay between adjacent taps. As proved in [17], using a
simple resistor-capacitor LPF with the decay constant α (α =
1/RC), the weighting coefficients wl(t) can be written as

wl(t) =
2µα

K1K2

∫ t

0
e−α(t−τ)[r(τ)−y(τ)]·X(τ−lTd)e

j2π fc (τ−lTd )dτ

(3)

where K1 and K2 are the dimensional constants of multipliers
in the I/Q demodulator and I/Q modulator respectively, and
2µ is the gain of the low noise amplifier (LNA). Assume
that the SI channel is modeled as an L-stage multi-tap filter
where each tap has a coefficient h∗

l
and delay Td . Hence,

the baseband equivalent of the SI z(t) can be expressed as
Z(t) =

∑L−1
l=0 h∗

l
X(t−lTd). Obviously, the performance of the

ALMS loop is determined by the difference between the
cancellation signal y(t) and the SI z(t). This difference is
represented by the weighting error function defined as

ul(t) = hl−wl(t)e j2π fc lTd . (4)

As derived in [17, Eq.(11)], ul(t) can be expressed as

ul(t) = hl−
µα

K1K2

∫ t

0
e−α(t−τ)

[
L−1∑
l′=0

ul′(τ)X∗(τ−l ′Td)

+S∗(τ)+N∗(τ)

]
X(τ−lTd)dτ.

(5)

B. Steady State Analysis

1) Steady State of Weighting Error Function: Now we
apply the steady state analysis to derive the residual SI power
and the ISR at the output of the ALMS loop. The system
is assumed to be steady after an initial start-up so that all
the weighting coefficients are in their converged values. Both
ensemble expectation and time averaging denoted as Ē{.} are
used to evaluate the random processes involved in this analysis.
The normalized autocorrelation function of the transmitted
signal is defined by

Φ(τ) =
1

K1K2
Ē{X∗(t)X(t−τ)}

=
1

K1K2Ts

∫ Ts

0
E{X∗(t)X(t−τ)}dt

=
V2
X

K1K2Ts

∫ ∞

−∞

p∗(t)p(t−τ)dt

=
A2

Ts

∫ ∞

−∞

p∗(t)p(t−τ)dt

(6)

where A2 = V2
X/K1K2 = Φ(0) is the normalized power of

the transmitted signal. To simplify (5), we assume that the
transmitted signal is independent of the desired signal and
the additive Gaussian noise, i.e., Ē{S∗(t)X(t−τ)} = 0 and
Ē{N∗(t)X(t−τ)} = 0 for all τ. Performing both ensemble
expectation and time averaging and applying the above as-
sumptions to (5), we have

¯̄ul(t) = hl−µα
∫ t

0
e−α(t−τ)

L−1∑
l′=0

¯̄ul′(τ)Φ((l−l ′)Td)dτ, (7)

or, in matrix form

¯̄u(t) = h−µα
∫ t

0
e−α(t−τ)Φ ¯̄u(t)dτ (8)

where ¯̄ul(t) = Ē{ul(t)}, ¯̄u(t) = [ ¯̄u0(t), ¯̄u1(t) · · · ¯̄uL−1(t)]H , h =
[h0, h1, · · · , hL−1]

H , and

Φ =


Φ(0) Φ(−Td) · · · Φ(−(L−1)Td)

Φ(Td) Φ(0) · · · Φ(−(L−2)Td)
...

...
. . .

...
Φ((L−1)Td) Φ((L−2)Td) · · · Φ(0)


. When

t → ∞, ¯̄u(t) converge to their steady-state values ¯̄u so that
¯̄u(t) can be taken out of the integral in (8). It is also noted
that α

∫ t

0 e−α(t−τ)dτ
���
t→∞
→ 1. Therefore, (8) becomes

¯̄u = h−µΦ ¯̄u (9)

and hence
¯̄u = (IL+µΦ)−1h. (10)
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2) Interference Suppression Ratios: ISR is an important
metric to evaluate the performance of the cancellation circuit.
In this subsection, we derive the closed-form equations of ISRs
before and after the matched filter in the analog domain and
digital domain respectively.

a) ISR in analog domain: After SI cancellation, the
normalized power of residual SI v(t) = z(t)−y(t) is derived
as

Pv(t) =
1

K1K2
Ē
{
[z(t)−y(t)]2

}
=

1
K1K2

Ē

{[
Re

{[
Z(t)−

L−1∑
l=0
(h∗l−u∗l (t))X(t−lTd)

]
e j2π fc t

}]2
}

=
1

2K1K2
Ē

{���Z(t)−L−1∑
l=0
(h∗l−u∗l (t))X(t−lTd)

���2}
=

1
2K1K2

Ē

{[ L−1∑
l=0

u∗l (t)X(t−lTd)

L−1∑
l′=0

ul′(t)X∗(t−l ′Td)

]}
=

1
2

Ē

{
L−1∑
l=0

L−1∑
l′=0;l′,l

u∗l (t)Φ
(
(l−l ′)Td

)
ul′(t)+Φ(0)

L−1∑
l=0
|ul(t)|2

}
=

1
2

¯̄uH
(t)

[
Φ−Φ(0)IL

] ¯̄u(t)+
1
2
Φ(0)

L−1∑
l=0

¯̄u2
l (t)

(11)

where ¯̄u2
l
(t) = Ē{|ul(t)|2} is the time-averaged mean square

value of ul(t). From (5), following the steps shown in Ap-
pendix B in [17], when

d ¯̄u2
l
(t)

dt = 0, ¯̄u2
l
(t) satisfies the equation

(1+µA2)

L−1∑
l=0

¯̄u2
l (t) = Re{ ¯̄uHh}−µ ¯̄uH

(Φ−A2IL) ¯̄u. (12)

Substituting (10) to (12), we have

L−1∑
l=0

¯̄u2
l (t) = hH (IL+µΦ)−2h (13)

and the steady state power of the residual interference is
obtained from (11) as

Pv =
1
2

hH (IL+µΦ)−1Φ(IL+µΦ)−1h. (14)

If there was no cancellation, the normalized SI power would
be

Pz =
1

K1K2
Ē
{
[z(t)]2

}
=

1
K1K2

Ē

{[
Re

{ L−1∑
l=0

h∗l X(t−lTd)e j2π fc t
}]2

}
=

1
2K1K2

Ē

{
L−1∑
l=0

h∗l X(t−lTd)

L−1∑
l′=0

hl′X∗(t−l ′Td)

}
=

1
2K1K2

L−1∑
l=0

L−1∑
l′=0

h∗l Ē
{
X(t−lTd)X∗(t−l ′Td)

}
hl′

=
1
2

L−1∑
l=0

L−1∑
l′=0

h∗lΦ
(
(l−l ′)Td

)
hl′ =

1
2

hHΦh.

(15)

Therefore, ISR before the matched filter in the analog domain,
denoted as ISRa, is determined by

ISRa =
Pv

Pz
=

hH (IL+µΦ)−1Φ(IL+µΦ)−1h
hHΦh

. (16)

b) ISR in digital domain: After down-converted to base-
band, the residual SI, denoted as V(t), is expressed as

V(t) = Z(t)−Y (t)

=

L−1∑
l=0

h∗l X(t−lTd)−

L−1∑
l=0

w∗l (t)X(t−lTd)e−j2π fc lTd

=

L−1∑
l=0

u∗l (t)X(t−lTd).

(17)

After the matched filter with the impulse response p∗(−t), we
get the filtered version of V(t) as

Ṽ(t) = V(t)∗p∗(−t) =
L−1∑
l=0

u∗l (t)X̃(t−lTd) (18)

where ∗ stands for a linear convolution operation and

X̃(t) = X(t)∗p∗(−t) (19)

is the filtered version of the transmitted baseband signal.
Similarly, the steady normalized power of the filtered residual
SI is calculated as

PṼ =
1

K1K2
Ē
{
|Ṽ(t)|2

}
=

1
K1K2

Ē

{
L−1∑
l=0

u∗l (t)X̃(t−lTd)

L−1∑
l′=0

ul′(t)X̃∗(t−l ′Td)

}
=

L−1∑
l=0

L−1∑
l′=0,l,l′

¯̄u∗l (t)Θ
(
(l−l ′)Td

) ¯̄ul′(t)+Θ(0)
L−1∑
l=0

¯̄u2
l (t)

= ¯̄uH
(t)(Θ−Θ(0)IL) ¯̄u(t)+Θ(0)

L−1∑
l=0

¯̄u2
l (t)

= hH (IL+µΦ)−1Θ(IL+µΦ)−1h

(20)

where Θ(τ) = 1
K1K2

Ē
{

X̃(t)X̃∗(t−τ)
}

and Θ =
Θ(0) Θ(−Td) · · · Θ(−(L−1)Td)

Θ(Td) Θ(0) · · · Θ(−(L−2)Td)
...

...
. . .

...
Θ((L−1)Td) Θ((L−2)Td) · · · Θ(0)


are

the normalized autocorrelation function of X̃(t) and the
corresponding autocorrelation matrix respectively.

Meanwhile, if there was no cancellation, the steady normal-
ized SI power after the matched filter would be

PZ̃ =
1

K1K2
Ē
{
|Z(t)∗p∗(−t)|2

}
=

1
K1K2

Ē
{�� L−1∑

l=0
h∗l X̃(t−lTd)

��2}
=

L−1∑
l=0

L−1∑
l′=0

h∗lΘ((l−l ′)Td)hl′

= hHΘh.

(21)
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Therefore, the ISR after the matched filter in the digital
domain, denoted as ISRd , is

ISRd =
PṼ

PZ̃

=
hH (IL+µΦ)−1Θ(IL+µΦ)−1h

hHΘh
. (22)

III. FREQUENCY-DOMAIN ANALYSIS OF
RESIDUAL SI

A. Eigen-Decomposition of Autocorrelation Matrices

The L×L matrix Φ can be decomposed as Φ = QΛQ−1

where Q is the orthonormal modal matrix whose columns

are the L eigenvectors of Φ and Λ =
©­­­­«
λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λL−1

ª®®®®¬
is the spectral matrix whose main diagonal elements are
the L eigenvalues of Φ. When LTd is sufficiently large, the
autocorrelation matrix Φ can be approximated as a circulant
matrix Φ̃ composed of a periodic autocorrelation function
Φ̃(τ) =

∑∞
l=−∞Φ(τ+lLTd). As proved in [20], the circulant

matrix Φ̃ can be decomposed as Φ̃ = FSXF−1 where F
is the discrete Fourier transform (DFT) matrix of order L,

F =
©­­­­«
1 1 · · · 1
1 e−jω1 · · · e−j(L−1)ω1

...
...

. . .
...

1 e−jωL−1 · · · e−j(L−1)ωL−1

ª®®®®¬
with ωk =

2πk
L , k =

0, 1, · · · , L−1, SX = diag{SX (e jω0 ), SX (e jω1 ), · · · , SX (e jωL−1 )},
and SX (e jωk ) are obtained by taking the DFT of Φ̃(lTd), i.e.,

SX (e jωk ) =

L−1∑
l=0
Φ̃(lTd)e−jωk l (23)

for k = 0, 1, · · · , L−1, which are the L samples of the
normalized power spectrum SX (e jω) of the transmitted signal
sequence X(nTd) uniformly spaced about the unit circle. It
means that when L is sufficiently large, the eigenvalues λk can
be approximated as the power spectrum samples SX (e jωk ). To
confirm this approximation, the eigenvalues λk are compared
with the power spectrum SX (e jωk ) as below.

Suppose that the transmitter employs a root raised cosine
pulse shaping filter. The autocorrelation function Φ(t) is a
raised cosine pulse, which has the frequency response

P( f ) =


Ts for 0 ≤ | f | < 1−β

2Ts
Ts
2

[
1+cos

(
πTs
β ( f−

1−β
2Ts )

)]
for 1−β

2Ts ≤ | f | ≤
1+β
2Ts

0 for | f | > 1+β
2Ts

(24)

where β is the roll-off factor. Hence, the normalized power
spectrum of X(t) is A2P( f ). With the sampling period Td , the
relationship between SX (e jω) and P( f ) can be expressed as

SX (e jω) =
1

Td

∞∑
n=−∞

A2P(
ω

2πTd
−

n
Td
). (25)

If Td ≤ Ts/(1+β), there will be no spectral overlapping and
hence

SX (e jω) =
A2

Td
P(

ω

2πTd
), for −π < ω < π. (26)
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Fig. 2. (a) Raised cosine spectrum; (b) SX (e
jω ); (c) SX (e

jωk ) versus
eigenvalues λk , with L = 256, A2 = 100, β = 0.2, Td = Ts/2, Ts = 1.

Fig. 2 shows the raised cosine spectrum
P( f ), SX (e jω), SX (e jωk ), and properly ordered λk for
L = 256, A2 = 100, β = 0.2, and Td = Ts/2 where Ts is
normalized to 1. We see that λk are very close to SX (e jωk ).

The same approximation can also be applied to the
autocorrelation matrix Θ, i.e., it is close to a circulant
matrix Θ̃ when L is sufficiently large. In this case, Θ̃
can be decomposed as Θ̃ = FSX̃F−1 where SX̃ =

diag
{
SX̃ (e

jω0 ), SX̃ (e
jω1 ), · · · , SX̃ (e

jωL−1 )
}
; SX̃ (e

jωk ) for k =
0, · · · , L−1 are the L spectrum components obtained by taking
DFT of Θ̃(lTd) with Θ̃(τ) =

∑∞
l=−∞ Θ(τ+lLTd), and SX̃ (e

jω) =
A2

Td
P2( ω

2πTd ) for −π < ω < π.

B. Frequency Domain Characterization of ALMS Loop

From the above decomposition, we can simplify (16) and
(22) as

ISRa =
hHF(IL+µSX )

−1F−1FSXF−1F(IL+µSX )
−1F−1h

hHFSXF−1h

=

hHFdiag
{

SX (e
jωk )[

1+µSX (e
jωk )

] 2

}
F−1h

hHFdiag{SX (e jωk )}F−1h

=

∑L−1
k=0 |H(e

iωk )|2 SX (e
jωk )[

1+µSX (e
jωk )

] 2∑L−1
k=0 |H(eiωk )|2SX (e jωk )

,

(27)
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and

ISRd =
hHF(IL+µSX )

−1F−1FSX̃F−1F(IL+µSX )
−1F−1h

hHFSX̃F−1h

=

hHFdiag
{

SX̃ (e
jωk )[

1+µSX (e
jωk )

] 2

}
F−1h

hHFdiag{SX̃ (e jωk )}F−1h

=

∑L−1
k=0 |H(e

jωk )|2
SX̃ (e

jωk )[
1+µSX (e

jωk )

] 2∑L−1
k=0 |H(e jωk )|2SX̃ (e jωk )

(28)

where H(e jωk ) is the frequency response of the SI channel. It
can be seen from (27) and (28) that, in the frequency domain,
the residual SI can be decomposed into two components.
The first component is the frequency response of the SI
channel H(e jωk ). The second component in (27) (i.e., in
the analog domain before the matched filter) is a frequency
dependent attenuation factor introduced by the ALMS loop as
Fa(e jω) =

SX (e
jω )[

1+µSX (e jω )

] 2 . Also, in (28), the second component

in the digital domain after the matched filter is a frequency
dependent attenuation factor determined by both the ALMS
loop and the matched filter as Fd(e jω) =

SX̃ (e
jω )[

1+µSX (e jω )

] 2 .

Therefore, the residual SI before and after the matched filter
can be analyzed in the frequency domain by comparing their
second components. Fa(e jω) and Fd(e jω) with various values
of β are plotted in Fig. 3 respectively.

Fig. 3 reveals that the ALMS loop has an effect of ampli-
fying the frequency components of the residual SI leading to
a peak at the edge of the signal spectrum. As a result, the ISR
in the analog domain before the matched filter is higher when
the roll-off factor is larger. However, this effect is significantly
reduced by the matched filter as the peak no longer exists
in Fd(e jω). Hence, the ISR will be significantly improved in
the digital domain. It also means that the effect of the signal
spectrum on ISR reduces significantly when it is considered

in the digital domain. Therefore, we can conclude that the
performance of the ALMS loop evaluated in the digital domain
after the matched filter rather than in the analog domain as in
[17] makes more sense to the IBFD system.

C. Performance Lower Bounds

The ISRs discussed in Section III.A are valid for a given
SI channel. To derive the lower bounds of ISRs over random
realizations of SI channels, we define the average ISRs in the
analog domain and digital domain respectively as

ISRa =
Eh{Pv}

Eh{Pz}
=

∑L−1
k=0 Eh

{
|H(e jωk )|2

} SX (e
jωk )[

1+µSX (e
jωk )

] 2∑L−1
k=0 Eh

{
|H(e jωk )|2

}
SX (e jωk )

,

=

∑L−1
k=0

SX (e
jωk )[

1+µSX (e
jωk )

] 2∑L−1
k=0 SX (e jωk )

(29)

and

ISRd =
Eh{PṼ }

Eh{PZ̃ }
=

∑L−1
k=0 Eh

{
|H(e jωk )|2

} SX̃ (e
jωk )[

1+µSX (e
jωk )

] 2∑L−1
k=0 Eh

{
|H(e jωk )|2

}
SX̃ (e jωk )

=

∑L−1
k=0

SX̃ (e
jωk )[

1+µSX (e
jωk )

] 2∑L−1
k=0 SX̃ (e jωk )

(30)

where Eh{.} denotes expectation over the SI channel and
Eh{|H(e jωk )|2} is a constant for SI channels with independent
and zero-mean tap coefficients (see Appendix A). Clearly,
ISRa and ISRd can be purely examined by the spectrum
components SX (e jωk ) and SX̃ (e

jωk ). To find the closed-form
equation of ISRa and ISRd , letting L → ∞, the discrete
components SX (e jωk ) and SX̃ (e

jωk )) can be replaced by the
continuous power spectra SX (e jω) and SX̃ (e

jω) respectively.
The lower bounds of ISRa and ISRd are obtained as

ISRLBa = ISRa |L→∞ =

1
2π

∫ 2π
0

SX (e
jω )[

1+µSX (e jω )

] 2 dω

1
2π

∫ 2π
0 SX (e jω)dω

=

1
2π

∫ π
−π

SX (e
jω )[

1+µSX (e jω )

] 2 dω

1
2π

∫ π
−π

SX (e jω)dω

=

∫ 1/2Td
−1/2Td

A2P( f )[
1+µ A2

Td
P( f )

] 2 df∫ 1/2Td
−1/2Td

A2P( f )df
,

(31)
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and

ISRLBd = ISRd |L→∞ =

1
2π

∫ 2π
0

SX̃ (e
jω )[

1+µSX (e jω )

] 2 dω

1
2π

∫ 2π
0 SX̃ (e jω)dω

=

1
2π

∫ π
−π

SX̃ (e
jω )[

1+µSX (e jω )

] 2 dω

1
2π

∫ π
−π

SX̃ (e jω)dω

=

∫ 1/2Td
−1/2Td

A2P2( f )[
1+µ A2

Td
P( f )

] 2 df∫ 1/2Td
−1/2Td

A2P2( f )df

(32)

respectively. Assuming the raised cosine transmitted signal
spectrum, the closed-form ISRLBa and ISRLBd in (31) and
(32) are found (see Appendix B) as

ISRLBa =
1+β(

√
a+1−1)

(1+a)2
, (33)

and

ISRLBd =

1+β

[
2(a+1)2

a2

(
1− 1√

a+1
− a
√
a+1

2(a+1)2

)
−1

]
(1+a)2(1−β/4)

.
(34)

where a = µA2Ts/Td . It is obvious from these lower bounds
that in the ideal case (β = 0) the ultimate level of cancellation
is ISRLBu = 1/(1+Ts

Td
µA2)2. Comparison between ISRLa and

ISRLBd with various values of a is presented in Fig. 4. From
(29), (30), (33), (34), and Fig. 4, some important observations
are derived as bellows.

1) The level of cancellation given by the ALMS loop is
determined by the loop gain µA2, the roll-off factor β
the tap delay Td , and the number of taps L. It means
that the expected level of cancellation can be achieved
by either increasing the loop gain µA2 or reducing the
tap delay Td . However for the latter case, we need larger
number of taps L so that LTd is sufficiently large and
ISRa can approach its lower bound.

2) ISRLBa increases significantly as the roll-off factor
increases. As shown in Fig. 4, ISRLBa for β = 1 is
about 10 dB higher than that for β = 0.1. However,
the difference in ISRLBd is only about 3 dB over the
whole range of β. This indicates that the matched filter
significantly reduces the effects of the roll-off factor and
the impact of the spectrum of the transmitted signal
becomes negligible in the digital domain.

The first observation is a crucial conclusion for system
design because it allows the designer to determine these pa-
rameters based on the expected level of cancellation given by
the ALMS loop. Furthermore, understanding the relationship
among these factors also allows the flexibility in designing the
cancellation circuit. For example, if the power of the system
is limited, i.e, the gain of the ALMS loop is not high enough,
the level of cancellation can still be achieved by a finer tap
spacing. In case the size of the ALMS loop is constrained,
the loop gain must be increased. The second observation once
again states that the performance of the ALMS loop must
be considered in the digital domain, and the best level of
cancellation given by the ALMS loop is ISRLBd .

IV. SIMULATION RESULTS

To verify the analytical results presented in Section III,
simulations are conducted in MATLAB for a single carrier
IBFD system9 which uses QPSK modulation and symbol
duration Ts = 20 ns. The pulse shaping filter and the matched
filter are both root raised cosine pulses with the roll-off factor
β. The transmitted power is set to 0 dBm over 50 Ohm
load. The transmitted power over 1 Ohm load is found by
0 dBm+10log10(50) = 17 dBm. Hence, the mean squared am-
plitude of the transmitted signal for 1 Ohm load is calculated
by V2

X = 2×10(17−30)/10 = 0.1 V2. The LNA in the receiver
is selected with the gain of µ = 10. The ALMS loop has
the tap spacing Td = Ts/2 and the number of taps L. The
multiplier constants in all the taps are the same and are selected
as K1K2 = 0.001 V2. Therefore, the gain of the ALMS loop
is µA2 = 10×(0.1/0.001) = 1000. The SI power is set to 25
dB lower than the transmitted signal power.

In the first simulation, the SI channel is chosen as
h(t) = 10 −25

20 {[
√

2
2 −0.5 j]δ(t)−0.4δ(t−0.9Ts)+0.3δ(t−3.3Ts)},

which means that the delays of the reflected paths are frac-
tional of Ts . The ALMS loop has L = 8 taps with Ts/2
tap spacing. Both pulse shaping filter and matched filter have
the roll-off factor of β = 0.5. The power spectrum densities
(PSDs) of the baseband equivalent of the SI Z(t), the residual
SI in the analog domain V(t), and the residual SI in the digital
domain after the matched filter Ṽ(t) are presented in Fig. 5.
We can see that there are two peaks at the edges of the V(t).
However, these peaks are removed in the spectrum of Ṽ(t).
This simulation confirms the analyses in Section III.B.

In the second simulation, the SI channel has L propagation
paths whose coefficients hl are all independent and have a
normal distribution with zero-mean. The power delay profile of
the channel has an exponential distribution with the root mean
square delay spread σ = LTs/4. The ISRs at each point of the
roll-off factor β for different values of L are calculated and
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averaged out over 1000 iterations. The simulated ISRa, ISRd

and their corresponding lower bounds ISRLBa, ISRLBd are
presented in Fig. 6 for different values of L. The inset shows
a closer look of ISRd . We can see that when L is larger, ISRa

and ISRd are closer to their lower bounds, respectively. This is
because the autocorrelation matrix can be well approximated
to a circulant matrix and the summation in (29) and (30)
approaches the integration when L is sufficiently large. Note
that in our analyses, the SI channel is assumed to have the
same number of paths as in the ALMS loop. As a result, the SI
channels with small number of taps are much shorter compared
to those with larger number of taps. Therefore, ISRa with
smaller L go beyond the lower bound with infinite L. However,
the matched filter reduces the effects of the SI channel so that
ISRd are still bounded by ISRLBd .

V. CONCLUSION

In this paper, the residual SI powers and the ISRs of an
ALMS loop in both analog and digital domains of an IBFD
system have been derived using the steady state analysis. The
expression of the ISR in the time domain is then converted
into the frequency domain by eigenvalue decomposition. From
the frequency domain presentation, it is proved that the
matched filter has an effect of reducing the peak frequency
response of the ALMS loop so that the problem of frequency
component enhancement caused by the ALMS loop to the
residual SI can be significantly reduced in the digital domain.
The corresponding lower bounds of ISRs in both analog and
digital domains have also been derived from frequency domain
expressions. Comparison between these lower bounds shows
that the performance of the ALMS loop should be considered
in the digital domain and it is determined by four factors,
namely, the loop gain µA2, the tap delay Td , the number of
taps L, and the roll-off factor β. The finding of these lower
bounds allows the designer to determine the desired level
of cancellation given by the ALMS loop. It also provides a
room to trade off among these factors to achieve the level of
cancellation within given constraints.
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APPENDIX A
PROOF OF CONSTANT Eh{H(e jωk )}

For SI channels with independent and zero-mean tap co-
efficients, we prove that Eh{H(e jωk )} is a constant for all
k = 0, 1 · · · , L−1 as follow.

Eh{|H(e jωk )|2} = Eh

{ L−1∑
l=0

hle
− j2πkl

L

L−1∑
l′=0

h∗l′e
j2πkl′

L

}
=

L−1∑
l=0

L−1∑
l′=0

Eh

{
hlh∗l′

}
e
− j2πk(l−l′)

L .

(35)

Since the SI channel tap coefficients are independent with
zero-mean, we have Eh

{
hlh∗l′

}
= 0 for l , l ′. Therefore,

Eh

{
|H(e jωk )|2

}
=

∑L−1
l=0 Eh{|hl |2} for all k = 0, 1 · · · , L−1

which is the mean power of the SI channel.

APPENDIX B
DERIVATION OF ISRLBa AND ISRLBd

a) ISRLBa: From
∫ 1+β

2Ts

−
1+β
2Ts

P( f )df = 1 and Td ≤
Ts

1+β , (31)

can be simplified as

ISRLBa =

∫ 1/2Td
−1/2Td

A2P( f )[
1+µ A2

Td
P( f )

] 2 df∫ 1/2Td
−1/2Td

A2P( f )df

= 2
∫ 1+β

2Ts

0

P( f )[
1+µ A2

Td
P( f )

]2 df .

(36)
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Substituting P( f ) from (24) into (36), we have∫ 1+β
2Ts

0

P( f )[
1+µA

2

Td
P( f )

]2 df =
∫ 1−β

2Ts

0

Ts[
1+µA2 Ts

Td

]2 df

+

∫ 1+β
2Ts

1−β
2Ts

Ts
2

[
1+cos

(
πTs
β ( f−

1−β
2Ts )

)]
{

1+µA2 Ts
2Td

[
1+cos

(
πTs
β ( f−

1−β
2Ts )

)]}2 df .
(37)

Denoting a = µA2 Ts
Td

and x = πTs
β ( f−

1−β
2Ts ), (37) becomes∫ 1+β

2Ts

0

P( f )[
1+µA

2

Td
P( f )

]2
df =

1−β
2(1+a)2

+
β

π

∫ π

0

1
2 (1+cosx)[

1+ a
2 (1+cosx)

]2 dx.

(38)

Defining t = tan(x/2) so that cosx = 1−t2

1+t2 and dx = 2dt
1+t2 , we

have∫ π

0

1
2 (1+cosx)[

1+ a
2 (1+cosx)

]2 dx = 2
∫ ∞

0

1
(t2+a+1)2

dt

=
2
√

a+1
(a+1)2

∫ ∞
0

1[
( t√

a+1
)2+1

]2 d(
t
√

a+1
)

=
π

2

√
a+1
(a+1)2

.

(39)

Substituting (39) into (38), we obtain the ISRLBa as in (33).
b) ISRLBd: Following the same steps as above, ISRLBd

is derived as

ISRLBd =

∫ 1/2Td
−1/2Td

A2P2( f )[
1+µ A2

Td
P( f )

] 2 df∫ 1/2Td
−1/2Td

A2P2( f )df

=

∫ 1+β
2Ts

0
P2( f )[

1+µ A2
Td

P( f )
] 2 df

∫ 1+β
2Ts

0 P2( f )df
.

(40)

Substituting P( f ) from (24) into (40) as well as applying the
substitution of x = πTs

β ( f−
1−β
2Ts ) and then t = tan(x/2), we

have∫ 1+β
2Ts

0

P2( f )[
1+aP( f )

]2 df =
Ts(1−β)
2(1+a)2

+
Tsβ
π

∫ π

0

1
4 (1+cosx)2[

1+ a
2 (1+cosx)

]2 dx

=
Ts(1−β)
2(1+a)2

+
Tsβ
π

∫ ∞
0

1
(1+t2)2

(1+a 1
1+t2 )

2
2

1+t2 dt

=
Ts(1−β)
2(1+a)2

+
Tsβ
π

∫ ∞
0

2
(t2+a+1)2(t2+1)

dt.

(41)

Note that 2
(t2+a+1)2(t2+1) can be split as

2
(t2+a+1)2(t2+1)

=
2
a2

[
1

(1+t2)
−

1
(t2+a+1)

−
a

(t2+a+1)2

]
. (42)

Therefore, by substituting (42) into (41), we obtain

∫ 1+β
2Ts

0

P2( f )
(1+aP( f ))2

df =
Ts(1−β)
2(1+a)2

+
Tsβ
π

π

a2

[
1−

1
√

a+1
−

a
√

a+1
2(a+1)2

]
=

Ts
2(1+a)2

{
1+β

[
2(a+1)2

a2

(
1−

1
√

a+1
−

a
√

a+1
2(a+1)2

)
−1

]}
.

(43)

The derivation of
∫ 1+β

2Ts
0 P2( f )df is expressed as∫ 1+β

2Ts

0
P2( f )df = Ts

1−β
2
+

Tsβ

4π

∫ π

0
(1+cosx)2dx

=
Ts

2
(1−β/4).

(44)

From (43) and (44), ISRLBd is obtained as in (34).
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