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Abstract— The main contribution of this paper is an ex-
tended Kalman filter (EKF) based algorithm for estimating
the 6 DOF pose of a camera using monocular images of an
indoor environment. In contrast to popular visual simultaneous
localisation and mapping algorithms, the technique proposed
relies on a pre-built map represented as an unsigned distance
function of the ground plane edges. Images from the camera
are processed using a Convolutional Neural Network (CNN)
to extract a ground plane edge image. Pixels that belong to
these edges are used in the observation equation of the EKF
to estimate the camera location. Use of the CNN makes it
possible to extract ground plane edges under significant changes
to scene illumination. The EKF framework lends itself to use
of a suitable motion model, fusing information from any other
sensors such as wheel encoders or inertial measurement units,
if available, and rejecting spurious observations. A series of
experiments are presented to demonstrate the effectiveness of
the proposed technique.

I. INTRODUCTION
Localisation, or determining the pose (position and orien-

tation) of an autonomous device or a person within a given
map is a fundamental requirement to deliver a wide range
of indoor and outdoor location based services. In the case
of a robot, it is an indispensable requirement to support
autonomous operations in an environment. In this paper, we
use the term “robot” to refer to a device like a smartphone
carried by a person, a drone, an actual autonomous device,
or a robot. The prevalent use of smartphones equipped with
receivers for global positioning systems (GPS) allows a wide
range of outdoor location based services in many fields, how-
ever, the accuracy of the estimated location is significantly
reduced in some urban areas and GPS is ineffective in indoor
environments [1].

Accurate localisation in indoor environments is as im-
portant as outdoor environments. Typical indoor services
that rely on localisation, such as targeted advertising in
a shopping mall expects higher precision and the position
estimation error is not to exceed a few metres to allow dif-
ferentiation between floors and nearby rooms [2]. A reliable
indoor localisation package would be one of the key elements
to stimulate broad adaptation of assistive robots in pursuit of
finding acceptable solutions to deliver efficient services to
support aging populations [1], [3].

Given the prevalence of low-cost cameras, relating infor-
mation captured in an image to an associated map, a spatial
model that represents the physical environment in which a
robot operates, is one of the most cost-effective approaches
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to localisation in indoor environments. Existing techniques
for localisation based on monocular images rely on bearing
only simultaneous localisation an mapping (SLAM) [4].
These techniques map the environment by estimating the
locations of point features extracted from a camera image
while at the same time estimate the camera location. As
image features do not persist over long time-scales, mainly
as a result of illumination changes, a pre-defined map of
such features cannot be used for localisation. Therefore,
SLAM is a must in vision based localisation making these
approaches computationally heavy. In this paper, we present
a novel method for localisation in indoor environments that
rely on a map of edges present in the ground plane. Images
from a camera are processed to obtain edges that are on
the ground plane. These are then used as observations in an
extended Kalman filter (EKF) to generate the full six degrees
of freedom (DOF) estimate of the camera pose.

We use a Distance Function (DF) based map representa-
tion to generate the required observation equations. During
the past few years, DF based maps, that use a measure of
the distance to the closest occupied space to represent the
geometry of the environment, have gained traction in the
robotics community. In DF, geometry is not stored explicitly
but rather defined as a level set of a function defined over
the space in which the geometry is embedded. Therefore,
these maps not only encode the occupied regions of the
environment but also provide a continuous measure of the
distance, a much richer representation of the environment. In
[5], [6], [7] authors have demonstrated the use of different
formulations of distance functions for localising robots in
both indoor and outdoor environments.

In this work, we focus on solving the complete 6-DOF
localisation problem to estimate the camera pose given a
map of the environment using either a hand-held camera
(for example camera of a smart phone) or a body mounted
camera. We, however, do not use explicit matching of visual
point features in the environment to estimate the state. We
segment the ground and ground level edges to extract a
binary edge image of the environment using Convolution
Neural Network (CNN) based novel approach which in
turn is used to generate the observation vector. The ability
of the CNN to robustly detect the edges under a broad
range of conditions and the availability of sound statistical
methods for data association within the EKF leads to an
algorithm that makes reliable pose estimates with uncertainty.
Furthermore, it facilitates traditional fusion of other sensors
such as odometry or inertial measurements where available.

The localisation strategy proposed is as follows. We use



a DF based approach discussed in [5], [6] for representing
the map of the environment. This representation is achieved
by first obtaining a binary ground plane edge map of the
environment and computing its unsigned distance function.
The mapping phase uses an RGB-D camera with ORB-
SLAM2 [4] to obtain the camera poses while traversing the
target environment. In order to generate the binary edge map,
camera images are processed through a CNN to generate
the corresponding ground plane edge images which are
subsequently assembled into a map using the known camera
poses. We approximate the DF and their first and second
derivatives using cubic splines to obtain an efficient and
compact form of the representation. While computing DF
and its derivatives are processing intensive, this is a one-off
operation that is carried out prior to localisation.

During the run-time localisation operation, we extract
ground plane edges from the image captured by a monocular
camera using a CNN. We use the condition that the sum of
squared distance function values at each edge pixel when
superimposed on the DF map is zero when there is no
misalignment between the predicted and actual camera pose
in an EKF framework to compute a 6-DOF pose estimate.
Camera pose can in turn be transformed into the robot pose
when the mounting location is known.

The paper is organised as follows. Sec. II reviews the
related literature. Sec. III provides the novel CNN based edge
extraction approach proposed in this paper. Sec. IV details
the DF based EKF framework for localisation. Experimental
results presented in Sec. V demonstrate the merits of the
proposed scheme using multiple data sets. Sec. VI provides
a summary of the contributions of this paper and presents
concluding remarks.

II. RELATED WORK

This section provides a summary of indoor localisation
methods proposed in the literature for use with a hand-held
device such as a smart phone or wearable camera.

There have been many indoor localisation methods that
exploits various attributes of Wi-Fi signals. The work pre-
sented in [8], [9], [10], [11], [3] are typical examples that
use signal propagation characteristics or Angle of Arrival
of the Wi-Fi signal or Wi-Fi signal strength (RSSI) based
fingerprinting techniques for indoor localisation. Both signal
propagation and Angle of Arrival based methods require the
prior knowledge of Wi-Fi access points that are deployed
in indoor environment. For fingerprinting approaches, a
comprehensive model of RSSI distribution for the indoor
environment must be built.

Ultra-wideband (UWB) based radio systems that use time
of flight based localisation has recently gained attention due
to its relatively high accurate estimates [12]. However, UWB
based systems require the installation of specialized hardware
modules in the environment. In [13], Rimminen et al. used
RFID tags attached to subjects to localise them in an indoor
environment.

Machine vision based methods are popular alternative
for indoor localisation. Vision is one of the most impor-

Fig. 1: CNN model to extract coarse edge image

tant types of sensing which is extensively used in indoor
navigation[14]. In [14], an appearance-based information was
used to achieve indoor localisation. Many existing methods
have utilized Monte Carlo localaisation with cameras [15],
[16]. There are few other vision based localisation methods
that use the direct image matching approach for localisation
[17]. In [18] authors have formulated the problem of finding
the location of a robot as a regression problem where a
continuous pose is predicted from an input image.

III. CNN BASED EDGE EXTRACTION

CNNs are deep learning models that take advantage of the
spatial structure of 2D images [19] to learn rich representa-
tion which has been used for image based localisation.

In this work, we aim to use RGB images from a hand-
held monocular camera to segment ground edges by using
the segmentation of the ground plane as an auxiliary problem
and hence to obtain coarse binary edge images. The premise
here is that the geometric information CNN uses in predicting
the floor helps the network to learn the floor edges.

Once a coarse edge image is available from the network,
an edge image with fine scaled edges can be extracted by
taking the intersection of the network generated coarse edge
image and the Canny edge detector generated image using
the original image. The resulting image with fine scale edges
that belong to the ground plane is the input to the DF based
EKF framework (Sec. IV) to accomplish localisation.

A. Network Architecture

Adapted from the recent work of Google DeepLabv3
[20], our model of network structure, as shown in Fig. 1,
has dilated convolutions after a feature block to extract the
different spatial features.

1) Feature Extraction: Two convolutions with rectifier
non-linearities and 3× 3× 32 filters are used to construct a
feature map from the image. Batch normalisation is applied
before each non-linearity.

2) Dilated Convolutions: Dilated convolutions (also
known as Atrous convolution in DeepLab [20]) take into
account a greater field of view by adding spaces between
each filter. A standard convolution represents a dilated con-
volution of rate = 1. Using the feature map, multiple scales
of the feature map can be learned.

In our network, for each dilated convolution, there are
32 filters of size 3 × 3. The rates of each convolution are
(1, 2, 4, 8) with strides (1, 1, 2, 4).



3) Upsampling and Summation: Due to increasing strides,
repeated upscaling is applied to match the dimensions when
passing into the summation block.

B. Generation of Floor and Edge Images for Network Train-
ing

An annotated data-set with ground truth was obtained
using an RGB-D camera. With each RGB image, we take
the corresponding depth image to segment planes and take
the floor using a pass-through xyz-filter and the approximate
robot pose (hence the pose of the camera). As this method is
prone to errors such as larger vertical planes being accepted
rather than the floor, the dataset was manually corrected by
deleting the images corresponding to false floor measure-
ments.

Once the floor is segmented, we look at the edge regions,
and take the local mean depth of the floor, if the local mean
depth of the edge region corresponds to the local mean of
the floor then the edge region is assumed to belong to the
ground.

C. Input to the network

We have an RGB image, X ∈ [0, 1]M×N×3 which can be
mapped with a CNN to produce two single channelled im-
ages being the segmented floor and floor edges, represented
as Y,Z ∈ [0, 1]M×N respectively.

The input is down-sampled from 480× 640 to 120× 160.
The output dimensions are set to 120× 160.

D. Output of the network

After summing the dilated and up-sampled convolutions,
a final set of convolutions are applied to the summation
block with a sigmoid output assigning the probability of the
segmented floor and edge regions.

The output is clipped with a small constant, ε = 10−4, to
avoid saturation and NaN values during training.

E. Network Loss

We use mean pixel-wise binary cross entropy (BCE) on
the sigmoid output of the network and the labelled ground-
truth.

L(Ŷ,Y;X) =
1

MN

M∑
i

N∑
j

−yij ln(ŷij)−(1−yij) ln(1−ŷij)

Therefore, the objective is to minimize the additive loss
w.r.t. the network parameters:

L(Ŷ,Y;X) + L(Ẑ,Z;X)

F. Evaluation Metric

As a qualitative comparison for the network, we use
intersection over union (IoU):

|Ŷ ∩ Y|
|Ŷ ∪ Y|

and
|Ẑ ∩ Z|
|Ẑ ∪ Z|

The IoU metric quantifies the number of false-positives
and true-negatives when comparing the network output to
ground truth.

G. Training

Adam optimization [21] is used with a poly-decaying
learning rate ranging from 0.01 to 0.0005. The first and
second momentum values were 0.9 and 0.999 respectively.

H. Regularization

Drop-out is applied after each feature block so that the
test error matches training error at an appropriate level to
prevent overfitting.

Fig. 2 shows five sample inputs RGB images, corre-
sponding network results on edge region detection, network
segmented floor images and the outputs of Canny edge
detector on RGB images augmented with the results on edge
region detection. The red pixels marked on the Fig. 2(d)
belong to the ground plane, i.e. the set of common pixels
points from the intersection operation between Fig. 2(b) and
the output from the Canny edge detector.

Furthermore, the CNN can be shown to be robust to
lighting changes as depicted in Fig. 3.

Fig. 2: (a) RGB image used as input into the network, (b)
network result on floor segmentation, (c) network result on
edge region detection, (d) canny edge detection on RGB
image with edge region to find edges, taking the intersection
of the sets returns edge pixels (red) belonging to the ground
plane.

IV. LOCALISATION FRAMEWORK

Finding the location in space that best describes the
observations from a sensor mounted on a robot is the objec-
tive of robot localisation algorithm. This typically requires
an observation equation that computes the expected sensor
observations given as a function of the robot location and
the map. Then the objective is to find the robot location that



Fig. 3: Extraction of ground features by the CNN under
different lighting conditions. (a) RGB image, (b) network
result on floor segmentation, (c) network result on edge
region detection, (d) canny edge detection result on RGB
image.

minimises the difference between the actual and expected
sensor observations.

The following subsections illustrate the use of an EKF for
robot localisation in an environment represented using DF.

A. Distance Function Maps

Robot’s operating environment is represented using a DF
map which is generated using a function that captures the
distance from a given location to the closest occupied space.
When the width of occupied regions of the environment are
similar in size to the resolution of the sensors, for example,
in the case of an indoor environment with thin walls, use of
the unsigned distance function is more convenient. In this
form of DF, the absolute value of the distance from a point
to the nearest boundary is assigned to the DF [6]. When V
is the set of occupied grid cells in an occupancy grid map,
the DF can be expressed by (1) at any given point xzi

.

dDFi
= DF (xzi

) = min
vj∈V

‖xzi
− vj‖ (1)

Mullen et al. [22] have demonstrated that unsigned dis-
tance function variant is more robust to outliers and noise.

B. Observation Model

Observation model relates sensor readings and robot lo-
cation to the map. In this work, we use a camera (either a
hand-held or a physically mounted camera on the robot) as
our sensor. Using the camera images and the CNN method
described in Sec. III, we extract the corresponding binary
edge images.

The observation vector z, of a single binary edge image,
consisting of n edge points with coordinates (λi, µi) =
zi ∈ z on the image plane can be projected from
the current estimate of the 6-DOF robot pose x =
(x, y, z(altitude), ψ(roll), θ(pitch), φ(yaw))>, using (2) to
obtain the observation vector in 2D space xzi on the ground

plane.

m
(
xk+1|k, zi

)
= xzi

=

[
xk+1|k
yk+1|k

]
−

zk+1|k

R3,1λi +R3,2µi +R3,3f
(2)

·
[
R1,1λi +R1,2µi +R1,3f
R2,1λi +R2,2µi +R2,3f

]
where, R is the 3D rotation matrix representing the robot
pose, R(ψ, θ, φ), and f is the focal length of the camera.

Given a DF based map of the environment, it is now
possible to obtain a measure for the “disparity” between
expected and observed sensor observations by extracting the
value of the DF at locations xzi

[5].

dDF = DF (z | x) =


DF (xz1

)
.
.

DF (xzi
)

.
DF (xzn)

 (3)

The observation model detailed above is written as a func-
tion of the robot state x and expected sensor observations
z as in (4). Enforcing the condition that the sum of squared
distance function values at these points is expected to be zero
when there is no misalignment results in the observation
equation that is suitable for robot localisation in an EKF
framework.

h(x, z) =

n∑
i=1

DF (xzi
)2 (4)

The formulation of the EKF is done in a similar manner to
our previous work proposed in [5]. The state vector x con-
sists of 12 dimensions, namely, the 6-DOF robot pose, linear
velocities ν, and angular velocities ω; x =

[
r θ ν ω

]>
.

We use a constant velocity model similar to the model
proposed by Davison et al. [23] for motion prediction. With
each image, the CNN in combination with Canny edge
detector produces is a set of n pixels as the observation vector
z = {zi}i=1,··· ,n.

Assuming that each pixel measurement is corrupted in
each direction with noise N (0, σ2) which leads to Σz =
diag(σ2, σ2).

We use an innovation gate at runtime to reject outliers by
placing an upper bound on (5).

DF (xzi)√
∇DF(x,y)

(
∇mxPk+1|k∇m>x + ∇mzΣz∇m>z

)
∇DF>(x,y)

(5)
where ∇mx and ∇mz are the Jacobians of the measurement
equation (2).

The the measurement covariance ∇mxPk+1|k∇m>x +
∇mzΣz∇m>z , can be obtained by projecting the expected
covariance through the measurement equation. Then the
variance in the direction of the closest edge point is found by
multiplying the covariance matrix by the Jacobian of the DF
w.r.t. the vector (x, y)> to calculate (5). We then take the Z-
score and reject outliers based on some level of uncertainty.



TABLE I: Mean squared error values of the estimates for
each dataset.

Dataset x(m2) y(m2) z(m2) roll(rad2) pitch(rad2) yaw(rad2)

(i) 0.151 0.133 0.156 0.047 0.061 0.145
(ii) 0.179 0.149 0.130 0.040 0.050 0.121
(iii) 0.195 0.218 - - - 0.067

V. EXPERIMENTAL RESULTS

We present experiments conducted using three datasets
to evaluate the proposed algorithm. These datasets have
been collected in three different environments: i) domestic
environment, ii) office environment, and iii) laboratory en-
vironment. The authors collected the first two datasets. For
the third dataset, we use the publicly available PUT RGB-D
dataset [24].

In dataset (i) and (ii), a hand-held Asus Xtion proTM cam-
era is walked along in multiple loops in the respective
environments to collect RGB-D data. The ground truth is
obtained via ORB-SLAM2.

In dataset (iii), the authors in [24] used a small rover
equipped with an RGB-D camera to survey a laboratory
environment. This dataset contains multiple loops recorded in
the said environment. The ground truth is provided through
a motion capture system.

For the first two datasets, the initial run is used to generate
the poses using ORB-SLAM2, which has been used to calcu-
late the unsigned distance function map of the environment.

In these experiments, we use a 1σ innovation gate to
reject outliers. A manual observation shows that most of such
outliers are objects in the scene that was not present while the
map was created. Furthermore, shadows and patches of light
that appear in the scene due to the time of day and different
artificial lighting also gets filtered during this stage.

Fig. 4 shows the 6-DOF trajectories of the camera in
the three datasets and the ground truth is projected to the
ground plane for ease of illustration. Fig. 5 shows the error
plots for the three datasets, compared to the ±2σ uncertainty
bounds. For the dataset (iii), ground-truth in z, pitch, and roll
directions are not available in the dataset. The robot travels
approximately 30m, 60m, and 50m respectively in the three
datasets.

It can be seen that the estimated trajectory closely follows
the ground truth. Furthermore, the error values are generally
within the ±2σ uncertainty. Table I shows the mean squared
error values for each dataset.

The experiments were conducted on a computer equipped
with an Intel Core R© i7-4578U 3.0Ghz processor. Average
time taken to estimate a single pose is 98.5ms while 5.1ms
is used for CNN based edge extraction. The code is written
using Python v2.7, and we use Theano v1.0.0 [25] and
Lasagne v0.2 [26] for implementation of the CNN.

VI. CONCLUSION

In this paper, we presented an algorithm to estimate the
6-DOF location of a monocular camera with respect to the
ground plane map of an indoor environment. When an image

is captured, we use a CNN to extract only the edges that
belong to the ground plane from the image, which is used
for pose estimation within an EKF framework against an
unsigned distance function of the environment map, with the
initial location approximately known.

This formulation relaxes the assumption in our previous
work on outdoor localisation over flat terrain [5] that relied
on the ground plane to not contain any 3D objects, which is
violated in indoor environments.

The results from multiple datasets show that the estimated
trajectory closely follows the ground truth.

Making the algorithm available as a readily usable package
and integrating a method to solve the “kidnapped robot
problem” which exempts the requirement of knowing the
approximate initial location is planned for future work.
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