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Decentralized Two-Channel Active Noise Control
for Single Frequency by Shaping Matrix

Eigenvalues
Guoqiang Zhang, Jiancheng Tao, Xiaojun Qiu, and Ian Burnett

Abstract—In an active noise control (ANC) system, computa-
tional complexity is one major concern when designing practical
control algorithms. For an ANC system with multiple secondary
sources and error microphones, one approach to reducing com-
putational complexity is to apply a decentralized control scheme
rather than centralized approaches. A decentralized scheme
attempts to control a number of small-size ANC subsystems
independently. In this paper, we consider decentralized control
of a two-channel ANC system tackling a noise disturbance
in the frequency domain, where each channel consists of one
secondary source and one error microphone. We propose a
decentralized control method which is able to achieve the same
noise reduction performance as the centralized controller with
guaranteed convergence. The key step in designing the control
method is to properly shape the eigenvalues of a matrix which
models the two-channel secondary paths for each frequency
index.

Index Terms—Active noise control (ANC), decentralized con-
troller, adaptive controller.

I. INTRODUCTION

Active noise control (ANC) techniques have been success-
fully exploited to remove or mitigate sound noise in many
applications, such as designing ANC systems for headphone
applications [1], reducing acoustic noise in magnetic resonance
(MR) imaging [2], and creating a quiet zone around listener
ears [3]. The basic principle of an ANC system is to introduce
one or more secondary sources to interfere destructively with
the primary sound by using loudspeakers and error micro-
phones.

Three factors are usually considered when designing a
practical adaptive control algorithm for an ANC system:
namely, guaranteed convergence and the convergence speed,
noise reduction performance, and computational complexity.
The standard filtered-x LMS algorithm [4] is probably the most
popular one in the literature with a reasonable balance among
the three factors. The algorithm serves as a foundation for de-
veloping more advanced methods for different environmental
conditions or system requirements as described below.

For a single-channel ANC system with one secondary
source and one error microphone, developing self-adaptive and
low-complexity control methods is of primary concern in the
ANC community. One promising research trend is to perform
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adaptive noise control by avoiding estimation of the single-
channel secondary path [5], [6], [7]. The motivation behind
this approach is that for some applications, the characteristics
of the secondary path may vary over time, and further there
is no need to obtain an accurate secondary path model for
the control methods to work [6]. The basic idea is to roughly
estimate the phase of the secondary path (e.g., selection from
four directions like 0, 90, 180, 270 degrees in [6]), and
then use the information to adaptively minimize the error
signal. The developed methods are more flexible and have low
computational complexity.

For a large scale ANC system with multiple secondary
sources and error microphones, the standard filtered-x LMS
algorithm adjusts the inputs of all secondary sources in re-
sponse to the outputs of all error microphones [4]. To do
so, a central controller is employed to collect and process
signals from all the error microphones, and then make proper
adjustments, referred to as the centralized control scheme. The
system requires a considerable amount of computational power
and expensive wiring for the algorithm to work.

In the literature, different approaches have been proposed
towards effective control of a large scale ANC system. The
work of [8] considers preprocessing the error signals to reduce
the computational complexity of the central controller. Instead
of processing multiple error signals directly, [8] combines all
the error signals into one signal and then uses it for adaptive
centralized control. However, high communication load is still
required to route signals from all the error microphones to the
central controller.

Distributed computation of the control signals is an alterna-
tive approach to combating the high computational complexity
of centralized control [9], [10], [11]. Specifically, [9] treats an
ANC system as a ring network where each secondary source is
taken as one node in the network. The computational burden is
then distributed across all the secondary sources by performing
incremental computation sequentially over the ring network.
At each iteration, the computation unit at each secondary
source receives, updates and then transmits the control signal
of all the secondary sources by interacting with neighbors.
The method achieves the same noise reduction performance
as the centralized controller at the cost of high transmission
bandwidth and delay. The work of [10] extends [9] by utilizing
a diffusion strategy in the updating expressions of the control
signal.

A decentralized control scheme aims to reduce both the
computational complexity and transmission load of the cen-
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tral controller (see [12], [13]). The basic idea is to treat
a large scale ANC system as a combination of small-size
ANC subsystems. Each subsystem adjusts its own control
signal only based on its associated error microphones. Due
to the inherent coupling between the secondary sources and
error microphones, it is challenging to design effective and
robust control methods for the multiple subsystems. The work
of [12] proposed and analyzed a feedforward decentralized
control method by studying matrix eigenvalues in the fre-
quency domain, where the matrix is determined by transfer
functions of the secondary paths of the whole system. It
is found that if the inputs of the secondary sources are
constrained to be sufficiently small in magnitude, the control
method is guaranteed to converge (see Section 3 for detailed
information). We note that small inputs implicitly degrade the
noise reduction performance, which is practically unattractive.
The recent work [13] conducted extensive simulations and
experiments for the control method of [12] and drew a number
of insightful observations.

In this paper, we consider feedforward decentralized control
of a two-channel ANC system, where each channel consists of
one secondary source and one error microphone. Our motiva-
tion is to build an in-depth understanding of the performance
limit for two-channel decentralized control, and gain insights
for effective control of a multi-channel ANC system.

To tackle the drawback of degraded noise reduction perfor-
mance noted in [12], we propose a novel decentralized adap-
tive control algorithm in the frequency domain. In designing
the control algorithm, we first study the eigenvalues of a matrix
which models the two-channel secondary path for each fre-
quency bin. Two free parameters are identified, and then used
to shape the eigenvalues of the matrix whenever necessary
so that the resulting eigenvalues have nonnegative or positive
real parts. By doing so, the constraints on the inputs to the
secondary sources can be removed or alleviated when applying
the steepest descent method, thus achieving (or nearly) the
same noise reduction performance as the centralized controller.
A procedure to shape the two eigenvalues is provided, which
essentially finds the right direction to ensure convergence of
the steepest descent method. Simulation results confirm the
effectiveness of the proposed decentralized controller.

The remainder of the paper is organized as follows. Sec-
tion II defines the two-channel signal processing problem
in the frequency domain. Section III briefly reviews the
conventional decentralized control method in [12] for the two
channel case. Based on the results in Section III, we motivate
our new decentralized control method in Section IV. Section V
presents the simulation results, followed by conclusions drawn
in Section VI.

II. TWO-CHANNEL SIGNAL MODEL

Consider a primary sound disturbance generated by a point
monopole at a single frequency. We exploit an ANC system to
mitigate or remove the disturbance in the same environment.
The considered ANC system consists of 2 secondary sources
and 2 error microphones, where each secondary source and
its collocated error microphone form a single-channel ANC
subsystem (see Fig. 1). As the considered disturbance is from
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Fig. 1. Demonstration of a decentralized two-channel ANC system,
where each subsystem consists of a secondary source and its collo-
cated error microphone. The parameter zvs, v = 1, 2, s = p, 1, 2,
denotes the frequency response of the acoustic path from s to v.

one frequency, all the signals can be represented as scalar
complex numbers. We omit the frequency index here for
concision.

Based on Fig. 1, the complex steady state signal at the ith
error microphone can be represented as

ei = di + zijuj + ziiui i, j = 1, 2, (1)

where di represents the disturbance from the primary source
at the ith error microphone, ui (or uj) is the complex input
to the ith (or jth) secondary source, and zij represents the
complex response from the jth secondary source to the ith
error microphone. Eq. (1) can be further expressed into a
compact vector form as

e = d+Zu,where Z =

[
z11 z12
z21 z22

]
. (2)

The 2 × 2 complex matrix Z captures the joint response of
the two secondary sources at the two error microphones.

The objective of a controller is to minimize the error vector
e by properly adjusting the input vector u. For the case that
Z is nonsingular, the optimal input vector u? is computed by
minimizing the sum of squared error signals directly, given by
[12]

u? = argmin
u

(
1

2
eHe

)
= −(ZHZ)−1ZHd

= −Z−1d, (3)

where the superscripts (·)H and (·)−1 denote conjugate trans-
pose and matrix inversion, respectively.

When the matrix Z is singular, a common strategy for
computing u? is to minimize the sum of squared error signals
plus a quadratic penalty function on u, given by [12]

u? = argmin
u

(
1

2
eHe+

β

2
uHu

)
= −(ZHZ + βI)−1ZHd, (4)
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where β > 0 is a positive weighting factor, and I is the identity
matrix. The factor β ensures that resulting matrix ZHZ+βI
is positive definite, and thus is nonsingular.

It is known that a centralized controller is able to converge
to the optimal control signal (3) or (4) after a sufficient number
of iterations by following the steepest decent algorithm [12].
Our objective is to propose a new decentralized control method
that is able to converge to (3) or (4), thus achieving the same
noise reduction performance as the centralized controller.

III. THE CONVENTIONAL DECENTRALIZED ADAPTIVE
CONTROL METHOD

In this section, we briefly review the analysis results of
the conventional decentralized control method presented in
[12]. Our main motivation is to identify the limitations of
the conventional method and serve as a preliminary work to
motivate our new method in next section.

The work of [12] considered an ANC system consisting
of M decentralized controllers, one for each single-channel
subsystem. In the following, we only present the results for
the two-channel case for concision. From [12], the lth (i.e.,
l = 1, 2) controller attempts to adjust the input ul to its
own secondary source in response to the error signal el only.
To combat the interference from other secondary sources, a
quadratic penalty function of the input ul is introduced, which
is similar to (4). The resulting objective function for the lth
controller is thus given by

Jl(ul) =
1

2
e∗l el +

β

2
u∗l ul l = 1, 2, (5)

where the superscript ∗ represents the conjugate operation. The
gradient of Jl w.r.t. ul can then be computed as [12]

∇ul
Jl = z∗llel + βul l = 1, 2. (6)

Upon obtaining the gradient expression (6), the input to the
lth secondary source can be adaptively controlled using the
steepest descent algorithm as

ul(k + 1) = ul(k)− µ∇ul
Jl(k)

= ul(k)− µz∗llel(k)− µβul(k) l = 1, 2, (7)

where k is the iteration index and µ > 0 is the step size.
Rewriting (7) into a compact vector form produces

u(k + 1) = (1− µβ)u(k)− µZH
d e(k), (8)

where Zd = diag([z11, z22]) is a diagonal matrix of its vector.
Plugging the expression (2) for e at iteration k into (8) yields

u(k + 1) = [I − µ(βI +ZH
d Z)]u(k)− µZH

d d, (9)

where the two parameters µ and β remain to be specified. The
iterates in (9) converge to a fixed point if and only if all the
eigenvalues of the matrix in the square bracket have modulus
less than one. It is not difficult to conclude that as long as the
real parts of all the eigenvalues of βI + ZH

d Z are positive,
a sufficient small step size µ would allow the iterates in (9)
to converge. The problem boils down to how to select the
parameter β towards guaranteed convergence.

Theoretical analysis on the selection of β in (9) has been
provided in [12]. A sufficient convergence condition on β is

derived in [12] by using the Gerschgorin circle theorem, which
we describe in a lemma below.

Lemma 1. Suppose the parameter β in (8) is chosen to be
large enough satisfying

|zll|+
β

|zll|
≥ |zlj | j 6= l, l = 1, 2 (10)

Then the iterates in (9) converge to a fixed point for a
sufficiently small step size µ

u(∞) = −(βI +ZH
d Z)−1ZH

d d. (11)

Furthermore, if β = 0 is a solution to the set of inequalities
in (10) and Z is nonsingular, the fixed point in (11) can be
simplified as u(∞) = −Z−1d, which provides the same noise
reduction performance as the centralized controller.

The expression u(∞) in (11) is in fact a function of the
parameter β. We now study two extreme cases for β. When β
is sufficiently large, the matrix βI +ZH

d Z will be dominated
by βI . As a result, u(∞) can be approximated by − 1

βZ
H
d d,

which is far away from the desired optimal solution (3) or (4).
This approximation suggests that a large parameter β leads
to significant degradation of the noise reduction performance.
Conversely, β = 0 leads to limβ→0 u(∞) = −Z−1d when
Z is nonsingular, which is identical to (3) for the centralized
controller. This suggests that a small β value is favourable in
terms of noise reduction performance. However, in general, the
β parameter cannot be chosen arbitrarily small for algorithmic
stability.

The analysis above suggests that the conventional decen-
tralized control method has to sacrifice the noise reduction
performance for the purpose of guaranteed convergence. This
limits the applicability of the conventional method to effec-
tively control an ANC system.

IV. A NOVEL CONTROL METHOD BY SHAPING
EIGENVALUES

A. Identification of two free parameters

Let us revisit the convergence results for the conventional
decentralized control method presented in Lemma 1. When
β = 0 and Z is nonsingular, the matrix Zd is cancelled out
in (11), leading to the same noise reduction performance as
the centralied controller ((u(∞) in (11) coincides with u? in
(3)). In other words, Zd does not contribute to the optimal
solution u? in the above situation. If we replace Zd with
another diagonal matrix in (11), the optimal solution would
not change.

We note that Zd appears two times in (9): one coupled with
the distortion d and the other coupled with Z. The quantity
ZH
d Z appears inside the square bracket of (9). Therefore, Zd

has influence on the eigenvalues of the matrix product ZH
d Z

which directly affects the stability of the steepest descent
algorithm.

To briefly summarize, when β = 0 and Z is nonsingular,
Zd has no contribution to the optimal solution u? in (3) while
it affects the convergence of the steepest descent algorithm.
Simulation results for the two-channel case in [12], [13] show
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that there exist situations where β = 0 leads to algorithmic
divergence due to the fact that the real part of at least one
eigenvalue of ZH

d Z is negative.
One natural extension of the conventional decentralized

control method is to replace the matrix Zd in (8) and (9)
by a diagonal matrix C = diag[c11, c22], expressed as

u(k + 1) = (1− µβ)u(k)− µCe(k)

= [I − µ(βI +CZ)]u(k)− µCd, (12)

where C remains to be specified. By doing so, we introduce
two free parameters c11 and c22 to shape the eigenvalues of the
matrix CZ in (12) so that the parameter β can either be set
to zero or a small value to approach the same noise reduction
performance as the centralized controller with guaranteed
convergence. Specifically, our objective is to construct a matrix
C such that the real parts of the two eigenvalues of the matrix
CZ tend to be non-negative or positive. We will explain the
steps to construct a proper matrix C to achieve the above
purpose in next subsection.

B. On shaping the matrix eigenvalues

In this subsection, we explain how to construct a proper
diagonal matrix C for the case that Z is nonsingular. Con-
struction of C for Z being singular is trivial, which we will
briefly discuss in the end.

1) On defining a specific form for C: We denote the two
eigenvalues of the matrix product CZ in (12) as λ1 =
|λ1|ejϕ1 and λ2 = |λ2|ejϕ2 respectively. Without loss of
generality, we let |ϕl| ≤ π, l = 1, 2. We would like to
construct a matrix C such that the real parts of the two
eigenvalues are non-negative or positive, expressed as

Re{λl} ≥ 0 l = 1, 2. (13)

Or equivalently, the phases of the two eigenvalues satisfy
|ϕl| ≤ π

2 , l = 1, 2. When the two strict inequalities hold
in (13), one can set β = 0 in (12) to reach the optimal
input solution u? given by (3). On the other hand, if at least
one equality holds in (13), one has to set β > 0 to enable
algorithmic convergence. Therefore, it is desirable to find a
matrix C that leads to two strict inequalities in (13).

We note that there might be many solutions for the matrix
C satisfying (13). In this paper, we let the matrix C take a
specific form as

C(θ) = ejθ
[
z∗11 0
0 z∗22

]
, (14)

where C(θ) indicates that C is a function of the phase
parameter θ. Correspondingly, the two eigenvalues λ1 and
λ2 of C(θ)Z are also functions of θ, which we denote as
λl(θ) = |λl(θ)|ejϕl(θ), l = 1, 2. It is straightforward that

|λl(θ)| = |λl(0)| l = 1, 2, (15)
ϕl(θ) = ϕl(0) + θ l = 1, 2. (16)

The parameter θ has a linear contribution to the phases of
the two eigenvalues while it does not affect the modulus of
the two eigenvalues. Eqs. (14)-(16) simplify the procedure for

(a): Case 1 (b): Case 2

(c): Case 3 (d): Case 4

Fig. 2. Demonstration of the four relationships of the two eigenvalues
λl(0), l = 1, 2.

constructing the matrix C by reducing the number of param-
eters to only one real parameter θ. The objective becomes to
determine the parameter θ such that the phases of the two
associated eigenvalues satisfy

−π
2
≤ ϕl(0) + θ ≤ π

2
l = 1, 2. (17)

Next we study the relationship between the two eigenvalues
λl(θ), l = 1, 2, when θ = 0. With the expression (14), the
matrix product C(0)Z can be explicitly represented as

C(0)Z =

[
|z11|2 z∗11z12
z∗22z21 |z22|2

]
. (18)

By applying linear algebra to (18), the two eigenvalues λl(0),
l = 1, 2, exhibit a number of special properties, which we
summarize in a lemma below:

Lemma 2. : When θ = 0, the two eigenvalues λ1(0) and
λ2(0) of C(0)Z satisfy

λ1(0) + λ2(0) = |z11|2 + |z22|2, (19)

from which we conclude that at least one of the two eigen-
values λ1(0) and λ2(0) has positive real part. Further the
imaginary parts of the two eigenvalues have the same magni-
tude but different signs, i.e., Imag(λ1(0)) = −Imag(λ2(0)).

It is not difficult to conclude from Lemma 2 that the two
eigenvalues λl(0), l = 1, 2, must fall into one of the following
four cases (see Fig. 2 for illustration):

• Case 1: −π2 < ϕl(0) <
π
2 , l = 1, 2

• Case 2: 0 < ϕ1(0) <
π
2 , −π ≤ ϕ2(0) ≤ −π2

• Case 3: ϕ1(0) = 0, ϕ2(0) = π

• Case 4: −π2 < ϕ1(0) < 0, π2 ≤ ϕ2(0) ≤ π
As will be explained later, we need to construct different θ for
different cases to satisfy the condition (17).

2) On computing θ for C(θ): So far we have characterized
the relationship of the two eigenvalues λ1(θ) and λ2(θ) when
θ = 0 into four cases as demonstrated in Fig. 2. The remaining
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task is to compute θ for each case to ensure the condition
(17) hold. Geometrically speaking, the parameter θ rotates
λ1(0) and λ2(0) in the complex domain around the origin.
The degree of rotation depends on the locations of the two
eigenvalues λ1(0) and λ2(0).

Now let us consider how to compute the rotation degree θ
for the four cases separately. Case 1 states that the real parts
of the two eigenvalues λ1(0) and λ2(0) are positive already.
It is immediate that θ = 0 is one solution. That is there is no
need to rotate the two eigenvalues any more. In this case, we
can set β = 0 in (12) to achieve the optimal noise reduction
performance as the centralized controller.

In Case 2, the second eigenvalue λ2(0) is within the 3rd
quadrant while the first eigenvalue λ1(0) is within the 1st
quadrant. In this case, it can be shown from Lemma 2 that

|ϕ2(0)|+ ϕ1(0) < π.

The two eigenvalues cannot be on the same line which passes
through the origin. Therefore, we are able to find a parameter
θ so that after rotation both the two eigenvalues have positive
real parts. One solution for θ can be computed by solving the
following equation

(ϕ1(0) + θ) = −(ϕ2(0) + θ), (20)

which implies that after rotation, the two phases ϕl(θ), l =
1, 2, have opposite signs. The expression for θ can be easily
derived as

θ =
1

2
(|ϕ2(0)| − ϕ1(0)), (21)

Similarly to Case 1, we can also set β = 0 in (12).
Case 3 is a bit special in that the second eigenvalue λ2(0)

takes a negative real number while the first eigenvalue λ1(0)
takes a positive real number. In this case, it is obvious that
θ = π

2 or θ = −π2 , is the optimal solution. After rotation,
the resulting two eigenvalues are on the imaginary axis in the
complex domain. To enable guaranteed convergence in (12),
we have to set β > 0 when running the iterates (12).

In Case 4, the second eigenvalue λ2(0) is within the 2nd
quadrant while the first eigenvalue λ1(0) is within the 4th
quadrant. We can follow a similar analysis as for Case 2.
Solving (20) under the assumption that ϕ1(0) < 0 produces

θ =
1

2
(|ϕ1(0)| − ϕ2(0)). (22)

Similarly to Case 1 and 2, we can also set β = 0 in (12).
The analysis above for the four cases defines a procedure

for properly shaping the eigenvalues of CZ in (12) to improve
the noise reduction performance in comparison to [12], [13].
We summarize the results in a proposition below:

Proposition 1. Suppose the matrix Z is nonsingular. If the
two eigenvalues λ1(0) and λ2(0) fall into Cases 1, 2 or 4,
a solution for the parameter θ can be computed to ensure
the two eigenvalues of C(θ)Z have positive real parts. If the
two eigenvalues λ1(0) and λ2(0) fall into Case 3, θ = π

2 or
θ = −π2 ensures that the two eigenvalues of C(θ)Z have zero
real parts.

We note that the solution for θ in Cases 1, 2 and 4 above

TABLE I
PROCEDURE OF THE PROPOSED DECENTRALIZED CONTROL METHOD

Input: the matrix Z, k = 0
1: Determine θ for C(θ) in (14) and β
2: Choose a proper step size µ > 0
3: Repeat
4: u(k + 1) = (1− µβ)u(k)− µC(θ)e(k)
5: k = k + 1
6: Stop until some stopping criterion is met

is not unique. One can also twist the parameter θ around
each solution a bit, which would not change the sign of the
eigenvalues. We can still set β = 0 in (12) which allows the
iterates in (12) to converge to u? in (3) for a sufficiently small
step size µ, leading to identical noise reduction performance as
the centralized controller. This is similar to the single-channel
research work [5], [6], [7] where only a rough estimation
of the phase of secondary path is needed to guarantee the
convergence of the steepest decent algorithm. It is worth noting
that the phase parameter θ in (14) for the two-channel case
requires to have a more accurate estimation than the phase of
secondary path for the one-channel case.

Case 3 is different from the other three cases in that the two
eigenvalues of C(θ)Z when θ = π

2 or θ = −π2 have zero real
parts. Therefore, one has to choose a positive weight factor
β > 0 in (12). By doing so, the resulting fixed point after
convergence takes the form

u(∞) = −ejθ(βI + ejθZH
d Z)−1ZH

d d, (23)

where θ = π
2 or θ = −π2 . Eq. (23) has a different expression

from the optimal solution in (3). A small β parameter is
favourable as u(∞) would be a more accurate approximation
of the optimal solution u?. As a result, its noise reduction
performance is nearly the same as that of the centralized
controller.

Table 1 summarizes the procedure for implementing the
proposed decentralized controller. The main difference with
the conventional decentralized controller is that C(θ) is used
before the error vector e(k) instead of ZH

d . The employment
of C(θ) enables the parameter β to be set to either zero or a
small positive number as discussed above.

Remark 1. The analysis for a singular matrix Z is similar to
Case 1. One can easily show that the setup C = ZH

d would
ensure that the two eigenvalues of CZ are in the right-hand
side of the complex domain, where one eigenvalue is zero. The
fixed point after convergence takes the form

u(∞) = −(βI +ZH
d Z)−1ZH

d d, (24)

which is different from (4) that is obtained with the centralized
controller.

V. SIMULATIONS

A. Simulation setup

We follow a similar simulation setup to that in [13] to
evaluate our new decentralized control method. That is a
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(a) (b)

Fig. 4. The minima of the eigenvalues’ real part and their signs. (a) the minima of the eigenvalues’ real parts of ZHZ, ZH
d Z and C(θ)Z. (b)

the signs of the minum of the eigenvalues’ real part of ZHZ, ZH
d Z and C(θ)Z ( “1” and “-1” stand for positive and negative respectively).
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(b): Amplitude of frequency response

(c): Angle of frequency response

Error microphone

Secondary loudspeaker

Infinite baffle

(a): Sound propogation environment

Fig. 3. Demonstration of the simulation setup. (a): A monopole
sound source inside a rectangular enclosure with a baffled opening.
(b): Amplitude of the frequency response (z1p, z2p, z11, z22, z21, z21)
in Fig. 1 below 500 Hz. (c): Angle of the frequency response
(z1p, z2p, z11, z22, z21, z21) below 500 Hz.

monopole sound source is located inside a rectangular en-
closure with two channels of loudspeakers and microphones
placed near a baffled opening, as demonstrated in Fig. 3 (a).
The enclosure dimensions are chosen as Lx = 0.432 m,
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Fig. 5. θ value of the proposed method at different frequencies of
Fig. 4.

Ly = 0.670 m and Lz = 0.598 m. The primary source
is placed at rs = (0.12, 0.12, 0.16) m with a strength of
q0 = 1 × 10−4 m3/s. Two secondary loudspeakers are set at
(0.216, 0.1675, 0.498) m and (0.216, 0.5025, 0.498) m with
a distance of 0.335 m along the y-axis. Correspondingly,
two error microphones are set at 0.1 m above the secondary
sources on the opening surface. The opening of the enclosure
at z = Lz is assumed to be embedded in an infinite baffle.

Fig. 3 (b) and (c) show the magnitudes and angles of
the frequency responses (below 500 Hz) of the acoustic
paths from the primary and two secondary sources to the
two error microphones, respectively. See Fig. 1 for the the
physical correspondences of (z1p, z2p, z11, z22, z21, z21). The
simulation results in the two subplots were calculated using
Matlab by following the mathematical expressions of the
sound propagation model provided in [13,16]. It is seen from
the subplots that z11 = z22 and z12 = z21, which is due to
that fact that the simulation setup is symmetric w.r.t. the two
ANC subsystems.

In the simulations, we tested three controlling methods:
namely, the centralized controller, the conventional decentral-
ized controller considered in [12], [13], and our newly pro-
posed decentralized controller. We focused on the convergence
properties of the three methods by setting the weighting factor
β = 0 which leads to the maximum noise reduction perfor-
mance. The noise reduction performance at each frequency is
evaluated in terms of the sound pressure level (SPL) at the
two error microphones, given by

SPL =
1

2

2∑
l=1

20 log10[abs(el)/(2× 10−5)], (25)
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where el, l = 1, 2, are the sound pressure error signals, and
the operation abs(·) computes the absolute value.

B. On the stability of the three methods

As discussed in Section 4, the stability of the proposed
method is guaranteed only when the real parts of the two
eigenvalues of C(θ)Z are positive for each frequency bin.
Similarly, the stabilities of the centralized controller and the
conventional decentralized controller (referred to as “decen-
tralized”) are determined by the eigenvalues’ real parts of
the two matrices ZHZ and ZH

d Z, respectively. We therefore
denote the minima of the eigenvalues’ real parts for ZHZ,
ZH
d Z and C(θ)Z as λcentRe,min, λdecentRe,min and λpropRe,min. Fig.

4 shows the distribution of λcentRe,min, λdecentRe,min and λpropRe,min

below 500 Hz. Furthermore, Fig. 5 displays the θ value of the
proposed method at different frequencies of Fig. 4.

It is clear from Fig. 4 that our proposed method manages to
shape the eigenvalues of C(θ)Z by choosing proper θ value
as illustrated in Fig. 5 over all the considered frequency bins,
ensuring that the real parts of all the eigenvalues are positive.
As a result, the proposed control method is able to achieve
the same noise reduction performance as the centralized one.
By contrast, the conventional decentralized method diverges at
several frequency bins where the minima of the eigenvalues’
real part are negative (i.e., λdecentRe,min < 0). To fix the conver-
gence issue in this situation, the noise reduction performance
of the conventional decentralized method has to be sacrificed
by imposing constraints on the magnitude of the input to the
loudspeakers (i.e., choosing proper weighting factor β > 0).
The proposed method has an advantage over the conventional
decentralized method by fixing its convergence issue.

C. Comparison of convergence speeds

Besides the guaranteed convergence of the proposed
method, it is also of interest to study its convergence speed
in comparison with the other two methods. Fig. 6 (a) and
(b) display the iteration behaviours of the three methods in
terms of the sound pressure level at two frequencies 130 Hz
and 200 Hz, respectively. Two step sizes µ1 = 1× 10−7 and
µ2 = 1× 10−6 were tested.

We first consider the results in Fig. 6 (a) for 130 Hz.
One observes that when the smaller step size µ1 is adopted,
the proposed method converges relatively slowly compared to
the centralized method while the conventional decentralized
method fails to converge. For the case of larger step size µ2,
both the proposed and the conventional decentralized method
diverge while only the centralized method converges.

The behaviors of the three methods in Fig. 6 (a) can be
explained by the eigenvalue properties as shown in Fig. 4 (a).
It is clear that at frequency 130 Hz, λcentRe,min > λpropRe,min >

0 > λdecentRe,min. As a result, the upper bound of step size for
the centralized method is greater than that for the proposed
method, explaining divergence of the proposed method at µ2.
The divergence of the conventional decentralized method at the
two step sizes can be explained by the fact that at frequency
130 Hz, one of its matrix eigenvalues has a negative real
part (i.e., 0 > λdecentRe,min). This confirms that the proposed
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(b): Evaluation at 200 Hz

(a): Evaluation at 130 Hz

Fig. 6. Convergence curves of the three methods with weighting
factors of zero at 130 Hz and 200 Hz, where µ1 = 1 × 10−7 and
µ2 = 1× 10−6.

method is effective in terms of stability improvement over the
conventional decentralized method.

Fig. 6 (b) shows the convergence behaviours of the three
methods at 200 Hz by using the larger stepsize µ2. It is
clear that the proposed method has identical convergence
as the conventional decentralized method, which is due to
the fact that θ = 0 as shown in Fig. 5. Furthermore, the
two methods exhibit considerably faster convergence than the
centralized controller. The above property is closely related to
the eigenvalue properties provided in Fig. 4 (a). It is immediate
from the figure that at 200 Hz, there is λpropRe,min = λdecentRe,min >
λcentRe,min > 0. The slower convergence of the centralized
method is due to the smaller parameter λcentRe,min.

The results from both Fig. 6 (a) and (b) suggest that for a
fixed stepsize, a method with a larger value of λRe,min leads to
faster convergence speed. In addition, the centralized controller
does not always have faster convergence speed than the other
two methods under the same stepsize.

D. Upper bounds of the step size

The results of Fig. 6 (a) suggest that different methods may
have different upper bounds of step size to ensure algorithmic
convergence. In this subsection, we consider computing the
upper bounds of step size for the three methods over the
frequencies below 500 Hz.

For each frequency bin, we tested an array of step sizes for
each method. The array was constructed as 1.1m−1 × 10−9,
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Fig. 7. Upper bound of the step size to ensure convergence for the
2-channel systems with weighting factors of zero.

where m = 1, 2, . . ., is the array index. Each upper bound in
the figure was obtained when its next tested step size in the
array leads to algorithmic divergence. We point out that for an
array index m, the tested step size for each method may lead
to a different speed of convergence as illustrated by Fig. 6.

Fig. 7 shows the computed upper bounds for the three meth-
ods. The results for the conventional decentralized method are
missing for a set of frequency bins due to the fact that it always
diverges for any small step size at these frequencies, which is
consistent with the results of Fig. 4.

It is observed from the figure that at some frequencies,
the upper bounds of the centralized method are higher than
those of the other two methods while at other frequencies, an
opposite trend can be seen. In other words, the centralized
method does not always produce higher upper bounds. The
above property is in line with the observation that the central-
ized method does not always have fastest convergence speed
as discussed in Subsection V-C.

We also notice that for a few frequencies (around 130 Hz),
the upper bounds of the proposed method are close to 10−9

while those of the centralized method are around 10−6. The
above noticeable difference is due to the fact the two channels
are deeply coupled at those frequencies. Consequently, the
two eigenvalues of C(θ)Z of the proposed method at each
frequency have a large phase difference (close to 180 degree)
in comparison to the centralized method, leading to a small
λpropRe,min > 0 (see Fig. 2 and Fig. 4).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new adaptive decentral-
ized control method for a two-channel ANC system in the
frequency domain. The method exploits one real parameter to
properly shape the two eigenvalues of a constructed matrix
which results from the two-channel secondary paths for each
frequency bin. By doing so, the adaptive control method is
able to improve its convergence stability without sacrific-
ing the noise reduction performance in comparison with the
conventional decentralized controller. Extensive simulations

have been conducted, which confirm the effectiveness of the
proposed method.

One future research direction would be to consider the
possibility of extending the current work to multi-channel
ANC. That is to identify and tune the free parameters for
multi-channel case to enable effective decentralized control.
In general, the coupling effect of the multi-channel ANC
increases quadratically as the channel number increases while
the number of free parameters increases linearly under decen-
tralized control. The resulting decentralized control method
may not be able to achieve the same noise reduction perfor-
mance as the centralized controller. To further improve the
performance, one solution would be to allow neighboring ANC
subsystems share their microphone error signals to enhance
controllability.

One can also extend the current work to address broadband
noise for two-channel decentralized control. To do so, one
can first follow the standard approach by dividing the noise
into several sub-bands, and then treat each sub-band noise
separately using the proposed method. The effectiveness of
the proposed method depends on the the phase variation
range of each sub-band. In general, the smaller the range is,
the larger the searching space of the proposed method for
finding the optimal direction of the steepest decent method.
Correspondingly, better noise reduction performance can be
obtained at the cost of high computational complexity due to
a large number of sub-bands.
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