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Abstract 

The Special AT-rich Sequence Binding Protein 1 (SATB1) is a chromatin organiser and 

transcription factor which regulates numerous cellular processes such as differentiation, 

proliferation and apoptosis through effects on gene expression. SATB1 undergoes various post-

translational modifications, which determine its interaction with co-activators and co-

repressors to induce regulation of gene transcription. SATB1 is an identified oncogene, its 
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increased expression is associated with poor prognosis in many cancers. This paper provides a 

review on SATB1-mediated immune responses and on its target genes in the context of 

tumorigenesis and tumour progression. Specifically, we discuss the role of SATB1 in tumour 

immunity, Epithelial to Mesenchymal Transition (EMT), metastasis and multidrug resistance. 

Therapeutic targeting of aberrant SATB1 may be an important strategy in the treatment of 

cancer.    

Keywords: SATB1, tumour, immune responses, gene expression, apoptosis, EMT, invasion, 

metastasis 

 

Introduction 

The identification of key oncogenic regulators is critical in both defining mechanisms 

for carcinogenesis as well as for the development of strategies for the diagnosis and treatment 

of cancer clinically. The special AT-rich sequence-binding protein1 (SATB1) is a nuclear 

protein and an oncogene, which induces tissue-specific effects on gene regulation and is 

dysregulated in many cancers [1-3].   

SATB1 is a known chromatin organiser and a global regulator of gene expression across 

various cell types. The genome is anchored to the nuclear matrix through the matrix attachment 

regions (MARS) [4] . SATB1 specifically binds to the AT-rich motifs of the MAR regions of 

double stranded DNA [5] and in doing so, it forms a “cage-like” network around 

heterochromatin, organising it into distinct loops [6-8]. These AT-enriched sites have base 

unpairing affinity and are known as base unpairing regions (BUR). SATB1 anchored to the 

BURs provides a docking site for chromatin remodelling proteins and transcription factors for 

the regulation of many genes [6-9]  (Fig 1). Thus, the nuclear organisation of SATB1 tightly 

controls long-range regulation of genes located distal to the SATB1 bound loci. Post-
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translational modification of SATB1 such as phosphorylation and acetylation are also 

important in regulating gene expression. These modifications serve as molecular switches, 

conferring onto SATB1 the ability to act as activator or repressor of gene expression [10, 11].  

The structure of SATB1 consists of six functional domains including; the nuclear 

localization signal (NLS) domain, the PDZ domain which facilitates protein interactions, the 

BUR-binding domain which contains the CUT1 domain and a part of CUT 2 domain, and the 

homeodomain (HD) which is a DNA binding motif (Fig 2). The BUR and HD domains confer 

specific and high binding affinity to the core unwinding elements of BURs. Thus through these 

six domains, SATB1 exerts its function of global gene regulation.  

SATB1 functions as gene activator or repressor through its interaction with the 

chromatin modifying enzymes at the PDZ domain.  These interactions are context specific as 

they are determined by its post-translational modification [10-12]. The phosphorylation of 

SATB1 by protein kinase C (PKC) at serine186, regulates interaction of SATB1 interaction 

with histone deacetylase 1 (HDAC1), increasing its DNA binding affinity and facilitating its 

function as a repressor of gene expression [10, 13]. However, when SATB1 is 

dephosphorylated, it is acetylated by histone acetyltransferase P300/CBP-associated 

factor (PCAF), at lysine136.  This results in unbinding of SATB1 from DNA, the dissociation 

of HDAC1 and the de-repression or activation of gene expression [11] (Fig 3). 

SATB1 is also regulated by small non-coding RNAs called microRNAs (miRs), which 

are post-transcriptional regulators of gene expression [14]. The increased expression of miR-

191 in epidermal keratinocytes induces senescence through the downregulation of SATB1 and 

Cyclin Dependent Kinase 6 [15]. miR-191 also down regulates SATB1 to promote 

tumorigenesis in breast cancer [16]. Contrary to this, miR-23a inhibits SATB1 expression in 

osteosarcoma and acts as a tumour suppressor [17]. SATB1 is also regulated by miR-21, a bona 

fide onco-miR which is associated with a number cancers including glioblastoma, lung, breast, 

liver and cervical cancers [18-23]. These studies show that SATB1 is regulated by various 
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miRs and the function of SATB1 is both dependent on posttranslational modifications and 

tissue localisation.  

 

SATB1 and the immune response 

SATB1 is critical for hematopoietic stem cell (HSC) maintenance. HSCs deficient in 

SATB1 have diminished self-renewal capacity, reduced quiescence and promote myeloid 

commitment of HSCs [24]. Alternatively, HSCs expressing increased SATB1 levels, 

differentiate into lymphocyte specific lineage [25]. Importantly, SATB1 regulates T-cell 

differentiation and is involved in interleukin (IL)-2-mediated T-cell proliferation, 

differentiation, activation and immune regulation [26]. Consistent with this, SATB1 null mice 

show impaired T-cell development and are susceptible to death by 3 weeks of age [26]. 

Likewise, SATB1 conditional knockout mice, show reduced T-cell numbers, poor T-cell 

differentiation and are susceptible prone to autoimmune disease [27].  

SATB1 is required for thymocyte differentiation where it stimulates lineage-specific 

factors such as T-Helper-Inducing POZ/Krueppel-Like Factor (ThPok), Runt Related 

Transcription Factor 3 (Runx3), Cluster of differentiation 4 (CD4), CD8 and Forkhead box P3 

(FOXP3)  [28]. SATB1 binds to β-catenin in the Wnt signalling pathway, inducing Trans-

Acting T-Cell-Specific Transcription Factor (GATA) 3 expression that drives TH2 lineage 

specification of naïve T-cells [29]. Activation of TH2 cells induces SATB1 which subsequently 

binds to the TH2- decisive factors GATA3, Signal transducer and activator of transcription 

6 (STAT6) and c-Maf to induce TH2 cytokine secretion. Thus, SATB1 induces synchronized 

expression of TH2 cytokines interleukin (IL)-4, IL-5, IL-13 and c-Maf orchestrating the TH2 

cell lineage [8].  

SATB1 also plays an important role in mediating immune tolerance. T regulatory cells 

(Tregs) govern self-tolerance and immune homeostasis. Foxp3 regulates the suppressive 
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activity of Tregs through the repression of SATB1. On de-repression of SATB1 from Foxp3, 

Tregs lose this immunosuppressive capability and the cells differentiate into T-effector (Teff) 

cells and mediate effector cytokine production [30]. Furthermore, Treg cell-specific super-

enhancers (Treg-SEs) which are active in Treg precursor cells are dependent on SATB1 and 

play a vital role in Treg cell commitment [31]. The disruption of SATB1-dependent Treg-SEs 

activation has been associated with autoimmune and immunodeficiency disorders [31]. These 

studies support the importance SATB1 in T-cell differentiation and T-cell mediated immune 

responses. 

Contrary to T-cell lineage polarisation, SATB1 does not exert B-cell differentiation, 

however, it regulates T- and B-cell lineage specific gene, the recombination-activating gene 

(Rag) 1, which is important in the differentiation of both these cell types [25]. Besides this, 

SATB1 deficient lymphoid-primed multipotent progenitors (LMPPs) and common lymphoid 

progenitor (CLP) lineage cells, show reduced B-cell numbers [25]. This is consistent with the 

reduced B-cells numbers observed in SATB1 deficient mice [26].  

SATB1 also regulates dendritic cell (DC) maturation towards immunocompetent 

antigen-presenting cells through the expression of major histocompatibility complex (MHC) II 

[32]. This occurs through the binding of SATB1 to Notch1 homolog, translocation-associated 

(NOTCH) promoter, stimulating NOTCH expression and resulting in transcription of major 

histocompatibility complex (MHC) II [32]. SATB1 interacts with a sub-nuclear structure called 

promyelocytic leukemia (PML), organizing the MHC class I locus into higher-order chromatin 

loop domains and regulates the expression of a subset of genes of MHC class I locus [33]. 

SATB1 governs immune cell development, differentiation and regulates the function 

of different cell types including the epidermis and neurons [34, 35]. Tumour protein 63 (p63) 

is a transcription factor and a master regulator of epidermal differentiation [36]. In multipotent 

progenitor cells, p63 interacts with SATB1 to regulate epidermal morphogenesis [34]. Further, 

SATB1 is also required for the growth of keratinocytes, its downregulation of which induces 
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senescence in neonatal human epidermal keratinocytes [15], indicating its crucial role in cell 

proliferation and maintenance of the epidermis. SATB1 also plays a vital role in neuronal 

functioning. In a study on post-natal cortical development, SATB1 was shown to regulate 

temporal expression of immediate early genes and the formation of dendritic spines that affect 

the brain function in post-natal neurons [35].  SATB1 was also shown to be a critical regulator 

of interneuron development and loss of function studies revealed that SATB1 was essential for 

the differentiation of cortical neurons [37]. 

 

SATB1 and Cancer 

Since the discovery of SATB1, its role in the pathogenesis of various cancers has been 

investigated. Importantly, upregulation of SATB1 has been shown to promote many 

pathological features across a wide range of cancers [38, 39] including breast [1, 40-42], 

colorectal [2, 43-45], lung [46, 47], nasopharyngeal [48], oesophageal [3, 49, 50],  gastric [51, 

52], pancreatic [53, 54], ovarian [32, 55, 56], liver [57-59], prostate [60-63], bladder [64, 65], 

and brain [66-70]. In most cancers, the SATB1 expression is positively associated with 

increased tumour size, lymph node involvement and metastasis [71, 72], tumour progression 

[1, 2], poor prognosis [50, 56] and reduced overall survival [49, 54].  SATB1 regulates the 

expression of more than 1000 genes required for cell-cycle regulation, proliferation, 

differentiation, adhesion, signalling and apoptosis in breast cancer cells [1], and is an 

independent prognostic marker across many cancers [1, 56, 70, 73-76]. Other studies have 

reported that SATB1 expression was negatively associated with cancer progression and 

survival in breast [77] and lung cancers [78]. The basis for these discrepancies and the exact 

role of SATB1 in cancer pathogenesis remains to be elucidated. 

Interestingly, SATB2 a homolog of SATB1 with high sequence homology [79], has 

been associated with tumour suppressive activity and is of prognostic significance in laryngeal 
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squamous cell carcinoma [80] and colorectal carcinoma [81]. In colorectal cancer, SATB2 

induces the suppression of extracellular signal-regulated kinase 5 (ERK5) [82], which 

promotes an aggressive cancer phenotype. In colorectal cancer samples, a negative correlation 

between SATB1 and SATB2 expression was found, the expression of SATB1 was upregulated 

and SATB2 was downregulated. SATB1 was shown to upregulate the expression of proto-

oncogene MYC whereas SATB2 downregulated MYC expression [83]. Thus, SATB1 and 

SATB2 were shown to exert opposite effects on cell proliferation, colony formation and tumour 

growth [83, 84]. The role of these closely related genes with an opposing function in 

tumorigenesis requires further study.  

In the following sections, the role of SATB1 in regulating the tumour 

microenvironment (TME), cell proliferation, apoptosis, invasion,/ metastasis and multidrug 

resistance (MDR) are discussed and are summarised in Fig 4.  

 

SATB1 and the tumour microenvironment 

The tumour microenvironment is a heterogeneous milieu comprising of different cells 

including cancer cells, stromal cells and the infiltrating immune cells that play an important 

role in cancer immunity. In a number of tumours, infiltrating CD8+ T-cell numbers were 

observed to be increased, and this appears to be a favourable clinical outcome in many cancers 

including early stages of colorectal cancers, breast tumours and ovarian cancers [85-87]. 

Likewise, in ovarian cancer, a high CD8+ to Foxp3+ Treg cell ratio within the tumour 

microenvironment is associated with a positive prognosis [87, 88]. However, in a study on 

malignant melanoma, despite a significant presence of activated CD8+ T-cells, tumour 

progression continued [89]. Importantly the role of Programmed cell death protein-1 (PD-1) is 

important in evading antitumor immune responses of T-cells [90-92]. The mechanism through 

which the PD-1 impairs the anti-tumour immune responses of T-cells was recently shown to 
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involve SATB1. Normally, activated T-cells were shown to express high SATB1 levels, which 

recruit a nucleosome remodelling deacetylase complex to repress PDCD1 expression. 

Consequently, the levels of PD-1 receptor, encoded by PDCD1 are reduced, preventing 

premature T-cell exhaustion [90]. However, in cancer, the tumour-derived transforming growth 

factor-β (TGF-β) was shown to decrease SATB1 expression in T-cells resulting in de-repressed 

PDCD1 expression, increased PD-1 levels and inhibited T-cell activity. Thus, altered SATB1 

expression potentially impairs anti-tumour immune responses [90].  

SATB1 is required for maturation of DCs, but in ovarian cancer, DCs, express a 

perpetual increase in SATB1 levels, which stimulates secretion of pro-inflammatory mediators 

and immunosuppressive molecules including IL-6 and galectin, supporting tumour growth 

[32]. The In vivo knockdown of SATB1 in DCs, reverses the inflammation, tumorigenic 

activity and increased protective immune responses [32, 93]. These studies clearly demonstrate 

that the dysregulation of SATB1 in cancer leads to an altered immune response, which can 

promote tumorigenesis and tumour progression. 

SATB1 was shown to promote the expression of several proto-oncogenes and cell 

proliferation markers. In glioblastoma cell lines, knockdown of SATB1 led to changes in the 

expression of various proto-oncogenes such as MYC, B-cell lymphoma 2 (BCL2), Pim-1, 

epidermal growth factor receptor (EGFR), β-catenin and Survivin [66]. In pancreatic cancer 

cells, SATB1 was found to be overexpressed and positively regulated the proto-oncogene MYC 

[53]. In colorectal carcinoma, increased SATB1 expression was positively associated with 

proliferation markers such as Cyclin D1, proliferating cell nuclear antigen (PCNA) and an 

increase in NF-κB signalling [94]. In human hepatocellular carcinoma, SATB1 was shown to 

promote cell cycle progression and cell proliferation [59]. This occurred through upregulation 

of cyclin dependent kinase (CDK) 4 and inhibition of the tumour suppressor protein p16INK4A 

[59]. In cutaneous CD30+ lymphoproliferative disease, a common cutaneous T cell lymphoma, 
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upregulated SATB1 was found to promote malignant cell proliferation through the repression 

of the CDK inhibitor p21, a negative mediator of cell cycle progression and an effector of a 

number of tumour suppressive pathways, thus inducing malignant cell proliferation [95, 96].  

SATB1 was also shown to mediate epithelial to mesenchymal transition (EMT) [65]. 

EMT is the process by which immotile polarized, epithelial cells lose adherence at tight 

junctions, and become migratory mesenchymal cells [97]. As a key inducer of EMT, the 

transcription factor Snail, plays an important role in embryonic development and cancer 

progression by repressing the expression of E-cadherin [98]. SATB1 was shown to 

downregulate E-cadherin expression and upregulate inducers of EMT such as Snail1, Slug, 

Twist and vimentin in hepatocellular bladder and prostate cancers [59, 62, 65]. SATB1 also 

promoted drug-induced EMT in breast cancer cell lines, driven by the positive feedback 

regulation of miR-448 and NF-κB signalling [99]. Here, down-regulation of miR-448 increased 

SATB1 expression leading to upregulation of EGFR and progression into malignant 

phenotypes. 

SATB1 and apoptosis in cancer 

Apoptosis is the programmed cell death of damaged cells and is an important process 

in tissue homeostasis.  Disruption of apoptosis is a cardinal feature in the development of 

cancer. BCL2 is a proto-oncogene and an anti-apoptotic protein that contributes to cancer 

pathogenesis by interrupting the cell death pathway and promoting the survival of damaged 

cells [100]. In several types of tumours, SATB1 has been shown to induce increased BCL2 

expression, interfering with apoptosis in cancer cells [67, 70].  

SATB1 regulates long-range transcription of BCL2 gene through the major breakpoint 

region (mbr) on the 3’untranslated region (UTR) of the BCL2 gene [101, 102]. SATB1 

mediated chromatin looping facilitates the interaction between the mbr and BCL2 promoter 

resulting in increased BCL2 transcription. Likewise, SATB1 induced epigenetic modification 
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of BCL2 promoter enables binding of the transcription factor CREB to BCL2 promoter and 

positively regulates BCL2 expression [103]. SATB1 also regulates the expression of the pro-

apoptotic gene NOXA via the mbr enhancer [104]. Transcription of BCL2 and NOXA genes 

depends on their interaction with mbr enhancer. If the mbr enhancer binds to the BCL2 

promoter, then the BCL2 gene is transcribed and NOXA is repressed and vice versa. [104]. In 

normal conditions, on apoptotic stimulation, SATB1 is cleaved by the protease Caspase6 

reducing SATB1 induced BCL2 expression. Moreover, in Jurkat cells, reduced SATB1 levels 

were shown to mediate increased expression of NOXA, decreasing BCL2 expression. 

However, inhibition of SATB1 cleavage by caspase-6 inhibitor led to an increase in BCL2 

expression and decrease in NOXA transcription [104]. Thus increase in SATB1 levels, may 

potentially disrupt the equilibrium of the apoptotic regulatory genes and may contribute to 

cancer development and progression. 

Studies show that aberrant SATB1 expression is associated with abnormal BCL2 

expression, apoptosis, and tumorigenesis [67, 70]. Studies in glioma show that SATB1 

expression was significantly high in approximately 63% of tumour samples analysed with the 

simultaneous increase in expression of the cell proliferation marker Ki67. These were 

associated with poor survival [70]. Further, shRNA mediated silencing of SATB1 expression 

in vivo decreased angiogenesis and altered expression of c-Met, SLC22A18, caspase-3 and 

BCL2 protein increasing apoptosis and reducing tumour growth and progression. In human 

glioblastoma multiforme (GBM), SATB1 mRNA expression was upregulated in samples with 

a concurrent increase in the levels of BCL2 and PCNA protein levels and showed decreased 

apoptosis compared with the normal brain tissues [67]. The increase in SATB1 expression and 

BCL2 levels were positively associated with reduced survival rates and poor prognosis [67]. 

Knocking down SATB1 expression, consequently increased caspase-3/-7 activity with a 

concurrent decrease in BCL2 and PCNA levels [67]. These studies implicate SATB1 in brain 

tumour progression mediated by its effects on reduced apoptosis and increased cell 
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proliferation. Further, in human liver cancers, SATB1 was also shown to inhibit apoptosis by 

suppressing the FADD caspase-8 caspase-3-death receptor mediated apoptosis apoptotic 

pathway [59]. These studies indicate a functional role of SATB1 in apoptosis regulation, 

whereby aberrant expression of SATB1 supports cancer progression.  

 

SATB1 in invasion and metastasis  

 In the aggressive breast cancer cell line MDA-MB-231, SATB1 was associated with 

the increased expression of EGF receptors (ERBB1, ERBB2, ERBB3, and ERBB4), and EGFR 

ligands, neuregulin (NRG) and amphiregulin (AREG). In addition, SATB1 was also shown to 

upregulate the expression of metastasis promoting genes; metastatin (S100A4), vascular 

endothelial growth factor B, MMP-2, 3 and 9, TGF-β and connective tissue growth factor [1]. 

Whilst, the expression of metastasis suppressor genes; BRMS1, KAI1, KISS1, NME1 were 

was inhibited by SATB1 [1]. Other studies defined the role of SATB1 in invasion and 

metastasis. In hepatocellular carcinoma, SATBI promoted in vivo tumour growth and increased 

metastatic potential [59].  In colorectal cancer, overexpressed SATB1 increased the expression 

of the invasion marker MMP2, along with the loss of expression of tumour suppressor gene 

Adenomatous polyposis coli (APC) [94]. 

 

SATB1 and multidrug resistance 

SATB1 is upregulated in multidrug-resistant (MDR) breast cancer lines [40]. Along 

with higher invasive potential, EMT and metastasis, SATB1 also conferred MDR to these cells 

via effects on P-glycoprotein (P-gp) expression [40]. Further, the MDR phenotype of these 

cells was partly reversed by the suppression of SATB1. SATB1 also contributes to MDR 

through non P-gp dependent mechanisms via the suppression of drug-induced apoptosis [40]. 
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SATB1 has been shown to contribute to MDR in nasopharyngeal carcinoma, gastric cancer 

cell lines and osteosarcoma cell lines [48, 52, 105]. 

 

Future directions 

SATB1 expression is associated with cancer progression, dissemination and resistance 

and is of prognostic significance. As SATB1 regulates many genes depending on cell type and 

context, it is important to elucidate the mechanism through which SATB1 mediates 

tumorigenesis and tumour progression in different cancers. SATB1 regulates several genes 

important in normal biological processes including the immune responses that are important in 

cancer survival, therefore further studies are required to interrogate the role of SATB1-

mediated immune responses in cancers.  

Most studies have examined SATB1 gene expression and protein levels but fail to 

consider the effects of post-translational modifications of SATB1 mechanistically and its 

significance on cancer pathogenesis. Further, it is also important to identify approaches to 

differentiate SATB1 from its functionally distinct homologue SATB2. Thus, appropriate 

techniques to analyse SATB1 expression and the effects of its inhibition on downstream 

pathways are further required for it to be used as a potential target in cancer therapy. 

In summary, SATB1 plays an important role in various cellular processes and biological 

pathways and its deregulation is implicated in cancer development and growth and has the 

potential to serve as a biomarker and a therapeutic target in cancer treatment. 
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Figure Legends: 

Figure 1. SATB1 mediated chromatin loop formation. SATB1 forms chromatin loops through 

the anchoring of chromatin to the nuclear matrix and mediates long distance gene regulation 

providing docking sites for histone remodelling enzymes and transcription factors. Figure 

adapted from [106] 

 

Figure 2. Primary protein structure of SATB1 with its functional domains.   

The nuclear localization signal domain (NLS), the protein binding domain PDZ, the Base 

Unpairing Region (BURs) and the DNA binding region, the homeodomain (HD). [Figure 

adapted from http://atlasgeneticsoncology.org/Genes/SATB1ID44225ch3p24.html] 

  

Figure 3. Depicts post-translational modifications of SATB1-induced gene regulation. 

Phosphorylation of SATB1 leads to its interaction with histone deacetylase 1 (HDAC1) and 

CtBP1 resulting in repression of gene expression [10]. On de-phosphorylation, SATB1 is 

acetylated as it interacts with acetyltransferase PCAF, leading to the disassociation of HDAC1 

and CtBP1 and activation of gene expression [11]. 

 

Figure 4. Role of SATB1 in cancer. It plays important roles in regulating the tumour 

microenvironment, SATB1 upregulates the expression of proliferation markers such as 

proliferating cell nuclear antigen (PCNA) and Cyclin D1 and also increases the expression of 

proto-oncogene MYC.  Altered SATB1 expression implicates CD+8 T cells and DCs in 

impaired tumour immunity. SATB1 also alters the expression of epithelial-mesenchymal 

transition (EMT) markers, E-cadherin, Snail 1 and Slug and thus promotes cancer. 

Overexpression of SATB1 induces increases in anti-apoptotic BCL2 expression and decreases 

the activity of Caspases which results in suppression of apoptosis in cancers. SATB1 promotes 
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invasion through the up-regulation of epidermal growth factor (EGF) receptors and also 

stimulates the metastatic genes such as Metastatin and tumour growth factor (TGF)-β. In 

cancers, SATB1 also confers MDR through both P-gp and non P-gp mechanisms.  
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