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Abstract—The paper addresses the problem of efficiently
deploying sensors in spatial environments, e.g. buildings, for the
purposes of monitoring spatio-temporal environmental phenom-
ena. By modelling the environmental fields using spatio-temporal
Gaussian processes, a new and efficient optimality-cost function
of minimizing prediction uncertainties is proposed to find the best
sensor locations. Though the environmental processes spatially
and temporally vary, the proposed approach of choosing sensor
positions is proven not to be affected by time variations, which
significantly reduces computational complexity of the optimiza-
tion problem. The sensor deployment optimization problem is
then solved by a practical and feasible polynomial algorithm,
where its solutions are theoretically proven to be guaranteed.
The proposed method is also theoretically and experimentally
compared with the existing works. The effectiveness of the
proposed algorithm is demonstrated by implementation in a real
tested space in a university building, where the obtained results
are highly promising.

Index Terms—Environmental monitoring, spatio-temporal
model, sensor network, smart building.

I. INTRODUCTION

RECENTLY, wireless sensor networks [1], [2] increasingly
play a crucial role in monitoring environments [3]. The

applications include exploring ecosystem change in ocean and
on land [4], monitoring air quality and pollution [5]–[10],
detecting forest fires [11] and observing indoor environmental
parameters [12]–[16]. Nonetheless, in the context of deploying
sensors in the spatial environments, multiple sensors can be
co-located within the vicinity of a phenomenon and generate
similar data samples, which apparently produce sizable re-
dundancy in the measured data. The redundant measurements
have an adverse influence on effectively using the sensor
networks since they do not provide any additional information
about the observed spatial fields. Moreover, the expendable
samples result in many issues for the network of sensors in
terms of collecting and analyzing data, particularly in long-
term monitoring. For instance, constraints including initial in-
stallations, higher energy consumption, elevated maintenance
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burden, and increased complexity of computational cost are
very practically expensive. On the other hand, in monitoring
the spatial environments, resources are truly constrained. That
is, the number of sensors to be utilized in sensing tasks is
limited. Therefore, efficiently deploying sensors in monitoring
spatio-temporal phenomena is of theoretical importance and
practical relevance.

Up to now, to the best of our knowledge, the condi-
tional entropy and mutual information based methods are
two frequently-used techniques in sensor deployment for en-
vironmental monitoring. There are two major disadvantages
with those methods. Firstly, these two approaches indirectly
represent the prediction uncertainties via information theory
based concepts. It may be improved if a direct criterion is
formulated. Secondly, the information-theoretic criteria have
been demonstrated only in applications of monitoring purely
spatial processes, excluding time variations. In other words,
if considered in spatio-temporal fields, they are prohibitively
expensive when the number of measurements increases over
time. Therefore, in this work, we first propose to consider the
sensor deployments in scenarios of monitoring spatio-temporal
environmental fields. We then develop a direct cost function
of minimizing the prediction errors to find the optimal sensor
positions. The proposed approach is illustrated to outperform
the existing methods.

The contributions of this paper are fourfold as follows.

• Formulate a new and efficient cost function to find the
best sensor locations in the spatio-temporal environments,
which is only dependent on spatial elements, though
measurements are gathered through time. The optimiza-
tion problem is then solved by a practical and feasible
algorithm in polynomial time.

• Prove that the solutions of optimizing the sensor locations
in spatio-temporal environments are theoretically guaran-
teed by a bound.

• Comparisons between the proposed technique and the
existing methods are theoretically and experimentally
analyzed to demonstrate the effectiveness of the proposed
methods.

The rest of the paper is organized as follows. Section II
reviews the related works while Section III introduces the
problem of finding the optimal environmental sensor locations
in spatio-temporal scenarios. An approach to solve the opti-
mization problem is proposed in Section IV. Section V theoret-
ically analyses the performances of the spatio-temporal sensor
deployments as well as compares the proposed technique with
the existing methods. The experimental results are discussed



2

in Section VI before conclusions are drawn in Section VII.

II. RELATED WORKS

In literature, regarding deploying sensors in a static network,
there is a rich library on choosing sensor locations for different
purposes such as coverage [17], [18], target tracking [19],
localization [20], navigation [21], and detection/surveillance
[22]. For instance, in terms of parameter estimation for linear
models, Joshi et al. [23] proposed a heuristic method based
on convex optimization for the sensor selection problem. The
heuristic approach in [23] utilizes a relaxation technique to
convert a discrete optimization problem of sensor selection
into a continuous optimization problem.

In the context of environmental monitoring, there exist some
related works addressing sensor placements in the environ-
ments, e.g., indoor spaces. In [24], performance metrics based
on joint conditional entropy and values of information were
proposed to allocate the optimal sensing locations in the civil
infrastructure systems. Brunelli et al. [14] positioned sensors
at working areas in the university department to observe
the indoor environments. However, the sensor locations are
not optimal and the obtained results do not present spatial
distributions of the indoor environmental parameters in the
whole space. The work [13] proposed to separate sensor nodes
into clusters where sensors have the same output signals,
and one sensor in each cluster then is representative of the
whole cluster. In [7], Wang et al. proposed to employ the
genetic algorithm to optimal design of air quality monitoring
stations. Likewise, the work [10] proposed to utilize the
genetic programming to design a network of wells to identify
unknown pollution sources in aquifers. To efficiently monitor
air quality, while [5] designs a network of stations so that
variance of gauged pollution concentrations is maximized, the
optimal site network in [6] is relied upon ratio of an individual
station concentration to the total of the network. A number of
issues to design a network of monitoring extreme values are
addressed in [25].

Generally, in aforementioned existing works, the metrics
of finding sensor locations do not address the quality of
sensing as well as the prediction accuracy. It should be noted
that the sensing quality is defined by a maximum level of
prediction uncertainties at locations without measurements.
The less the prediction uncertainties are, the better the sensing
quality is. Considering sensing quality in monitoring spatial
fields in environments, the objective of the sensor deploy-
ment becomes to maximize the accuracy of predictions at
unobserved locations of interest, after the observations are
made. The deploying criteria are then formulated into an
experimental design problem [26], [27]. In this case, the sensor
deployment is very challenging. One can simply process all
direct enumerations of possible choices and pick the best
subset of sensor positions out of potential ones. However, this
straightforward approach is not scalable when the network size
increases.

Chadalavada et al. in both their works [8], [9] took de-
signing a network of wells to monitor a spatial field of
groundwater pollution into account. To find the optimal sam-
pling locations, they proposed to minimize uncertainties in

unmonitored simulated concentrations by the use of the genetic
algorithm. Furthermore, information-theoretic optimality crite-
ria based methods [24], [28]–[32] have employed information
theory based concepts of conditional entropy and mutual
information [33]–[35] to examine prediction uncertainties of
random variables at unmeasured positions in the environments.
Particularly, the authors of [24], [28], [29] proposed to find
the optimal sensor locations in a given space by minimizing
the conditional entropy of all the predicted environmental
values at unobserved locations in the whole space. While the
conditional entropy describes uncertainty of a random variable,
the mutual information measures dependence between two
random variables. As a result, to achieve the optimal sensor
deployment, the works [30]–[32] developed the optimization
criteria that maximize the mutual information between random
variables at chosen locations and those at unselected positions.
Moreover, these optimization criteria for sensor deployments
have been theoretically proved to be combinatorial NP-hard
problems [28], [36]. Nevertheless, fortunately, near-optimal
solutions of the NP-hard problems can be practically obtained
by a greedy yet efficient algorithm.

III. SPATIO-TEMPORAL SENSOR DEPLOYMENT PROBLEM

Throughout this paper, let R denote the set of real numbers.
The norm of a vector in the Euclidean space is also denoted by
‖ · ‖. We let E define the expectation operator while |·| defines
the absolute value of a scalar. For a matrix A, its transpose and
trace are denoted as AT and tr(A), respectively. If we have
a set B, then card(B) denotes its cardinality. Other notations
will be explained as and when they occur.

A. A Spatio-temporal Model for Sensor Measurements

We consider a network of n sensors whose locations are
denoted as s = (sT1 , s

T
2 , · · · , sTn )T ∈ Rd×n. In this study, we

suppose that at each of collecting instants, all sensors can take
measurements of indoor environmental phenomena. Hence,
we define the time at which sensors take measurements as
t = (t1, t2, · · · , tm)T ∈ Rm. The collective measurements
gathered by the network up to current time tm are denoted by
Y (s, t) = (y(s1, t1), · · · , y(sn, tm))T ∈ Rn×m, which can be
delineated by

Y (s, t) = Z ′(s, t) + ε(s, t), (1)

where ε(s, t) ∈ Rn×m is normally distributed with a zero
mean and an unknown variance, and Z ′(s, t) ∈ Rn×m
are the random/latent variables at (s, t). The spatio-temporal
sensor readings Y (s, t) are proposed to follow a multivariate
Gaussian distribution as follows,

Y (s, t) ∼ N (µ,Σ), (2)

where the mean vector is defined by µ = E[Y (s, t)]. Σ is the
nm × nm covariance matrix of Y (s, t), where its elements
can be computed by a space-time covariance function, e.g.
cov((si, tj), (sk, tl)) for any two pairs of spatio-temporal
locations (si, tj) and (sk, tl) on Rd×R, i, k = {1, · · · , n} and
j, l = {1, · · · ,m}. Note that the covariance function spatially
temporally represents dependence of observations.
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It is noteworthy that though the number of sensors is limited,
knowing the whole environment is needed for most monitoring
purposes. Hence, we let sN = (s′

T
1 , s
′T
2 , · · · , s′

T
N )T ∈ Rd×N

and tM = (t′1, t
′
2, · · · , t′M )T ∈ RM denote unobserved loca-

tions of interest in the space and specific instants in the time,
respectively, where and when the environmental phenomenon
is required to be predicted. Note that locations of interest are
subject to applications; for example, interested locations are
on a dense grid if a map of the environmental field is expected
to be created. Then N � n. The random/latent variables
Z(sN , tM ) at predicted spatio-temporal locations (sN , tM )
and the observations Y (s, t) have a joint distribution. Since
Y (s, t) is normally distributed as (2), the marginalization
property of the Gaussian distribution [37] yields[

Y (s, t)

Z(sN , tM )

]
∼ N

([
µ

µZ

]
,

[
Σ ΣY Z

ΣTY Z ΣZ(sN ,tM )

])
, (3)

where µZ and ΣZ(sN ,tM ) are the mean vector and the covari-
ance matrix of Z(sN , tM ). ΣY Z is the cross-covariance matrix
representing the dependence between Y (s, t) and Z(sN , tM ).
From (3), we can now infer the conditional distribution of
Z(sN , tM ), given the measurements Y (s, t), by taking the
following form.

Z(sN , tM )|Y (s, t) ∼ N (µZ|Y (s,t),ΣZ(sN ,tM )|Y (s,t)), (4)

where

µZ|Y (s,t) = µZ + ΣTY ZΣ−1(Y (s, t)− µ), (5)

ΣZ(sN ,tM )|Y (s,t) = ΣZ(sN ,tM ) − ΣTY ZΣ−1ΣY Z . (6)

It can be seen that the uncertainties at predicted spatio-
temporal points (sN , tM ) are on the diagonal line of the
covariance matrix ΣZ(sN ,tM )|Y (s,t). Therefore, the problem
of sensor deployment becomes finding n locations in the
environment for deploying n sensors so that the uncertainties
at (sN , tM ) are minimized.

It is noticed that all the mean parameters and hyperpa-
rameters of the Gaussian distribution (2), which are also
employed to compute the mean vector, the covariance matrix
and the cross-covariance matrices in (5) and (6), are unknown.
Nonetheless, these parameters can be directly estimated based
on the measurements Y (s, t) by the use of the maximum
likelihood method as presented in [29], [38].

B. Problem Statement

As discussed, understanding environments is a paramount
task that is required to be completed before any control strate-
gies can be carried out. What people usually are concerned
about in environmental monitoring is the sensing quality. In
other words, there are two major and challenging questions
arising when implementing the sensor deployments: (i) where
to locate a given number of sensors in a space to observe
environmental parameters in order to minimize prediction
uncertainties at all unmeasured positions, and (ii) how many
sensors are needed so that prediction accuracy is guaranteed by
a desired threshold. The problems are formulated as follows.

In this paper, it is proposed to compute a total of the
variances at all predicted spatio-temporal locations (sN , tM ).
That is, the formal formula of the proposed optimality-cost
function is to calculate the trace of ΣZ(sN ,tM )|Y (s,t). Let us
define P a set of all possible locations where environmental
sensors can be deployed to observe the physical fields in the
space, where card(P) = p is the cardinality of P . The sensor
deployment is to address the problem of choosing a subset
C ⊆ P , where card(C) = n, so that if n sensors are positioned
at n locations in C then the corresponding measurements
Y (s, t) allow the total of the variances at (sN , tM ) to be
minimized. Mathematically, the sensor deployment problem
is initially formulated as follows,

Copt = argmin
C ⊆ P

card(C) = n

tr(ΣZ(sN ,tM )|Y (s,t)), (7)

where Copt is the optimal set of sensor locations. Since
ΣZ(sN ,tM ) in (6) is the covariance matrix of the random
variables Z(sN , tM ) at unobserved spatio-temporal locations
(sN , tM ), it is not dependent on C, a set of observed sensor
locations. Consequently, the problem in (7) can be simplified
as

Copt = argmax
C ⊆ P

card(C) = n

tr(ΣTY ZΣ−1ΣY Z). (8)

Note that (8) is a combinatorial optimization problem. Choos-
ing a subset C out of a possible set P in the combinatorial
optimization problem is always NP-hard [28]. Nevertheless,
up to now, the NP-hard problem can be near-optimally solved
by an approximate polynomial algorithm called the greedy
algorithm. Let us consider how the greedy method can deal
with the NP-hard problem in (8). Obviously, computing
ΣTY ZΣ−1ΣY Z requires O(N2M2nm + n3m3) operations.
Moreover N � n, which leads to the fact that the optimality-
cost function in (8) is computationally costly. Thus, further
simplification is needed. Since tr(AB) = tr(BA), the prob-
lem of sensor deployments can eventually be defined as

Copt = argmax
C ⊆ P

card(C) = n

tr(ΣY ZΣTY ZΣ−1), (9)

where the complexity of computing ΣY ZΣTY ZΣ−1 is
O(NMn2m2 + n3m3).

It is apparent that if the problem in (9) is comprehensively
solved, the question (i) in the first paragraph of Section III-B
is answered. Furthermore, the solutions of the problem in
(9) imply that by varying the number of sensors until the
total of the variances at all predicted spatio-temporal locations
(sN , tM ) satisfies a predefined requirement, the number of
sensors in that case is an answer to the question (ii) stated in
the same paragraph.

IV. A SEPARABLE APPROACH

The problem stated in (9) can be practically resolved in a
small-scale sensor network with a small data set. The problem
definitely becomes intractable as it is applied to a large-scale
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network (n is large), where measurements are collected within
a long period of time (m is large). In this section, we present
a separable method to reduce the complexity of the problem
of sensor deployments.

In recent research, there are discussions about types of
covariance functions for space-time models [39], [40]. There
are two major sorts of spatio-temporal covariance models
that are separable and non-separable, respectively. The non-
separable covariance functions well known in the literature are
Gneiting models [41], Porcu and Mateu mixture-based models
[42] and Integrated product and product-sum models [43].
Theoretically, the spatio-temporal non-separable covariance
models have been thought to better capture possible space-time
interactions. Nevertheless, due to computational complexity
of the spatio-temporal non-separable covariance functions,
especially when applied in large data sets, in this work, it
is proposed to choose a spatio-temporal separable covariance
function for the space-time environmental field model. If
dependence between the data is separable in terms of space and
time, the covariance matrix Σ of the collective measurements
Y (s, t) can be represented by block structures. In other words,
Σ can be delineated by a Kronecker product as

Σ = Σ(s) ⊗ Σ(t), (10)

where Σ(s) is an n × n covariance matrix of purely spatial
covariance values, and Σ(t) is an m×m covariance matrix of
purely temporal covariance values.

Due to restructuring the covariance matrix of all available
observations, the optimality-cost function for the problem of
sensor deployments in buildings in (9) can be simplified as in
the following theorem.

Theorem 1: If a space-time covariance function of a spatio-
temporal environmental field model is separable, the problem
of optimally deploying sensors in environments to observe
spatio-temporal fields is only dependent on space variations,
not time variations.

Proof: Since spatio-temporal correlation function is sep-
arable, the cross-covariance matrix ΣY Z between Y (s, t) and
Z(sN , tM ) in (6) can be also re-specified by

ΣY Z = Σ
(s)
Y Z ⊗ Σ

(t)
Y Z , (11)

where Σ
(s)
Y Z and Σ

(t)
Y Z are n × N purely spatial and m ×M

purely temporal cross-covariance matrices of Y (s, t) and
Z(sN , tM ), respectively.

Under properties of the Kronecker product, the expression
in the trace function in (9) is rewritten as

ΣY ZΣTY ZΣ−1 = (12)(
Σ

(s)
Y Z ⊗ Σ

(t)
Y Z

)(
(Σ

(s)
Y Z)T ⊗ (Σ

(t)
Y Z)T

)(
(Σ(s))−1 ⊗ (Σ(t))−1

)
=
(

Σ
(s)
Y Z(Σ

(s)
Y Z)T ⊗ Σ

(t)
Y Z(Σ

(t)
Y Z)T

)(
(Σ(s))−1 ⊗ (Σ(t))−1

)
=
(

Σ
(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1

)
⊗
(

Σ
(t)
Y Z(Σ

(t)
Y Z)T (Σ(t))−1

)
.

Thus, the function in (9) can be rewritten as

tr(ΣY ZΣTY ZΣ−1) = (13)

= tr
(

Σ
(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1

)
tr
(

Σ
(t)
Y Z(Σ

(t)
Y Z)T (Σ(t))−1

)
.

Since Σ
(t)
Y Z(Σ

(t)
Y Z)T (Σ(t))−1 is a purely temporal co-

variance matrix, if sensor locations spatially vary then
tr
(

Σ
(t)
Y Z(Σ

(t)
Y Z)T (Σ(t))−1

)
will not change. This completes

the proof.
The optimality-cost function of the sensor deployment prob-

lem can be now spatially stated as

Copt = argmax
C ⊆ P

card(C) = n

tr
(

Σ
(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1

)
. (14)

Complexity of computing Σ
(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1 in (14) is

O(Nn2+n3), which is significantly scaled down as compared
with that in (9). In the following, we present how the greedy
algorithm near-optimally addresses the problem in (14). Let us
define a near-optimal subset corresponding to Copt as Cn−opt.

It is assumed that at the beginning, the near-optimal subset
is empty, Cn−opt = �. The algorithm randomly chooses a
point si, i = 1, · · · , p, from the possible set P , si ∈ P .
The corresponding measurement at si is denoted as y(si). In
addition, Y (s, t) = Y (s) = {y(si)} and Z(sN , tM ) = Z(sN )
as time is no longer involved in the calculation. It computes
Σ

(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1, and then it iterates the computations

for each other location si ∈ P . Each calculation returns
one real value. A sequence of obtained values consequently
corresponds to the possible set P . Choosing the maximum
value from this sequence, it can find the corresponding lo-
cation from P . This chosen point is the first near-optimal
sensor location, denoted as sn−opt1 , and Cn−opt = {sn−opt1 }.
Correspondingly, Y (s) now firmly has y(sn−opt1 ), Y (s) =
{y(sn−opt1 )}. The chosen location sn−opt1 is now removed from
P . In the next step, the algorithm again chooses a location
si, i = 1, · · · , p − 1, from the remaining P and temporally
adds it into Cn−opt, Cn−opt = {Cn−opt, si}. Likewise, the cor-
responding measurement y(si) is also temporally added into
Y (s), Y (s) = {Y (s), y(si)}. Every Σ

(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1 in

the second step, corresponding to one si ∈ P , is a 2 × 2
matrix, and their traces create another sequence. Finding the
sequence’s maximal value and choosing its corresponding
location in P , one has the second near-optimal sensor location,
which is then firmly moved from P to Cn−opt. Y (s) also
has a second permanent element. Iteratively, the algorithm
runs this iteration until cardinality of Cn−opt reaches n. In
each iteration, a new near-optimal sensor location obtained is
greedily added into Cn−opt. The greedy algorithm addressing
the sensor deployment problem is illustratively summarized in
Algorithm 1.

V. PERFORMANCE ANALYSIS ON SENSOR DEPLOYMENT

A. A Solution Bound

Though the greedy algorithm has been empirically demon-
strated to be very efficient in tackling NP-hard problems
[44], it can only provide near-optimal solutions. That is, it is
essential to guarantee the near-optimal solutions obtained in
the NP-hard problem in (14). In the following, we discuss the
bound of the approximate solutions obtained in the problem of
optimally deploying sensors in spatio-temporal environments.
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Algorithm 1 Approximation algorithm for sensor deployments
in smart buildings
Input:

1) Set of possible sensor locations P
2) A learned model to generate corresponding measurements

y(si)
3) Number of sensors n

Output:
1) Near-optimal set of sensor locations Cn−opt

At the start, do
Cn−opt ← �

1: for i = 1 to p do
2: si ∈ P
3: Y (s) = {y(si)}
4: Compute Σ

(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1

5: end for
6: sn−opt1 ← argmax

si∈P
Σ

(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1

7: Cn−opt = {sn−opt1 }
8: Y (s) = {y(sn−opt1 )}
9: P ← P \ sn−opt1

10: for k = 2 to n do
11: Cn−opttmp = Cn−opt
12: Ytmp(s) = Y (s)
13: for i = 1 to cardinality of P do
14: si ∈ P
15: Cn−opt = {Cn−opttmp , si}
16: Y (s) = {Ytmp(s), y(si)}
17: Compute tr

(
Σ

(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1

)
18: end for
19: sn−optk ← argmax

si∈P
tr
(

Σ
(s)
Y Z(Σ

(s)
Y Z)T (Σ(s))−1

)
20: Cn−opt = {Cn−opttmp , sn−optk }
21: Y (s) = {Ytmp(s), y(sn−optk )}
22: P ← P \ sn−optk

23: end for

For the purpose of generalization, we consider the bound
of the solutions of the general sensor deployment problem
defined in (9), which is subject to both spatial and temporal
terms. Before providing the results, we first introduce a
preliminary basis in the following lemma.

Lemma 2: The matrix ΣY ZΣTY ZΣ−1 in (9) is positive
definite.

Proof: Generally speaking, every covariance matrix is
positive semi-definite. In this case, since the covariance matrix
Σ is invertible, it is positive definite. It is noteworthy that Σ
is symmetric, from spectral theorem [45] we have

Σ = UDUT , (15)

where U is an orthogonal matrix, and D is a diagonal matrix.
Because the eigenvalues of Σ are positive, so are those of D,
λi(D) > 0, where λi(D) is an ith eigenvalue of D. We can
also present Σ−1 in a spectral decomposition form as

Σ−1 = UD−1U−1 = UD−1UT . (16)

Since the eigenvalues of D−1 are positive, 1
λi(D) > 0, which

indicates that Σ−1 is positive definite.
On the other hand, ΣY Z measures dependence among the

measurements Y and the random variables Z, which represent
a spatio-temporal process at different locations; that is, all rows
of ΣY Z are independent, or rank of ΣY Z is n. Therefore, rank
of ΣY ZΣTY Z is n. In equivalent words, since ΣY Z is real and
has full rank of n, ΣY ZΣTY Z is positive definite [46].

Now, we denote

W =
((

ΣY ZΣTY Z
) 1

2

)−1 (
ΣY ZΣTY ZΣ−1

) (
ΣY ZΣTY Z

) 1
2 .

(17)
Here,

(
ΣY ZΣTY Z

) 1
2 is non-singular since ΣY ZΣTY Z is non-

singular. Therefore, W and ΣY ZΣTY ZΣ−1 are similar.
Moreover, W can be represented as

W =
(
ΣY ZΣTY Z

) 1
2 Σ−1

(
ΣY ZΣTY Z

) 1
2 . (18)

As mentioned above, Σ−1 is positive definite, hence W is also
positive definite. We recall that when W and ΣY ZΣTY ZΣ−1

are similar, they have the same eigenvalues [47]. In other
words, ΣY ZΣTY ZΣ−1 is positive definite, which completes the
proof.

We now mathematically write the problem in (9) in the set
function form as follows,

F(C) = tr(ΣY ZΣTY ZΣ−1), (19)

where F(C) is a set function on a set C and Σ is the covariance
matrix of spatio-temporal measurements Y (s, t) gathered at n
locations in C. Then, the bound of the solutions of the sensor
deployment problem can be stated by the following theorem.

Theorem 3: The near-optimal solutions F(Cn−opt) for the
spatio-temporal sensor deployment problem obtained by the
greedy algorithm presented in Section IV, which correspond
to near-optimal sensor locations, are guaranteed by a 1 −(
1− 1

n

)n
level of optimal performances, where n is the

number of sensors to be deployed.
Proof: Since ΣY ZΣTY ZΣ−1 is positive definite, F(C) is

monotonic increasing. In equivalent words, if we add one
sensor location si ∈ P \ C to C, then the number of the
eigenvalues of the matrix ΣY ZΣTY ZΣ−1 is increased by one.
Thus, F(C ∪ si) > F(C). On the other hand, the theorem 2
in [48] states that given a monotonic increasing set function
(19), a greedy algorithm can address the NP-hard problem (9)
by an

1−
(

γ + · · ·+ γn−1

1 + γ + · · ·+ γn−1

)n
(20)

approximation as compared with the optimum. Here, γ is
elemental curvature computed by

γ = max
C ⊂ P

si, sj ∈ P \ C

F(C ∪ si ∪ sj)−F(C ∪ si)

F(C ∪ si)−F(C)
. (21)

Let us investigate a specific property of the set function
F(C). If we have C′ = C ∪ si, si ∈ P \ C, then C′ ∪ C = C′
and C′ ∩ C = C. Consequently,

F(C) + F(C′) = F(C′ ∩ C) + F(C′ ∪ C). (22)
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As illustrated in [49], F(C) is a modular function. Further-
more, the set function F(C) also holds another property. For
every C ⊂ C′ ⊂ P and sj ∈ P \ C′, one has

F(C ∪ sj)−F(C) = F(C′ ∪ sj)−F(C′). (23)

Therefore, it is derived that γ = 1, which completes the proof.

It is remarked that the bound for the near-optimal solutions
of the sensor deployment problem is only dependent on the
number of sensors to be located in the environments. That is, if
one needs to find a small number of optimal sensor locations,
the proposed approach can return approximate solutions that
are very close to the optimal ones.

B. Comparisons with Existing Methods

In the literature, there are some works relating to the sensor
deployments for the purposes of monitoring environments
[24], [28]–[32]. In these works, all the authors proposed
the criteria for finding sensor locations so as to maximize
sensing quality, e.g. minimizing uncertainties of prediction
results. Nonetheless, the authors only consider applications
of observing purely spatial fields, where time variations are
excluded. As a consequence, this subsection discusses whether
the existing approaches are feasible to apply for spatio-
temporal environmental processes.

1) Conditional Entropy: The authors in [24], [28], [29]
introduced the optimization for optimal sensor deployments
in spatial environments, which is based on conditional en-
tropy [33]. The conditional entropy based cost function is
extensively stated in the space-time environmental sensor
deployments as

Copt = argmin
C ⊆ P

card(C) = n

log det
(
ΣZ(sN ,tM )|Y (s,t)

)
, (24)

where ΣZ(sN ,tM )|Y (s,t) is computed by (6). For the purpose
of comparisons, we also choose a separable covariance func-
tion for the spatio-temporal environmental model. Therefore,
elements in ΣZ(sN ,tM )|Y (s,t) are presented by (10), (11) and

ΣZ(sN ,tM ) = ΣZ(sN ) ⊗ ΣZ(tM ), (25)

where ΣZ(sN ) and ΣZ(tM ) are N × N purely spatial and
M ×M purely temporal covariance matrices of Z(sN , tM ),
respectively.

The problem (24) is clearly NP-hard and can be resolved
by the greedy algorithm [24], [28], [29], whose complexity is
illustrated by the following theorem.

Theorem 4: The approximation solution of the conditional
entropy based spatio-temporal environmental sensor deploy-
ment problem (24) can be achieved by a greedy algorithm in
O((N3M3 + n3m3)np) operations.

Proof: The complexity of computing ΣZ(sN ,tM )|Y (s,t)

is O(N2M2nm + n3m3) as shown in Section III. On the
other hand, the size of ΣZ(sN ,tM )|Y (s,t) is N × M . There-
fore, log det

(
ΣZ(sN ,tM )|Y (s,t)

)
can be calculated in time

O(N3M3) [50]. Note that n locations of the set C are chosen
from p possible positions available in the set P . Then, it is

required to compute this logarithm of the determinant in O(p)
times for each time of choosing one location for C. Moreover,
since the cardinality of C is n, the solution of the combinatorial
optimization problem (24) can be obtained in running time
O((N3M3 + n3m3)np)

2) Mutual Information: Another information-theoretic
method for the sensor deployments in monitoring spatial
environments is mutual information (MI) [30]–[32], which
measures the dependency between two random variables [34],
[35]. As presented in [31], Krause et al. proposed to find
the optimal sensor locations in the spatial environments by
maximizing the mutual information between random variables
at chosen sensor locations and at unselected positions. Note
that the set of possible locations is a joint of chosen sensor
locations and unselected positions. Though the method in [31]
does not mention locations of interest, this paper merges loca-
tions of interest into the set of unselected positions. Therefore,
the mutual information based approach is now extended for the
problem of optimally deploying sensors in monitoring spatio-
temporal environments as

Copt = argmax
C ⊆ P

card(C) = n

(
log det(ΣPZ\C)− log det(ΣPZ\C|C)

)
,

(26)
where PZ is an emerging set of P and the locations of
Z(sN , tM ). card(PZ) ≤ N+p since some possible locations
and interested positions may be overlapped. In worst cases,
ΣPZ\C and ΣPZ\C|C are (N + p − n)M × (N + p − n)M
covariance matrices of random variables at PZ\C and random
variables at PZ \C given observations at C, respectively. Here,

ΣPZ\C|C = ΣPZ\C − ΣPZ\C,CΣ
−1ΣTPZ\C,C , (27)

where ΣPZ\C,C is a (N + p − n)M × nm cross-covariance
matrix between random variables at PZ \ C and observations
at C.

Regardless of the types of spatio-temporal covariance func-
tions chosen, approximate solutions of the combinatorial NP-
hard optimization problem (26) can be obtained by a greedy
algorithm with computational complexity as below.

Theorem 5: The mutual information based combinatorial
NP-hard optimization (26) for sensor deployments in spatio-
temporal environments can be addressed by a greedy approach
in running time of O(((N + p− n)3M3 + n3m3)np).

Proof: The proof is similar to that of Theorem 4.
3) The Proposed Approach: Comparing with two well-

known existing methods, the proposed approach significantly
reduces computational complexity in addressing the spatio-
temporal sensor deployments as demonstrated in the following.

Theorem 6: Algorithm 1 can resolve the proposed
optimality-cost function (14) for space-time sensor deploy-
ments in O((Nn2 + n3)np) operations.

Proof: The proof is similar to that of Theorem 4 with
reference to Section IV.

Remark 7: There are some conclusions regarding compar-
isons of the proposed approach with the others in literature, for
optimally deploying sensors in spatio-temporal environments,
as follows.
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Fig. 1: Possible sensor locations (blue circles) in room S2.1-
B4-01, Nanyang Technological University

• It can be clearly seen that complexity of the proposed
approach is not dependent on M or m. That is, computing
time of the conditional entropy and mutual information
based methods increases when collected times m and
predicted times M go up, while running time of our
algorithm is consistent.

• Both conditional entropy and mutual information based
methods are indirect. That is, they do not directly maxi-
mize the sensing quality. The optimal sensor locations are
found by optimizing indirect information-theoretic cost
functions. Nevertheless, our technique proposes optimal
sensor deployments by directly minimizing prediction
errors.

• The functions of conditional entropy and mutual infor-
mation based cost functions in (24) and (26) are not
completely monotonic [29], [31]. Under conditions for
monotonicity, these well-known methods can provide a
bound for their near-optimal solutions, which is 1− 1

e of
the optimal performance. Meanwhile, the function of the
optimality-cost in our approach is theoretically proven to
be comprehensively monotone. Moreover, the bound of
the solutions in the proposed technique is 1−

(
1− 1

n

)n
as compared with the optimum. It can be clearly seen
that the new bound is practically better than that in the
other two methods, given a limited number of sensors.

• The memory complexity in the conditional entropy and
mutual information based approaches are O(N2M2) and
O((N + p − n)2M2), respectively, while that of the
proposed algorithm is O(N2).

VI. EXPERIMENTS IN BUILDINGS

In this section, we present the results of applying the
proposed approach for deploying the wireless sensors at the
best locations in the tested room S2.1-B4-01, Nanyang Tech-
nological University campus.
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Fig. 2: 10 near-optimal sensor locations, ordered from most
to least informative locations, in room S2.1-B4-01, Nanyang
Technological University

A. Indoor Experimental Description

We conducted experiments at the room S2.1-B4-01 in the
Nanyang Technological University campus, Singapore, which
is sized 19.80 m in length and 14.86 m in width, shown in
Fig. 2. The experiments were carried out during the 4 week
time from 25 April to 22 May 2016. In the experiments, we
utilized two wireless networks of 10 Libelium temperature
sensors and 10 Monnit temperature sensors. These sensor
nodes located randomly, after measuring indoor temperatures,
send the measurements directly to the network routers via
a one-hop routing structure. The data can be accessed from
any internet connected devices. To provide good feedback
for strategies of controlling indoor environments, which is
aimed to increase human comfort, in this work we deliberately
positioned all sensors at sitting levels.

Note that the sensors were set to take environmental mea-
surements every 2 hours. That is, each sensor could gather 84
measurements at its location every week. Hence, over 4 weeks,
6720 temperature values were collected by the 20 sensors. A
spatio-temporal model as discussed in Section III was then
learned by using these 6720 measurements. We call this model
as model1. Note that, as proposed, in the implementation we
chose a spatio-temporal separable covariance function as given
by

cov((si, tj), (sk, tl)) = σ2 exp

(
−‖ si − sk ‖

ψs
− |tj − tl|

ψt

)
,

(28)
where σ2 is a marginal variance; ψs and ψt are two positive
scale parameters in terms of space and time, respectively. ψs
and ψt are referred to as reduction rates of the dependence
between two random variables z(si, tj) and z(sk, tl) at two
spatio-temporal locations (si, tj) and (sk, tl) when ‖ si−sk ‖
or |tj − tl| increases.
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B. Best Sensor Locations

We first discretized the room into a 100 × 100 grid; thus,
each small spatial area of the grid is approximately sized
20cm × 15cm, which is empirically reasonable to locate
our available Libelium and Monnit sensor nodes. According
to the layout map of the room, all unavailable areas of
cubicles, lab benches, personal computer tables, occupants’
desk stations and experimental facilities are identified. We then
removed all cells on the grid, which correspondingly overlap
the unavailable areas, from the set of the possible points. The
cells remaining on the grid are all the possible locations that
can be utilized to deploy the wireless sensors. In fact, there
are 4683 possible sensor locations visually illustrated by the
blue circle points in Fig. 1.

It is now supposed that we would find 10 best locations
in the room to position the temperature wireless sensors for
future data collection. As discussed in Section IV, one can
near-optimally find those best locations by implementing the
Algorithm 1 into the collective dataset. After running the
algorithm with model1, the 10 near-optimal locations for
effectively deploying the temperature sensors were found and
shown in Fig. 2. It is to be noted that they are numbered from
most to least informative positions. In equivalent words, if we
have only 6 temperature sensors, we will locate them at the
positions numbered from 1 to 6.

For the purpose of comparisons, in this illustrative imple-
mentation, we also conducted the conditional entropy and
mutual information based methods for finding their own best
sensor positions. In the setting, we assumed that locations
of interest are on a 150 × 150 grid; that is, N = 22500.
Moreover, from the experimental measurements, we observed
that the indoor temperature is dynamic yet approximately
weekly iterative. Thus, we defined M = 84. In other words,
we would like the model to predict the indoor environment
in a whole week at every 2 hours. Unfortunately, under this
setting, the spatio-temporal covariance matrix ΣZ(sN ,tM ) is
sized 1890000×1890000, which requires a memory of 26614
GB. This requirement is not practically feasible. Consequently,
we reset the locations of interest on a 10 × 10 grid, and
then N = 100. Note that the more locations of interest are
validated, the more accurate are the results obtained. Then
the final setting-up parameters for evaluating the methods are
N = 100, M = 84, p = 4683, n = 10, m = 84. The
computing time of each approach for finding the best 10 sensor
locations is summarized in Table I, where the numbers were
recorded when the methods, which were implemented on R
V3.0, run on a PC of 3.1GHz Intel Core i5-2400 Processor.
It can be clearly seen that our approach can achieve the 10
best locations for deploying the 10 temperature sensors in the
tested room S2.1-B4-01 in 29 seconds, while the two other
methods in literature returned the solutions in approximate 4
months and 2 months, respectively.

C. Prediction Results

For more evaluations of the proposed method, we now
present and compare the results of predictions in this subsec-
tion. Due to limited number of sensors, we separated the 20

TABLE I: COMPARISON OF RUNNING TIME FOR FIND-
ING 10 BEST SENSOR LOCATIONS IN ROOM S2.1-B4-01

Number of
possible locations

Running time of the methods

The proposed MI Entropy

4683 29 seconds 110 days 59 days

available temperature wireless sensors into three groups. More
specifically, we first used 6 sensors to locate at 6 locations
numbered from 1 to 6 in Fig. 2. We also utilized two other sets
of the 6 temperature sensors each to place at the best locations
found by the two existing methods based on conditional
entropy and mutual information. These sensors then measured
temperature in the tested room in another week, from 23 to
29 May 2016. By using the same settings of the wireless
network configurations, each sensor also sampled the indoor
temperature every two hours. Hence, each group of 6 wireless
sensors collected 504 temperature values in the studied week.
The 504 measurements in each sensor group were employed
to statistically learn space-time models of the heat in the
room. For the three approaches used to be compared, we have
three different models, respectively. We subsequently named
them as modelproposed for the proposed method, modelMI

and modelentropy for the others. All the three temperature
models modelproposed, modelMI and modelentropy could be
then employed to predict and estimate the heat at any time
and any locations in the experimental room. For instance, to
validate the predictions, we utilized these three space-time
models to predict the temperature fields in the whole test room
at 16:45 on 26 May 2016, when there were no measurements
carried out. The resulting maps are demonstrated in Figures
3c to 3h. More importantly, for the purpose of comparisons,
the maps of the temperature in the room at the same time
were also predicted by the use of the 4 week measurement
based model model1, which are illustrated in Figures 3a and
3b. It is noticed that interested readers may be referred to our
previous work [51] for more details about effectiveness of the
spatial-temporal prediction method employed in this work.

Illustratively, the predicted heat map shown in Fig. 3c cre-
ated by the proposed method with the measurements gathered
by 6 wireless sensors is comparable with that illustrated in
Fig. 3a created by a 20 sensor network, which is considered
as a ground truth. However, 6 sensors located at positions
obtained by the mutual information and conditional entropy
based methods could not gain much information in the furthest
corner of the room, which leads to qualitative contrast in
terms of the prediction at the top right corners of Figures
3e and 3g, respectively, as compared with the ground truth
in Fig. 3a. More importantly, comparability and contrast can
be qualitatively seen in the prediction standard deviation error
surfaces, as demonstrated in Figures 3b, 3d, 3f and 3h. The
prediction error variances at points obtained by the model
modelproposed learned from the spatio-temporal measurements
of the 6 near-optimal locations based sensors in Fig. 3d are
comparable with those at corresponding positions in Fig. 3b,
which were created by the space-time model model1 using
all the 6720 sensor readings gathered in the 4 weeks by the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: Predicted temperature fields (left column) and prediction standard deviation errors (right column) at 16:45 on 26 May
2016, obtained by the model learned by measurements collected by 20 sensors as shown in (a) and (b), and by spatio-temporal
models learned by the use of different sets of measurements gathered by: 6 sensors at locations found by the proposed algorithm
as shown in (c) and (d); 6 sensors at positions found by the MI method as shown in (e) and (f); and 6 sensors at locations
found by the entropy method. Ranges of fields and standard deviation errors are demonstrated in color bars.
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TABLE II: ROOT MEAN SQUARE ERRORS BETWEEN
THE PREDICTION FIELDS OBTAINED BY 6 AND 20
SENSORS

Root mean square errors
The proposed MI Entropy

0.199 0.266 0.285

network of 20 wireless temperature sensors. Nevertheless, the
prediction standard deviation errors in Fig. 3f obtained by the
model modelMI , which was trained by the observations of
the temperature sensors positioned at the positions obtained by
the mutual information based technique, are much higher than
those in Figures 3b and 3d, compared at equivalent positions.
To quantify the comparisons, we computed root mean square
errors between the prediction fields illustrated in Figures 3c,
3e and 3g and the ground truth shown in Fig. 3a. The errors
are summarized in Table II.

It is noted that since prediction error at a sensor location is
zero, the sensor locations found by the mutual information
and conditional entropy based algorithms can be seen in
the standard deviation error maps in Figures 3f and 3h. In
other words, 6 sensors utilized in the mutual information
and conditional entropy based techniques are located in the
middles of 6 red round marks on the standard deviation error
maps in Figures 3f and 3h, respectively.

In general, even though there is a network of only 6 wireless
sensors deployed at the locations found by our proposed
approach to be utilized in taking the temperature measure-
ments in a week, the results of its spatio-temporal model in
terms of both the predicted field and the prediction standard
deviation errors are highly reasonable as compared with those
obtained by the model of a 20 wireless sensor network with
4 week collections. More particularly, the better results of the
prediction accuracy as shown in Fig. 3 practically consolidate
the direct criterion of finding optimal sensor locations in our
proposed approach to outperform the indirect criteria in the
two other information-theoretic methods.

In another aspect of evaluating the performances of the
proposed algorithm, we considered the bound for the solutions
obtained in the real experiments conducted. As presented in
Theorem 3, the near-optimal solutions for the sensor deploy-
ments in the tested room, S2.1-B4-01 at Nanyang Technolog-
ical University campus obtained by our method are definitely
guaranteed. In these conducted experiments, we intended to
find 6 best locations for deploying the 6 temperature sensors in
the space. That is, the results are at least bounded by a level of
67.23% as compared with the optimal performance. This guar-
antee level is better than the bound level of 1− 1

e ' 63.21%
obtained by the information theory based approaches of the
conditional entropy [28], [29] and the mutual information
[30]–[32].

VII. CONCLUSIONS

The paper has considered the problem of optimally deploy-
ing environmental sensors for monitoring spatio-temporal phe-
nomena. Based on space-time Gaussian processes, a separable

optimization approach to efficiently find the best environmen-
tal sensor locations in the spaces has been developed, which
is only dependent on spatial variations, though measurements
are gathered over time. The optimality problem of sensor
deployments is near-optimally resolved by an approximation
algorithm, yet its performances are guaranteed by a level
of 1 −

(
1− 1

n

)n
as compared with the optimum, where n

is the number of sensors. The proposed approach is also
theoretically and practically demonstrated to outperform the
existing methods. The efficiency of the proposed technique
has been extensively evaluated in a real tested spatio-temporal
environment in a university building.
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