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We investigate the role of quantum interference phenomena on the characteristics of the fields
radiated by an array of quantum emitters. In analogy to, but distinct from classical outcomes, we
demonstrate that the array geometry empowers control over direction-dependent photon statistics
of arbitrary order. Our formulation enables the recognition of configurations providing spatial cor-
relations with no classical counterpart. For example, we identify a system in which the angular
distribution of the average number of photons is independent of the number and position of the
emitters, while its higher-order photon statistics exhibit a directional behavior. These results ex-
tend our understanding of the fields generated by ensembles of quantum emitters, with potential
applications to nonclassical light sources.

I. INTRODUCTION

Controlling the emission and interaction properties of an
ensemble of quantum emitters plays a central role in quan-
tum optics. The interactions between the emitters gener-
ally enrich the response of the system, leading to the emer-
gence of collective phenomena such as superradiance [1, 2],
subradiance [3], collective Lamb shift [4, 5], boosting strong
coupling to an optical mode [6] and preserving antibunch-
ing in large samples [7]. Consequently, arrays of quantum
emitters find applications to a variety of quantum engi-
neering applications [8–11]. The geometry of the arrays in
these systems is utilized to tune the nature and the strength
of the interactions between the individual quantum emit-
ters. Recent advances on the deterministic fabrication of
quantum emitter arrays, including one-dimensional [12] and
two-dimensional [13] arrays of cold atoms, color centers in
arrays of dielectric pillars [14], and atomically thin semi-
conductors on top of patterned surfaces [15], are expected
to push forward further experimental efforts, as well as to
reveal new possibilities.

It is well-known that classical antenna arrays enable
shaping and reconfiguring the emitted power pattern be-
yond the capabilities of their single antenna elements [16–
19]. In essence, by controlling the position of the radiators
and the magnitude and phase of the signals driving them,
one can direct the overall emission towards a preferred di-
rection, or even dynamically scan it. Antenna arrays are
nowadays a well-established technology, with applications
ranging from small handset communication devices to large
radar systems and radiotelescopes [20]. In contrast with
arrays of quantum emitters, classical antenna arrays are
primarily based on interference processes. The interaction
between the individual antenna elements in the array is

usually referred to as the coupling between the elements.
It is often considered to be a hard factor to control or even
a detrimental factor since it can induce negative outcomes
such as scan blindness [19]. In many cases, the coupling
between the emitters can be reduced with the use of elec-
tromagnetic band gap structures [21, 22] or meta-structures
[23], and/or compensated with reconfigurable feeding net-
works [17] and signal processing techniques [24].

The conceptual differences between arrays of classical
and quantum emitters has motivated us to propose the
concept of quantum antenna arrays, i.e., geometrical ar-
rangements of quantum radiators, whose emission proper-
ties are primarily designed based on quantum interference
processes. As we will demonstrate, the degrees of freedom
and functionalities of quantum antenna arrays far exceed
those of their classical counterparts. This is due to the fact
that not only the emitted intensity, but also any photon
statistic can be controlled by adjusting the geometry of the
array.

II. THEORY OF QUANTUM ANTENNA ARRAYS

As schematically depicted in Fig. 1, we start by consid-
ering a generic array of N coherent quantum emitters,
each modeled as a two-level {|en〉 , |gn〉} system located
at position rn with transition frequency ωn and with its
dipole moment aligned along the Z-axis, pn = uz pn. The
source electric field operator (positive frequency compo-

nent), Ê(+) (r, t) = uθ Ê
(+)
θ (r, t), can be written as follows

[25–27] (see also Appendix A)

Ê
(+)
θ (r, t) =

µ0

4π

sinθ

r

N∑
n=1

pn ∂
2
t σ̂n

(
td +

ur · rn
c

)
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FIG. 1. Conceptual sketch of the system: an array of N quan-
tum emitters, modeled as two-level {|en〉 , |gn〉} systems with
dipole moments pn, located at positions rn, that emit photons
into different directions, uq, and have photon statistics which
depend on the geometry of the array.

where td = t − r/c is the delayed time with respect to the
origin of the coordinates, and σ̂n (t) is the annihilation op-
erator associated with the nth emitter. The emitters will in
general exhibit complex dynamics due to their mutual in-
teractions. However, here we are interested in the quantum
interference phenomena originating from their geometrical
arrangement.

In order to emphasize these aspects, we will restrict
our analysis to sparse arrays where those couplings be-
tween the emitters reduce to a small perturbation. Then,
we can safely assume that the individual emitter dynam-
ics are described via an exponential decay: σ̂n (t) '
e−iωnte−γntσ̂ (t = 0), which yields ∂2t σ̂n (t) ' −ω2

n σ̂n (t),
with γn being the decay rate of the nth emitter (see Ap-
pendix B for a discussion on the accuracy of this approxi-
mation). This regime brings the outcomes closer to those
from classical antenna arrays, where interference is the
main mechanism in tailoring the far-field emission prop-
erties. Within this regime Eq. (1) reduces to

Ê
(+)
θ (r, t) =

sinθ

r

N∑
n=1

Bn σ̂n e
−(iωn+γn)td e−i

ωn
c ur·rn (2)

with Bn = −µ0 ω
2
n pn/(4π). We omit here and below the

(t = 0) labels in the atomic operators to simplify notations.
Next, we investigate the impact of the array geometry

within different photon statistics. Following Glauber’s sem-
inal work [28, 29], we compute the probability densities

PL (u1, t1; . . . ;uL, tL) per unit (time)
L

per (solid angle)
L

of
measuring L photons at times t1, · · · , tL and in directions
u1, · · · ,uL, as being proportional to the field correlation
functions

PL ∝ r2L
〈
Ê

(−)
θ,1 . . . Ê

(−)
θ,L Ê

(+)
θ,L . . . Ê

(+)
θ,1

〉
(3)

with Ê
(−)
θ,1 = Ê

(−)
θ (r1, t1) and so on. Note that any other

photon statistic can be constructed from these probabil-
ity densities [30, 31]. In general, the probability density
PL (u1, t1; . . . ;uL, tL) described by Eq. (3) leads to inter-
esting spatiotemporal correlations. However, here we are
considering decoupled emitters, for which their time evo-
lution is uncorrelated. As a result, the time evolution of
Eq. (3) is characterized by exp [i(ωnl

− ωml
)tl] factors that

lead to an oscillatory behavior of the angular properties
of the photon statistics, as well as to exp [−(γnl

+ γml
)tl]

factors that lead to an overall exponential decay. In or-
der to emphasize the directional behavior of the emissions,
irrespective of the details associated with their times of ar-
rival, we define here the time integral of these probability
densities:

gL (u1, . . . ,uL) =

L∏
l=1

ˆ ∞
0

dtl PL (u1, t1; . . . ;uL, tL) (4)

The functions (4) include time integrals over rapidly os-
cillatory functions that are related to the transition fre-
quency of the dipoles, ωn. Unless the transition frequencies
are very close to each other, these integrals will average to
zero over time, and interference phenomena might only be
observable for short time intervals. In general, this property
indicates that no quantum interference of any significance
will take place unless the emitters have similar transition
frequencies. Hereafter, we assume all emitters to be iden-
tical (ωn = ω0, pn = p ∀n). Then, defining the L-order
generalized quantum array factor:

fL (u1, . . . ,uL) =

N∑
n1,...,nL=1

N∑
m1,...,mL=1

〈
σ̂†n1

. . . σ̂†nL
σ̂mL

. . . σ̂m1

〉 L∏
p=1

eik0up·rnp

L∏
q=1

e−ik0uq·rmq (5)

Eq.(4) reduces to

gL (u1, . . . ,uL) ∝ AL
(

L∏
l=1

sin2θl

)
fL (u1, . . . ,uL) (6)

with A =
(
µ0

4π ω
2
0 p
)2 /

(2γ). The gL integrated correlations
represent the average number of L-photon coincidence mea-
surements for any time delay. In the next sections, we will
focus on the first- and second-order correlations. For the
sake of completeness, the generalization of this theory to
arrays of non-identical emitters with variable polarization
is reported Appendix C.

III. FIRST-ORDER CORRELATIONS

The first-order correlation, g1 (u1) ∝ A sinθ1 f1 (u1) rep-
resents the average number of photons measured by a detec-
tor placed along the direction u1. The associated first-order
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FIG. 2. Linear array of N = 3 quantum emitters located along the Z-axis with constant separation d = λ0. (a) Sketch of the
geometry. (b) First-order correlation patterns, g1 (u1) as a function of θ1 for three different initial states: symmetrical single-
excitation state |ψS1〉, symmetrical N -excitation state |ψSN 〉, and symmetrical two-excitation state |ψS2〉. (c) Same as in (b) but
for the second-order correlation function g1 (u1,u2) as a function of u2 for u1 = ux (indicated as a gray dashed arrow).

quantum array factor can be written as

f1 (u1) =

N∑
n,m=1

〈
σ̂†nσ̂m

〉
eiku1·rne−iku1·rm (7)

It is clear from (7) that the first-order generalized quantum
array factor is very similar to the magnitude squared of the
classical array factor [16–19], with the initial-time correla-
tion

〈
σ̂†nσ̂m

〉
playing a role similar to that of the product

of the signals feeding the nth and mth radiating elements.
However, there is also an important difference that induces
nonclassical effects even at the average number of photons
level. Specifically, the initial-time correlation is not always
necessarily factored as the product of two c-numbers, e.g.,
as
〈
σ̂†nσ̂m

〉
= a∗nam. As a consequence, access is granted to

configurations forbidden in the classical case.

One then wonders if these extra degrees of freedom en-
able an increase of the directivity, i.e., in the average num-
ber of photons in a specified direction, beyond the classical
limits. It can be demonstrated that this is not the case. Be-
cause the initial-time correlation has some restrictions, e.g.,
a matrix formed by elements

〈
σ†nσm

〉
must be Hermitian

and positive semidefinite, it is possible to prove formally
that the directivity cannot be increased beyond the classi-
cal limit (see Appendix D).

For any given array geometry, very different angular re-
sponses will be obtained as a function of the initial state of
the system, and different experimental techniques could be
applied for the preparation of any initial state of the sys-
tem. Initialization laser pulses can be employed for initial
states corresponding to product states (see, e.g., [32]), while
more complex entangled states with a specific phase pro-
file could be implemented with laser-assisted interactions
[33, 34]. We take here, for example, a single-excitation ini-

tial state |ψ1〉 =
∑N
r=1 arσ̂

†
r |0〉, for which we recover a fac-

torization analogous to the classical case
〈
σ̂†nσ̂m

〉
= a∗nam.

Subsequently, the first-order generalized array factor re-
duces to

f1,ψ1 (u1) =

∣∣∣∣∣
N∑
m=1

ame
−ik0u1·rm

∣∣∣∣∣
2

(8)

Therefore, it can be concluded that with the decay of
a single-excitation, the radiated field can be beamformed
exactly as in the classical case, the probability amplitudes
playing a role analogous to the currents driving the classical
antenna elements. This is an exciting outcome because it
means that all the machinery developed for the synthesis of
classical antenna arrays can be directly applied to single-
excitation states.

Nevertheless, configurations without a classical counter-
part are of even greater interest. For example, in the
case in which all N emitters are initially excited, i.e., with

|ψSN 〉 =
∏N
r=1 σ̂

†
r |0〉, we find

〈
σ̂†nσ̂m

〉
= δnm, and hence

f1,ψSN
= N (9)

This result implies that the emitters do not interfere and,
hence, do not modify the directional properties of the aver-
age number of photons. In other words, the emission pat-
tern in terms of the average number of photons is identical
to the individual emitter pattern, a sin2θ function, inde-
pendent of the number and geometrical arrangement of the
emitters. This is a quantum effect with no counterpart in
classical antenna array theory.

Many other states can be studied. For ex-
ample, the initial-time correlation function for a
symmetric two-excitation state, i.e., for |ψS2〉 =∑N−1
r=1

∑N
s=r+1 σ̂†rσ̂

†
s |0〉

/√
C2, with normalization con-

stant C2 = N(N − 1)/2, is given by
〈
σ̂†nσ̂m

〉
= C−12 ((N −

2) + δnm). The first-order generalized array factor is then



4

given by

f1,ψS2
(u1) =

2

(N − 1)
+

2 (N − 2)

N (N − 1)

∣∣∣∣∣
N∑
m=1

e−ik0u1·rm

∣∣∣∣∣
2

(10)
It can then be concluded that this initial state also ex-
hibits directional properties in the average number of pho-
tons which corresponds to a weighted average of the single-
excitation and N -excitation state responses.

As an illustrative example, Fig. 2 gathers the g1 (u1) an-
gular patterns for a linear, vertical array of N = 3 emit-
ters, each emitter separated from another by one wave-
length, i.e., for the emitter locations rn = uznλ0. The
geometry is rotationally symmetric around the Z-axis and,
hence, the patterns can be plotted simply in the XZ-plane.
This is a canonical antenna array configuration that en-
hances the directivity by channeling the emitted radiation
into the azimuthal plane (θ = π/2) [16]. Fig. 2 shows that
the emission directivity is indeed enhanced for the single-
and two-excitation states, i.e., the emitted photons will be
constrained to an narrower set of directions than in the
single emitter case (shown as a dashed black line). In con-
trast, the angular pattern for the case in which all three
emitters are initially excited is identical to that of the sin-
gle emitter. This outcome confirms the peculiar effect that
the directionality on the average number of photons in the
case in which all the identical emitters are excited is not
affected by their array configuration. However, in general,
the geometry of the array will have an impact on the pho-
ton statistics of any order. Moreover, the angular patterns
of different-order photon correlations can have qualitatively
different properties. In order to illustrate this effect, in the
next section we address the second order correlation for this
system.

IV. SECOND-ORDER CORRELATIONS

The second-order time integrated correlation is given
by: g2 (u1,u2) ∝ sinθ1 sinθ2 f2 (u1,u2). It represents the
average number of two-photon coincidences for any time
delay. This is a good figure of merit of how direction-
ally bunched the emitted photons are. Specifically, since
Glauber’s probability densities are nonexclusive quantities
[30], g2 (u1,u2) = 0 implies that no photon coincidences of
any order will be recorded along the directions u1 and u2

for the same decay process. Consequently, a highly direc-
tive pattern of g2 (u1,u2) indicates that all emitted photons
are bunched into a narrow set of directions.

Similar to the first-order array factor, the second-order
array factor f2 (u1,u2) is determined by the initial-time
correlation function,

〈
σ†n1

σ†n2
σm2σm1

〉
, and the phase fac-

tors associated with the position of the emitters. How-
ever, the angular patterns of the second-order correlations
are essentially different from those of the first-order cor-

relations. For example, Fig. 2(c) depicts g2 (u1,u2) for
u1 = ux as a function of u2, for the configuration studied
in Fig. 2(b). In particular, for the single-excitation state
we trivially obtain:

〈
σ†n1

σ†n2
σm2σm1

〉
= 0, which means

g2 (u1,u2) = 0 ∀u1,u2. This nonclassical effect, analogous
to antibunching, simply relates to the impossibility of mea-
suring two excitations from a single-excitation state (i.e.,
recall that higher-order multi-photon processes are disre-
garded in our model).

Interestingly, for the N -excitation state we obtain〈
σ†n1

σ†n2
σm2

σm1

〉
= (1−δm1m2

)(δn1m1
δn1m2

+δn1m2
δn2m1

).
Then, the second-order generalized array factor can be
written as follows

f2,ψSN
(u1,u2) = N (N − 2)+

∣∣∣∣∣
N∑
m=1

e−ik0(u1−u2)·rm

∣∣∣∣∣
2

(11)

This nontrivial correlation leads to a directional behavior
in g2 (u1,u2), despite the absence of any directionality in
g1 (u1). We find in this manner that the photons are prob-
abilistically emitted with no directional preference other
than the pattern of the single emitter, i.e, with no direc-
tionality for g1 (u1). On the other hand, for a given decay
process they will be all measured bunched around a set of
directions, i.e., with the directionality of g2 (u1,u2).

This effect is somewhat analogous to two-photon interfer-
ence in beamsplitters. The two photons are equally prob-
able to exit this system into any of the two output ports.
However, both are certain to exit into the same output port
[25]. Here, a number N of photons are equally probable
(up to the individual emitter pattern) to exit the system
on a continuum of output channels (i.e., the directions), but
they are certain to be measured within a narrow interval
of directions. This effect can be more clearly appreciated
in Fig. 3. The second-order correlation g2 (u1,u2) is pre-
sented for three different u1 given by (φ1 = 0, θ1 = 0.3π),
(φ1 = 0, θ1 = 0.4π), and (φ1 = 0, θ1 = 0.5π). The angu-
lar patterns consist of lobes centered around each u1, plus
additional grating lobes.

These photon statistic outcomes can then be tailored by
changing the geometry of the array. To this end, differ-
ent design techniques could be developed, which are likely
to exhibit similarities and differences with respect to syn-
thesis techniques of classical antenna arrays. In order to
illustrate this point, Fig. 4 depicts g2 (u1,u2) as a function
of the number of emitters and the distance of separation be-
tween them. In analogy with classical antenna arrays, we
find that increasing the separation between the emitters
results in the appearance of grating lobes, i.e., the emit-
ted photons will be bunched around not one, but a set of
multiple lobes. However, in contrast with classical antenna
arrays, it is found that the directivity does not increase
monotonically along with the number of emitters. On the
contrary, the g2 (u1,u2) results in the superposition of the
single emitter pattern with that of a highly directive lobe.
These results suggest that nonclassical techniques will have
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to be developed for the synthesis of quantum antenna ar-
rays and each of their different photon correlations.

𝜃1 = 0.3 𝜋

𝜃1 = 0.4 𝜋

𝜃1 = 0.5 𝜋

FIG. 3. Normalized second-order angular correlation
function g2 (u1,u2) evaluated for a vertical linear ar-
ray of N = 3 emitters, with all emitters initially ex-
cited, when u1 (φ1 = 0, θ1 = 0.5π), u1 (φ1 = 0, θ1 = 0.4π), and
u1 (φ1 = 0, θ1 = 0.3π). Gray dashed arrow indicates the direc-
tion of u1 in each subpanel.

To finalize the discussion, we come back to the two-
excitation state, with initial-time second-order correla-
tion function:

〈
σ̂†n1

σ̂†n2
σ̂m2 σ̂m1

〉
= (1− δn1n2) (1− δm1m2).

Subsequently, the associated second-order array factor can
be compactly written as follows

f2,ψS2
(u1,u2) =

1

C2

∣∣∣∣∣
N∑

n,m=1

(1− δnm) e−ik0u2·rne−ik0u1·rm

∣∣∣∣∣
2

(12)
Fig. 2(c) depicts the g2 (u1,u2) pattern for u1 = ux for

this state. We find that the second-order correlations for
the two-excitation state exhibit directional properties sim-
ilar to the first-order correlation. This implies that the
photons are not bunched beyond the directional properties
imposed by the average number of photons.

V. CONCLUSIONS

Our results have theoretically demonstrated that it is
possible to engineer the angular properties of different pho-
ton statistics by adjusting the geometry of an array of
quantum emitters. Our methodology highlights the role
that quantum interference processes play rather than the
interactions between the emitters. As a consequence, we
have linked the concepts of arrays of quantum emitters
and classical antenna arrays, i.e., we have presented results
for quantum antenna arrays. The proposed formulation,
based on a generalized array factor, facilitates the analy-
sis of these systems. By using it we were able to demon-
strate that the directivity in the average number of pho-
tons cannot beat the classical limit, as well as to identify
configurations with no classical counterpart. For example,
we demonstrated that there is an initial state for which

𝑑 = 𝜆0

𝑑 = 2 λ0

𝑑 = 3 λ0

𝑁 = 3

𝑁 = 5

𝑁 = 25

(a)

(b)

FIG. 4. Normalized second-order angular correlation function
g2 (u1,u2) evaluated with u1 (φ1 = 0, θ1 = 0.5π) for a linear ver-
tical array of (a) N = 3 elements with separation distances
d = 1λ0, d = 2λ0 and d = 3λ0, and (b) a separation distance
d = 1λ0 and arrays with N = 3, N = 5, and N = 25 emit-
ters. Gray dashed arrow indicates the direction of u1 in each
subpanel.

the emission pattern in terms of the average number of
photons is independent of the number and position of the
emitters. We further demonstrated that higher-order corre-
lations also exhibit directivity even in that case. These out-
comes suggest that these quantum antenna arrays can be
used as sources of directionally entangled photon bunches.

Further evolution of these concepts can be envisioned on
the basis of previous experiences with classical antenna ar-
rays. Many configurations could be studied, including mul-
tiple array topologies, their interaction with nanophotonic
structures, as well as the analysis of additional correlation
functions. We believe that these results expand our cur-
rent understanding of the emission properties of ensembles
of quantum emitters, and they might also find applications
as nonclassical light sources.

Appendix A: Source field in the far-zone

Here we provide the derivation of Eq. (1), i.e., the expres-
sion of the positive frequency source electric field operator.
For the sake of completeness, we assume that the array of
quantum emitters are coupled to a common macroscopic
photonic environment, characterized by the relative per-
mittivity, ε (r, ωf ) = εR (r, ωf ) + i εI (r, ωf ), and modeled
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as a bath of polaritonic modes following the macroscopic
quantum electrodynamics (QED) formalism (see, e.g., [35]).
This approach allows us to keep the generality for an array
located in an arbitrary photonic enviroment. Later on we
take free-space as a limiting case as is usually done in this
formalism (see, e.g., [36] and the references therein).

Within this model, the Hamiltonian of the system in the

Heisenberg picture is given by Ĥ = Ĥ0 + ĤI with Ĥ0 =∑N
n=1

}ωn

2 σ̂zn (t) +
´
d3r
´∞
0
dωf}ωf f̂† (r, ωf ; t) · f̂ (r, ωf ; t)

and ĤI = −
∑N
n=1 p̂n (t) · Ê (rn; t). Here, f̂ (r, ωf ; t)

are polaritonic annihilation operators representing exci-
tations of the field-matter system, obeying the equal-

time commutation relation
[
f̂ (r, ωf ; t) , f̂

(
r′, ω′f ; t

)]
=

Îδ (r− r′) δ
(
ωf − ω′f

)
, and σ̂zn, σ̂n are the usual Pauli

operators for the two-level systems. Similarly, p̂n (t) =
pnσ̂n (t) + p∗nσ̂

†
n (t) is the electric dipole operator, and the

electric field operator is given by

Ê (r; t) =

ˆ ∞
0

dωf

ˆ
d3r′GE (r, r′, ωf ) · f̂ (r′, ωf ; t) + h.c.

(A1)
where we have introduced the response function

GE (r, r′, ωf ) = i

√
}
πε0

ω2
f

c2

√
εI (r′, ωf )G (r, r′, ωf ) (A2)

which is proportional to the classical dyadic Green’s func-
tion G (r, r′, ωf ).

Next we compute the Heisenberg equation of mo-

tion, i} ∂tÔ (t) =
[
Ô, Ĥ

]
, for the polaritonic operator

f̂ (r′, ωf ; t), and integrate it, leading to its decomposition
into the free-evolving and source fields associated with each
quantum emitter

f̂ (r′, ωf ; t) = f̂0 (r′, ωf ; t) +

N∑
n=1

f̂Sn (r′, ωf ; t) (A3)

with the definitions

f̂0 (r′, ωf ; t) = f̂ (r′, ωf ; t = 0) e−iωf t (A4)

f̂Sn (r′, ωf ; t) = − 1

i}

ˆ t

0

dτ e−iωf (t−τ) p̂n (τ)·G∗E (rn, r
′, ωf )

(A5)
Similarly, we can decompose the electric field operator into
the free-evolving and source parts

Ê (r; t) = Ê0 (r; t) +

N∑
n=1

ÊSn (r; t) (A6)

By using the completeness relation of the dyadic Green’s
function, as well as the fact that ImG (r, rn, ωf ) is an odd
function in ωf , the contribution of each emitter to the

source field can be written as a memory kernel acting of
the electric dipole operator

ÊSn (r; t) =

ˆ t

0

dτ K (r, rn, t− τ) · p̂n (τ) (A7)

with

K (r, rn, t) = i

ˆ ∞
−∞

dωf e
−iωf t

ω2
f

πε0c2
ImG (r, rn, ωf ) (A8)

We can then apply the Laplace transform to the operators,

Ô (ω) =
´∞
0
dω Ô (t) eiωt, so that equation (A7) can be

more conveniently rewritten as follows

ÊSn (r; ω) = ω2µ0 G (r, rn, ω) · p̂n (ω) (A9)

Next, we recall the decomposition of the electric dipole
operator as p̂n (τ) = pnσ̂n (t) + p∗nσ̂

†
n (t), which justi-

fies the decomposition of the source electric field opera-
tor into positive and negative frequency components. The
latter are related to the annihilation or creation of an elec-
tronic excitation at the n-th quantum emitter ÊSn (r; t) =

Ê
(+)
Sn (r; t) + Ê

(−)
Sn (r; t), with Ê

(−)
Sn (r; t) =

(
Ê

(+)
Sn (r; t)

)†
,

and

Ê
(+)
Sn (r; t) =

ˆ t

0

dτ K (r, rn, t− τ) · pn σ̂n (t) (A10)

Similarly, we can write the Laplace transform version of the
positive frequency component as follows

Ê
(+)
Sn (r; ω) = ω2µ0 G (r, rn, ω) · pn σ̂n (ω) (A11)

For simple comparisons with the classical antenna array
outcomes, we assume that the emitters are immersed in
free-space and the observation point for the electric field is
in the far-zone of this system. In such a case, the classical
dyadic Green’s function reduces to

G (r, rn, ω) =
eikRn

4πRn
(I− uRn

uRn
) (A12)

with k = ω/c, Rn = r − rn, Rn = |Rn|, and uRn
=

Rn/Rn. The first-order approximation to Rn is given by
Rn ' r − ur · rn. We keep the first-order approximation
in the exponential and the zero-order approximation in the
other terms. The dyadic Greens function then becomes

G (r, rn, ω) =
1

4πr
IT e

iω r−ur·rn
c (A13)

with IT = I − urur. In this manner, we can rewrite the
electric field operator as

Ê
(+)
S (r; ω) =

µ0

4πr

N∑
n=1

IT · pn ω2 σ̂n (ω) eiω
r−ur·rn

c (A14)
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Finally, we apply the inverse Laplace transform and get the
general form for the source electric field in the far zone

Ê
(+)
S (r; t) = − µ0

4πr

N∑
n=1

IT ·pn ∂2t σ̂n
(
td +

ur · rn
c

)
(A15)

with td = t − r/c. In the case in which all emitters are
oriented along the Z-axis, pn = pnuz, we recover Eq. (1).

Appendix B: Coupling between the emitters

The presented quantum array theory is based on the ap-
proximation that the interaction between the emitters only
produces a small perturbation on the dynamics of the indi-
vidual emitters. In analogy with classical antenna arrays,
this regime puts emphasis on quantum interference pro-
cesses instead of the interaction between the emitters. It
also simplifies the analysis, providing access to field corre-
lations that would be cumbersome to compute for large ar-
rays of strongly interacting quantum emitters. Naturally,
the accuracy of the model will eventually break down as
the separation between the emitters decreases. In order
to discuss this point, we can consider, as a first approxima-
tion, the description of the system within the Born-Markov
approximation. Consequently, the dynamics of the array
can be described by a quantum master equation (QME) in
Lindblad form (see, e.g., [37])

d

dt
ρ =

∑
n,m

Jnm
(
σ̂nρσ̂

†
m − ρσ̂†mσ̂n

)
+ h.c. (B1)

where h.c. denotes the Hermetian conjugate and we have
assumed a frame rotating at the frequency of the emitters,
ω0. The coupling parameters can then be written as follows
[38]

Jnm = −i ω2
0

}2ε0c2
pn ·G (rn, rm, ω0) · pm n 6= m (B2)

Jnn =
γ

2
=

ω2
0

}2ε0c2
pn · ImG (rn, rn, ω0) · pn (B3)

Operating in the weak-coupling regime implicitly assumes
that |Jnm| � ω0. In addition, it is clear from the formu-
lation above that the response of the system converges to
our model if the coupling parameters between the emitters
are much smaller than the decay rate, |Jnm| � γ. In or-
der to illustrate when the second condition is fulfilled, let
us consider, for example, the vertical linear array studied
in the examples of the main text, in which the quantum
emitters are located along the Z-axis. The figure below
represents the real (blue) and imaginary (red) parts of the
coupling parameters for two emitters, one located at z1 = 0
and another one located at z2, normalized to J11. On one

hand, the real part of the coupling parameter converges to
J11 as the separation tends to zero. On the other hand,
the imaginary part diverges in the same limit, as the re-
active coupling is monotonically increased. It is then clear
that the very-weak coupling regime will be inaccurate to
describe emitter arrays with subwavelength separation dis-
tances. However, the coupling parameters decrease as the
separation distance increases. Specifically, it can be con-
cluded from the figure that for a configuration in which the
separations are comparable to or larger than the wavelength
of the transition frequency, the coupling can be safely ne-
glected. We remark that the coupling in this and other
configurations could be reduced further with the use of pho-
tonic structures (e.g., photonic band-gap materials [21, 22]
and metamaterials [23]).

Re[J21]

Im[J21]

0.5 1.0 1.5 2.0

z2

λ

-1.5

-1.0

-0.5

0.5

1.0

1.5

FIG. 5. Real (blue solid line) and imaginary (red dashed line)
parts of the coupling parameter, J21, normalized to J11, as a
function of the emitter separation distance, z2.

Appendix C: Non-identical emitters

In this appendix we generalize the theory introduced
in Section II for the case of non-identical emitters. In
such a case, the electric field operator in the far-zone

will in general have two components, i.e., Ê(+) (r, t) =∑
a=θ,φ ua Ê

(+)
a (r, t), with

Ê(+)
a =

N∑
n=1

Bna (φ, θ)

r
σ̂n e

−(iωn+γn)td e−i
ωn
c un·rn (C1)

and Bna (φ, θ) = −µ0ω
2
n/(4π)ua · IT · pn. Similarly, the

photon statistics must discriminate which polarization of
the photons is being measured. For example, the probabil-
ity density given by Eq. (3) is now generalized as follows

PL (u1, t1, a1; . . . ;uL, tL, aL)

∝ r2L
〈
Ê

(−)
a1,1

. . . Ê
(−)
aL,L

Ê
(+)
aL,L

. . . Ê
(+)
a1,1

〉
(C2)

By introducing (C1) into (C2) we can calculate any direc-
tional, temporal, and polarization based correlation. From
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a practical standpoint, it might be interesting to consider
identical emitters with a variable polarization. In such a
case, the time-integrated correlation (4) is generalized as
follows:

g (u1, a1; . . . ;uL, aL) ∝ AL
∑

n1,...nL

∑
m1,...mL

L∏
l=1

|cal(φl, θl)|2

〈
σ̂†n1

. . . σ̂†nL
σ̂mL

. . . σ̂m1

〉 L∏
l=1

ei
ω0
c ul·rnl e−i

ω0
c ul·rml (C3)

with ca (φ, θ) = ua · IT · un. This formalism is readily
adapted to any initial state of the system. The final details
will intimately depend on the practical properties of the
emitters being considered for a specific application.

Appendix D: Maximal directivity in the average
number of photons

Here we demonstrate that quantum interference effects
cannot increase the directivity of the average number of
photons beyond the limits on directivity in the classical
case. Our starting point is the first-order time integrated
correlation function (average number of photons measured
along the direction u1)

g1 (u1) ∝ A sin2θ1 f1 (u1) (D1)

with the first-order generalized array factor being given by

f1 (u1) =

N∑
n,m=1

〈
σ̂†nσ̂m

〉
eik0u1·rne−ik0u1·rm (D2)

In the classical case we have
〈
σ̂†nσ̂m

〉
→ a∗nam, so that we

can write

f1 (u1) =

∣∣∣∣∣
N∑
m=1

am e
−ik0u1·rm

∣∣∣∣∣
2

(D3)

Even if it were more general than the classical case, let us
first analyze the constraints of

〈
σ̂†nσ̂m

〉
in the quantum case.

To this end, we define a matrix M with elements Mnm =〈
σ̂†nσ̂m

〉
and a vector e with elements en = e−ik0u1·rn . This

implies that f1 (u1) can be written as

f1 (u1) = e† ·M · e (D4)

First, we note that
〈
σ̂†nσ̂m

〉
=
〈
σ̂†mσ̂n

〉∗
and, hence, M is a

Hermitian matrix. In addition, since f1 (u1) is a real posi-
tive number, we then have that M is a positive semidefinite
matrix. Importantly, this implies that all its eigenvalues are

positive. Next, let λj and mj be the eigenvalues and asso-
ciated eigenvectors of M. Then the spectral decomposition
of M is given by

M =
∑
j

λjm
†
j ·mj (D5)

Subsequently, f1 (u1) can be rewritten as follows

f1 (u1) =
∑
j

λj e
† ·
{
m†j ·mj

}
· e

=
∑
j

λj

∣∣∣∣∣
N∑
n=1

mn(j) e
−ik0u1·rn

∣∣∣∣∣
2

(D6)

Equation (D6) demonstrates that the (quantum) general-
ized array factor describing the average number of photons
measured as a function of direction can be written as a lin-
ear combination of classical array factors for the same ar-
ray with different driving coefficients. Crucially, note that
the λj are always positive. Consequently, the contributions
from each classical array factor are added in all directions.
This decomposition suggests that the directivity cannot be
enhanced, but only decreased, in the quantum case.

Specifically, the directivity can be written as follows

D1 (u1) = 4π
g1 (u1)´
dΩ1 g1 (u1)

= 4π
sin2θ1

∑
j λj

∣∣∣∑N
n=1mn(j)e

−ik0u1·rn
∣∣∣2∑

j λj
´
dΩ1 sin2θ1

∣∣∣∑N
n=1mn(j)e−ik0u1·rn

∣∣∣2 (D7)

This situation is identical that obtained in the classical case
for orthogonal polarization channels. The latter cannot in-
crease the directivity since those channels contribute inde-
pendently to the power carried into the chosen direction
and the integral over all directions. This can be proven by
noting that if we optimize the mn(j) coefficients, we would
obtain the same optimal coefficients for any j, and there-
fore the sums in the numerator and denominator would
compensate in obtaining the maximal directivity. Conse-
quently, the directivity of a quantum emitter array cannot
exceed that of the corresponding classical antenna array.

Aside from this theoretical result, the decomposition
(D6) also brings some insight into the directivity effects
of some specific examples. For example, let us consider the

decay from a |ψSN 〉 =
∏N
n=1 σ̂

†
n |0〉 state, for which we ob-

tain
〈
σ̂†nσ̂m

〉
= δnm. This means that the matrix M is a

diagonal matrix. This matrix can be decomposed into a ba-
sis of eigenvectors: (1, 0, . . . , 0), (0, 1, 0, . . . , 0), and so on.
In turn, this means that f1 (u1) can be constructed as the
individual addition of the array factor of each individual
emitter and, hence, f1 (u1) = N .
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