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Abstract: 

Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also 

becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based 

therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. 

These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be 

dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with 

the different cargo types – nucleic acids, proteins/peptides, small molecules, synthetic nanomaterials, and large cargo. The 

review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption 

mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical 

strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. 

Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further 

experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to 

improve intracellular delivery. 
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1. Introduction 

Cells transmit information through molecules. Just as computer chips process information using electronic signals, the 

currency of information exchange in cells is molecules. DNA encodes RNA and proteins. Proteins perform work, transmit 

signals, and act as building blocks of cellular structure. Lipids form membranes and store energy. The cell is infinitely 

more complex than an electronic device - we are still learning how it works. In addition to the natural molecules that 

comprise cells, new technologies are enabling synthetic materials to be deployed within cells. Introducing molecules and 

materials into cells is an important step in decoding cell function, guiding cell fate, and reprogramming cell behaviour. 

Thus, intracellular delivery is central to our ability to understand biology and treat disease. 

 

This review is intended for anyone interested in intracellular delivery: the biologist looking for the most appropriate 

method for their project, the chemist investigating a novel molecule that requires verification in live cells, the engineer 

searching to develop innovative new intracellular delivery technology, the cell physiologist seeking a deeper 

understanding of the mechanisms underlying membrane disruption-based deliver; or the biomanufacturing expert 

examining ways to improve production efficiency. This review seeks to deconstruct the literature into a clear and 

understandable framework. More than 1500 papers are referenced but we’ve examined almost 4000 in the process of 

compiling this paper. 

 

The scope of this review is focused on membrane disruption-based intracellular delivery, as opposed to carrier-mediated 

methods. There are many more reviews on carriers (also known as vectors, vehicles, nanocarriers, and delivery 

nanoparticles), particularly for nucleic acid delivery1-9, including in this journal10-15. Comparatively fewer reviews exist on 

membrane disruption-based delivery, possibly due to the diverse array of approaches for creating holes in membranes. 

Part of the scope of the review also covers the different cargo types that researchers seek to deliver to the intracellular 

space. This analysis helps to frame why and how such diverse methods of intracellular delivery have come about, and the 

reasons behind membrane disruption-based delivery becoming a key approach. 

 

In this review we cover literature from 1911 to the present. However, the field of membrane disruption-mediated 

intracellular delivery was small until the mid 1980’s, which coincided with the rise of electroporation along with other 
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means of cell permeabilization. We have narrowed the discussion of membrane disruption-mediated delivery primarily to 

cells in vitro, as opposed to in vivo scenarios. The review will focus mostly on cells of animal and human origin, although 

we will sometimes venture beyond this scope to highlight particular examples in bacteria, microorganisms, and plants. 

 

To begin the review, we will first cover the types of cargo that researchers seek to deliver and their applications. This 

includes an overview of cargo chemical and dimensional properties, as these characteristics are inextricably linked to the 

challenges involved in their delivery. We then survey all methods of cargo delivery, defining what is membrane 

disruption-mediated and what is not. Specifically, we break this into two areas: 1) carrier-mediated delivery, which 

comprises endocytic and fusion entry pathways, and 2) membrane disruption-based intracellular delivery, which includes 

direct penetration and plasma membrane permeabilization mechanisms. Next, we provide relevant background on cell 

membranes, their function, and mechanisms of disruption and cell recovery. We then explore each membrane disruption 

technique in depth, highlighting its history, the mechanisms by which it operates, pros and cons, and where appropriate, a 

perspective on opportunities and potential feasibility. 

 

2. Intracellular Delivery Cargo & Applications 

2.1 Overview of Key Applications 

For decades researchers have been developing, synthesizing, and adapting molecules and materials for deployment to the 

intracellular environment. Most of these “cargo” are membrane impermeable and thus require intracellular delivery. In 

this section, we provide an overview of the key applications of intracellular delivery and the categories of cargo that 

researchers seek to deliver along with related challenges. 

 

2.1.1 Intracellular Delivery is Moving Beyond Traditional Transfection 

Transfection refers to the intracellular delivery of nucleic acids: DNA and RNA. Historically, nucleic acids have been the 

most popular cargo for intracellular delivery experiments performed at a population scale. Genetic modulation with DNA 

or RNA is viewed as a robust route for controlling cell function. Increasingly, however, researchers are discovering new 

ways to manipulate cells with other forms of cargo, for example, genome-editing nucleases15-18, synthetic intracellular 
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probes19,20, and combinations of proteins and/or inhibitors that guide cell fate21,22. This reflects a transition from the 

narrowly focused delivery of nucleic acids to a wider concept of “intracellular delivery”. To illustrate this, figure 1 depicts 

the diversity of cargo that can be delivered into cells and the potential outcomes. The schematic highlights the progression 

from input cargo to cellular output states and end-point applications. In all these cases, the prime challenge is that 

impermeable cargo must be introduced to the cell interior without untoward damage or perturbation to the cell. The five 

horizontal tiers in figure 1 are not mutually exclusive, having significant overlap between inputs and output. This “menu” 

of options reflects the combinatorial potential of intracellular delivery to analyze cell behaviour and engineer cell 

function. 
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Figure 1. Example motivations for intracellular delivery. Combinations of cells and cargo molecules / materials are shown on the left. 
Through intracellular delivery these cargoes are able to confer the outcome or application depicted on the right. The horizontal tiers 
are not mutually exclusive and substantial overlap exists between them. Abbreviations: TCR = T cell receptor. CAR = chimeric antigen 
receptor. CNT = carbon nanotube. HSCs = hematopoietic stem cells. 

 

2.1.2 Intracellular Delivery for Cell-Based Therapies 

In cell-based therapies, cells can be viewed as a living drug to be administered to the patient. Cells that have been 

modified, repaired or reprogrammed are introduced into a patient to confer a therapeutic effect or restore lost function. For 

example, when endogenous immune cells lose their ability to eliminate cancer cells, modified T cells can be introduced to 
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compensate23. In the case of CAR-T cells, novel function is conferred through induced expression of specific T cell 

receptors (TCRs) or chimeric antigen receptors (CARs) that guide the T cells to bind to, and attack, specific cancer 

cells24,25. Recent clinical trials against B cell malignancies validate the power of this approach26, which was approved in 

2017 by the United States Food and Drug Administration (FDA)27. 

 

Currently, most cell-based therapies are carried out through ex vivo manipulation, where cells are extracted from the 

patient are manipulated in vitro, and then reintroduced to the body to produce a therapeutic effect28. Intracellular delivery 

critical to the in vitro manipulation step. Ex vivo cell-based therapies have demonstrated efficacy in treating several 

human diseases in clinical trials28,29. Examples include hematopoietic stem cell (HSC) transplantation30 and engineering of 

immune cells for cancer immunotherapy23,25,31,32, as mentioned above. Disease-causing mutant HSCs can be genetically 

corrected with ex vivo gene therapy, whereby stable genomic modifications are used to confer a durable therapeutic 

effect28. Recent successes include viral vector-mediated gene therapy for correction of monogenic diseases such as severe 

combined immunodeficiency (SCID-X1), Wiskott-Aldrich syndrome (WAS), and β-thalassemia29. The future delivery of 

genome editing components for precise gene correction is anticipated to improve the safety and efficiency of HSC gene 

therapy above what is currently attained with viral vectors16,33,34. 

 

2.1.3 Intracellular Delivery in Stem Cell Reprogramming 

In 2006 it was shown that expressing a combination of transcription factors can induce a state of pluripotency in somatic 

cells, now known as induced pluripotent stem cells or iPSCs35. Early results were achieved with expression from 

potentially mutagenic viral vectors, an approach that is considered problematic for medical applications. To address this 

concern, iPSCs have since been produced via direct intracellular delivery of proteins36, mRNA37,38, and microRNA39 

together with small molecules40. Medical applications of iPSCs include in vitro expansion for drug screening of patient 

cells and gene therapy before re-implantation41. Reprogrammed iPSCs also offer potential for cell-based regenerative 

medicine42, for example to generate immune-compatible organs for patient transplants43, off-the-shelf T cells for cancer 

immunotherapy44, or gene-edited endothelial cells to correct hemophilia45. 

 

2.2 Cargo Categories for Intracellular Delivery 
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Cargoes of interest for intracellular delivery are highly variable in size, shape, architecture and chemical properties 

(Figure 2). They range from small hydrophilic molecules around 1 nm, such as the cryoprotectant trehalose, to large 

micron-sized organelles and microorganisms approaching the size of the cell itself. This scale represents more than 3 

orders of magnitude. It also encompasses a diversity of origins, from typical biomolecules like proteins, DNA, and RNA, 

to synthetic materials such as carbon nanotubes (CNTs), quantum dots, nanoparticles, and microdevices. In the following, 

we categorize these cargoes for discussion of their properties, delivery challenges, and intracellular applications. This 

analysis sheds light on how such diverse methods of intracellular delivery came about, and the factors underpinning the 

emergence of membrane disruption-based delivery as a key approach. 
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Figure 2. Size scale of cargoes of interest for intracellular delivery. The top left quadrant represents 5 nm in scale. The top right 
quadrant represents 50 nm in scale, including a pink box showing the size of the 5 nm quadrant. The bottom right quadrant 
represents 500 nm in scale, including a green box showing the size of the 50 nm quadrant. The bottom left quadrant represents 5 
μm in scale, including a blue box showing the size of the 500 nm quadrant. The properties of each of the cargoes and their 
applications are discussed throughout section 2. PBFI is a potassium indicating dye. ASO means antisense oligonucleotide. siRNA is 
small interfering RNA. miRNA is micro RNA. GFP stands for green fluorescent protein. RNP stands for ribonucleoprotein. TALEN 
means Transcription activator-like effector nuclease. ZFN means zinc finger nuclease. The pressure sensor is actually 6 μm long but is 
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scaled to half size for presentation purposes. Several images are reprinted with permission from Ref 46, Copyright 2012 Frontiers; Ref 
47, Copyright 2012 RSC, Ref 48, Copyright 2015 Springer Nature, Ref 49, Copyright 2013 Springer Nature. 

 

2.2.1 Small Molecules 

2.2.1.1 Small Molecule Drugs 

Small molecule drugs are organic compounds of 900 Da or less, a molecular weight which corresponds to a physical size 

of 1 nanometer or less (Table 1). The first small molecule drugs were natural products isolated from plants, microbes, 

marine invertebrates, or other lifeforms. An early example is morphine, a metabolite purified from opium extract in 1815 

and dispensed by Merck as pain relieving medicine from 182750. Today thousands of small molecule drugs are used as 

medicines. Advances in chemistry have enabled the purification of countless natural products, production of derivatives 

and mimics of them, or production of completely synthetic compounds50. 

 

If a drug target is intracellular, one of three scenarios makes it feasible 1) passive diffusion across the membrane, 2) active 

transport via membrane proteins, or 3) intracellular delivery. Small molecules that exhibit passive membrane permeability 

usually align with Lipinski’s classic “rule of 5”51. Such molecules should ideally be less than 500 Da, of intermediate 

lipophilicity, of limited hydrogen bonding capacity, and uncharged. These requirements have been used to narrow drug 

discovery efforts to candidates that are likely to be bioavailable. This is especially important for synthetic molecules, 

which lack endogenous transport processes. On the other hand, a number of natural products undergo active transport, and 

in these cases do not need to be permeable or obey Lipinski’s rule of 552. Oxidized ascorbate, for example, is membrane 

impermeable due to its hydrophilic nature but readily undergoes transport into cells through GLUT1, a glucose transporter 

that is overexpressed in many cancer cells53. 

 

In instances where small molecules are neither permeable nor actively transported, intracellular delivery is required. One 

of the simplest strategies is to administer the molecule alongside a solvent such as ethanol or DMSO. Not only do these 

solvents improve the solubility of the small molecule, but they also increase the incidence of nanoscale membrane defects 

that assist the passage of small molecules across membranes54. Alternatively, several small molecule anti-cancer drugs 

have been encapsulated in nanocarriers such as liposomes to improve their intracellular delivery1. Intracellular delivery 

enables the deployment of drugs that are larger than 500 Da. An example is bleomycin (Mw 1.4 kDa, ~2 nm diameter), an 
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anti-cancer drug with poor permeability due to its positive charge and hydrophilicity. By using the intracellular delivery 

with electroporation, bleomycin potency can be increased more than a hundred fold55,56. This strategy has been 

demonstrated both in vitro and in vivo56. 

 

2.2.1.2 Small Molecule Probes 

In addition to drugs, another category where small molecules are useful is as intracellular probes57. Probe molecules are 

capable of optically reporting membrane potential58,59, pH60,61, and intracellular concentrations of K+62-65, Na+64, or Ca2+66,67 

by changing their fluorescent properties according to concentration or other stimuli. Most of these probes require 

intracellular delivery. One example is PBFI (~1 kDa), a fluorescent dye that can be employed for the measurement of 

intracellular potassium concentration, however, it is naturally cell impermeable63,64. The native form of PBFI can be 

loaded into cells via intracellular delivery methods such as osmotic lysis of pinosomes, microinjection, or electroporation. 

Alternatively, it can be acetoxymethyl-esterified (AM-esterified) to neutralize the carboxyl groups, as described by Roger 

Tsien in the early 1980s68. This process shields the charge of the dye molecule, making it cell-permeable. Once the 

molecules are inside cells, the acetoxymethyl ester is hydrolyzed by esterases (intracellular enzymes) and the dye 

molecule returns to the natural, impermeable state63. This approach has become a standard practice for loading cells with 

PBFI to monitor intracellular potassium concentrations. Other probe molecules, such as the calcium-sensitive dyes fura-2, 

fluo-4 and indo-1, can also be acetoxymethyl-esterified for intracellular delivery and accumulation. Recently, the strategy 

of acetoxymethyl-esterification has also been used for modification and delivery of small signaling molecules, such as 

inositol trisphosphate69. Another example of small molecule probes requiring intracellular delivery are terbium cryptates 

(~1 nm)70. Researchers have delivered these to the cytosol by osmotic lysis of pinosomes or transient permeabilization 

with pore-forming toxins71,72. Upon loading, the terbium-based probe TMP-Lumi4 enables luminescence resonance 

energy transfer (LRET) for imaging of specific protein–protein interactions in live cells72. 

 

Cryoprotectants 

Cryoprotectants are chemicals used to protect biological cells and tissues from freezing damage incurred by ice crystal 

formation. Membrane permeable cryoprotective agents include DMSO, glycerol, and ethylene glycol, and are typically 

non-toxic, low molecular weight molecules that can penetrate the cell membrane. Unfortunately, these agents are limited 
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in their cryoprotective capability. Impermeable sugars may be better cytoprotectants but are highly hydrophilic and do not 

readily diffuse across cell membranes. For example, trehalose (Mw 342 Da) is a natural disaccharide synthesized by a 

range of organisms to withstand desiccation or freezing. Studies have shown that intracellular loading of trehalose into 

animal cells at concentrations up to 0.2 M can provide superior cryoprotection to animal cells when compared to 

alternative methods73,74. Techniques for intracellular delivery of trehalose include influx during thermal shock75, stimuli-

responsive nanocarriers76, engineered pores77, and electroporation78,79. 

 

Table 1. Characteristics of common cargo molecules of interest for intracellular delivery. The cargoes are ordered down the table in 
approximate size order. RNP = ribonucleoprotein. ASO = antisense oligonucleotide. 
 

Cargo Typical size (units) Approx. Mass (Da) Dimensions in solution 
(nm) 

Charge at neutral pH 

Small molecules N/A < 900 Da < 1 nm Variable. Often neutral 
to promote permeability 

Peptides < 40 amino acids ~110 Da per amino acid ~0.2 – 3 nm Varies according to 
amino acid composition 

Proteins 20 to 1000’s of amino 
acids 

~110 Da per amino acid 
 

~2 – 25 nm Varies according to 
amino acid composition 

Cas9 RNP ~1400 amino acids, ~100 
base RNA 

~188 kDa (~158 kDa 
protein, ~30 kDa RNA) 

~12-15 nm ~-80 (+22 protein, -100 
RNA) 

Nucleic acids     

    ASO 13-25 bases (single 
stranded) 

4 – 8 kDa Length of 4 – 8 nm if 
linear 

-1 per base 

    siRNA / miRNA 21-23 basepair duplex 13-15 kDa 2 wide x 7.5 nm long -1 per base 

    mRNA 0.5 – 10 kilo-bases RNA 
(single stranded) 

~320 Da per base Tens to hundreds of nm -1 per base 

    plasmid DNA 2 – 10 kilo-basepairs 
DNA (double stranded) 

~650 Da per base pair Hundreds of nm – 
depends on supercoiling 

-1 per base 

 

2.2.2 Proteins & Peptides 

Proteins are polymers of amino acids that self-organize into three-dimensional, tertiary, structures with specific biological 

functions. Proteins catalyze biochemical reactions, transmit signals, form receptors and transporters in membranes, and 

provide intracellular and extracellular structural support. Peptides are smaller than proteins, with generally less than 40 

amino acids. Depending on the peptide, they may or may not form defined three-dimensional structures. 

 

2.2.2.1 Brief History of Intracellular Delivery of Proteins 

Intracellular delivery of purified proteins began in the 1960s, even before the advent of nucleic acid transfection. In proof-

of-concept demonstrations, amoebae were microinjected with ferritin (450 kDa)80 and mouse eggs with bovine albumin 
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(67 kDa)81. In the 1970s, more advanced studies used intracellular delivery of proteins conjugated with fluorescent dyes to 

investigate intracellular processes and structures82-86. During this time, further innovation for the intracellular delivery of 

proteins was also reported using methods that encapsulate proteins within red cell ghosts87-89 and liposomes90,91. This was 

followed by methods that induce transient permeabilization of cell membranes including hypotonic shock92,93, osmotic 

lysis of pinosomes94,95, Paul McNeil’s scrape96, bead97 and syringe98 loading methods, detergent exposure99, 

electroporation100,101, and treatment with the pore-forming toxin Streptolysin O (SLO)102,103. Since 2000, a new generation 

of membrane disruption delivery techniques has been developed using microfluidics and nanotechnology19,104-107, such as 

cell squeezing108 and nanowires109,110. 

 

Reagents for the intracellular delivery of proteins were adapted from reagents that were initially used for the delivery of 

nucleic acids, including lipid and polymer compounds first used for delivery of nucleic acids in the 1990s (see review111). 

Protein delivery mediated by chemical carriers is also referred to as protein transduction, or less often by the misnomers 

protein transfection or profection111. The following categories have been reported: 1) Lipid and polymer compounds 

analogous to transfection reagents112-114, 2) Cell penetrating peptides (CPPs), also known as protein transduction domains 

(PTDs)115,116, 3) Bacterial toxins and viral components117-121, and 4) Engineered nanocarriers122-124. Lipid and polymer 

reagents, while successful for some proteins, are not appropriate for all situations. Unlike DNA and RNA, proteins are 

vastly different in size, charge, and structure. Thus, lipid and polymeric reagents for intracellular delivery have a limited 

efficacy for use across a range of different proteins111. On the other hand, PTDs and CPPs, can be attached to most 

proteins but they are prone to endocytic entrapment, cell toxicity, and poor efficiency of cytosolic delivery125. Despite 

promise, the history of PTD and CPP research is troubled by disagreement regarding delivery mechanisms116,126,127. 

Intracellular delivery of proteins using bacterial toxins and viral components is similar in many ways to PTDs and CPPs, 

but with more precise, well-defined mechanisms118,121. Use of bacterial toxins and viral components aims to the mimic 

pathogenic entry processes by targeting a protein of interest to a particular endocytic pathway, and then triggering natural 

mechanisms of endosome escape. Unfortunately, this strategy has to be tailored to particular cell types, however, and can 

be excessively labor-intensive or inaccessible for most researchers seeking to perform protein delivery. The final category 

of engineered nanocarriers has seen a huge rise in interest over the last 15 years. They can be designed as higher ordered 

structures with multifunctional and stimuli-responsive properties. Such nanocarriers are constructed from, and 

functionalized with, combinations of biomolecules, lipids, polymers, and inorganic materials. They have yet to be 
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translated into commercial products. The intracellular delivery of proteins lacks straightforward universal techniques, and 

typically requires significant amounts of work for robust effects to be observed. The limited success of the 

abovementioned approaches to intracellular delivery of proteins is reflected by the fact that a comparative study of 

available techniques for antibody delivery indicated that electroporation is the leading option125. 

 

2.2.2.2 Motivations for Intracellular Delivery of Proteins 

Straightforward intracellular delivery of proteins and peptides holds significant, yet currently unrealized, potential for 

many areas of science and medicine21,22. Delivery of proteins into living cells, such as genome-editing nucleases128, active 

inhibitory antibodies125, or stimulatory transcription factors36, represents a powerful toolset for manipulating and 

analyzing cell function21,22. For example, the localization and visualization of engineered antibodies within living cells and 

perturbation of their associated cellular processes may allow a more direct study and functional analysis at a level not 

possible with genetic methods125. As well as classical antibodies (~150 kDa), a number of recombinant small antibody-

based molecules such as immunoglobulin (Ig) derived Fab (~50 kD) and scFv (~25 kD), non-Ig derived monobodies 

(~10 kD), nanobodies (~14 kDa), and affibodies (~6.5 kD) have been developed129. When combined with fluorescent 

labels these antibodies are able to serve as precise functional probes for intracellular imaging applications130. Further, 

there are applications where direct protein delivery is favorable over indirect expression from nucleic acids, for example 

to avoid the risk of insertional mutagenesis associated with DNA transfection. However, one significant challenge is that 

the amount of protein delivered has to be sufficient to generate the desired effect, whereas plasmid DNA can be amplified 

by replication. Unlike nucleic acids, with their uniform properties, one-size-fits-all protein delivery has been elusive due 

to the inherent variance in size, structure and charge amongst proteins21,22,131. 

 

2.2.2.3 Expanding Protein Therapeutics Through Intracellular Delivery 

Since the advent of human recombinant insulin in 1982, the number of protein therapeutics has been growing rapidly132. 

There are now more than 200 FDA-approved protein therapeutics, of which around half are monoclonal antibodies. 

According to market reports, annual worldwide revenue from protein therapeutics is anticipated to reach USD 200 billion 

by 2020. Protein therapeutics can be grouped into molecular types that include antibody-based drugs, anticoagulants, 

blood factors, bone morphogenetic proteins, engineered protein scaffolds, enzymes, Fc fusion proteins, growth factors, 
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hormones, interferons, interleukins, and thrombolytics132,133. Rather than an intracellular site, these therapeutics exert their 

action outside the cell, by modulating molecular interactions in the blood, interstitial fluids, or at the cell membrane. Part 

of the success of protein therapeutics is due to their precision as inhibitors or binding partners. In particular, proteins and 

peptides can generate surfaces capable of recognizing targets that their small molecule counterparts fail to21. 

 

Around two thirds of the human proteome lies inside the cell, inaccessible to binding by impermeable molecules134. 

Because of this, intracellular proteins have a limited potential for therapeutic modulation. While an extensive discussion 

of intracellular protein delivery in vivo is beyond the scope of this review, protein delivery has been critical to medical 

developments and scientific understanding when used in ex vivo cell-based therapies. One example is the preparation of 

anti-tumor vaccines for cancer immunotherapy. Loading mutant tumor proteins into dendritic cells can program an 

immune response that primes cytotoxic T cells to attack and kill tumor cells that exhibit those same mutant proteins. This 

strategy has been verified in animal models135,136 and is beginning to be tested for safety and feasibility in clinical 

trials137,138. 

  

2.2.2.4 Gene Editing Through Intracellular Delivery of Nucleases & RNPs 

Gene editing allows precise, targeted changes in the genomic DNA of a cell17. Recent advances rely on enzymes known as 

nucleases, protein machinery that can cut or alter DNA. Key examples include zinc fingers (ZFNs), transcription 

activator-like effector nucleases (TALENs), meganucleases, and the clustered regularly interspaced short palindromic 

repeats (CRISPR)/Cas system of RNA-guided nucleases. CRISPR-based gene editing is usually performed with the 

bacterial nuclease Cas9, which forms a complex, or ribonucleoprotein (RNP), with a single guide RNA (sgRNA) to 

become targetable and active139. Genome editing requires that nucleases enter the nucleus to exert their action on genomic 

DNA17,140. In the case of CRISPR, initial studies in live cells introduced Cas9 indirectly via expression from plasmids or 

mRNA140,141. Subsequent experimentation with delivery of the pre-formed Cas9 RNP indicates this to be a more efficient 

and straightforward approach142,143, particularly when used with therapeutically relevant cells types, such as iPSCs, 

primary T cells and HSCs144-146. 
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Since the initial reports in 2014, Cas9 RNPs have been delivered by methods as diverse as electroporation143,144,146,147, 

microinjection148,149, lipid nanoparticle formulations150, osmotically-induced endocytosis followed by endosome 

disruption151, microfluidic deformation152 and CPPs153. Typically, sgRNA is about 100 base pairs of single-stranded RNA 

(~30 kDa, -100 charges) while native Cas9 is ~158 kDa (~10 nm diameter) with theoretical net charges of +22150,154,155. 

Thus, the resultant RNP complex has about -80 negative charges, ~188 kDa mass, and is up to 15 nm in size (Table 1). 

These properties make electroporation methods particularly successful for RNP delivery, as the negative charge facilitates 

electrophoretic delivery128. Furthermore, the negative charge on Cas9 RNPs makes them electrostatically amenable to 

complexation with cationic lipid and polymer reagents for carrier-mediated delivery15,150,156. Indeed, other types of RNPs 

have previously been delivered with cationic polymer reagents157. RNP delivery strategies are currently a topic of intense 

research for the purpose of therapeutic genome editing, especially for ex vivo cell-based therapies15,16,18,34. Recently, 

CRISPR-based gene therapy for correction of disease-causing genes was achieved in human embryos158. The correction of 

a common 4 base pair deletion in the MYBPC3 gene known to cause hypertophic cardiomyopathy, was achieved through 

microinjection of Cas9-sgRNA RNPs and a 200-mer ssODN correction template into zygotes158. 

 

2.2.2.5 Delivery-Relevant Properties of Proteins & Peptides 

The molecular weight of most proteins is in the range of 5 kDa up to several hundred kDa. This corresponds to physical 

dimensions of 2-20 nm, ~10x smaller than the encoding mRNA. Peptides are smaller than proteins with a typical 

molecular weight below 5 kDa and physical dimensions less than 3 nm in size. The molecular weights and dimensions of 

some common proteins include green fluorescent protein (GFP, 28 kDa, a 2x4 nm barrel), bovine serum albumin (BSA, 

67 kDa, a 12x4x4nm rod), Cas9 (158 kDa, a globular endonuclease of >10 nm diameter), and immunoglobulin antibody 

(~150 kDa, 14x8x4 nm)159. Because the structure of proteins is critical to function, any modification for intracellular 

delivery including chemical modifications or packaging in carrier particles should not compromise protein structure and 

function. Accordingly, the varied charge, dimensional and structural properties of each protein may be considered as 

unique and requiring a custom solution for efficacious intracellular delivery160. This is particularly important when 

comparing proteins to nucleic acid, as proteins denature much more easily than nucleic acids (e.g. due to heat, salt 

concentrations or pH changes) restricting the treatments that can be used in their formulations. 
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2.2.2.6 Effect of Charge on Intracellular Delivery of Proteins 

The overall charge of proteins and peptides is dependent on their amino acid composition. Generally, in a solution of 

neutral pH arginine and lysine will infer a positive charge, whereas glutamate and aspartate will infer a negative charge. 

The majority of proteins, such as antibodies, carry a mild negative charge in physiological solutions. However, the charge 

of peptides can be highly variable. Molecular charge is an important consideration as molecules with a positive charge 

tend to be more efficient at penetrating negatively charged cell membranes to gain entry to cells. Examples include so-

called supercharged proteins161, cationic cell-penetrating peptides (CPPs) such as the arginine-rich TAT peptide from 

HIV162, and cationic lipids and polymers commonly used as transfection agents10. Cationic molecules are thought to 

associate robustly to the cell surface (for example via attachment to anionic proteoglycans) where they induce 

endocytosis, and/or generate membrane defects116. However, this mechanism of cell entry is problematic as strongly 

charged molecules may have to overcome unfavourable energetic barriers to diffuse through holes in the plasma 

membrane unless there is an electrophoretic driving force, such as voltage pulses supplied during electroporation163. 

 

2.2.2.7 Permeability of Peptides 

Unlike nucleic acids and proteins, some peptides possess an intrinsic ability to permeate through cell membranes and into 

the cell. However, such membrane permeable peptides typically have permeability coefficients substantially below typical 

small molecule drugs. One example is the 11 amino acid cyclic peptide cyclosporin A (Mw ~1.2 kDa), which is a useful 

inhibitor of cyclophilin in T cells. Cyclosporin A is a feasible drug for oral delivery due to its relatively high permeability 

coefficient that is similar to that of small molecules (2.5 × 10−7 cm s-1), its low concentration required for intracellular 

activity (7–10 nM)164, and relative chemical stability conferred by its cyclic conformation. Despite the success of 

cyclosporine A, most inhibitory peptides are limited in their usefulness due to inconsistent or low cell permeability, or 

sensitivity to degradation by proteases. To this end, researchers in the field have sought to understand the rules governing 

peptide permeability in the hope of applying this knowledge to design better peptides for intracellular delivery116,165-167. 

Understanding peptide permeability is complicated by observations that suggest many different entry mechanisms are 

possible. The simplest mechanism is passive diffusion as a result of the foreign molecule partitioning the hydrophobic 

cores of membranes, such as is believed to be the case for cyclosporin A168. Alternatively, transmembrane transporters 

have been proposed to shuttle short peptides across the membrane168. Other peptides are believed to induce endocytosis 
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and subsequent endosomal escape. Most cell-penetrating peptides (CPPs) are thought to enter cells via endocytosis116, 

although other routes such as direct translocation across the membrane, inverted micelle formation, transient pore 

formation, adaptive translocation, and local electroporation-like effects have been suggested127. 

 

Some general characteristics have been found to promote peptide permeability. For example, most CPPs are between 8 

and 20 amino acids long and possess somewhere between 5 and 8 positively charged residues (usually arginines) in 

various configurations that confer a favourable charge for membrane interactions and cell entry116. Other strategies 

involve the use of ‘stapled peptides’, where a synthetic brace (typically a covalent crosslink between two residues) is 

added to lock small peptides into an active conformation (most often an alpha-helix)169,170. Using stapled peptides, 

Verdine and colleagues produced a synthetic, cell-permeable, stabilized alpha-helical peptide of 16 amino acids that 

targets a critical protein-protein interface in the difficult-to-drug NOTCH transactivation complex171. Ongoing research 

efforts are expected to decode the size, conformation, charge, polarity and amphiphilicity that optimize the intracellular 

delivery of peptides and their cargo. 

 

2.2.3 Nucleic Acid Transfection 

The word transfection is derived from the terms transformation and infection. It has paradoxically come to refer to non-

viral (i.e. non-infectious) methods of nucleic acid delivery. Transfection has mainly been performed with plasmid DNA, 

mRNA, and oligonucleotides, with more recent use of nucleic acid-based constructs/devices. The analogous term 

transduction refers to the introduction of nucleic acids to the intracellular space by viruses or viral vectors. Viral mediated 

delivery of nucleic acids is the gold standard for their intracellular delivery. The use of viruses for transduction leverages 

the naturally occurring mechanisms that viruses use to enter cells. 

 

2.2.3.1 Brief History & Motivations 

Starting from the 1960s, researchers observed that mixing nucleic acids, which are negatively charged, with cationic 

molecules leads to the formation of macromolecular complexes that can enter cells and degrade, thereby releasing nucleic 

acids inside of a cell. Two early examples of transfection complexes are the polymer diethylaminoethyl-dextran/nucleic 

acid combination (1968)172-174 and the insoluble ionic salt calcium phosphate/nuclei acid precipitant (1973)175. Today, the 
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most widespread regents used for transfection use a complex formed between lipids and nucleic acids. The first reports of 

lipid-based transfections were as early as the 1980s, first with liposomes (1980)176,177 and then via ‘lipofection’ with 

cationic lipids(1987)178. The most effective methods were commercialized, with the launch of the cationic lipid-based 

product lipofectamine in 1993. This was shortly followed with dendrimers like PAMAM180 from 1993 (“superfect” 

reagent launched in late 1990s) and cationic polymers such as PEI in 1995179 (marketed as “polyjet” soon after). Cationic 

polymers such as polybrene181 and poly-L-lysine182,183 also formed the basis of several transfection technologies. The 

technique of electroporation was first used for DNA transfection in the early 1980s184. This technique remains particularly 

useful for hard-to-transfect cell types and was commercialized from the mid-1980s by Biorad and others. Today, most 

transfection is performed with lipid reagents, while polymer reagents and electroporation are the next most popular 

options. The popularity of these techniques over more efficacious virally mediated transduction methods is due to the 

relative simplicity of transfection procedures, lower cost, and smaller time investment. 

 

By 2020 the transfection market is predicted to be worth one billion USD, with applications in three areas: 1) basic 

research, 2) biomanufacture, and 3) cell-based therapies (Figure 3). Because genetic material underlies almost all 

biological function, transfection is central to biological research, in both academic and industrial settings. Transfection 

impacts fields from cell biology and genetics to immunology and drug discovery. In the context of biomanufacture, 

transfection is used for bio-production of proteins, antibodies, viral vectors, and virus-like particles for vaccines. In cell-

based therapies, transfection has been critical to ex vivo gene therapy (correcting aberrant genes)29, hematopoietic stem 

cell engineering30,185, production of induced pluripotent stem cells37, and preparation of cells for immunotherapy186-188. As 

shown in figure 3, nucleic acid transfection is currently the dominant category of intracellular delivery. In future, 

however, demand for delivery of non-nucleic acid materials (for example, antibodies, genome editing nucleases, and 

synthetic materials) is expected to compete with transfection in several applications15,18,19,21,22,107. 
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Figure 3. Concept map displaying the main application areas of transfection. In terms of market share and research, medical, or 
industrial activity, transfection is the largest sub-component of intracellular delivery. HSCs = hematopoietic stem cell. 

 

2.2.3.2 DNA Vectors 

A vector is a DNA molecule that acts as a vehicle for the expression or replication of DNA. Some examples of different 

types of vectors include plasmids, cosmids, viral vectors, and artificial chromosomes. Plasmids are circular double-

stranded DNA molecules that were originally discovered in bacteria189. Cosmids are similar to plasmids but exhibit the 

ability to be packaged into a phage capsids190. Viral vectors pack a limited amount of DNA within a viral envelope – an 

efficient configuration that confers self-delivery through viral-mediated cell entry191. Artificial chromosomes have a larger 

DNA capacity than other vectors, containing up to a million base pairs with dimensions in the micron size range. Artificial 

chromosomes are used in specialized situations where their larger capacity and natural chromosome-like behaviour are 

advantageous192. 
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The most commonly used vectors are plasmids, which are usually around 5-10 kilo-base pairs. DNA engineering 

techniques enable the manipulation of all vectors through recombination, thus allowing specific sequences to be cut and 

paste into them. Pioneering studies in the 1970s inserted foreign DNA into viral vectors193 and plasmids194 for subsequent 

intracellular delivery and gene expression. By decoding the genetic elements of vectors, such as expression promoters and 

origins of replication, it became possible to introduce and express genes from one organism into another and vice versa195. 

For example, plasmids were exploited to first express eukaryotic genes in bacteria196,197, then foreign genes in animal 

cells, via calcium phosphate transfection198,199 or microinjection200-202. That plasmids must enter the nucleus to undergo 

expression was established by microinjection experiments that compared cytoplasmic with nuclear injection202. 

 

A 5-10 kilo-basepair plasmid is >100 nanometers in diameter when uncondensed203,204 (Table 1). Each nucleotide carries a 

single negative charge due to repeating phosphate groups along the DNA polymer backbone. Cationic compounds, such 

as lipids and polymer reagents, condense plasmids into solid nanoparticles with dimensions of tens of nanometers10,205,206. 

Condensation of DNA promotes cellular uptake by reducing the plasmid size and balancing its negative charge. The level 

of supercoiling also influences the durability and compaction. In general plasmids bearing a smaller footprint are capable 

of better transfection and expression207,208. 

 

2.2.3.3 Oligonucleotides 

Oligonucleotides are single- or double-stranded sequences of DNA or RNA, generally less than 30 nucleotides in length. 

Antisense oligonucleotides (ASOs) were first discovered in 1978, when it was shown that a single-stranded 13-mer of 

DNA hybridized with complementary mRNA to inhibit its translation209. Antisense inhibition occurs because mRNA is 

either sterically blocked and thereby unavailable for translation or designated for enzymatic degradation. In the 1980s 

ASOs were established as tools for performing genetic loss of function studies210-212. In these cases, ASOs were either 

expressed from plasmids or microinjected after in vitro transcription. Thereafter, several companies began developing 

antisense therapeutics, with the first approved medication in 1998 being fomivirsen, a 21-mer oligonucleotide that blocks 

the translation of cytomegalovirus mRNA213,214. 
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The discovery of RNA interference (RNAi) by Fire and Mello in 1998215 led to the revelation of double-stranded RNA for 

silencing gene expression. Subsequently, it was shown that RNAi in mammalian cells could be mediated by intracellular 

delivery of short 21-22 base pair duplexes, termed small interfering RNAs (siRNAs)216. Once in the cytoplasm, siRNAs 

bind to protein machinery known as the RNAi-induced silencing complex (RISC), which binds with matching RNA to 

enzymatically degrade it. Micro RNAs (miRNAs), discovered in 1993217, represent the endogenous mechanism of gene 

silencing. Small ‘hairpin miRNA’, named as such due to their shape, are processed by enzymes within the cell into 

smaller pieces similar to siRNAs, which then silence genes through antisense or RNAi mechanisms. 

 

Overall, oligonucleotides may modify cell behaviour through a number of mechanisms218. These include: (1) activating 

toll-like receptors in the endosome (non-specific), (2) siRNAs, (3) miRNA mimics, (4) antagomirs, sterically blocking 

endogenous miRNA, (5) ASOs such as gapmers, inducing RNase H degradation or sterically blocking RNA, (6) 

oligonucleotides directed against nuclear regulatory RNA species such as long noncoding RNAs (lncRNAs), (7) splice 

switching oligonucleotides that perturb mRNA maturation, (8) anti-gene oligonucleotides that bind to genomic DNA, 

perturbing transcription or binding of other proteins, and (9) aptamers, which to bind, and alter the function of, proteins218. 

Aptamers are distinct from the rest of these oligonucleotides in that they form higher order structures with conformations 

exhibiting affinities to specific target molecules. With the exception of the first mechanism (activation in endosomes), 

oligonucleotides must enter the cytoplasm or nucleus to exert their effects. 

 

The chemical and dimensional properties of oligonucleotides affect their function and use for intracellular delivery. 

Because oligonucleotides are negatively charged polar molecules in the size range of small proteins (Figure 2), their 

propensity for interaction with negatively charged cell membranes and consequential cellular permeability is poor. siRNA 

duplexes have approximate dimensions of 7.5 nm length by 2 nm diameter219 (Table 1). miRNA is only slightly larger 

than siRNA because it is a single stranded hairpin shape with an extraneous loop. An ASO of 16 bases is about 5 nm long 

by 1 nm wide. In addition to their large size and relative negative charge, challenges associated with oligonucleotide 

delivery include susceptibility to enzymatic degradation and binding to undesirable targets220. One approach to improve 

unwanted oligonucleotide degradation and chemical cleavage is chemical modification9,221. Other methods to improve 

intracellular delivery of oligonucleotides are to neutralize the negatively charged portions of the polymer backbone 

conferring more favourable interactions between the oligonucleotides and cell membranes. Oligonucleotides can be 
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neutralized by replacement of natural bases with morpholinos222, peptide nucleic acids (PNAs)223, or by the addition of 

specific functional groups224.  

 

Of the different approaches for intracellular delivery of oligonucleotides, lipid reagents have been the most prevalent229-

231. However, delivery strategies can also include combinations of those the approaches listed above, including chemical 

modification of the oligonucleotide itself, use of lipid or polymeric nanocarriers, and linking oligonucleotides to cell 

targeting agents such as carbohydrates, peptides or aptamers220,225. In these approaches, it is thought that the biological 

effects of oligonucleotides are due to the small amount of oligonucleotides that escape from endosomes and reach key 

cytosolic or nuclear compartments226-228. In cells that are recalcitrant to such reagents, success has been obtained with 

electroporation232-237 and pore-forming agents238,239. 

 

2.2.3.4 Intracellular Delivery of Messenger RNA 

One alternative to the delivery of DNA vectors is the use of messenger RNA or mRNA. This alternative is particularly 

attractive for therapeutic applications (discussed below). Pioneering studies for the intracellular delivery of mRNA 

expression were conducted in the 1970s via microinjection methods240-242. Following that, mRNA was transfected into 

mammalian cells using the cationic polymer DEAE-dextran243,244 and with cationic lipid complexes245,246, the latter of 

which became the standard approach247. Transfection of mRNA via electroporation has also been demonstrated as an 

effective option in a number of cell types248,249. 

 

Protein expression from the intracellular delivery of mRNA has a number of advantages when compared to that of DNA 

vectors250,251. First, there is no risk of adverse genomic integration that can occur after the intracellular delivery of DNA. 

Second, mRNA expression is based upon interaction with ribosomes located in the cytoplasm, and thus does not require 

delivery across the nuclear envelope as DNA does. Third, protein expression resulting from mRNA delivery is dose-

dependent and rapid, commencing within minutes. Fourth, additional control over the location of protein expression can 

be conferred by using mRNA, as its specific subcellular delivery can localise protein expression252. Fifth, mRNA can be 

less toxic and less immunogenic than DNA vectors in sensitive cells, making it a preferred option for sensitive cells or 

applications that require cell high viability. These beneficial aspects of mRNA delivery make it attractive for therapeutic 
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applications253-255. One such therapeutic application has used intracellular delivery of mRNA for expression of antigens in 

dendritic cells and T cells ex vivo; a promising immunotherapy for treatment of cancer188,256-259. Electroporation of mRNA 

has become a preferred option for delivery of mRNA in therapeutic cell types that are difficult to transfect with cationic 

lipids, such as dendritic cells260-262. 

 

Similar to DNA, mRNA is a large negatively charged polymer that can be condensed into cationic nanoparticles to 

promote uptake247,255. Messenger RNA is a single stranded nucleic acid that usually forms secondary structures featuring 

various loops and hairpins (Figure 2). The dimensions of mRNA are normally ~10 times larger than the protein it encodes, 

putting it in the range of 20-200 nm263. The disadvantages of using mRNA are that it may invoke an immune response or 

be unstable, however, these disadvantages can be circumvented with appropriate chemical modifications9,264. 

 

2.2.3.5 Nucleic Acid-Based Constructs & Devices 

One emerging area of nucleic acid research involves DNA constructs and devices engineered form higher-order two- or 

three-dimensional shapes. These precision DNA nanostructures have become known as DNA origami, a concept that rose 

to prominence in 2006265. Using DNA origami, precise nanostructures of calculable size and shape can be assembled into 

template structures via specific folding interactions. Tian et al. recently developed DNA octahedrons of ~60 nm with 

encoded sites for molecular positioning, allowing multiple nanoparticles with different functions to be integrated into a 

single structure48. In another example, DNA icosahedra found use as vehicles the delivery of quantum dots266. DNA 

origami, with a defined number of binding sites, has recently been used to calibrate fluorescence for determination of 

protein copy number inside cells267. Oligonucleotides may also be deployed inside cells as probes. For example, 

oligonucleotide-based molecular beacons are short (~25 base) hairpins featuring internally quenched fluorophores that 

alter their fluorescence upon hybridizing with a target sequence268,269. Aptamers, described above as inhibitors, can also be 

used as conjugates, receptor-targeting moieties, intracellular biosensors, and imaging probes270-273. 

 

2.2.3.6 Hard-to-Transfect Cells 

Effective transfection remains a significant hurdle for many primary cells. Moreover, even when high transfection 

efficiencies are achieved, toxic and off-target effects may confound results. This is a well-known barrier to the study of 
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immune cells, where cells types such as T cells, B cells, natural killer cells, dendritic cells, and macrophages are known to 

be difficult to transfect234,274-286. Primary stem cells, cells of the hematopoietic lineage, and neurons are other cell types 

that have historically proven difficult to transfect287-290. The ability to conduct biological studies in these important cell 

types is often restricted by limitations on transfection efficiency and tolerance to treatment. Thus, while there has been a 

huge amount of work on refining transfection approaches over the last decades, there is still significant room for 

improvement. 

 

2.2.4 Synthetic Nanomaterials & Devices 

Synthetic nanomaterials and devices represent another frontier where demand for suitable intracellular delivery solutions 

exceeds supply19,20. Probes engineered from functional nanomaterials, including carbon nanotubes (CNTs)291-293, quantum 

dots294,295, magnetic nanoparticles, and various fluorescent reporter systems19,296-299 have potential as sensors for 

intracellular processes. Yet, limitations to their successful intracellular delivery, a poor understanding of their interaction 

with biological environments, and the toxicity issues of these novel materials have retarded their deployment inside the 

cell. Many of these materials and devices still await systematic intracellular testing due to ineffective delivery, and as a 

consequence, their true effectiveness remains unknown19,20,300. The delivery challenges of these molecules and 

unconventional materials must first be addressed before their potential in research or therapeutic and diagnostic 

applications can be fully realized. Below we highlight several examples of progress in the field. 

 

CNTs have been proposed as sensors, labels, electrical field enhancers, and next-generation devices in biological 

applications292,301. The smallest single-walled configurations exhibit diameters from 1.2 nm and lengths spanning from 

tens of nanometers up to microns302. Chemical functionalization can be employed to increase the solubility and 

biocompatibility of CNTs302, however their toxicity profiles and suitability for intracellular applications are still a matter 

of controversy303. One example where they have been useful in probing the intracellular environment was published by 

Fakhri et al. in which functionalized CNTs were loaded into cells by electroporation293. By tracking the near-infrared 

luminescence of kinesin-targeted single-walled CNTs, they observed a regime of non-equilibrium stirring dynamics 

driven by active cellular motors293. Another recent study used microinjection to load high concentrations of single-walled 

CNTs of length ~150 nm into frog embryos304. The localization of CNTs and potential toxicity were tracked throughout 

the growth of the animal. They found CNTs tended to localize to the perinuclear region within most cells, however, there 
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were no obvious structural defects, developmental abnormalities or toxicity to report304. These studies suggest CNTs 

might be safe for intracellular applications. 

 

Quantum dots are semiconductor crystal configurations in the size range <10 nm. Due to their advantageous optical 

properties, intracellular labeling and analysis applications have been proposed295,305. Quantum dots are usually negatively 

charged and surface passivation with a poly-ethylene glycol (PEG) shell is a standard strategy to increase the 

biocompatibility of the structure, with a final diameter of 20 nm being typical for this configuration300. An early study 

compared microinjection, electroporation, and lipid transfection reagents for quantum dot delivery into cultured cells294. 

The investigators found that lipid reagents and electroporation failed to disperse the dots homogenously into cells, instead 

leading to aggregation or endosomal entrapment. On the other hand, low-throughput microinjection was able to deliver 

quantum dots homogeneously to the cytoplasm. Since then a number of approaches have been tested for quantum dots 

delivery. They include osmotic loading of pinosomes306, CPPs307, microfluidic cell squeezing308, controlled laser-induced 

cavitation309,310, detergent permeabilization311, and successful examples of electroporation312,313. We point the reader to 

dedicated reviews on intracellular delivery of quantum dots for further information300,314,315. 

 

Magnetic nanoparticles in biomedical science are useful for magnetic resonance imaging (MRI), generating local heat 

effects, and providing a handle for attractive forces316. In some of these applications it is necessary for magnetic 

nanoparticles to be delivered to the cell interior. One group developed a cell labeling approach using short cell penetrating 

peptides (HIV-Tat) to derivatize ~45 nm superparamagnetic nanoparticles317. The particles were internalized into 

hematopoietic stem cells before being reintroduced for in vivo homing to the bone marrow where they were subsequently 

detected and retrieved317. In another example, Nitin et al. developed ~10 nm superparamagnetic iron oxide nanoparticles 

with a PEG-modified, phospholipid micelle coating, functionalized with cell-penetrating peptides318. The particles were 

demonstrated to enter cells and act as MRI contrast agents for intracellular molecular imaging in deep tissue318. 

Furthermore, polymer nanoparticles with iron oxide cores have been deployed for DNA transfection purposes319. The 

magnetic core enables their uptake and localization to be tracked by MRI319. In another case, the mechanical and 

physiological properties of fibroblasts were measured as a function of intracellular uptake of biocompatible magnetic 

nanoparticles and the applied magnetic field320. 
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Various nanoparticle systems have also been deployed as intracellular temperature probes321. In one report, temperature-

responsive nanodiamonds of approximately 100 nanometer were introduced into cells via nanowires322. The 

nanodiamonds were then used as local temperature gauges to perform nanometer-scale thermometry in living cells at 

microkelvin resolution322. Another study used smaller, but less accurate, particles for intracellular temperature 

measurements323. Okabe et al. prepared a fluorescent polymeric thermometer of ~9 nm diameter, functionalized it with 

hydrophilic residues, and microinjected it into the cytoplasm of living cells. With a temperature measurement resolution 

of 0.18-0.5 K, they claimed to measure temperature differences between various organelles323. 

 

2.2.5 Large Cargo 

Relative to most cells, large cargo is anything from hundreds of nanometers up the range of the cell itself (usually tens of 

microns). Examples of large cargo that have been delivered into cells are shown in the bottom left quadrant of Figure 3, 

and include bacteria, mitochondria, whole chromosomes, microbeads, sperm, nuclei, and micro-electro-mechanical 

systems (MEMS) devices. The first demonstration of large cargo delivery occurred alongside the invention of 

microinjection itself in 1911324. Marshall Barber demonstrated that a single bacterium, once inside the cytoplasm of a 

plant cell, was sufficient to kill it324,325.  

 

For a century microinjection has been the dominant method for introducing large cargo into cells. Microinjection was 

used for the first nuclear transplant experiments that surgically dissected the nucleus from blastula cells and inserted them 

into living frog eggs326. To the amazement of the researchers, these eggs then had the potential to grow and produce a new 

animal. Building on this breakthrough, John Gurdon and colleagues showed that nuclei transplanted from fully 

differentiated somatic cells were capable of generating a new animal327,328. Based on this work. Gurdon later shared the 

Nobel prize for “the discovery that mature cells can be reprogrammed to become pluripotent”. Microinjection was also 

required for the nuclear transplant that led to the first mammalian cloning, as exemplified by the birth of Dolly the sheep 

in 1997329. Furthermore, in an unconventional form of gene therapy, transplant of pronuclei from human eggs with 

pathological mitochondria to donor eggs with functional mitochondria has been shown to correct diseases of 

mitochondrial inheritance330. 
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Other examples emphasizing the importance of microinjection in biotechnology include in vitro fertilization (IVF) and 

chromosome or mitochondrial transplantation. IVF occurs through the artificial delivery of sperm into eggs cells. The IVF 

concept was first demonstrated through microinjection of sperm into sea urchin eggs331. Subsequently, IVF generated the 

first human pregnancies in the early 1990s332. Chromosome transplantation techniques have also been described with 

microinjection apparatus333. Indeed, artificial chromosomes have been engineered and transferred into cells by 

microinjection for transgenic studies or proof-of-concept gene therapy334,335. In another example of large cargo delivery, 

transplant of mitochondria (~1–2 μm) via microinjection has been demonstrated in several different cell types and model 

systems336-338. 

 

While microinjection has traditionally dominated large cargo delivery, it is not the only option. Indeed, several rival 

methods have arisen mainly out of the need for greater throughput. For example, Chiou and colleagues pioneered an 

approach using laser-triggered cavitation bubbles to deliver ~2 μm bacteria into cultured cells at both single cell339 and 

high throughput scales340. The same approach was extended to delivery of functional mitochondria for studies of 

mitochondrial dysfunction in metabolic diseases341. Another method of mitochondrial transfer is cell fusion, where the 

mitochondria are supplied from donor cells342,343. In studies involving gene therapy with human artificial chromosome 

they can also be transferred by cell fusion, in a process termed microcell-mediated chromosome transfer (MMCT)192,344-

347. Engineered CHO donor cells carry the human chromosome and are triggered to fuse with the acceptor cell, thus 

transferring the genetic material344. 

 

Apart from delivery of organelles and subcellular components, insertion of large synthetic materials and devices is another 

area of interest. As a case in point, micron-scale particles, spheres, and beads have been loaded into cells for intracellular 

microrheology studies that analyze the internal mechanics and dynamics of cells. So far they have been delivered by 

microinjection348,349 or ballistic propulsion350-353. A recent study microinjected PEGylated tracer beads of up to 0.5 μm into 

cells to show that motor-driven cytoplasmic mixing substantially enhances intracellular movement of both small and large 

components354. In another study of cell mechanics, ~1 μm melamine particles coated with PEG were fired into HeLa cells 

by a gene gun to study glassy dynamics in the cytosol355. Magnetic cargoes have also been used to probe the intracellular 

environment. Moch et al. loaded 2.8 µm magnetic beads into the cytoplasm of mammalian cells for probing cell 

mechanical properties by magnetic tweezers356. Garzon-Coral et al. measured mitotic spindle forces one- and two-cell 
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Caenorhabditis elegans embryos in vivo by injecting 1.0 µm diameter superparamagnetic beads and using magnetic 

tweezers to exert calibrated forces of up to 200 pN on mitotic spindles357. In other instances, MEMS can measure 

intracellular properties, such as cytoplasmic pressure49. One group deployed a MEMS-based intracellular hydrostatic 

pressure sensor, about 6 µm in size, that was claimed to be delivered into HeLa cells via lipofection49. The same 

researchers also microinjected silicon MEMS barcodes up to 10 μm in length into mouse embryos for tracking and 

labeling purposes358.  

 

3. Approaches for Intracellular Delivery 

As outlined in the previous section, a wide range of cargos has been introduced to the intracellular space through a diverse 

range of delivery approaches. Here, we categorize these approaches according to the mechanism at the plasma membrane 

(Figure 4), rather than traditional classifications of biological, physical, and chemical techniques105,359-362. As the cell is 

agnostic to our distinction between scientific disciplines, we believe this categorization is more mechanistically 

relevant107. Broadly, methods may involve either 1) disruption of the cell membrane to facilitate entry of cargo, or 2) 

packaging with carriers, which then undergo uptake into endosomal trafficking routes or fuse with the target cell 

membrane. Although chemical or structural modifications can be used to increase the passive permeability of some small 

molecules or short peptides, most cargo molecules and materials require an active intracellular delivery method. 

 

3.1 Carrier-Mediated 

Most of the early developments in carrier-mediated delivery were directed towards nucleic acid transfection, particularly 

for DNA plasmids. As mentioned in the transfection section (see section 2.2.3), cationic lipids and polymers can condense 

plasmids and other nucleic acids into compact nanoparticles with dimensions down to tens of nanometers10,205,206. This 

makes the task of delivering these molecules significantly more manageable. Moreover, the positive charge of these 

particles facilitates their interactions with the cell surface, which is negatively charged due to the typical -35 to -80 mV 

membrane potential of cells. The positive charge may also promote binding to certain receptors10. Upon binding, 

subsequent internalization via endocytosis is thought to be most efficient for particles in the size range below 100 nm363. 

Complexation into nanoparticles also confers protection for nucleic acids against degradation in the cytoplasm364. 

Potential disadvantages of complexation, however, may include delayed unpacking (making it inaccessible for gene 
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expression365) or excessive toxicity366. In the last two decades researchers have expanded the scope of transfection 

strategies to include carriers designed from lipids, liposomes, polymers, inorganic nanomaterials, carbon nanotubes, 

protein-based nano-assemblies and functionalization with various peptides, ligands, and chemical modifications6,7,9,10,364. 

 

 
 
Figure 4. A map of intracellular delivery methods and their mechanisms. Current intracellular delivery methods are shown sorted 
within the four indicated mechanisms: 1) permeabilization, 2) penetration, 3) endocytosis, and 4) fusion. Methods that overlap on 
more than one mechanism may promote intracellular delivery via multiple pathways depending on the context. For example, most 
viral vectors are believed to go through endocytosis but a limited number fuse directly with the plasma membrane. 

 

The other major type of carriers for nucleic acid delivery are viral vectors, which exploit the viral infection pathway to 

enter cells but avoid the subsequent expression of viral genes that leads to replication and pathogenicity191. This is done by 

deleting coding regions of the viral genome and replacing them with the DNA to be delivered, which either integrates into 

host chromosomal DNA or exists as an episomal vector. At present, viral vectors are the most clinically advanced nucleic 

acid delivery agents owing to their high efficiency and specificity. They were first employed from the 1970s – constructed 

from SV40367 or retroviruses368,369. Newer generations of viral vector platforms have been produced based on components 
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from lentivirus, retrovirus, adenovirus or adeno-associated virus, and other viruses370-372. While highly efficient for DNA 

delivery, key weaknesses of viral vectors are: 1) labor-intensive and expensive protocols; 2) safety issues; 3) risk of 

causing immune/inflammatory responses; 4) integration into the genome with recombinant vectors; 5) risk of insertional 

genotoxicity; and 6) limited packaging capacity (Adeno and AAV typically restricted to carry 5 to 7.5 kb)290,373. The 

problems with viral vectors continue to motivate the development of non-viral carriers9,10,374. 

 

Beyond nucleic acid transfection, researchers initially explored protein delivery through the use of red cell ghosts87-89 and 

liposomes90,91. Newer generations of nanocarriers are now being designed to address intracellular delivery of proteins on a 

broader scale6,124,131,375, although these developments are more at a nascent stage. Intracellular delivery of genome editing 

complexes is a particular application that is driving the evolution of next-generation nanocarriers15,18,156. 

 

Mechanistic investigations indicate that most carriers enter cells via endocytosis before escaping into the 

cytoplasm226,363,376,377 (Figure 5). Mechanisms of endocytosis available to nanocarriers include phagocytosis and 

pinocytosis through clathrin-dependent and clathrin-independent pathways363,377. The pathways employed by target cells 

are dependent upon the particle size, shape, material composition, surface chemistry and/or charge226,363,376-378. Cargo not 

able to escape endosomes are trafficked through lysosomes for degradation or recycled back out to the cell surface379-381. 

Maximal efficiencies of around 1% endosomal escape have been reported for the most advanced non-viral carrier 

strategies, including lipid nanoparticles380,382 and cell-penetrating peptides116. Moreover, the exact mechanisms of 

endosome escape remain unclear and are a matter of ongoing research379-381,383. 

 

Alternatively, some carriers are able to fuse directly with the plasma membrane. These systems were first inspired by 

viruses that deploy specialized surface proteins to induce fusion with target membranes89,384. Fusogenic carriers are bound 

by a phospholipid bilayer that hosts the fusion machinery or confers fusion intrinsic properties. Examples include 1) cell 

ghosts, dead cells that have had their cytoplasm replaced with cargo89,384, 2) virosomes, cargo-loaded vesicles 

reconstituted to display functional viral proteins385, and 3) fusogenic liposomes386,387. In the latter case, a new generation 

of liposomes have been reported to become fusogenic by modulating the lipid composition without any need for fusogenic 

protein or peptide conjugation387,388. 
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Recently, a subset of natural cell-derived vesicles known as exosomes have been discovered to fuse with target cell 

membranes for the exchange of RNA and proteins between immune cells389. Although the exact fusion mechanisms are 

yet to be described, it is anticipated that exosome-inspired systems may represent a new generation of vehicles for 

efficient and biocompatible intracellular delivery390,391. 

 

 
 
Figure 5. Cargo delivery trajectories for the main intracellular delivery categories. (A) Viral vectors only deliver nucleic acids but do 
so very efficiently (endocytosis example). (B) Most non-viral carriers are optimized for nucleic acid delivery although some 
adaptations can carry other materials. Non-viral carriers are endocytosed into the cell with small amounts of nucleic acid breaking 
out into the cytoplasm while the majority are degraded in lysosomes or recycled back out to the extracellular space. (C) Membrane 
disruption is able to deliver almost any cargo that can be dispersed in solution provided it is small enough to fit through transient 
openings in the plasma membrane. Nucleus is depicted in purple. 

 

3.2 Membrane Disruption-Mediated 

Unlike carriers that may be restricted in the feasibility of cargo-carrier combinations, membrane disruption-mediated 

strategies are near-universal, being able to rapidly deliver almost any cargo that can be dispersed in solution (Figures 4 & 

5). In this review the term “membrane disruption” refers to the generation of any hole that would increase the 

permeability of the plasma membrane to cargo. This includes pores, defects, inhomogeneities, tears, lesions, holes, and 

perforations of all sizes and shapes. 
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The challenge for membrane disruption-mediated approaches is 1) to open up the right kind of holes in the plasma 

membrane to achieve substantial delivery of the cargo, and 2) to avoid undesirable cell perturbation or death associated 

with membrane damage. The main two ways membrane disruption is accomplished are through direction penetration or 

permeabilization. 

 

3.2.1 Direct Penetration 

Strategies involving direct penetration use a conduit or vehicle to break through the membrane, thereby creating a passage 

for the cargo. Prevalent examples are microinjection, ballistic particles, and nanoneedles, as shown in Figure 4. 

Microinjection was the first intracellular delivery method to be invented and represents a classic case of a direct 

penetration strategy325,392. The cell membrane is disrupted with a miniaturized pipette-like element, which is then used to 

pump fluid containing the molecule of interest inside the cell. Nanoneedles operate on a similar principle except that they 

are scalable in parallelized arrays and typically consist of finer, more intricately fabricated structures109,110,393. Ballistic 

particles are coated with the material to be delivered and fired at high velocity into the cell394. They are categorized as 

membrane disruption in this review (rather than carriers) due to the critical role of active force in puncturing the cell 

membrane to achieve access. In all direct penetration strategies, the target cell must respond to repair damage sustained to 

the plasma membrane or other cellular structures. 

 

3.2.2 Permeabilization 

In contrast to direct penetration, permeabilization strategies make the cell transiently permeable to cargo present in the 

extracellular solution. The plasma membrane is considered permeable when membrane disruptions are of sufficient size 

and lifetime to permit passage of the cargo molecules or materials. Thus, the threshold level of permeabilization needed 

depends on the properties of the cargo.  

 

As seen in Figure 4, many different permeabilization strategies have been attempted. They range from mechanical and 

laser-based to electrical and chemical105,395-397. The key events associated with permeabilization-based intracellular 

delivery are shown in Figure 6. First, the cargo of interest is dispersed into solution at a concentration conducive to influx. 

Second, the cells are exposed to the membrane disruption event. Physical methods of permeabilization generally have 
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better control of the intensity, duration, and placement of the membrane disruption effect105,396. Biochemical methods, 

such as exposure to pore-forming toxins or detergents, are more scalable but can be harder to control since they are not 

associated with a discrete event395. Upon membrane disruption, cargo begins to diffuse into the cell according to its 

concentration gradient while some cytoplasmic contents are lost. In certain cases, additional effects, such as 

electrophoretic force, can also be harnessed to augment influx of cargo. Third, it is important to note that the imposed 

membrane disruptions are not stable, and thus only allow passage of cargo for a limited time. Upon membrane insult, the 

target cell responds with active membrane repair processes. Healing of the plasma membrane can take from a few seconds 

up to several minutes to complete. Once membrane integrity is restored, the cell may engage metabolic and transport 

processes to restore cytoplasmic composition and bring itself back to full health398,399. Most permeabilization strategies 

apply specific conditions, such as temperature and buffer composition, to first promote permeabilization and delivery, and 

subsequently facilitate cell recovery. The membrane disruption effect must not be too severe or prolonged, otherwise the 

cells will be unable to repair and recover. Effective permeabilization strategies must therefore find a balance, optimizing 

both the membrane damage and cell treatment conditions. 

 

The remainder of this review will focus on membrane disruption-based delivery. This exploration will mostly be centered 

around animal and mammalian cells in vitro and ex vivo. In the next section we will discuss background concepts helpful 

in understanding how and why membrane disruption can be a successful approach. Following that, we will offer a detailed 

appraisal of the various delivery methods. Each section will cover content areas that include history, mechanisms, 

feasibility, performance, toxicity, applications, technical advances, and envisaged future opportunities. 
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Figure 6. Key events associated with permeabilization-based intracellular delivery. Acute membrane disruption triggers an increase 
in permeability to the cargo of interest (green). For a limited window of time (seconds), cargo diffuses into the cell according to its 
concentration gradient while some cytoplasmic materials may be lost (orange). Upon membrane disruption the cell responds with 
membrane active repair processes that can take from a few seconds up to several minutes to complete. Once membrane integrity is 
restored, the cell engages metabolic and transport processes to restore membrane and cytoplasmic homeostasis. It may take hours 
for the cell to return to the pre-perturbation state. 
 

4. Membrane Disruption-Mediated Delivery: Background Concepts 

In this section we will cover the basics of: 1) cell and membrane properties, 2) mechanisms of membrane disruption, and 

3) cell response to membrane disruption. These background concepts lay a foundation to explore the common issues that 

arise in membrane disruption-based intracellular delivery. The following sections then examine direct penetration (section 

5) and permeabilization (section 6) methods. 

 

4.1 Cell Structure & Properties 

4.1.1.1 Plasma Membrane Function 

The primary barrier to intracellular delivery is the plasma membrane, which defines the essential boundary between the 

inside and outside of a cell. The plasma membrane enables cells to control their composition and properties. Its central 

component is a ~5 nm thick phospholipid bilayer with polar heads facing the aqueous environment and fatty acyl chains 

pointing inward to form a hydrophobic core. This hydrophobic core is the main limiting barrier to the passage of 

macromolecules and polar molecules. The permeability of a given molecule or cargo material across the plasma 

membrane depends on the properties of the membrane (e.g. composition, heterogeneity, thickness), active cellular 
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regulation of the plasma membrane (e.g. protein activity, cytoskeletal interaction), the properties of the molecule itself 

(e.g. charge, size, polarity), and environmental factors (e.g. temperature)168,400. 

 

The plasma membrane allows compartmentalization of electrolyte concentrations between the cell interior and external 

solutions (Figure 7A). For example, relatively high intracellular potassium (140 mM) and low sodium (5-15 mM) are 

generated by the action of the Na+/K+ ATPase, a plasma membrane-embedded transport protein401. Intracellular chloride, 

calcium, and magnesium are all lower than their corresponding extracellular concentrations. The maintenance of these 

electrolyte gradients is key for the typical negative membrane potential (-35 to -80 mV) of most animal cells and a host of 

other essential functions. The cell also has elevated intracellular concentrations of metabolites such as ATP (typically 2–5 

mM), amino acids and other biomolecules. The difference between intracellular and extracellular composition is an 

important consideration in membrane disruption-based intracellular delivery, as strategies that take this into account can 

lead to more efficient treatments and better cell health. Minimizing the depletion of intracellular contents, for example, 

can improve cell treatment outcomes (see section 4.3). 
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Figure 7. Relevant structure and properties of the cell interior and surface. (A) Overview of typical animal cell structure with basic 
organelles, intra- and extracellular ion concentrations, and negative membrane potential (ΔV). ER: endoplasmic reticulum. (B) 
Features of the plasma membrane including lipid asymmetry across bilayer leaflets and lateral segregation into domains, such as raft 
phases. Abbreviations are: phosphatidylcholine (PtdCho), phosphatvidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), and 
phosphatidylinositol (PtdIns), sphingomyelin (SM), glycosphingolipids (GSL). Carbohydrate residues are depicted in black, cholesterol 
in purple. Note the highly regulated heterogeneous distribution of molecules between different types of membranes, lateral 
domains and leaflets. As a result, the ER membrane is thinner and sparser than the plasma membrane, with more unsaturated lipid 
tails. (C) Plasma membrane reservoirs and their relationship with the underlying actin cortex, which is connected by membrane-
cortex linker proteins (green). Actin rods support filopodia and microvilli. Blebs are typically devoid of actin until they are pulled back 
in. Remodeling of the actin cytoskeleton facilitates formation and stabilization of endocytic pits. 
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4.1.1.2 Plasma Membrane Composition & Properties 

The plasma membrane has characteristic properties distinct from other types of lipid membranes (Figure 7B). It is much 

more complex and dynamic than pure lipid bilayers, containing hundreds of different lipid species and up to 50% 

membrane proteins by weight. Proteins associated with the plasma membrane include various transporters, receptors, and 

enzymes. They may span the membrane via transmembrane domains or be anchored to one side via lipophilic appendages. 

The spatial organization of plasma membranes feature both lateral heterogeneity (lipid domains) and uneven distribution 

between inner and outer leaflets (lipid asymmetry)402. Cells use up to 5% of their genes for synthesis of a diverse array of 

lipids, reflecting the importance of the functions arising from this diversity403.  

 

The different types of lipids are distributed in a highly regulated and distinct manner across the various membranes of the 

cell402. This gives the different membranes unique properties (Figure 7B). In eukaryotes there are three main categories of 

membrane lipids: glycerophospholipids, sphingolipids, and sterols. Glycerophospholipids are the major structural lipids of 

membranes, of which common species are phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), 

phosphatidylserine (PtdSer), and phosphatidylinositol (PtdIns). Their hydrophobic tail is a diacylglycerol (DAG), which 

contains saturated or cis-unsaturated fatty acyl chains of varying lengths. Unsaturated tails don’t pack as tightly, 

increasing the lateral space between lipids and promoting lateral fluidity in the membrane. PtdCho is the most common 

lipid, accounting for >50% of the phospholipids in most eukaryotic membranes402. PtdSer and PtdIns exhibit negatively 

charged head groups and localize to the inner (cytoplasmic) leaflet. The major sphingolipids in mammalian cells are 

sphingomyelin (SM) and sugar-decorated glycosphingolipids (GSLs). The sphingolipids feature a ceramide as their 

hydrophobic backbone, having saturated (or trans-unsaturated) tails so they tend to form a taller, narrower cylinder shape 

than their glycerophospholipid counterparts.  

 

Sterols are highly abundant in the plasma membrane, contributing greatly to barrier function and lateral organization404,405. 

In mammals, the predominant species of sterol is cholesterol, which represents up to 40% of the lipid molecules in the 

plasma membrane405. This is in contrast to other internal membranes, such as the endoplasmic reticulum (ER), where the 

corresponding number is only ~5%. Cholesterol tends to straighten out hydrophobic chains and fill in structural defects in 

membranes. Thus, it serves to stiffen and thicken the plasma membrane, improving its durability. Cholesterol is also 
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essential to the formation of lipid rafts, which are characterized by the assemblage potential of sterol-sphingolipid 

interactions and particular proteins that have affinity for the raft phase (i.e. raft proteins)405. These lateral raft domains are 

thought to serve as platforms for key structural, signaling and membrane trafficking phenomena, such as the nucleation of 

caveolae pits in the plasma membrane406. In contrast to the plasma membrane, internal membranes, such as the ER, 

feature less cholesterol, more unsaturated lipids, and less diversity of lipid species402. Internal membranes are thinner, 

sparser, and less durable, being more adapted for biogenesis rather than the comparatively robust and stable barrier 

function of the plasma membrane402. 

 

The unique characteristics of the plasma membrane are a key factor in certain membrane disruption strategies. For 

example, specific pore-forming toxins, such as cholesterol-dependent cytolysins (CDCs)407, and detergents, such as 

saponins408, are specific for high cholesterol-containing membranes. This makes it possible to disrupt plasma membranes 

in a relatively specific manner without damaging internal membranes397. 

 

4.1.1.3 Intrinsic Membrane Permeability 

Although the plasma membrane comprises a highly regulated barrier to control the intracellular composition, it is 

naturally permeable to certain substances. Phospholipid bilayers are permeable to gas molecules such as O2, CO2, N2 

(permeability coefficients 101 – 10-2 cm s-1), solvents such as H2O, ethanol, and dimethylsulfoxide (DMSO) (permeability 

coefficients 10-3 – 10-4 cm s-1), and to some extent other small uncharged polar molecules like urea and glycerol 

(permeability coefficients 10-6 – 10-7 cm s-1)168,409. Most cell-penetrant small molecule drugs and peptides have 

permeability coefficients approaching a maximum of about 10-6 cm s-1. 168 Despite their small size, the cations Na+ and K+ 

are relatively impermeable with coefficients of 10-14 – 10-15 cm s-1. 

 

In live cells it is often a challenge to decipher whether permeability arises due to the passive properties of the plasma 

membrane, the presence of membrane transporters and solute carriers, or fluctuations in transient bilayer defects (such as 

can be promoted by ethanol or DMSO)168,410. In many instances the apparent permeability of a molecule is actually 

regulated by the cell. For example, membrane proteins called aquaporins increase the transmembrane flux of water and 

glycerol411, the expression of which can vary significantly across a cell population or between cell types. The cell actively 
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opens and closes sodium channels to dynamically alter the Na+ permeability during action potentials. Furthermore, many 

small molecule drugs have been postulated to enter cells via metabolite transporters whose structures they often mimic412. 

In other cases, peptide transporters, such as PepT1 and OATP, have been reported to pump small peptides and peptide-

based drugs into or out of cells168. Regardless of the mechanisms, few candidate drug molecules exhibit passive 

permeability or are amenable to active uptake by the cell. Chemical modifications or conjugations can be conferred to 

increase the permeability in some cases, but this is not feasible for most macromolecular cargo, particularly for those 

larger than one nanometer in size. 

 

4.1.1.4 Structure & Properties of the Cell Surface 

The durability of the plasma membrane may be reinforced by intra- or extra-cellular scaffolds. Some lipids (e.g. 

glycosphingolipids) and proteins (glycoproteins) have extracellular carbohydrate domains. When sufficiently dense, these 

carbohydrate moieties can form a thick outward coating known as the glycocalyx, which is prominent in animal 

epithelial/endothelial cells and some types of bacteria413. On the interior side, the plasma membrane may be reinforced by 

the underlying actin cytoskeleton, and the proteins that link it to the membrane, to form a cortical structure hundreds of 

nanometers thick414 (Figure 7C). Other cytoskeletal elements such as microtubules, intermediate filaments, septins, 

spectrins and clusters of cell adhesion molecules (e.g. integrins) can also assemble into supporting structures that affect 

membrane properties. Because the actin cortex is often more mechanically robust than the plasma membrane, in many 

cases it is thought to control cell shape and apparent surface area414. Indeed, the plasma membrane features a plethora of 

small folds, wrinkles, and reservoirs in the form of outward-protruding actin-filled filopodia/microvilli and actin-void 

blebs or inward-bending endocytic pits, such as caveolae. The excess of plasma membrane surface area is thought to be in 

the range 2-10 fold the apparent cell surface area414. These excess reservoirs allow the cell to accommodate rapid shape 

and volume changes without tearing the membrane415,416, a key property to ensure durability of the cell in mechanically 

challenging environments. 

 

In cases where the plasma membrane is significantly reinforced by other components, it may become more difficult to 

mechanically disrupt. This is an important factor to consider particularly for mechanical membrane disruption techniques. 
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For example, the cell surface has been reported to exhibit an impressive ability to conform to nanoneedles and other 

penetrating objects, making intracellular delivery less efficient than anticipated417,418. 

 

As living cell membranes are much more complicated, dynamic, and heterogeneous than artificial lipid bilayers, insights 

from simplified model systems and simulations must be interpreted with caution410. The full complexity of the properties 

and behaviour of the cell surface must be accounted for when thinking about intracellular delivery approaches and the cell 

response. Furthermore, plasma membrane variability across cell types is a frontier that must be addressed in order to 

better understand how to target specific cell types. 

 

4.2 Defect Formation in Lipid Membranes 

Membrane disruption-based delivery approaches rely on various methods to nucleate and expand defects in the plasma 

membrane. Mechanistically, the most well-studied examples are electroporation and mechanical tension, partly due to 

their relative simplicity and ease of modeling and simulating. There are also a host of molecules that can bind to and 

disrupt membranes by chemical means. Here we provide a theoretical overview of the various mechanisms underlying 

membrane disruption. Further details on the individual disruption methods are discussed later in their respective sections. 

 

4.2.1.1 Mechanical & Electrical 

Theories seeking to explain the energetics and formation of membrane disruptions by mechanical tension and electrical 

potential have arrived at similar models419-421. At near-physiological temperatures, there is a finite probability of 

thermally-driven defect formation in lipid membranes. This defect formation is associated with random lateral diffusion of 

lipids, which is itself made possible by fluctuations in the void volume between lipid molecules. Thermally-driven defects 

take the form of a so-called hydrophobic pore, where a small gap opens up between hydrophobic tails (Figure 8A). 

Hydrophobic pores are thought to be at a local free energy maximum when the radius is around 0.5 nm, which is slightly 

larger than the width of one lipid headgroup. From there, further lateral growth permits the rearrangement of hydrophobic 

tails into a hemispherical conformation at the edge of the pore. Once polar head groups face the aqueous solution, the pore 

becomes hydrophilic, thereby permitting the passage of water and becoming conductive to electrical charge. Hydrophilic 
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pores are thought to occupy a local energy minimum and thus exhibit notable stability at a minimum radius of around 0.8 

nm, which is the width of around 2 to 2.5 lipid head groups422. 

 

Over time the most likely scenario is that thermal fluctuations lead to closure of a hydrophilic pore. This happens through 

a reversal over the energy barrier represented by the hydrophobic pore, thus returning the membrane to a defect-free state. 

Conversely, there is the low probably of crossing the much larger energy barrier towards destruction of the whole 

membrane bilayer via infinite expansion of the pore. Increased input of mechanical tension or electrical potential into the 

system tilts the energy landscape towards the possibility of total destruction. Opposing pore expansion is line tension, an 

inward-directed force produced around the rim of a hydrophilic pore (Figure 8B, C). Under certain conditions, line tension 

has been observed to drive closure of micron-scale holes in giant vesicles and is directly related to the composition of the 

membrane, being boosted by the incorporation of cholesterol, for example423. The line tension may also be influenced by 

supporting structures, such as the actin cortex, which can be regulated by the cell to modulate membrane resealing424. 
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Figure 8. Theory of mechanical and electrical disruption of lipid bilayers according to energy landscape of defect formation. (A) 
Energy landscape according to hydrophilic pore theory. Energy is required to open up hydrophobic defects with radius ~0.5 nm. 
Further growth to a hydrophilic, toroidal pore with lipid head groups facing inward is associated with a local energy minimum at 
pore radius ~0.8 nm. W1 represents the energy landscape at rest with no external mechanical or electrical input, W2 (yellow) 
represents an intermediate mechanical of electrical stress, while W3 (orange) indicates the effect of a large mechanical or electrical 
potential. Low temperature is synonymous with increased barrier heights while high temperature favors membrane destabilization. 
(B) Illustration of pore formation due to mechanical stress where the membrane is first stretched before pore formation. The 
applied in plane tension (TM) and the line tension (TL) within a lipid pore are diametrically opposed. (C) Illustration of pore formation 
due to application of electrical potential normal to membrane where E is the electric field strength and TL = line tension within a 
hydrophilic pore. Hydrophilic pores are conducting, thus leading to relaxation of charge buildup and a reduction of entropy in the 
system. 
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Thus, electroporation and mechanical disruption can be described according to the following. For a given cell, the 

combined effects of temperature, expansive electrical or mechanical forces, and line tension within the pores conspire to 

yield a population of hydrophilic defects of various sizes that can be modeled by a probability density function420. In real 

world numbers, biomembranes can generally withstand up to 3% mechanical area strain425 or 200 mV electrical 

potential419 before persistent loss of membrane integrity occurs. 

 

For mechanical membrane disruption in live cells that possess membrane reservoirs, further considerations are the 

deformation force and velocity. In the case of a nanowire impaling a small local area (Figure 9), it is evident that the 

deformation velocity, rather than the final deformation magnitude, determines whether a membrane disruption event 

occurs. Slow impalement of a nanowire allows sufficient time for lipids to flow in from the surrounding reservoirs (such 

as blebs and folds) to compensate for the local increase in membrane tension. On the other hand, rapid impalement does 

not give the system sufficient time to pull lipids from adjacent areas. Instead, the local membrane tension ramps up to a 

point where formation of a hole/pore becomes energetically favorable426. This helps to explain why larger contact forces 

are known to increase the probability of membrane penetration when deforming membranes with sharp AFM tips or 

nanowires427,428,429,430,431,432 – because the size of the impaling object and the force upon contact determine the local 

deformation rate, which is in turn related to the probability of membrane disruption. Further mechanistic studies are 

required to quantify these parameters in different types of cells. 
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Figure 9. The dependence of deformation rate on mechanical membrane disruption. In the schematic, impalement with a solid 
nanowire only leads to membrane disruption in the case of rapid impalement. Slow impalement allows the system sufficient time for 
lipids to flow in from adjacent reservoirs. Rapid deformation ramps up the local membrane tension (TM) to a point where membrane 
disruption (hole formation) becomes energetically favorable. 
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4.2.1.2 Chemical 

Apart from physical insults, a host of chemical agents and effects can lead to membrane perforation (Figure 10). Chemical 

disruption of lipid barriers can occur through modification of constituent lipids, for example by oxidation, insertion of 

pore-forming proteins and peptides, and exposure to agents acting as detergents and surfactants. Because the modeling of 

these phenomena is more complicated, energy landscapes have not been described for most of these scenarios433. Instead, 

simulations are increasingly being exploited to capture, model, and visualize critical molecular events410,434.  

 

Membrane disruption can proceed via localized chemical reactions, especially oxidation/peroxidation435 (Figure 10A). 

Simulations and experiments suggest that oxidized lipids exhibit distorted hydrophobic tails that decrease the lateral 

ordering of lipids and cause an increased area per lipid head. This, in turn, triggers bilayer thinning and variations in the 

lateral diffusion coefficients, which is associated with a decline in bending rigidity and increase in membrane deformation 

and permeability436-438. If these effects are sufficiently localized, it can lead to formation of membrane pores, as suggested 

by simulations410,438. 

 

Another biochemical trigger for membrane disruption involves the exposure of bilayers to pore-forming agents, 

predominantly in the form of amphiphilic peptides or proteins (Figure 10B). Subunits associate with the membrane before 

assembling into a pore complex with variable size ranges, some being as large as several tens of nanometers439,440. 

Membrane disruption can also occur via detergents or surfactants (Figure 10C). These amphiphilic molecules integrate 

into the membrane and distort or buckle the bilayer, inducing conformational stresses that relax via pore formation and 

loss of bilayer integrity441,442. Detergents and surfactants thereby solubilize membranes in a concentration-dependent 

manner441,442. 
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Figure 10. Chemical mechanisms for generating disruptions in lipid bilayers. (A) Localized chemical effects within a specific region 
(red circle) can lead to a change in the structure of lipid molecules, triggering their dissociation from the bilayer as free molecules or 
micelle-like formations. The dissociated molecules then leave behind a hole in the membrane. As an example, an intense laser pulse 
can break bonds within lipid tails or cause them to become distorted through unsaturation. (B) Pore-forming agents can interact 
with a membrane to assemble an oligomeric pore that allows the passage of cargo molecules and materials. (C) Surfactants and 
detergents can embed into the bilayer and induce curvatures that distort the membrane, leading to pore formation and loss of 
bilayer integrity. 

 

4.3 Cell Response to Membrane Disruption 

The previous sub-sections (4.1 and 4.2) covered the basic properties of cells and their membranes as well as mechanisms 

of how membranes can be disrupted. Here, we will examine how cells respond to membrane disruption (summarized in 

Figure 11). The first response is an urgent call to action to repair the breached membrane. If this is not accomplished 

rapidly, the cell will die. The second major response from the cell is after membrane repair, where it seeks to rebalance 

the homeostasis of its membrane composition and intracellular contents. This response takes place over minutes to hours 

and will determine whether the cell returns to its previous state, lives with permanent alterations, or dies through a form of 

programmed cell death. This section provides an overview of these events and the strategies and concepts associated with 

their manipulation in order to optimize membrane disruption-based intracellular delivery. 
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Figure 11. Cell response to membrane disruption. First, plasma membrane repair (PMR) engages within seconds to rescue the cell. If 
PMR fails the cell depolarizes, swells, and dies. Shown are the altered cytoplasmic contents that eventuate if membrane disruption is 
conducted in a physiological buffer. If PMR is successful, the cell is left in a perturbed state with loss of cytosol. Stress response 
guides the cell to return to the pre-perturbation homeostatic state or into apoptosis. In some cases, trauma or off-target damage 
involved with disruption-recovery cycle may cause mutations, fate changes, or loss of cell potency. 

 

4.3.1.1 Plasma Membrane Repair 

Plasma membrane resealing was thought to be a passive process until the mid 1990s when Steinhardt and colleagues 

discovered that rapid exocytosis drives plasma membrane repair443. In a mechanism analogous to neurotransmitter release, 

exocytosis was found to be triggered by calcium influx443. The calcium concentration difference between inside (~100 

nM) and outside (~1 mM) is ~4 orders of magnitude, and serves as an acute alarm signal to detect and repair plasma 

membrane breaches444. 

 

Since Steinhardt’s discovery, a number of different mechanisms and pathways have been implicated in membrane repair. 

The topic has been discussed in detail in recent reviews398,445-453. Overall, up to six repair variations have been proposed447. 

As illustrated in figure 12, the mechanisms include contraction, patching, plugging, exocytosis, internalization, and 
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externalization447. Multiple membrane repair processes may cooperate together to achieve resealing at timescales of 

anywhere from a few seconds to several minutes447. The type of membrane repair is thought to depend on factors such as 

environmental conditions (e.g. temperature, extracellular ions), size of the hole, and cell type. 

 

 
 
Figure 12. Proposed mechanisms of membrane resealing. In each case, the black line with gap represents the plasma membrane 
with a wound-induced hole and healing progresses from top to bottom. Black circles represent vesicles in the cell. Red lines in 
“Contraction” represent cortical cytoskeleton; orange dots in “Internalization” represent machinery powering endocytic invagination 
and pinching; blue dots in “Externalization” represent ESCRT machinery powering scission; green dots in “Plugging” represent 
proteins crosslinking membranous compartments. Adapted from ref 447, Copyright 2015, with permission from Elsevier. 

 

Studies have shown that, while large holes (>0.2 µm) cause more immediate trauma in cells, they tend to be detected and 

repaired more quickly399,444,454. Rapid exocytosis, plugging, and patching are typical mechanisms that cells deploy to 

repair large holes444. For smaller disruptions, internalization through endocytosis or externalization through shedding 

serves to extract lesions into a disposable vesicle454-456. Very small holes, particularly from electroporation or lingering 

pore-forming toxins, can persist for longer durations and drain the cell of resources399,454,457,458. Thus, strategies to reseal 

small disruptions post-treatment should be of benefit to membrane permeabilization-based methods. In this regard, 

additives such as PEG, poloxamer 188 and other poloxamers (which may also exhibit antioxidant activity459) have shown 

potential as cell recovery agents98,460-465. Vitamin C, E and lipid antioxidants represent further options for promoting 

restoration of membrane integrity after delivery466l,467,468. 
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4.3.1.2 Cell Swelling 

Although rarely mentioned in the membrane disruption literature, cells tend to swell when their membranes are disrupted 

in physiological buffers. From Figure 7A one can see that Na+ and Cl- will flow into a compromised cell while only K+ 

ions will exit. The net influx of osmolytes and osmotically obliged water causes cell swelling through a colloid osmotic 

effect, a process that goes hand-in-hand with depolarization of the cell membrane potential. Cell swelling has been 

observed with electroporation469-478, microinjection479, laser optoporation480-486, and exposure to cavitation487 or fluid 

shear488. In these reports swelling usually reaches a maximum within 1-2 minutes of membrane disruption before plasma 

membrane repair and regulatory volume mechanisms synergize to bring cells back to normal volume. 

 

Interestingly, cells can survive up to 50% volume increase and still recover469,470,475,477,485,489. Above that, the risk of instant 

death from bursting becomes imminent490. It is known that swelling activates specific stress signaling events491 and is a 

classic hallmark associated with necrotic cell death492,493. Inhibition of cell swelling has been explored as a strategy to 

improve cell function during and after membrane disruption-based intracellular delivery490. Related to this notion, cell 

shrinkage has been observed in electroporation conditions where the induced membrane disruptions are small and the 

buffer is composed of osmolytes that are too big to flow into the cells (for example, an isotonic large molecular weight 

PEG buffer)475,494. Unlike physiological media, such a buffer is devoid of electrolytes that can flow into the cell, thus K+ 

and Cl- ions exit the cytoplasm along with water475. Such results demonstrate how buffer composition can affect the 

volume response of disrupted cells. Despite this, exactly how volume changes influence delivery performance and cell 

survival is yet to be extensively explored. 

 

4.3.1.3 The State of the Resealed Cell 

When the plasma membrane is compromised to allow cargo influx, there is uncontrolled exchange of molecules between 

the inside and outside of the cell. In standard physiological buffer (see Figure 7A), disrupted cells will sustain elevated 

Na+, Cl-, and Ca2+, and reduced levels of K+, ATP, metabolites, amino acids, proteins, and other intracellular contents 

(Figure 11). Even after plasma membrane integrity is fully restored, cells may still undergo necrosis, a type of cell death 

caused by irreversible disturbance of cellular homeostatic mechanisms399. In particular, dramatically reduced levels of 
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ATP and potassium can trigger necrotic cell death due to deregulation of mitochondrial activity399. Necrotic cell death is 

almost indistinguishable from an initial failure to reseal, also being characterized by swelling and loss of membrane 

integrity492. 

 

Once the cell reseals its plasma membrane, homeostatic processes will kick in to restore intracellular contents. In this 

regard, the most critical molecules are thought to be ATP, potassium, and calcium399. ATP is a particularly crucial 

metabolite as it is the primary energy source for the cell. Studies have shown it can take from two495,496 to five497 hours to 

recuperate ATP levels after electroporation496 or treatment with pore-forming toxins495,497. Potassium has been observed to 

drop from ~140 mM to ~20 mM when cells are exposed to transient membrane damage498 and recovery can take from 

minutes to hours399. Influx of calcium can be viewed as a double-edged sword, although it assists the cell in detecting and 

repairing damage, excessive amounts can be toxic and lead to cell death456,499-501. High intracellular calcium serves as an 

activator of certain proteases, such as calpains, enzymes that promote apoptosis and degradation of cytoplasmic 

components399. 

 

Membrane disruption and recovery is often paralleled by cytoskeletal disruption and recovery. In particular, microtubule 

depolymerization has been observed upon electroporation502-505, mechanical wounding506,507, and exposure to pore-forming 

toxins508. Microtubule depolymerization manifests locally around the wound sites due to calcium influx506,507. This is in 

congruence with the observation that electroporation does not alter microtubule structure in media devoid of calcium503. In 

standard calcium conditions recovery of microtubule integrity has been reported to take from minutes up to an 

hour503,504,507. In some cases, membrane disruption also appears to cause depolymerization of F-actin and intermediate 

filaments504,509. 

 

4.3.1.4 Stress Response After Membrane Disruption 

A number of secondary consequences occur as a result of the perturbations associated with membrane disruption399,495. For 

example, a decrease in cytosolic potassium can lead cells into a quiescent state characterized by autophagy (recycling of 

cellular building blocks), formation of lipid droplets to conserve energy, and arrest in global translation495. Time taken to 

restore intracellular potassium homeostasis correlates with the duration of these effects495. Furthermore, a drop in 
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potassium is thought to be responsible for activation of MAP kinase stress response and proteolytic signaling cascades 

including the inflammasome, which in turn trigger downstream effectors including caspase proteins and the unfolded 

protein response399,510-513. In all systems tested so far, pore-forming toxins activate the three main MAP kinase stress 

response pathways: p38, JNK, and ERK399,514-517. Cell permeabilization in media containing high potassium prevents MAP 

kinase activation, indicating that potassium depletion is the key trigger518,519. MAP kinase and its downstream effectors 

promote cell survival and their inhibition appears to worsen cell death after membrane disruption518,519. Whether or not 

pre-activation of MAP kinase pathways can improve survival upon membrane disruption-mediated delivery remains 

unexplored. 

 

Many of the characteristic responses elicited from pore forming toxins are also shared with electroporation and 

mechanical wounding, further reinforcing that membrane disruption is the key event399. In the early days of the field, 

McNeil and colleagues witnessed that expression of c-fos and NF-κB, two transcriptional activators, are strongly and 

selectively increased in cells that suffered and resealed a mechanically-induced membrane disruption520. Detectable NF-

κB and innate inflammatory responses were also measured in endothelial cells subject to membrane attacks with pore-

forming toxins521. Furthermore, mechanical micropuncture was found to activate MAP kinases, CREB1, and protein 

kinase C (PKC) to promote cell survival522-524. Interestingly, engagement of PKC is thought to prime cells to cope with 

future membrane wounding events522, and has similarly been observed upon SLO exposure512 and electroporation525. 

Recently, electroporation was also demonstrated to activate MAP kinase pathways526 and trigger transcriptional changes 

to support MAP kinase activity, membrane repair, and recovery from oxidative stress527. Complementing this picture, 

reports have emerged that electroporation triggers autophagy in response to nanosecond pulsed electric fields528. 

  

A key implication in all of these findings is that activation of stress response pathways prioritizes cell survival and threat 

surveillance at the expense of proliferation and anabolism. If stress levels reach a critical threshold, cells trigger a 

shutdown response via apoptosis or other forms of regulated cell death492. In certain cell types delayed cell death has been 

a significant problem after electroporation, even when the initial membrane repair is successful490,529. In other cases, cell 

outcomes may be improved by adding inhibitors of apoptosis530. As more inhibitors of specific cell death processes 

become available, they may find use in such situations. 
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4.3.1.5 Manipulating Cell Response to Optimize Outcomes 

The concept of optimizing intracellular delivery by manipulating cell response has received sporadic attention over the 

past decades. As mentioned above, some positive results have been reported from supplementation with membrane 

healing polymers98,460-465 and/or antioxidants461,466l,467,468. Most of the work to date, however, has focused on engineering 

the permeabilization buffer. The electroporation literature, in particular, has extensively explored this aspect in an effort to 

optimize cargo delivery and cell health outcomes. 

 

An analysis of 300 membrane disruption-based delivery papers analyzed in the process of compiling this review reveals 

four main types of buffers: 1) Na-rich “physiological” buffers such as PBS; 2) Cell media, which is essentially 

physiological buffer plus nutrients; 3) K-rich “intracellular” buffers; and 4) buffered sugar solutions. In our analysis, cell 

media (37%) and Na-rich buffers (34%) are the most popular, ahead of buffered sugar solutions (17%) and K-rich buffers 

(9%) (Table 2). Deconstructing these trends by modes of membrane disruption reveals further insights. For example, 

buffered sugar solutions have historically been used by the electroporation community to avoid electrolytic effects 

associated with higher conductivity salt-based buffers531,532. Their origins can be traced back to the beginnings of the field 

in the late 1970s and onwards502,531,533-538. In contrast, physical non-electroporation-based methods, such as mechanical 

wounding and optoporation, have mostly opted for cell media (58%) or Na-rich buffers (32%). Biochemical methods, of 

which detergents and pore-forming toxins are the main options, have been the most likely to experiment with K-rich 

“intracellular” buffers (22%) but most often used their Na-rich counterparts (43%). Biochemical permeabilization 

methods, which have less control over the timing of membrane disruption, seem more concerned with maintaining 

intracellular homeostasis through implementation of K-rich buffers539,540. 

 

Table 2. Disruption buffers from papers analyzed in the process of compiling this review. Note that some papers use multiple buffers 
so percentages may not add to 100%. Not specified is likely to be cell media or Na-rich buffer by default. 
 

 
MODE OF MEMBRANE 
DISRUPTION: 

Cell media Na-rich 
“physiological” 
buffer 

K-rich 
“intracellular” 
buffer 

Buffered sugar 
solution 

Not 
specified / 
other 

ALL 37% (n=110) 34% (n=101) 9% (n=27) 17% (n=52) 12% (n=35) 

Electroporation 28% (n=47) 31% (n=52) 7% (n=12) 25% (n=42) 17% (n=28) 

Physical (non-
electroporation) 

58% (n=49) 32% (n=27) 7% (n=6) 5% (n=4) 7% (n=6) 

Biochemical 28% (n=13) 43% (n=20) 22% (n=10) 15% (n=7) 0% (n=0) 
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K-rich buffers have been in use since the pioneering days of membrane permeabilization, with detergents541, 

electroporation542, and mechanical scraping543 being early examples. The argument in favor of these buffers is simple – by 

mimicking the intracellular composition as closely as possible, homeostasis and cell health should theoretically be 

maintained397,542,544. One study compared K-rich buffers to Na-rich ones, concluding that K-rich are superior for gene 

expression and cell recovery after delivery by mechanical membrane disruption545. A different investigation found that 

electroporation in buffers designed to match intracellular contents (with appropriate levels of ATP, GTP, amino acids, K+, 

Mg2+, and Ca2+) accelerated recovery of protein synthesis to within 5 minutes compared to from >1 hour for standard 

PBS546. Another group observed electroporation in intracellular mimicking buffer featuring high K+, Mg2+, ATP and 

glutathione promoted cell survival compared to cell media or PBS547,548. Furthermore, a cold-storage solution for organ 

transplants, containing high K+, Mg2+, and antioxidants, was reported to markedly improve survival of electroporated 

cells549. Although most of the commercial electroporation buffers today are based on high sodium550, nucleofection offers 

a K-rich variant with high magnesium, ATP and glucose, which appears to be useful in treating primary human cells146. 

Whether K-rich intracellular mimicking buffers are under-utilized in membrane disruption-mediated delivery remains to 

be established. 

 

Commercial electroporation systems such as nucleofection appear to have placed significant effort into optimizing 

proprietary buffers, mostly arriving at formulations featuring high Na+, 10-20 mM Mg2+, strong pH buffering, and extra 

organic osmolytes550. Several academic groups have lifted the lid on these formulations and screened their effectiveness in 

an attempt to lower costs551-553. Indeed, several studies testing nucleofection buffers found only marginal benefits over 

PBS554 or cell media555, suggesting that the high cost of these proprietary buffers may not be justified. On the other hand, 

Biorad electroporation guides recommend more basic options such as cell media, strongly buffered Na-rich saline, or 

buffered sugar solutions556,557. Neon electroporation buffers seem to be based on PBS bolstered by extra pH buffering, 

sugar, and magnesium558,559. Interestingly, many of the electroporation-based pre-clinical or clinical studies simply use 

OPTIMEM (a popular cell media) in place of commercial electroporation buffers187,560. 

 

Taken together, consistent benefits seem to be obtained by supplementing buffers with Mg2+, ATP, glucose, antioxidants, 

and by lowering or avoiding Ca2+. Additionally, strong pH buffering probably helps to negate potential detrimental effects 

of electrolytic reactions in the case of electroporation. Magnesium is slightly antagonistic to calcium, possibly helping to 
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blunt some of the damaging aspects of calcium influx443. It is also a co-factor to hundreds of intracellular enzymes, 

including those involved in energy metabolism and stabilization of mitochondrial membranes561,562. ATP supplementation 

might be beneficial not only in preventing its loss from the cytoplasm397, but also in engaging extracellular receptors to 

activate ‘purinergic’ signaling, which is thought to prime cells against the danger of membrane disruption456,563. As an 

example of its potential benefits, electroporation buffers supplemented with ATP help to achieve faster gene expression 

after plasmid delivery564. Glucose is added to some buffer formulations146,551 and would tend to prevent cell energy 

depletion due to cytoplasmic leakage. Anti-oxidants have been reported to promote membrane repair and overall cell 

health by neutralizing reactive oxygen species (ROS)466-468. ROS may damage proteins, lipids, and nucleic acids, the latter 

of which can lead to mutations in DNA. Most of the optimized buffers also tend to contain little or no Ca2+. Although it is 

the prime trigger for membrane repair, precise studies have shown that only ~5 – 20 μM is required565-567. Normal 

extracellular Ca2+ levels (~1 mM) are probably only helpful when cells are returned back to standard media for final 

recovery. 

 

Other potential supplements for augmenting cell health could be addition of Zinc568 and recombinant proteins that 

participate in membrane repair – such as MG53568-571, annexins572, and ASMase573. Conducting cell membrane disruption 

and/or recovery in the presence of certain inhibitors may also be beneficial in guiding cell fate, however, has received 

little attention to date. Recombinant proteins and inhibitors might be worth using in clinical scenarios, such as a critical ex 

vivo cell-based therapy. 

 

Temperature is a core consideration for any in vitro cell treatment procedure, and deliberate membrane disruption is no 

exception. Despite this, there is no consensus in the literature on which temperatures are best for membrane disruption-

based intracellular delivery. An analysis of more than 300 membrane disruption-based delivery papers analyzed in 

compiling this review reveals three categories of temperature that have been used: 1) ≤4 °C; 2) room temperature (usually 

in the range 18-25 °C); and 3) ~37 °C (Table 3). The rationale for treating cells at ≤4 °C is that it can facilitate a 

preservative effect. Most stress responses and programmed cell death pathways are inhibited at 4 °C, so unless the cell is 

killed by the treatment itself, the long-term cell survival may be improved. One detergent-based protocol credited low 

temperature and intracellular buffer as the two main factors increasing cell survival539. Biochemical protocols employed 

≤4 °C 38% of the time compared with 11% for electroporation and 12% for physical non-electroporation. Low 
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temperatures probably slow down membrane repair, but it also makes cells more resistant to disruption, particularly 

electroporation574,575. Furthermore, many pore-forming toxins do not assemble at 4 °C, so a switch to warmer conditions 

can be used as a trigger to control the timing of permeabilization576. 

 

Table 3. Disruption temperatures used in papers analyzed in the process of compiling this review. Note that some papers use 
multiple temperatures so percentages may not add to 100%. RT denotes room temperature and varies considerably between 
publications from 18 to 25 °C. Not specified is most likely to be room temperature by default. 
 

MODE OF MEMBRANE DISRUPTION: 37 °C RT (~18 – 25 °C) < 4 °C Not Specified 

ALL 22% (n=65) 46% (n=139) 16% (n=47) 16% (n=49) 

Electroporation 9% (n=15) 67% (n=112) 11% (n=19) 13% (n=22) 

Physical (non-electroporation) 34% (n=30) 25% (n=22) 12% (n=11) 27% (n=24) 

Biochemical 43% (n=20) 13% (n=6) 38% (n=18) 6% (n=3) 

 

The rationale for treating cells at room temperature is simply convenience, as it does not require any additional 

temperature control equipment. Membrane repair in mammalian cells seem to proceed quite normally at 25 °C, as 

evidenced by studies of annexin-mediated resealing500,566,577,578. Electroporation protocols, in particular, favor room 

temperature (67% of papers analyzed). Because Joule heating associated with electroporation can spike the temperature of 

a solution by up to 20 °C579, using a baseline of 37 °C may be harmful to cells undergoing electroporation. On the other 

hand, the rationale for treating cells at 37 °C is maintenance of physiological function. Most non-electroporation protocols 

choose to employ such physiological conditions, with biochemical procedures using 37 °C 43% of the time and physical 

non-electroporation 34% (Table 3). Membrane repair and stress response are expected to be at their most efficient at 37 

°C. 

 

4.3.1.6 Semi-Intact Cells 

Although most applications of intracellular delivery by membrane permeabilization aim for a transient permeabilization 

from which the cell recovers, there are situations where a persistent ongoing permeabilization is opted for. Such systems 

have been referred as semi-intact cells580, semipermeable cells581 or perforated cells582. They involve irreparable disruption 

of cell membranes by mechanical580-582 or biochemical means583-590. Strategies such as low temperature and low calcium 

concentrations may be employed to deliberately prevent membrane resealing580. Efflux of cytoplasmic constituents 

follows, but the extracellular media is manipulated to “reconstitute” the cytoplasmic composition replete with desired 

inhibitors, activators, antibodies, metabolites, ATP-regenerating systems, and other macromolecules of interest586,587,591. 



 57 

Semi-intact systems have therefore been useful for functionally reconstituting intracellular processes while being able to 

manipulate the buffer. Apart from high potassium, such buffers usually contain high magnesium, low calcium, ATP at 

mM concentrations, strong buffering, and reducing agents or anti-oxidants. The major concern in using these methods is 

that it has been difficult to assess to what extent the semi-intact cells are a valid model for intact cells395. The concept of 

semi-intact cells illustrates the lengths biologists have pursued to address intracellular delivery and manipulation 

challenges. Despite their limitations, these reconstituted systems have been key in discovering fundamental mechanisms 

of secretory pathways and principles underlying trafficking of proteins, lipids, and nucleic acids between intracellular 

organelles, for example to decode the rules that govern nuclear import592,593. Semi-intact cells remain popular for certain 

types of studies, such as probing mitochondrial function in muscle cells594. 

 

5. Intracellular Delivery by Direct Penetration 

Direct penetration mechanisms are utilized in the techniques of microinjection, particle bombardment, and nanowires / 

nanostraws. In each of these cases, penetrating elements provide direct access to the intracellular space. Microinjection is 

the classic embodiment of the direct penetration mechanism and was the first intracellular delivery technique to be 

introduced in the early 1900s. Particle bombardment and nanowires / nanostraws were invented in the late 1980s and early 

2000s respectively. In this section we discuss the key details of each of these methods. 

 

5.1 Microinjection 

In 1911 Marshall Barber reported the invention of microinjection324. By pulling glass capillaries over a flame, Barber 

generated pipettes with sharp micron-sized ends suitable for injection into living cells. Combined with micromanipulators 

and pressure control systems, dual pipettes were demonstrated with holding, dissecting, extraction, and injection 

capabilities. The apparatus was used to extract nuclei from living amoebae, inject various fluids into cells, and deliver 

single bacteria into plant cells325. Barber rightly predicted that “The introduction of foods, poisons, stains, and fixatives is 

made possible and cells may be probed or dissected under high powers, methods which may be of use in the study of the 

structure, chemistry, and physiology of cells. Finally, materials may be withdrawn from one cell and injected into 

another, and it is possible that investigations on fertilization and heredity may be extended by this technic”. After 

inventing microinjection, Barber trained others in its use before leaving the field325. In 1915, Kite used it to inject dyes 
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into the cytoplasm of living animal and plant cells to investigate their permeability595. Chambers then introduced an 

improved version of the instrument in the early 1920s, featuring more precise micromanipulators and pressure control596. 

 

As microinjection spread to other researchers, it was initially adopted by plant, developmental, and micro-biologists, for 

example to determine cytoplasmic pH, introduce viruses into cells, or perform nuclear transplants597-600. Moreover, it 

became the basis for patch clamp and a host of similar pipette-based cell manipulation and analysis techniques325,601. As 

covered in section 2.2.5, microinjection has long been the dominant method for intracellular delivery of large cargo. It 

was used for the first nuclear transplants in 1952326, cloning frogs in 1958327, cloning mammals in 1997329, mitochondrial 

transplants in 1974336, chromosome transplant protocols in 1973333, intracellular delivery of sperm into egg cells in 

1962331, and the first human pregnancies achieved by IVF in 1992332. More recent examples of large cargo delivery 

include micron-sized beads for intracellular microrheology analysis348,349,354, magnetic beads for application of 

forces356,357, and silicon MEMS barcodes up to 10 μm in size358. 

 

Although microinjection was employed for large cargo delivery from the beginning, it took more than half a century for it 

find routine use for intracellular delivery of proteins, DNA, and other such biomolecules in animal cells. Purified proteins 

began to be injected into animal cells in the 1960s. The protein ferritin was introduced into amoebae to monitor its 

intracellular distribution80. Then mouse oocytes injected with bovine gamma globulin were shown as capable of 

developing into defect-free animals81. In 1972, the calcium sensitive protein aequorin was injected into the squid giant 

synapse to determine intracellular calcium602. Other studies in the 1970s used fluorescently labeled proteins and dextrans 

to study nuclear permeability82,83 and autophagy84. Microinjection of peptides also emerged around that time603. 

Fluorescently labeled actin85 and alpha-actinin86 were injected into cells to visualize and elucidate their role in the 

cytoskeleton. A classic example where intracellular delivery of a protein led to discovery of its function was the case of 

vinculin604. Microinjection of the uncharacterized protein labeled with fluorescent dyes was used to identify its role as a 

mediator of cytoskeletal adhesion assemblies by observing localization dynamics in living fibroblasts604. 

 

Along with protein delivery, researchers began experimenting with microinjection of DNA and RNA. The first mRNA 

expression studies were carried out by microinjection from 1973 onward240-242,605. Viral DNA was injected into cells to 

investigate its ability to transform cells606. Recombinantly engineered plasmids were expressed in cells post-injection in 
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1977200. Several years later, Capecchi demonstrated that nuclear injection of plasmid DNA encoding thymidine kinase 

was successfully expressed in 50-100% of cells. Yet the same plasmid injected into the cytoplasm led to 0% expression in 

hundreds of cases202. Thus, microinjection studies were used to prove that plasmids must be delivered to the nucleus to 

undergo expression. In 1980, transgenic mice were successfully produced by microinjection of recombinant plasmid DNA 

into the nucleus of fertilized ooctyes607. Following the elucidation of antisense oligonucleotides in the 1980s, antisense 

RNA was injected into cells to inhibit protein expression in studies of developmental biology211,608. The Nobel Prize 

winning experiments that elucidated RNAi were performed by microinjection of double stranded RNA into C. Elegans 

cells in 1998215. 

 

As illustrated in the above examples, microinjection is a versatile delivery platform, being able to deliver almost any 

cargo to most cell types. In its current form, microinjection is commonly performed with commercial systems fitted with 

glass micropipettes of diameter 0.3 to 1.0 μm (Figure 13A). It is important to note that microinjection does suffer some 

degree of cell type-dependence. Small cells, such as blood cells with diameters less then 10 μm, can be challenging to 

microinject due to their small volume and poor tolerance for needle penetration609. For non-adherent or suspension cells 

an additional holding pipette is used to keep cells in place (Figure 13B), but this adds to the complexity and time-

consuming nature of the procedure. Researchers and clinicians most often use microinjection for experiments or 

procedures involving single cells or small batches of cells where high fidelity of intracellular delivery is ensured. For 

example, due to its accuracy and control, microinjection has been a routine technique to achieve human pregnancies by in 

vitro fertilization. 

 

 
 
Figure 13. Intracellular delivery via microinjection. (A) Depiction of an adherent cell being microinjected with a glass micropipette. 
(B) Microinjection of a suspended cell that is held in place by a secondary holding pipette. (C) Nanopipette injection (nanoinjection) 
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where the penetrating aperture consists of a nanotube. In this illustration an intracellular organelle is being injected. (D) Use of a 
hollow AFM cantilever to inject cells (FluidFM). (E) Microfluidic microinjection where a cell is pushed onto a sharp micropipette via 
flow. Pressure is then generated in the micropipette to deliver fluid into the cell. Reversing the flow of the main microfluidic channel 
can be used to eject the cell. 

 

5.1.1.1 Advances in Technical Precision of Microinjection 

Significant advantages of microinjection include precise control of dosage volume and injection location. In one 

innovation, organelle targeting was demonstrated with an ultra-fine tip and femtoliter to attoliter volume control provided 

by a galinstan expansion syringe610. Using a tip diameter of ~100 nm, researchers were able to inject single chloroplasts in 

plant cells without dissipation of intracellular turgor pressure or untoward impact on other cellular structures (Figure 

13C). Exploiting a different mechanism of volume control, an electrochemical attosyringe with tip diameter of 100 – 400 

nm achieved picoliter to attoliter volume control611. Such fine electrochemical control of fluid motion allowed the accurate 

dispensation of precise volumes from the fabricated ‘nanopipette’611. Another group employed carbon nanotubes as the 

pipette. The device, termed a nanotube endoscope, demonstrated delivery of fluorescent molecules to subcellular 

localizations at a resolution down to 100 nm612. Recently a system that takes advantage of electrophoretic cargo 

propulsion was claimed to provide higher cell viability post-injection613. This was based on 100 nm diameter nanoinjector 

that drives materials into cells via electrophoretic force rather than bulk pumping of fluid613. 

 

Some interesting adaptations to the microinjection concept have been produced by modifying atomic force microscope 

(AFM) systems to allow injection or extraction614. One technology, called FluidFM, was first demonstrated by the use of 

hollow cantilevers with fluid control capabilities for force-controlled injection of soluble materials into cells (Figure 

13D)615. AFM force feedback was reported to enable unprecedented control of contact force thereby facilitating the 

determination of required penetration forces614. Recently, the FluidFM system has been used for non-destructive sampling 

from cells for time-resolved analysis of molecular composition616 and metabolite profiles617. It also features the precision 

to deliver or extract from the nucleus616,618. In a similar approach to FluidFM, another group used a scanning probe system 

to detect cell surfaces and provide voltage pulses to deliver fluorescent dyes into individual cells619. 
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5.1.1.2 Attempts Toward Higher Throughput Microinjection 

The primary limitation of standard microinjection is the serial, low-throughput, and tedious nature of the process. Even an 

experienced operator is limited to approximately one successful injection per minute. An early attempt at automated 

microinjection was published in 1988, with a reported throughput of 1500 cells per hour when performed on adherent 

cells620,621. For unknown reasons, this innovation was not widely adopted. Other attempts at high-throughput 

microinjection include a vacuum-enabled embryo holding array, which allows injections based on robotic motion control 

and image recognition by computer vision processing622. The reported throughput of 15 cells per minute was demonstrated 

to yield a high survival rate (98%) for large non-adherent cells such as embryos and oocytes. In a semi-automatic 

approach, a micro-robotic system achieved up to 25 injections per minute on adherent endothelial cells623. The human 

operator selects injection destinations through mouse clicking on a computer screen and the system executes with a 

purported survival rate of >95% and a success rate of >80%623.  

 

Apart from automation, microfluidic systems have been explored to address microinjection throughput challenges. Adamo 

and colleagues reported a microfluidic version of microinjection that works by suction of cells onto a 0.5 μm diameter 

hollow-tip glass needle embedded in a PDMS device (Figure 13E)624. Several picoliters of liquid could be injected into the 

cell in ~0.5 seconds followed by flow reversal of the main channel to dislodge the cell624. The cell could be then routed 

through an exit channel for collection after delivery624. Problems with cell clogging and fouling from biological debris, 

however, prevented the device from achieving consistent operation. A follow-up concept sought to address this problem 

with high-pressure fluid jet injection, but synchronization of jet firing with cell passage at the injection nozzle presented a 

significant unsolved challenge625. 

 

5.1.1.3 Microinjection Summary 

Microinjection was the first intracellular delivery method to be invented and has been in use for over a hundred years. It is 

a method of choice to deliver almost any cargo, whether large or small, to single cells or small groups of cells (<100). 

Despite technical advances, however, the intrinsic low-throughput of microinjection remains a serious limitation for the 
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great majority of applications. An effective platform for high-throughput microinjection would be ground-breaking but 

remains elusive. 

 

5.2 Penetrating Projectiles (Biolistics) 

Biolistic intracellular delivery employs high-velocity microprojectiles to deliver nucleic acids and other substances into 

intact cells and tissues. The microprojectile particles are accelerated to sufficient velocity by use of a gas shock wave, 

which can be generated by various means. For example, it may be derived by chemical explosion (gunpowder), high-

voltage electronic discharge, release of pressurized inert gas, or helium shock generated via a rupture-membrane 

mechanism626-628. The gas shock wave is used to either 1) accelerate a macroprojectile into a stopping plate to dislodge 

adhered microprojectiles, or 2) blast the microprojectiles off the surface of screen or the inside of a barrel626-628. Particles 

then collide with target cells, busting through the plasma membrane and releasing cargo molecules from their surface into 

the cytosol (Figure 14A). Biolistic intracellular delivery has been referred to as the biolistic process, ballistic particle 

delivery, microprojectile bombardment, and, in certain embodiments, the ‘gene gun’. 

 

Biolistic delivery came onto the scene in 1987, where it was first invented for the purpose of DNA transfection in 

plants394. In the late 1980s and early 1990s it was adapted for transfection of diverse microorganisms (yeast, fungi, algae, 

bacteria), many of which are difficult to transfect with other methods626,627. It was also attempted for transfection of an 

assortment of animal cells and tissues. Given the limited penetration distance of particle bombardment into tissue, it was 

initially tested with cell cultures in vitro and skin or exposed tissue sections in vivo627,629-631. For cell cultures in vitro, 

particles are sprayed down on a monolayer of adherent cells or a thin dispersion of suspension cells. As a rule of thumb, 

particle sizes should be no larger than one tenth the size of the target cells626. Heavy metal particles are durable, dense, 

and do an excellent job of maintaining the momentum needed for breaching the plasma membrane626. Particles used in 

biolistic systems tend to be tungsten (occasionally toxic), gold or silver (less toxic) and in the size range 0.5 to 2 μm632. 
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Figure 14. Intracellular delivery via penetrating projectiles. (A) Biolistic projectiles consisting of metal beads are propelled towards a 
cell with enough force to burst through the plasma membrane. The metal beads are coated with cargo, which then releases inside 
the cell. Inset shows an example of a single cargo-covered bead disrupting the plasma membrane. (B) A magnetic field is used to 
attract magnetically functionalized particles (such as modified CNTs) through the plasma membrane into the target cell for delivery 
of attached cargo. 

 

5.2.1.1 Cell Type Applicability 

Several early studies on biolistic intracellular delivery sought to test applicability to hard-to-transfect mammalian cells, 

particularly immune cells, blood cells, and neurons. It was shown that both adherent and suspension cell cultures can be 

transfected with plasmid-coated metal particles. Transfection efficiencies in T cells were reported to be a maximum of 

2%633, 6%634 and 3%635 respectively. In ex vivo HSCs, efficiencies were either not directly reported636 or achieved a 

maximum of 6% alongside 75% viability637.  

 

Both adherent and suspension tumor cells could be transfected with the plasmid-coated ~1–2 μm gold particles shot from 

a helium driven gene gun638. But this study reported only the yield of expressed protein and not percentage cells 

transfected638. A comparison across many cell types observed from 2% to 40% transfection efficiency depending on cell 

line639. Upper limits of 30-40% were obtained for common adherent cell lines such as prostate cancer cell lines640 or HEK 

cells628. Due to the random spray of particles over a cell sample, it is unlikely that particles will penetrate the nucleus of 

every cell to deliver DNA cargo for subsequent expression. For large cells that ‘catch’ many particles, such as myotubes, 

20-70% transfection can be obtained641. 

 

Some reports claim biolistic delivery is a highly efficient DNA transfection method in mammalian cells642. However, it is 

only efficient in its use of DNA, not necessarily in the percentage of cells treated. It has been estimated that about 200 
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plasmids are delivered per gold particle643. Hence, the amount of DNA required to produce a given yield of protein can be 

very efficient644. In comparison, electroporation and lipid reagents are highly wasteful of DNA (most is lost in solution) 

but produce a large proportion of cells that are successfully transfected. Empirical optimizations aimed at improving the 

performance of biolistic delivery in animal cells identified parameters such as size of the particles, the target distance, 

extent of vacuum, and the size of the cell culture plate626,642. Tuning of such parameters, however, has yielded limited 

success. Thus, after an initial period of excitement surrounding biolistic transfection, electroporation and viral vectors 

have risen to prominence as the preferred methods for hard-to-transfect cells such as HSCs and immune cells. 

 

One area where the biolistic process gained notable traction is delivery to neurons and organotypic brain slices628,645-650. 

Neurons are regarded as very difficult to transfect with conventional methods. Early studies of plasmid delivery into 

neural cell cultures have achieved transfection efficiencies of <2%651, 2-8%, depending on the type of neurons648, and up 

to 10%647. Although most of the protocols hover below 10%647-651, maximums of 20-30% were reported with a highly 

optimized protocol628. As the alternatives are generally poor, such performance has proven sufficient to carry out several 

interesting studies in neuronal cultures628. Particle bombardment has been particularly useful in organotypic brain slices, 

where alternative methods such as electroporation lack access to cells650. 

 

After three decades of experimentation, the main cells and tissues that have proven amenable to biolistic delivery are: 1) 

plants, especially for generating transgenic crops394, 2) neurons and organotypic brain slices628,645-650, 3) microorganisms 

that are difficult to transfect with other methods626, 4) inoculation of skin or muscle for applications such as 

vaccination629,652-654. Efficient DNA immunizations against influenza have been achieved by using a gene gun to deliver 

DNA-coated gold beads to the epidermis in mice and chicken655. Projectile bombardment is suitable for these applications 

because the immunization is thought to be effective even when only a small fraction of cells are transfected. For 

intracellular delivery to skin cells, there is a notable trade-off between power, size and number of bombarding particles, 

and cell viability656. 

 



 65 

5.2.1.2 Cargo Applicability 

The biolistic process has been used mainly for plasmid transfection. Additionally, it has proven particularly advantageous 

for delivery of larger DNA vectors such as cosmids and artificial chromosomes643,651,657. In the early 2000s researchers 

successfully experimented with attaching dyes and indicators to the projectiles658-661, mostly for delivery to neural cell 

types and brain slices. Following that, mRNA and siRNA were shown to be feasible for transfection into a variety of cells 

and organisms662-666. Biolistic methods have also been deployed for delivery of large beads to the cytoplasm for analysis 

of intracellular mechanical properties. In these cases cytoplasmic microrheology was assessed by monitoring fluctuations 

in polymer beads within the cytoplasm350-353. In a one example, ~1 μm melamine particles coated with PEG were shot into 

HeLa cells to study glassy dynamics in the cytosol355. More recently, protein delivery has been demonstrated with particle 

bombardment, first in plants667,668, then in mammalian scenarios669. Protein delivery protocols have been further adapted 

for biolistic Cas9 RNP delivery670. RNPs were dried onto gold particles and fired into immature wheat embryos to 

produce gene-edited crops670. 

 

5.2.1.3 Biolistic Systems & Variations 

Biorad is the main supplier of commercial biolistic delivery platforms. The gene gun is a hand-held device with a ‘point 

and fire’ mode of operation. The more advanced biolistic systems employ a vacuum chamber for higher momentum and 

evenness of microparticle dispersion. The vacuum systems are typically used for in vitro applications where the sample is 

more amenable to manipulation. A major weakness of biolistic delivery is the damage that high velocity particles can 

cause to cells. This is one of the reasons why it is popular for plants, which have stiff cell walls that can tolerate harsh 

mechanical impacts626. Damage from gene guns has been identified as a key limiting factor in treatment of cell cultures in 

vitro, as well as skin and muscle tissues671. In general, damage is intensified as the projectile diameter increases relative to 

the cell size. Nanoparticles of ~40 nm have been tested with the biolistic method and found to provide better cell survival, 

especially with small cells672. ~80 nm silver nanoparticles were also evaluated and found to transmit less damage to 

cells673. In both cases delivery efficiency of cargo was not reported to be adversely compromised by using nanoparticles 

instead of micro-sized beads, and the higher surface area to volume ratio of nanoparticles could be a potential advantage. 

Overall, implementation of biolostic particle bombardment approaches to animal cells requires a number of empirically 
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determined parameters to be optimized. These include size of particles, distribution, density, impact speed and loading 

technique396. 

 

In a nano-inspired adaptation of the projectile delivery approach, Cai et al. used DNA-carrying nickel-embedded 

nanotubes propelled by magnetic fields to “spear” cells674. Nanotubes in solution were attracted to a magnet placed 

underneath the substrate, thus creating the driving force for penetration of cells placed on the substrate (Figure 14B). With 

this method they demonstrated efficient GFP expression in primary mouse B cells and neurons with minimal cell death674. 

More recently, magnetic nanospears composed of Au/Ni/Si with dimensions of ~5 µm long and < 50 nm diameter have 

been used to transfect adherent cell lines with absorbed plasmids at >80% efficiency675. Thus, for in vitro and ex vivo 

applications, smaller projectiles that minimize damage to cellular structures may present an opportunity for projectile-

mediated intracellular delivery. 

 

5.2.1.4 Penetrating Projectiles (Biolistics) Summary 

Since its introduction in 1987, a range of different types of cargo-laden projectiles have been fired into cells for the 

purpose of transfection and intracellular delivery. The field is witnessing a trend towards smaller, less damaging 

projectiles and attempts to improve the consistency of cell treatment. If limitations around 1) cargo and cell type 

applicability, and 2) consistency of cell treatment can be overcome, biolistic intracellular delivery has the potential to 

break new ground. 

 

5.3 Nanowires & Nanostraws 

Nanowires, also referred to as nanoneedles, nanosyringes, nanofibers and high aspect ratio nanostructures, are thin 

elongated structures typically with diameters of hundreds of nanometers or less and lengths on the micrometer scale. For 

intracellular delivery at high-throughput, nanowires are fabricated into vertically aligned arrays that can interfaced with 

thousands of cells. Nanostraws are hollow versions of nanowires, which can deliver fluid from an external reservoir 

directly to the intracellular space. 
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Intracellular delivery by penetrating nanowires was first demonstrated by McKnight and colleagues in the early 

2000s109,676. They produced conical spikes of 6–10 µm in length, tip diameters of 20–50 nm and base diameters of ~1 µm. 

These carbon/nitrogen-based structures were grown via plasma-enhanced chemical vapor deposition off nickel-spotted 

silicon wafers109. The first cargo to be delivered with them was DNA plasmids, which were physically absorbed or 

covalently tethered to the tips of the conical nanowires. CHO cells were then forced against the array by centrifugation at 

600 g followed by sandwiching against an opposing substrate. This provided an active force for penetration, which proved 

to be necessary for efficient transfection in this system (Figure 15A). The nanowires were able to achieve nuclear 

penetration as evidenced by rapid GFP expression. Interestingly, GFP plasmids that were physically absorbed to the 

nanowires were passed on to cell progeny while covalently tethered plasmids were not, suggesting that the former 

dissociate in the cell interior while the latter are able to mediate gene expression even though they remained attached to 

the nanostructures. In follow-up studies the same researchers extended the application of nanowires to include spatially 

indexed substrates for long-term cell tracking676 and simultaneous delivery of multiple different plasmids677. 

 

 
 
Figure 15. Intracellular delivery via penetrating nanowires/nanoneedles and nanostraws. (A) Cell pushed onto an array of nanowires 
with active force (F), such as centrifugation. The number of penetrating nanowires increases given the same needles as in B. (B) 
Passive settling and adhesion of a cell onto an array of nanowires coated with cargo molecules at the tip (green). In this case some 
nanowires may penetrate through the plasma membrane into the cytosol to release their contents inside the cell (green cloud). (C) 
Hollow nanowires (nanostraws) used for intracellular delivery by pumping cargo from a fluid reservoir connected to the nanostraws. 

 

5.3.1.1 Expanding the Repertoire of Deliverable Cargo 

As mentioned above, nanowire arrays were first used for DNA transfection109,676-678. Since then delivery of siRNA110,679-

681, proteins110,427,680,682, molecular beacons683, quantum dots684, DNA nanocages685, and impermeable drugs110 have been 

further demonstrated. One of the first such examples was achieved by Park et al., who produced nanosyringes of 50 nm 

outer diameter and 120 nm height684. The cup-like hollow nanostructures were pre-filled with DNA or ~3 nm quantum 
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dots, which were then released into cells upon penetration684. This was one of the first reports where passive settling of 

cells onto penetrating nanostructures appeared sufficient for efficient delivery (Figure 15B).  

 

In 2010 Shalek et al. showcased the multifaceted potential of nanowires by demonstrating successful intracellular delivery 

of a wide range of materials to various cell types. Functional siRNA, plasmid DNA, peptides, proteins, and membrane 

impermeable drugs were non-covalently and non-specifically bound to the surface of silicon nanowire arrays and cells 

were allowed to settle on top, thus taking advantage of passive penetration. These materials were successfully introduced 

into a range of immortalized cell lines and primary cell types, including hard-to-transfect mammalian neurons110. 

Patterning of target molecules on the nanostructure arrays is a further advantage of this approach, as it can enable spatially 

encoded delivery of cargo materials110. Shalek et al.’s nanowire platform was then adapted for hard-to-transfect primary 

immune cells679,686. By screening nanowire density and height against different cell types and sizes, optimal parameters 

were supposedly established for each cell type. Efficient delivery of molecules to primary B cells, dendritic cells, 

macrophages, natural killer cells, and T cells was reported without the adverse immune responses that confound common 

transfection reagents679. 

 

Kim et al. also used a nanowire strategy to deliver molecular beacons for the quantitative detection of mRNA683. In their 

strategy, ZnO nanowires were incorporated into a PDMS device whereby pneumatic pumping provided the force to push 

cells down onto nanowires. Another group reported the delivery of peptide-functionalized DNA nanocages by passive 

incubation of cells on 1 μm long 150 nm diameter cargo-coated nanowire arrays685. Other modes of nanowire delivery 

have been shown to be capable of intracellular loading of proteins such as Cre recombinase682 and antibodies against 

cytoskeletal proteins427. Apart from large cargo, nanowire arrays have been proven to deliver most categories of 

macromolecules into the cytosol of various cell types. 

 

5.3.1.2 Nanowire Penetration Mechanisms 

Despite the reports of successful delivery of multiple cargo types, it is not fully understood how nanowires breach the 

plasma membrane. Indeed, the mechanisms and efficiency of nanowire penetration have been a matter of debate for 

almost a decade. For example, several groups claim that active force is not required if the density, length, and diameter of 
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nanowire arrays is optimized for a particular cell type110,678,679,687. On the other hand, conflicting reports indicate that a 

majority of nanowires fail to penetrate cells that passively settle on top688-690. For example, nanowires ranging from 2 to 11 

μm in length and 100 nm diameter were found to be excluded from the cytoplasm as observed by confocal imaging690. 

TEM images also revealed that both the plasma membrane and nuclear envelope resist nanowire penetration, and overall 

DNA transfection efficiency was low in the absence of active forces688. Using ~100 nm diameter hollow nanostraws to 

conduct a time-resolved GFP quenching assay, researchers from the Melosh lab determined that only 7 ± 3% of features 

were penetrant, even in adherent cells418. Studies of the mechanism suggest that puncture does not occur upon initial cell 

contact, but requires active cell spreading and coincident accumulation of traction forces from focal adhesions418,678,691. 

Once penetrant, however, a given nanowire continues to provide sustained intracellular access as long as the cell remains 

adherent418. 

 

The majority of the literature indicates that provision of active forces is necessary or at least helpful for penetration and 

subsequent cargo delivery. In several studies with hard-to-transfect immune cells, it was found that intracellular delivery 

of plasmid DNA, siRNA, and proteins was only possible with the addition of g-forces to push cells against vertically 

aligned nanowires680,684. This was the case even when the same nanowire architecture was previously successful with 

common cell lines680,684. This raises the possibility that some cell types, particularly those that naturally exist in a non-

adherent state, may require active forces to achieve nanowire-mediated intracellular delivery. Larger penetration forces 

would also increase the velocity of impalement upon contact with the cell membrane, thereby elevating the chance of 

membrane disruption events (Figure 9). 

 

Several strategies have been used to provide active forces for nanowire penetration. As mentioned above, one technique is 

to generate g-forces from centrifuging cells onto nanowire arrays109,676,680. Another method is to sandwich the cells 

between nanowires and an opposing surface. For example, DNA delivery in hard-to-transfect algae was augmented by 

using an engineered PDMS microvalve to press cells against an array of ZnO nanowires692. Other strategies have been 

inspired by cell printing, whereby jetting velocity upon ejection from the printing nozzle is directly proportional to 

penetration force and can be tuned to balance efficiency of cell impalement versus cell bursting693. Movement of 

nanoneedles by a piezoelectrically actuated stage has also been tested682. In this case an inverted array of nanoneedles was 

oscillated with an amplitude of 10 μm against an immobile monolayer of cells to improve plasmid transfection682. 
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How large are the forces required for nanowire penetration? Researchers have attempted to address this question with a 

number of different methods and calculations. Using a model that estimates traction forces associated with long term cell 

adhesion, calculations of 1.5 to 6 nN were obtained for cells cultured on ~100 nm diameter nanowires428. In another case, 

active centrifugation of a grid of diamond nanowires was used to poke holes in cells for diffusive delivery of cargo from 

the extracellular solution694. They estimated a force of ~2 nN was needed to breach the membrane with ~400 nm diameter 

nanowires. Other groups have used AFM to directly quantify the forces of penetration for different diameter objects. For 

example, it was observed that 30–40 nm wide multi-walled CNTs had a penetration force of 100–200 pN and required an 

indentation depth of only 100–200 nm429. Obataya et al. found that silicon AFM tips sculpted into thin nanowires of 200–

800 nm diameter exhibited penetration forces in the range of 0.65 to 1.9 nN when tested on cultured human epidermal 

cells430,431. Nanowires of 200 nm were found to breach the plasma membrane after ~1-2 μm indentation, and be much 

more efficient at both plasma membrane and nuclear envelope penetration compared to pyramidal tips430,431. As evidence 

of penetration, a 200 nm diameter nanowire inserted into the nuclei of HEK cells successfully induced expression of 

attached plasmid DNA695. Another study with larger AFM probe tips estimated that the forces required to penetrate 

supported lipid membranes range from 5 nN for a sharp (<300 nm diameter) nanoneedle probe to 20 nN for a standard 

pyramidal tip432. However, the supported lipid membranes may be more difficult to break through than a cell plasma 

membrane, depending on approach speed, temperature, and other factors. One group used antibodies attached to 

nanowires to detect membrane penetration and found that lowering temperature to 4 °C appeared to improve nanowire 

penetration by reducing membrane adaptability427. Together, mechanistic studies indicate that biological membranes 

under physiological conditions are able to passively adjust to nanowire conformations, and therefore factors such as small 

tip area, low temperature, high forces and/or approach velocities may facilitate effective penetration of the plasma 

membrane. 

 

5.3.1.3 Nanowire Effects on Cells 

Long-term culture of cells on nanowires is not thought to be damaging, however, there are concerns over unexpected 

changes in the behaviour of cells cultured on nanowires696. Early studies indicated that nanowires altered the growth rate 

and cell cycle progression of cells676. Nanowire arrays have also been reported to interfere with cell division in fibroblasts 
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and lead to a higher frequency of multinuclear cells, an effect that was more pronounced with longer nanowires697. 

Moreover, when nanowire density increases, it may inhibit stable cell adhesion and trigger cells into a more motile and 

less proliferative state698. On the other hand, Bonde et al. obtained results suggesting that the growth rate of HEK cells 

may be stimulated by arrays of nanoneedles699. Although nanowire induced-perturbations appear minor in most reports, 

details of their effects on cell physiology should remain open for further investigation. 

 

5.3.1.4 Nanostraw Arrays for Injection & Extraction 

Nanostraws, which are essentially hollow nanowires, can be used for injection of cargo-laden fluid from an external 

reservoir (Figure 15C). In one of the first examples of nanostraw delivery, researchers from the Melosh lab fabricated 

beds of aluminium nanostraws on polycarbonate track-etched substrates followed by seeding of HeLa cells and CHO 

cells. By controlling the composition and pressure of the fluidic reservoir underneath the nanostraws, temporal control 

over delivery of dyes and quenching agents was achieved, thus providing direct fluidic access to the cell interior700. In a 

different study, hollow nanostraws were fabricated from silicon oxide. Only nanostraws that pumped a mixture of 

membrane-perturbing saponin and cargo were able to introduce fluorescently labeled dextran, indicating that nanostraws 

acted to localize the membrane permeabilizing effects of saponin and to function as conduits for delivery into cells701. In 

an analogous fashion, nanostraws have been reported to localize the membrane-perturbing effects of electric fields702. Low 

voltage pulses acted as a gating mechanism to enable access to the cytosol for delivery of membrane impermeable dyes 

and plasmid DNA702. A key benefit of hollow nanostraws, as opposed to solid nanowires, is the temporal control over 

delivery, volume, and dosage concentration.  

 

In further studies of nanostraw technology, intracellular administration of calcium with complex signal patterns, such as 

oscillations over time703 and delivery of cell impermeable small molecule probes704 has been achieved. Nanostraws were 

also adapted for cytoplasmic extraction, being capable of continuous time-resolved sampling from the intracellular space 

for up to five days705. In another example, ~6 µm long conical nanostraws were employed for delivery of ~10 nm quantum 

dot to microalgal organisms706. Moreover, Golshadi et al. showed that an array of short, dense, nanotubes of 200 nm outer 

diameter, 140 nm inner diameter and 180 nm protrusion height were capable of intracellular dye delivery and efficient 
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plasmid transfection in HEK cells707. Because of the dense clustering of these structures, fully adherent cells could cover 

almost 1000 nanotubes707. 

 

5.3.1.5 Mechanisms of Cargo Delivery by Penetrating Elements 

The mechanisms by which nano- and micro-scale penetrating elements deliver molecules into cells are threefold: 

injection, dissociation, and permeabilization (Table 4). Microinjection, mostly featuring tip diameters of ~0.3–1 μm, is the 

classic example of delivery by injection (see section 5.1). Advanced versions of microinjection have also been introduced 

with ~100 nm diameter tips (nanoinjection610-613) and AFM control (FluidFM615). Nanostraws can be considered a highly 

parallelized adaptation of the microinjection mechanism with capability for much higher throughput418,700-702. However, 

some degree of control over the penetration and injection process is sacrificed. 

 

Table 4. Cargo delivery mechanism versus scale of throughput for nano- and micro-mechanical membrane disruption techniques. 
For injection mechanisms, the nano- or micro-mechanical element is hollow, thus allowing injection of cargo. Dissociation-based 
delivery works by enabling cargo to detach from the penetrating element once inside the cell. For permeabilization, the cargo is in 
the extracellular solution and flows into the cell by diffusion upon withdrawal of the penetrating element. References for each 
example are included. 
 

 Injection Dissociation Permeabilization 

 
 

 
 

 
 

Single cell 
throughput 

Microinjection324 
Nanoinjection610-613 
FluidFM615 

AFM-controlled CNT tip708 
AFM-controlled 
nanoneedle430,431,695,709,710 
Micromanipulator-controlled metal 
nanowire711-713 

CellBee714 
Cell Pricking715-718 

Parallelized 
Systems 

Nanostraws418,700-702 Nanowire arrays109,110,676 Cell Poking694 
Microneedle array719 

 

To date, most of the nanowire systems deliver cargo by dissociation. These include the original nanowire arrays 

introduced by McKnight et al.109,676 and Shalek et al.110,679 for simultaneous treatment of thousands of cells as discussed 

above. Single cell versions of nanowire delivery have also been explored. One system attached multi-walled CNTs of 10-

20 nm diameter and up to 1.5 μm length to AFM tips to deliver quantum dots to selected single cells708. Dissociation was 

achieved by the action of intracellular enzymes that cleave the linker holding the cargo to the penetrating CNT708. AFM-

controlled nanoneedles sculpted by focused ion beams have been shown to provide nuclear penetration and mediate gene 
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expression430,431,695,709. Another method used a ~500 nm diameter gold nanowire to penetrate mouse embryos and release 

plasmids inside. The plasmids are released through dissociation triggered by an electric pulse. Because the technique is 

thought to be less violent, embryo survival was reported to be significantly higher than traditional microinjection713. 

 

Finally, nanowire delivery can also be mediated by permeabilization whereby the mechanism involves diffusive influx of 

cargo from the extracellular solution. In this case the penetrating element is withdrawn from the cell and the influx occurs 

before completion of plasma membrane repair (see Figure 6). Both single cell714 and parallelized694 versions of this 

approach have been published. They will be further discussed in section 6.1.1 below, which deals with delivery by 

permeabilization. 

 

5.3.1.6 Nanowire & Nanostraw Summary 

In the reported nanowire and nanostraw delivery modalities demonstrated thus far, the cargo material is delivered by (1) 

dissociation from the penetrating structure upon cytosolic entry, (2) direct injection through hollow nanostraws, or (3) 

permeabilization of the plasma membrane (Table 4). In most cases active forces and/or rapid approach velocities improve 

penetration and resultant delivery efficiency. So far, high aspect ratio nanowires for intracellular delivery have been 

successfully fabricated out of carbon, diamond, silicon, silicon oxide, zinc oxide, gold, and various other inorganic 

semiconductors, metals, and metal oxides696,720-722. Polymer coatings have been suggested to improve delivery 

performance and cell health, for example, in the case of siRNA delivery681 and DNA transfection723. The physiological 

effect of exposing nanowire materials to the intracellular space will be essential knowledge if nanowires are to proceed 

toward biomedical applications. Furthermore, open questions remain regarding the membrane conformation adopted 

around nanowires and the subsequent degree of penetration. Understanding the effect of nanowire dimensions and density, 

the requirement of active forces, surface functionalization and chemistry, as well as the influence of culture conditions, 

cell properties, and cell type will be key information for the future implementation of nanowires and nanostraws. 

 

6. Intracellular Delivery by Permeabilization 

As specified in section 3, permeabilization methods work by transiently permeabilizing the cell to cargo in the 

extracellular solution. Here we will discuss methods for intracellular delivery that rely on mechanical, electrical, optical, 
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thermal, and chemical means of permeabilizing the plasma membrane. A major advantage of permeabilization-based 

delivery is that it is near-universal, being able to deliver almost any material that can be dispersed in solution. Because 

most cells can recover from micron-sized membrane disruptions444, delivery of large cargo is also feasible. 

 

6.1 Mechanical Membrane Disruption 

Mechanical methods of membrane permeabilization have been performed by (1) solid contact of foreign objects with 

cells, such as is the case for direct penetration mediated delivery discussed in the previous section. Membranes have also 

been permeabilized without solid contact, such as with (2) fluid shear forces and (3) hydrostatic or osmotic pressure 

changes. These three mechanisms of membrane permeabilization are categorized and discussed separately below. 

  

6.1.1 Mechanical: Solid Contact 

6.1.1.1 Scrape & Bead Loading 

Among the earliest reported mechanical cell permeabilization methods were those published by Paul McNeil and 

colleagues in the 1980s, which include scrape loading96 and glass bead loading97. In scrape loading, a rubber spatula is 

passed over a cell-laden substrate to dislodge adherent cells and bring them into solution, hence the technique is only 

applicable to adherent cells (Figure 16A). Moreover, the amount of damage to each cell is stochastic, with some cells 

being instantly killed while others remain almost unaffected. In cells that receive optimal amounts of membrane damage, 

cargo molecules dispersed in solution diffuse through transient membrane disruptions to achieve delivery. Glass bead 

loading involves shaking the adherent cells with medium containing glass beads and the cargo to be delivered (Figure 

16B). The impact of collisions between beads and cells imparts sufficient strain to generate disruptions in the plasma 

membrane. Again, the magnitude of plasma membrane damage that each cell sustains is highly variable and may lead to 

inconsistent delivery and cell survival. The generation of cellular and biological debris may be another problematic aspect 

of cell scraping and bead loading. Moreover, delivery of expensive reagents that need to be concentrated into small 

volumes can be difficult to achieve with these protocols. On the other hand, potential benefits include the low-cost and 

accessible nature, as these methods can be performed with common lab equipment. In applications where high cell 

viability is not a priority, scraping and bead loading may represent convenient options. A later adaption of bead loading 
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termed ‘immunoporation’ used beads functionalized with antibodies to bind to cells and permeabilize them by ripping off 

bits of their membranes724-730. 

 

 
 
Figure 16. Mechanical membrane permeabilization by direct contact. (A) Scrape loading, where a rubber spatula or similar scraping 
object can be used to simultaneously dislodge cells and permeabilize them. (B) Bead loading, wherein micron-scale beads can be 
rolled across a cell monolayer for controlled cell injury via collisions. (C) Filtroporation, where a solution of cells is passed through 
holes in filter membranes, such as a track-etched polycarbonate filter. (D) Microfluidic cell squeezing, where cells membranes are 
disrupted by rapid deformations in cell shape that occur with passage through microfabricated constrictions. (E) Permeabilization 
with nanoneedle/nanowire arrays. (i) The array is first centrifuged or otherwise pressed against cells adhered to a rigid substrate. (ii) 
The array is then removed to enable cargo influx through membrane disruptions in the target cells. 

 

Bead and scrape loading techniques have been used to deliver a variety of cargoes into cells. Bead loading has been used 

to deliver dye-conjugated dUTP for fluorescent visualization of chromosome formation731, antibody loading into 

macrophages732,733 and fibroblasts734, intracellular delivery of proteins735-737, peptides738, fab fragments739,740, peptide 

nucleic acid probes741, SNAP-reactive dyes742, CNTs743, and quantum dots up to 15 nm in several cell lines744. Scrape 

loading has achieved intracellular delivery of proteins96,543,745-751, antibodies752-754, peptides755,756, morpholinos757, high 

molecular weight dextrans96,758, lipopolysaccharides759, dyes760,761, pH-sensitive probes762, and transfection of plasmids545. 

 

A variant of the scrape loading technique is scratch loading763. Also introduced by Paul McNeil, it involves dragging a 

needle or other kind of sharp object across a layer of adherent cultured cells. The cells that brush the edge of the needle 

undergo membrane damage but remain adherent to the substrate. Intracellular delivery of dextrans763, dyes764, 

fluorescently-labeled nucleotides765, and quantum dots744 has been achieved in cells adjacent to the scratch zone. Although 

the method is lower throughput than scrape loading, one advantage of scratch loading is that cells remain adherent for 

immediate analysis. 
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6.1.1.2 Sudden Cell Shape Changes & Protease Treatments 

Sudden contraction of cells from an adherent, elongated shape to a rounded shape has the potential to generate membrane 

disruptions. Grinnell and colleagues found that the sudden contraction involved in the fibroblast-driven collapse of 

collagen matrices is able to induce permeabilization and uptake of dextrans up to 150 kDa in size766,767. In this approach, 

fibroblast-colonized collagen matrices that are stabilized by substrate attachment are peeled away from their support. The 

isometric contractile forces collectively generated by the fibroblasts then trigger compaction of the collagen matrix into a 

dense body one tenth of its original size767. This process induces plasma membrane disruptions in the contracting 

fibroblasts. Membrane permeabilization is thought to be due to the tearing of focal adhesion sites associated with rapid 

cell shape change and compression of the collagen matrix576,766. The lesions are resealed in a Ca2+-dependent fashion, with 

the fibroblasts reported to be impermeable to uptake several seconds after return to standard physiological media576,766. 

Fibroblasts that detach from their substrates to round up in mitosis also exhibit permeability to dextrans up to 150 kDa, 

peptides, proteins, or oligonucleotides768. This observation is in congruence with other studies that have observed plasma 

membrane damage and dye uptake during mitotic cell rounding769,770. 

 

In what could be a related phenomena, permeabilization has been observed when attached fibroblasts are treated with 

strong doses of the proteases trypsin, pronase, or collagenase771,772. Cytoplasmic delivery of the proteins insulin (6 kDa), 

lysozyme (14 kDa), BSA (76 kDa), and thyroglobulin (660 kDa) were achieved with this simple treatment. Although the 

mechanisms were not investigated, cells presumably become permeable as they detach from the substrate766. Indeed, 

membrane ripping has previously been observed when certain cell types move across or detach from surfaces766. 

However, intracellular delivery of proteins by protease permeabilization has been reported for both adherent773 and non-

adherent cell types774. If protease-mediated permeabilization is not due to membrane ripping during detachment, it could 

be that cells are permeabilized cells through the action of the proteases themselves. Trypsin can trigger signaling events 

that culminate in vigorous contractile activity at the cell surface and loss of coherence between the cortex and plasma 

membrane775. Such events could potentially induce transient plasma membrane disruptions. Thus, further studies may be 

needed to identify the mechanisms of membrane disruption by rapid cell shape changes and the action of proteases, and 

whether these phenomena can be made more widely useful for intracellular delivery. 
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6.1.1.3 Projectile Permeabilization 

Sautter et al. pioneered a variation of the biolistic approach that retains free DNA in solution776. It is distinct from the 

projectile bombardment methods covered in section 5.2 in that the particles are used to permeabilize the cells rather than 

carry cargo. Projectiles are accelerated towards target cells in a Bernoulli air stream as a fine mist of droplets. The 

projectile particles create membrane disruptions that allow influx of plasmid DNA dispersed within the droplets. This 

stream of droplets can be targeted toward 150 μm areas of cells or tissue for localized targeting with dynamic adjustment 

of particle density and velocity. 

 

6.1.1.4 Filtroporation 

In 1999 a constriction-based method for generating disruptions in the plasma membrane was reported777. The technique, 

termed “filtroporation”, works by forcing cell suspensions through uniformly-sized micropores in commercially available 

track-etched polycarbonate filters (Figure 16C). In the reported study, a polycarbonate filter of approximately 12 µm thick 

with pore sizes ranging from 5–18 µm was used. Plasmid DNA and dextran-conjugates up to 500 kDa were successfully 

delivered into CHO cells of nominal diameter ~13 ±2 µm. The cell suspensions were driven through the polycarbonate 

filter by a pressure regulator supplying constant pressures of 0 to 175 kPa. Delivery efficiency and cell damage were both 

increased as a function of driving pressure. Severity of the treatment also increased as the micropore diameter was 

decreased when all other parameters were held constant. By tuning parameters, optimal conditions of 8 µm pore size and 

driving pressure of 35 kPa were identified in ~13 µm CHO cells. Thus, the cells experienced 40% constriction of their 

diameter as they passed through the polycarbonate filter. These conditions permitted uptake of a luciferase reporter 

plasmid, which resulted in transfection of the cells with a reported transfection efficiency above 50% after 2 days in 

culture. Despite these results, further work on filtroporation is absent from the literature as the technique does not appear 

to have gained traction. 

 

6.1.1.5 Microfluidic Cell Squeezing 

Microfluidic and lab-on-chip methods of plasma membrane perturbation offer the opportunity for precise control of the 

membrane disruption process19,104,106,107. In 2013, Sharei and colleagues reported on the development of a microfluidic 

platform for intracellular delivery by rapid cell deformation (or squeezing) through channel constrictions (Figure 16D). 
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This innovative method has demonstrated delivery of diverse macromolecular materials into a wide range of cell 

types108,308,778. The delivery mechanism is via diffusion of macromolecular cargo through membrane disruptions generated 

by rapid deformations of cell shape (Figure 17A). The device is comprised of parallel constrictions generated by deep 

reactive ion etching in silicon wafers, followed by bonding to pyrex glass and drilling holes for inlet and outlets. Gas 

pressures of 10-100 kPa are then used to drive cell suspensions through constrictions of 4 to 8 µm width, 10 to 50 µm 

length, and 20 µm channel depth. The ability to engineer angle of entry and repeated constrictions is also possible. In the 

first published study, the bona fide cytoplasmic delivery of unaggregated quantum dots was demonstrated in HeLa 

cells308. Then a wider range of cell types was screened to showcase efficacy with primary blood derived immune cells (T 

cells, B cells, and macrophages), primary dendritic cells, embryonic stem cells, and primary fibroblasts, as well as a panel 

of immortalized cell lines108. Efficient cytosolic delivery of siRNA, carbon nanotubes, quantum dots, antibodies, 

transcription factors and dextran-conjugated dyes was observed in many of these cell types.  

 

A major strength of cell squeezing is the simplicity of the approach – no moving parts or external power are required, 

simply a pressure source and controller to modulate flow rate. Weaknesses include cell type and size dependence for a 

particular device geometry, and the potentially narrow range of flow rates required to achieve optimal balance between 

delivery and viability. However, a variety of constriction geometries have been developed to address a broad range of cell 

types. Furthermore, experiments with buffer composition (e.g. Ca2+ concentration) indicate that it can successfully be 

tuned to optimize membrane recovery kinetics and cell survival779. In line with what is known from the cell biology of 

membrane repair (see section 4.3), it was observed that buffers with calcium promoted rapid (~30 s) closure of membrane 

wounds while no calcium conditions allowed the membrane to remain open for several minutes779. By modulating 

treatment parameters as well as temperature, a further demonstration of immune cell engineering with siRNA, antibodies 

and proteins was shown in T cells, B cells, dendritic cells, and monocytes/macrophages at throughputs of millions of cells 

per second780,781. These results suggest cell squeezing might be a promising path towards engineering cell function for 

immune cell therapy at high-throughput. 

 

The cell squeezing platform has been used for protein delivery to primary mammalian plasmacytoid dendritic cells with a 

device consisting of 10 μm long and 4 μm wide constrictions repeated 5 times in series782. Zoldan and colleagues 

employed microfluidic cell squeezing to perform high throughput delivery of fluorescently labeled tRNAs into multiple 
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myeloma cells with a transfection efficiency of ~45%783. Delivery of fluorescently labeled tRNAs enabled monitoring 

protein synthesis inside the cells in real time783. Delivery of otherwise impermeable JAK inhibitors into human primary 

cells was achieved by squeezing cells through constrictions of 10 μm long and 4 μm wide784. Intracellular delivery of 

small fluorescent tags for protein labeling and subsequent live cell imaging has also been demonstrated by cell 

squeezing785. 

 

Because of the sensitivity of cells to constriction size, it was tested whether the squeeze platform could exploit size 

differences of cells to facilitate selective intracellular delivery786. As a proof of concept, Saung et al. showed that the 

system is able to selectively deliver molecules to pancreatic cancer cells within a heterogeneous mixture containing T 

cells786. One future application of this concept would be the selective tagging of CTCs or other abnormal large cells in the 

blood786. 
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Figure 17. Different variations of cell squeezing for intracellular delivery by mechanical membrane permeabilization. (A) The original 
microfluidic platform for cell squeezing108. The rapid deformation a cell experiences upon passage through a constriction transiently 
permeabilizes the plasma membrane, allowing influx of macromolecules into the cytosol. Reprinted with permission from Reference 
108. Copyright 2013 PNAS. (B) Similar to cell squeezing in panel A but with addition of a downstream electric field. The electric field 
enhances delivery of large nucleic acids, such as plasmid DNA, into the cell by electrophoretic forces. In this case the device was 
optimized for delivery of plasmids into the cell nucleus at high throughput787. Panel (i) shows the delivery concept. Panel (ii) shows 
the close-up architecture of the constriction and electrode zones on the chip. Panel (iii) shows a view of the whole chip including 
holes (white) for inlet (left) and outlet (right). Scale bar: 1 mm. Reprinted with permission from Reference 787. Copyright 2017 
Springer Nature. (C) Cell squeezing with different constriction geometries in a PDMS device. (i) Comparison of 45° pyramidal pattern, 
90° saw tooth pattern, and 135° reverse wishbone pattern of repeated constrictions. (ii) COMSOL modeling indicates the stress (N 
m-2) that the cell membrane would undergo upon passage through the different shapes of constrictions. Experiments and modeling 
show the reverse wishbone pattern as the most effective for localized membrane disruption in this device788. Figure reprinted from 
ref 788, Copyright 2017, with permission from John Wiley and Sons. 
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6.1.1.6 Electric Field-Enhanced Microfluidic Cell Squeezing 

Like most other mechanical membrane disruption techniques, DNA transfection efficiencies upon cell squeezing are 

generally quite low in many cell types. Ding and co-workers explored the idea of adding a downstream electric field to 

investigate whether it could improve DNA transfection results (Figure 17B)787. The strategy, termed ‘disruption and field 

enhancement’ (DFE), was compared with standard cell squeezing, microfluidic flow-based electroporation, commercial 

electroporation (Neon – Thermo Fisher), microinjection directly to the nucleus, and lipofection787. In HeLa cells, DFE was 

able to achieve similar transfection efficiencies as lipofection and commercial electroporation. Surprisingly, plasmid 

expression approached its maximum within 1–2 hours of treatment, which was also the case with microinjection. This 

contrasts with the delayed onset on expression after lipofection and standard electroporation, which can take 24 hours or 

longer due to requirement of endocytosis and other intracellular trafficking processes to deliver DNA to the nucleus787. 

Fixation and imaging of cells directly after treatment indicated that DFE, like microinjection, could deliver plasmids 

directly into nucleus for immediate expression. To determine whether DFE was permeabilizing the nuclear envelope to 

permit DNA uptake, a HeLa cell line expressing the protein CHMP4B–GFP was imaged with confocal microscopy. 

CHMP4B is a component of the ESCRT-III complex, recently discovered to be involved in repair of both plasma 

membrane and nuclear envelope disruptions454,789-791. While squeezing and standard electroporation only permeabilized 

the plasma membrane, DFE was found to also generate disruptions in the nuclear envelope. After treatment, nuclear 

envelope repair appeared to be completed within ~15 minutes, in agreement with previous studies789,790. It was speculated 

that, by first disrupting the plasma membrane, subsequent exposure to the electric field was able to electroporate the 

nucleus. Indeed, specific types of electroporation have previously been found to selectively permeabilize intracellular 

compartments (reviewed in579). DFE thus represents a useful strategy for high-throughput nuclear delivery and rapid 

expression of DNA787. Further work should clarify the exact mechanisms of cargo influx upon two-step 

mechanical/electrical hybrid treatments such as DFE. 

 

6.1.1.7 Variations on Microfluidic Cell Squeezing and Cell Deformation Strategies 

In 2015 the Qin lab introduced microfluidic intracellular delivery devices featuring various types of PDMS-based micro-

constrictions792. Until this point, most results had been obtained in microfabricated silicon devices108. By using repeated 

arrays of constrictions fabricated from PDMS, Qin and co-workers reported delivery of single-stranded DNA, siRNA, and 
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plasmids into HEK cells and several other cell lines792. Moreover, they demonstrated genome editing in MCF7 and HeLa 

cells via delivery of plasmids that express Cas9 and gRNA, although transfection efficiencies were not directly 

reported792. In a subsequent study, the group modified their device architecture to perform siRNA delivery to cancer cells 

with a repeated pattern of 5 μm constrictions in a reverse wishbone configuration788 (Figure 17C). Experiments and 

simulations both indicate that the sharper constrictions conferred by the reverse wishbone intensified the local stress on 

the plasma membrane to increase the magnitude of membrane disruption788. Another of this group’s publications featured 

sharp star-shaped constrictions to facilitate delivery of dextrans, siRNA, and Cas9 RNPs to the intracellular space of hard-

to-transfect suspension cell lines and T cells152. By delivering RNPs targeting GFP, they were able to achieve CRISPR-

mediated GFP knockout in several standard cell lines. Also demonstrated was low-efficiency CRISPR-mediated knock-in 

editing of the PD-1 gene in primary T cells, an application that could be relevant for cell-based therapies152. 

 

So far, the results on cell squeezing indicate that the rapid deformation of cells in suspension is able to create holes in the 

plasma membrane in a relatively well-controlled and reproducible manner. In an extension of this concept, it is possible to 

asymmetrically deform cells by flowing them past an abrasive object positioned on one side of a microfluidic channel. 

Such a strategy would presumably disrupt the plasma membrane in a more localized manner, preferentially 

permeabilizing on one side of the cell. To explore this idea, the Qin lab introduced a device with sharp silicon nanoblades 

protruding from one side of PDMS microfluidic channels793. The protruding edge of the silicon nanoblade essentially 

formed a spike of ~200 nm radius, creating a gap of ~2 μm for cell passage. By optimizing the flow rate and number of 

nanoblade constrictions, they achieved ∼70% delivery efficiency of 70 kDa dextan with ∼80% cell viability in hard-to-

transfect HSCs793. Compared to electroporation, the delivery efficiency was the same, however, survival and ability of 

HSCs to remain pluripotent were claimed to be superior with the nanoblade device. Cas9 RNPs were successfully 

delivered into HSCs, but the actual gene editing efficiencies as a percentage of total cells treated were not reported793. 

 

Another method of microfluidically-controlled cell deformation is to flow cells through a T-junction and cause them to 

collide with the channel wall794. A recent report from Deng et al. shows that cells can be propelled into a spike-like 

structure protruding from the channel wall to permeabilized them at a throughput of a million cells per minute794. As with 

cell squeezing, the extent of permeabilization is proportional to the flow speed of the cells794. Using this strategy, 
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intracellular delivery of dextrans, Cas9 RNPs, siRNA, plasmid DNA, and DNA nanostructures were demonstrated at 

efficiencies around 50% in several cells lines794. 

 

6.1.1.8 Potential Off-Target Effects of Cell Squeezing 

Cell squeezing strategies often rely on significant cell deformations – sometimes up to 70% of the cell diameter. An 

unresolved issue is whether off-target damage may be inflicted upon intracellular structures, such as the cytoskeleton, 

nucleus, and even genomic DNA. For example, it has been observed that cells migrating through tight constrictions 

undergo transient nuclear ruptures and DNA damage789. As the stiffest large object in the cell, the nucleus is widely 

regarded as the determining factor governing passage of cells through micron-sized constrictions795,796. It has also been 

observed that apoptotic and cell stress response can significantly impact cell survival after passage of cells through 

constrictions797. Lamins, which mechanically reinforce the nuclear envelope, play a protective role in physically buffering 

the nucleus from mechanical stress and their depletion is known to make cells more vulnerable to death after passage 

through constrictions797. Moreover, DNA damage has previously been observed with imposed cyclic mechanical stresses 

in certain cell types798. Experiments from Ding and colleagues that visualized nuclear disruptions with CHMP4B-GFP 

indicated that squeezing HeLa cells (nuclear diameter ~8-12 μm) through 7 μm constrictions did not disrupt the nuclear 

envelope787. Because disruption of the nuclear envelope can be associated with DNA damage, it indicates genomic DNA 

may be safe even when cells are squeezed by more than 50% of their initial diameter. Moreover, measurements of DNA 

damage with a high throughput COMET assay799 failed to indicate significant DNA damage in HeLa cells forced through 

6 μm constrictions (unpublished observations). However, further investigations with different types of cells (particularly 

those of clinical relevance) may be required to fully address the question of off-target DNA damage. 

 

6.1.1.9 Nanowires for Transient Permeabilization 

Arrays of sharp nanowires have been used to permeabilize cells by transiently piercing their plasma membranes. In these 

cases, nanowires are thrusted into the cells followed by withdrawal to promote diffusive influx from the surrounding 

media (Figure 16E). This mode of plasma membrane penetration is similar to the nanowires/nanostraws described in 

section 5.3, except that the delivery mechanism is via diffusion through a permeabilized plasma membrane rather than 

dissociation from the nanoneedles themselves. In one notable example, a grid of diamond nanowires was centrifuged onto 
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cultured cells at controlled forces using standard lab centrifuges694. Thin diamond nanowires were fabricated by first 

depositing a nanodiamond film on silicon wafers followed by microwave plasma chemical vapor deposition to grow a 

uniform field of needles. In the versions used for experiments, dimensions were optimized to ~300 nm diameter and ~4.5 

µm height with straight sidewalls at a density of ~6 nanowires per 10 x 10 µm2. It was found that nanowires of diameter 

>800 nm caused excessive damage to cells, but those < 400 nm produced a suitable balance between delivery efficiency 

and cell damage. For this geometry, it was calculated that centrifugation at 300 r.p.m. yields ~2 nN penetration force per 

nanowire, which was claimed to be an ideal penetration force for monolayers of cells grown in culture. Upon withdrawal 

of nanowires from cells, influx of IgG antibodies, ~20 nm quantum dots, and ~200 nm polystyrene nanoparticles into the 

cytoplasm of primary neurons was demonstrated. Furthermore, by packaging DNA with lipid-based lipofectamine 

complexes, plasmid transfection in neurons was boosted from around 1-5% (lipofectamine alone) to almost 50% with 

additional nanowire permeabilization. If nanowire permeabilization were used with naked DNA alone, transfection 

efficiency was <1%, suggesting that: 1) centrifuged nanowires did not consistently permeabilize the nucleus, and 2) that 

lipid complexes may facilitate nuclear targeting and protect the DNA from premature degradation. Thus, direct cytosolic 

delivery of DNA-lipid complexes may boost transfection efficiency in otherwise difficult-to-transfect cells such as 

neurons. 

 

Several other groups have also used arrays of nanowires to permeabilize cells for intracellular delivery. In one case arrays 

of silicon lances were pressed against cell monolayers with a compliant suspension system in lieu of centrifugation719. The 

silicon lances were larger than typical nanowires, with lengths of 8 µm, diameters around 0.5 to 1.0 µm, and sharpened 

tips. Although this setup yielded diffusion-based intracellular delivery of propidium iodide, delivery of larger molecules 

of biological interest was not tested719. Matsumoto produced nanowire arrays of 25 µm length and 200 nm diameter800. 

They were attached to a piezoelectric actuator stage and lowered onto cell monolayers before being vertically oscillated at 

a frequency of 5 kHz and an amplitude of ~0.5 µm for up to 2 minutes800. Continuous delivery of molecules from solution 

appeared to be augmented by the agitation associated with nanowire oscillation. Up to 50% of cells retained detectable 

levels of 70 kDa dextran after treatment. Efficiency of plasmid transfection, however, was only ~7%, which was less than 

the 18% achieved when plasmids are directly attached to nanowires682. Interestingly, the abovementioned examples of 

nanowire permeabilization are essentially scaled-up versions of single cell permeabilization previously performed with 

sharpened AFM tips. In 2006, a method introduced by Hara et al. demonstrated stab and withdraw permeabilization by 
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using AFM tips that had been sharpened by focused ion beam technology714. Expression of plasmid DNA that flowed into 

cells from the culture media was achieved with serial penetrations of sharpened tips into HeLa cell nuclei using a 

computer controlled device called the “CellBee”714. 

 

6.1.1.10 Summary of Permeabilization by Mechanical: Solid Contact 

Classic methods of mechanical contact-mediated permeabilization such as scrape and bead loading provide low-cost, 

accessible and crude solutions for delivery of certain cargoes, especially proteins, small molecules, and oligonucleotides. 

However, delivery efficiency and cell survival may not be sufficient for certain applications, particularly in sensitive cell 

types. Recent progress in solid contacted-mediated mechanical membrane disruption takes advantage of the increased 

precision afforded by MEMS, microfluidics, lab-on-chip, and nanotechnology capabilities to finely control the level of 

cell injury19,104-107. Prominent examples include microfluidic constrictions for squeezing of cells in suspension108,787 and 

nanowires to transiently permeabilize adherent cell monolayers for high throughput intracellular delivery694. 

 

6.1.2 Mechanical: Fluid Shear 

Lipid bilayers can be disrupted by fluid shear forces in a number of ways. If water molecules flow parallel to a membrane 

surface at a sufficiently rapid velocity, it can tilt the lipid heads in the direction of the shear and lead to buckling 

instabilities that eventuate in bilayer rupture801. Alternatively, a jet of water molecules propelled perpendicularly into a 

membrane can pierce it in an analogous way to a mechanical object802. Unlike membrane disruption via solid contact 

(discussed above), fluid shear forces are less invasive. On the flipside, fluid shear forces in aqueous environments tend to 

be more difficult to control. In this section we discuss the strategies and methods that have been used to perform 

membrane disruption-based intracellular delivery by harnessing fluid shear forces. First, we will explore shear forces 

generated by flow of fluid past microscale channels and objects. Second, acoustic sonoporation, which is thought to 

depend mainly on the forces associated with cavitation bubbles, will be discussed. Third, we will cover laser-induced 

cavitation as a strategy for generating highly localized and intense zones of fluid shear. 
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6.1.2.1 Syringe Loading 

One of the simplest approaches for generating zones of high fluid shear force is to drive a liquid through tight 

constrictions. In 1992 Paul McNeil and colleagues introduced an intracellular delivery method called syringe loading, 

where cell suspensions mixed with high concentrations of a cargo to be loaded are repeatedly aspirated and expelled 

through fine-gauge syringe needles to transiently permeabilize cells (Figure 18A)98. The flow rate is a critical parameter as 

it determines the velocity of the cells traversing the constriction zone and thus the shear forces they experience. A typical 

syringe loading protocol consists of eight passes of cell suspension through a 1 ml syringe affixed with a 30 G needle, 

which has an inner diameter of 160 µm98. In the initial publication, delivery of cargo sizes up to 150 kDa were obtained in 

several mammalian cell lines98. Furthermore, the addition of pluronic F-68 (also known as poloxamer 188) was found to 

increase the tolerance of cells to membrane permeabilizing shear forces, thereby enabling the cells to undergo harsher 

treatments and improve cell survival. In the cell types tested, syringe loading in the presence of pluronic F-68 appeared 

more efficient than both bead and scrape loading98. Low-volume versions of the protocol were also developed, using a 25 

µl Hamilton syringe with 25 G fixed needle (inner diameter 260 µm) for 80 passes. A 5 µl version of the protocol was 

described with a 10 µl micropipette tip (inner diameter not reported) involving 60 passes. 

 

In subsequent reports, syringe loading has demonstrated utility in a variety of delivery applications, mostly to conduct 

studies in basic biology. In one example, it has been used to perform DNA transfection803. Using a selection strategy, 

stable integration of plasmid DNA into the genome of host CHO and mouse Ltk(-) cells was estimated in approximately 

one of every 50,000 cells treated, which was considered a success given the low cost of the technique803. Ghosh and 

colleagues found that syringe loading could deliver neutrally charged antisense phosphorodiamidate morpholinos into 

cells for the purpose of gene silencing804. Moreover, the same delivery strategy has been used for loading of small 

molecular weight nucleotides, GTP and GDP (~0.5 kDa), and their analogues to explore G-protein biology in immune 

cells and endothelial cells805,806. In another application, fluorescent labeling of the neuronal cytosol was achieved when 

trypsinized ganglia were syringe-loaded with dye-conjugated 10 kDa dextrans807. 
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Figure 18. Mechanical membrane permeabilization by fluid shear forces. (A) Syringe loading, where a cell solution is repeatedly 
aspirated and ejected through the terminal aperture of a syringe needle. Shear forces at the nozzle promote cell membrane 
disruption. The inset illustrates cell deformation associated with shear forces. (B) Microfluidic shear-based permeabilization. Similar 
to syringe loading but exploiting the increase of shear forces associated with flow through narrowing microfluidic channels. The inset 
illustrates cell deformation upon flow through a single constriction. (C) Cone-plate viscometer. Generation of permeabilizing shear 
forces via rotation of a viscometer plate above a monolayer of cells. (D) Generation of local shear forces via collapse of a cavitation 
bubble. (E) Generation of local shear forces via oscillation of a cavitation bubble. (F) Induction of cavitation bubbles on the basal side 
of a cell through a seed structure that absorbs laser energy. The cavitation bubble can produce a large hole in the plasma membrane 
that allows influx from a separate fluid reservoir underneath the cell. 

 

The most common application of syringe loading has been delivery of proteins and antibodies to the intracellular space. 

GST-FAK fusion proteins were loaded into fibroblasts by passing them through a 30 gauge syringe needle 30 times808. 

HEp-2 cells were loaded with monoclonal antibodies by 20 cycles through a 27 gauge needle809. A modified version of the 

protocol was employed by Sydor et al. to deliver fluorescently-labeled antibodies into trypsinized neurons by using ~100 

cycles of aspiration-expulsion though pipette tips810. For delivery of monoclonal antibodies to fibroblasts, a mixture of 

cells and antibodies was cycled 20 times through a 30 gauge needle811. Kasier et al. syringe loaded a fluorescently labeled 

version of the protein profilin into amoebas and human cells to study its binding to intracellular actin812. In other studies of 
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the actin cytoskeleton, FITC-conjugated anti-fascin immunoglobulins were delivered into ~95% of fibroblasts or 

myoblasts by 4 passages through a 1 ml syringe fitted with a 25 gauge needle813. Researchers from the Schwartz lab 

loaded endothelial cells with alexa-labeled versions of the p21 binding domain of PAK1 to investigate mechanobiology of 

the Rac1 pathway814,815. Several studies have also employed syringe loading to study the effect of bacterial and viral 

proteins inside cells. For example, fibroblasts were syringe-loaded with HIV proteins to examine their impact on 

intracellular and nuclear architecture816. In another case, CHO cells were drawn up and expelled slowly (∼0.2 ml s-1) 

through a 30 gauge syringe needle 6 times for intracellular delivery of the bacterial toxin ExoU817. Moreover, Xu et al. 

delivered the Legionella pneumophila protein SidK into macrophages by 100 cycles of pipetting through a 200 μl pipette 

tip818. In studies of herpes simplex virus replication, herpes virus and nucleoporin antibodies were introduced into Vero 

cells by 50 passages through a 27 gauge needle819. 

 

6.1.2.2. Microfluidic Control of Shear Forces 

Syringe loading presumably works by creating regions of significant shear force around the entrance and exit of the 

syringe needle (Figure 18A). Because the fluid flow is controlled manually, however, it may require extensive empirical 

testing and skill to reproducibly obtain optimal cell treatments820. Improved precision and reproducibility could potentially 

be achieved by using microfluidic devices to generate consistent zones of fluid shear. Along these lines, Prausnitz and 

colleagues fabricated a simple flow-through microfluidic device with parallel constrictions821 (Figure 18B). Lasers were 

used to bore out 50 - 300 µm conical microchannels from 100 to 250 µm thick mylar sheets and syringe pumps were 

employed to flow cell suspensions through the channels at controlled flow rates, thereby subjecting cells to well-defined 

shear forces. The resultant loading of fluorescently labeled dextrans and proteins into DU145 prostate cancer cells, as well 

as the viability, however, turned out to be less favorable than syringe loading. Further attempts towards plasma membrane 

permeabilization through microfluidic control of shear forces have not been reported and therefore present an opportunity 

for future investigations. 

 

6.1.2.3 Other Examples of Cell Permeabilization Through Shear Forces 

Driving fluid through narrow constrictions is not the only way to generate fluid shear forces for cell permeabilization. 

Indeed, researchers have used cone-plate viscometers to produce hydrodynamic shear forces above cell monolayers, 
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obtaining uptake of fluorescent molecules in neuronal and endothelial cultures (Figure 18C)822,823. In 1997, LaPlaca and 

colleagues confirmed permeabilization of neurons by observing an increase in intracellular Ca2+, release of intracellular 

enzymes to the extracellular solution, and cell swelling822. Later, Blackman and colleagues used a modified cone-plate 

setup to expose endothelial cell monolayers to consistent fluid shear forces823. When forces were too high, cells peeled 

away from the substrate. After empirical optimization, however, conditions were identified where all cells remained 

attached to the substrate yet 16% of cells retained 4 kDa823. The Blackman cone-plate viscometer was then used to 

permeabilize cultured neurons, investigate their physiological response, and test strategies to improve post-injury neuron 

survival824. Relative permeabilization efficiency was analyzed by influx of small molecular weight fluorescent dyes824. 

 

Intense pulses of fluid shear can be directed at cells by firing jets of pressurized inert gas toward them825,826. Similar to the 

case of cone-plate viscometers, it was found that excessive shear forces can rip cells away from the underlying substrate, 

but if modulated just below this range, were capable of permeabilizing cell membranes while leaving adherent cells in 

place. With the appropriate optimizations, intracellular delivery of dextrans, plasmids and other cargo has been 

demonstrated in common adherent cell lines permeabilized by inert gas jets825,826. 

 

6.1.2.4 Sonoporation 

Sonoporation is the disruption of cell membranes by acoustic pressure waves, mostly in the ultrasound frequency range 

(20 kHz to GHz). Its deployment for intracellular delivery purposes first arose in the mid 1980s through the use of 

ultrasound to permeabilize cultured cells545,827-829. Permeabilization was achieved by placing cell suspensions in a plastic 

tube and applying 3 half-second pulses of the ultrasonic transducer directly to the tube. With this rudimentary approach, 

Fechheimer et al. demonstrated intracellular loading of dextrans and proteins into Amoebae545,827,829. Ultrasound-mediated 

permeabilization was compared head-to-head with scrape loading545. However, scrape loading was found to yield superior 

delivery of dextran-conjugated dyes and DNA plasmids into HeLa cells, hepatic tissue cultures, and mammalian 

fibroblasts545. 

 

About a decade later, sonoporation began to be taken seriously as a method for DNA transfection830-832. Several factors 

converged to motivate this trend833. First, high intensity focused ultrasound was gaining prominence as a non-invasive 
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method for therapeutic treatment of targeted cells and tissues in vivo834,835. Examples include local tissue ablation, local 

drug delivery stimulated by ultrasound, and, gene therapy by targeted nucleic acid transfection836. Second, the 

mechanisms of ultrasonic effects were being increasingly clarified, with cavitation bubbles implicated as the prime 

instigators of membrane disruption837. These mechanistic insights enabled a more rational approach toward sonoporation 

that greatly boosted its efficiency. Particularly key was the deployment of gas body ultrasound contrast agents to act as 

cavitation nuclei. This modification was found to drastically improve transfection efficiency compared to ultrasound 

alone831,838. For example, commercially available microbubbles were mixed with cultured immortalized human 

chondrocytes and exposed to 1.0 MHz ultrasound transmitted through the bottom of a six well culture plate. The addition 

of microbubble cavitation nuclei, along with other empirical optimizations, enhanced DNA transfection nearly 20-fold 

over previous reports and indicated that ultrasound could be a feasible DNA transfection technique838. 

 

6.1.2.5 Mechanisms of Sonoporation 

As the field currently stands, hundreds of studies have been published on the subject of understanding and improving 

sonoporation. Although non-invasive in vivo applications may be the final goal, many of these efforts have exploited in 

vitro experiments for in-depth mechanistic investigations and proof-of-principle studies. Recent reviews have covered the 

sonoporation field in detail839-844. The mechanisms underlying sonoporation are diverse and may involve: 1) 

microstreaming caused by stable cavitation, whereby a cavitation bubble oscillates in synchrony with the acoustic field 

(Figure 18E), 2) jetting forces from inertial cavitation, which is triggered by the collapse of a cavitation bubble (Figure 

18D), 3) a shrinking cavitation bubble pulling against the plasma membrane845, 4) an expanding cavitation bubble pushing 

against the plasma membrane845, 5) bubble translation, whereby acoustic radiation forces push a bubble through the 

plasma membrane, 6) nucleation of a cavitation bubble between bilayer leaflets, rupturing the membrane upon expansion, 

and 7) non-bubble acoustic effects, such as acoustic streaming due to pressure differences of the acoustic field840,842,846. 

The literature consensus indicates that the first two mechanisms are the most prevalent. Below we discuss how these 

cavitation phenomena generate membrane disruptions. 

 

Cavitation bubbles form and/or expand when the low-pressure part of the acoustic wave passes through a liquid medium. 

Conversely, the high pressure peak of the wave corresponds with compression and/or implosion of cavitation 
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bubbles840,842,846,847. The bubbles may be created by the pressure waves themselves or provided by the supplementation of 

stabilized microbubbles in the form of commercially available contrast agents. A bubble that expands and contracts in 

synchrony with the acoustic field (stable cavitation) generates local oscillatory shear forces due to microstreaming848,849. 

The microstreaming forces are sufficiently potent to permeabilize nearby cells. On the other hand, a bubble that implodes 

(inertial cavitation) can trigger extreme phenomena including electromagnetic radiation (sonoluminescence), severe 

temperature spikes up to thousands of degrees, sonochemical reactions such as the production of free radicals, and intense 

microjetting. Although any of those phenomena can perturb lipid bilayers, the permeabilizing effects of bubble collapse 

have primarily been ascribed to the potent fluid shear forces generated by microjetting840,842,846. As a cavitation bubble 

implodes, surrounding water molecules rush in to fill the void. If there is a surface nearby (such as a lipid membrane) less 

water molecules are available to flow from that region. This biases the flow towards that surface and results in the 

microjet being oriented in that direction. Thus, imploding cavitation bubbles can result in the selective puncture of an 

adjacent cell (Figure 17D). High pressure ultrasound is more likely to trigger inertial cavitation while low pressure 

procedures bias the system toward stable cavitation842. 

 

6.1.2.6 Cargo Delivered by Sonoporation 

Because of the variation in magnitude and mode of fluid shear phenomena related to sonoporation, it is perhaps not 

surprising that the resultant holes have been reported to range from nanometers up to several micron840,842,846,850-852. Under 

conditions where large holes are generated, sonoporation can be expected to enable delivery of small and large cargos 

alike. Because of the motivation for gene therapy, significant efforts have gone into optimizing sonoporation for DNA 

transfection over the last two decades830,831,833,838,853-859. Transfection of other nucleic acids, such as antisense 

oligonucleotides860, siRNA861,862, and mRNA863 have received less attention, but have also been demonstrated. To study 

mechanisms, much work in the field has exploited delivery of fluorescently labeled dextrans of varying molecular weight 

(~1-30 nm hydrodynamic radius)545,827,828,849-851,864-872 and low molecular weight dyes (<1 nm)802,845,850,851,857,865,871,873-881. 

Also demonstrated has been intracellular delivery of small molecule drugs871,882-886, polymer nanoparticles of 25-75 nm867, 

viral particles887, proteins865, antibodies888, and peptides889. In some cases delivery has been ascribed to endocytosis and 

not influx after permeabilization868. This explanation could be applicable to larger cargo such as plasmid DNA, where 

delayed expression kinetics akin to electroporation have been observed846. As with other mechanical delivery methods787, 
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the plasmid transfection efficiency of acoustic shear-based methods may be improved by addition of downstream 

electrophoretic forces to augment delivery of charged cargoes890. 

 

The majority of reports on sonoporation-mediated delivery have focused on technology development and not its use to 

carry out basic research. In the early days of sonoporation in the late 1980s and early 1990s, however, there were several 

examples of biologists using it to carry out basic research827,829,873,887,888. Although at least one commercial sonoporation 

system has been available for more than a decade (Sonidel SP100), its use for intracellular delivery appears confined 

within the ultrasound community891,892. The most significant challenge for sonoporation in vitro remains the random and 

uncontrolled nature of cavitation events leading to excessive cell damage and death844. A 2012 review of 26 published 

studies conducted over more than a decade concluded that conventional in vitro sonoporation with nucleation agents 

almost never yielded above 50% for both delivery efficiency and cell viability844. Poor viabilities are perhaps due to 

cavitation-related side effects such as high local temperatures and generation of reactive oxygen species893. Thus, bulk 

sonoporation may be inherently limited as a delivery approach in vitro. In vivo applications have been more promising836, 

especially in skin where optimal parameters have been identified and barriers to delivery of therapeutic cargo are more on 

the tissue, rather than cellular, level839. 

 

6.1.2.7 Shock Wave-Mediated Permeabilization 

Shock waves differ from acoustical waves in that they are higher pressure and propagate at supersonic speed894. They are 

best known as the by-products of explosions. Various devices and strategies have been employed for producing shock 

waves to permeabilize cell membranes. They include shock wave lithotripters895-898, shock tubes899-901, underwater spark 

discharge902, and laser-induced shock waves900,901,903-909. These systems mostly administer pulses one at a time instead of 

the continuous waves characteristic of acoustic ultrasound. Lithotripters generate potent high pressure pulses that are used 

to break down tissue obstructions such as kidney stones (requiring up to 4000 individual pulses). In 1994, Gambihler and 

colleagues placed polypropylene vials containing a mixture of suspended mouse L1210 lymphocytic leukemia cells and 

fluorescent dextrans under the focal point of lithotripter shock waves897. After treatment, the uptake and retention of 

dextran molecules was detected by flow cytometry. Although the authors admitted electroporation was more consistent 
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and efficient, lithotripter treatment showed a significant uptake of 2000 kDa dextran (~50 nm diameter) with reasonable 

cell survival.  

 

Kodama et al. employed shock tubes to generate intense shock waves in cell suspensions and obtain intracellular delivery 

of labeled dextrans899-901. Shock tubes generate a mechanical pulse when a thin diaphragm between a high pressure and 

low pressure chamber ruptures. The pulse then propagates through a second diaphragm and is focused into the cell 

solution via a reduction nozzle, thereby achieving membrane permeabilization900. 

 

A number of studies have employed laser-induced shock waves for cell membrane permeabilization900,905-909. Laser-

induced stress waves can be generated by optical breakdown, ablation, or rapid heating of an absorbing medium907. In one 

configuration, laser irradiation of an absorbing polymer film produces shock waves that emanate into a solution 

containing cells and cargo906,908,909. Depending on experimental conditions, the mechanism of cell membrane disruption 

may or may not rely on cavitation. In one set of examples, the rise time of the stress wave and its duration was associated 

with membrane permeabilization, probably due to shear forces involved with the wavefront itself900,905-907,909. Conversely, 

in other studies cavitation was implicated as the critical determinant of shock wave-induced membrane damage895,903,910. 

 

6.1.2.8 Laser-Induced Cavitation Bubbles 

So far, we have covered membrane disruption arising from acoustic pressure waves and shock waves, as well as cavitation 

phenomena triggered by these stimuli. Cavitation can also be triggered and/or controlled in a more direct manner by the 

action of lasers incident upon an absorbent agent in an aqueous environment911,912. The absorbent agent may be the 

membrane itself, a photoabsorbent molecule added to solution, a particle suspended in solution, or a material interfacing 

with the solution (Figure 19). When the plasma membrane absorbs laser energy and is disrupted (Figure 19A), this is 

known as optoporation and is covered in section 6.4. If the absorbing agent is in direct contact with the plasma membrane, 

the membrane will likely be perforated by a complex combination of secondary effects including extreme heat, near-field 

plasmas, and phenomena related to growth and collapse of cavitation bubbles (Figure 19B). If the absorbing agent is 

distant from the plasma membrane, membrane disruption is much simpler and cleaner: it most likely occurs by fluid shear 

(Figure 19C) as thermal effects and near-field plasmas do not propagate very far in an aqueous environment. In any of the 
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above three scenarios (Figure 19A-C), the membrane may be disrupted by laser-induced cavitation. Upon absorption, the 

energy supplied by the laser is transduced into heat and/or chemical effects that lead to vaporization of surrounding liquid 

to create cavitation bubbles911,912. The bubbles disrupt cell membranes in the same way as sonoporation, either by 

microjetting after collapse (Figure 18D), through microstreaming from bubble oscillation (Figure 18E), or through 

secondary effects. Most reports of laser-induced cavitation suggest bubble collapse, but there are a few cases where laser 

pulsing regimes can be tuned to sustain bubble oscillations913. 

 
 
Figure 19. Mechanisms of laser-induced membrane disruption. (A) Laser optoporation occurs when incident energy is absorbed by 
the plasma membrane, directly disrupting it. This is known as “Optoporation” and is covered in section 6.4. (B) Membrane disruption 
eventuates as the result of laser absorption by an absorbing agent in contact with the cell (such as a particle or interface), which 
then generates secondary effects (heat, fluid shear, near-field plasma etc.) to disrupt the plasma membrane. (C) Membrane 
disruption eventuates through laser absorption by an absorbing agent distant from the plasma membrane. In these cases, fluid shear 
from cavitation and/or shock waves is the most likely cause of membrane disruption. 

 

In a series of studies by Ohl and colleagues, microfluidic confinement was used to investigate the relationship between 

membrane damage and proximity to laser-induced cavitation bubbles914. The photo-absorbent molecule phenol red was 

added to solution to allow generation of cavitation bubbles from the laser focal region. Their results showed that the 

probability of cell permeabilization by cavitation bubble collapse could be modeled as a function of the distance of cells 

from the bubble and maximum cavitation bubble radius914. In a follow up study, they took advantage of arrayed 

microfluidic cell traps to immobilize myleoma cells and systematically analyze the conditions for controlled 

permeabilization at single cell level487. Again, phenol red was used as an absorbing agents to facilitate the production of 

laser-induced cavitation bubbles that expand to ~100 µm diameter and collapse within tens of microseconds487. High 

frame rate imaging clearly visualized the expansion and shrinkage of cavitation bubbles in a non-symmetric manner due 

to the presence of a nearby structure. During bubble collapse, a fast microjet was directed toward the cell to generate a 

single large pore with diameters ranging from 0.2 to several µm. The diffusive uptake of trypan blue dye into the cell then 

took place over several seconds. If the standoff distance between cell and bubble were greater than 30 µm, no membrane 

disruption occurred. One concern highlight by the authors was whether cavitation bubbles perturb cells through 
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temperature spikes. To address this issue, Ohl and colleagues performed another study with fluorescence-based 

thermometry to measure local temperature gradients around laser-induced bubbles915. Under similar conditions as their 

previous experiments, it was found that the temperature rises are moderate (< 12.8 °C), localized (< 15 µm) and short 

lived (< 1.3 ms). Thus, by developing a cavitation regime that damages cell membranes purely through mechanical forces, 

laser-induced cavitation may be amenable to implementation on a wider scale. It was suggested that arraying cells in 

microfluidic traps would allow for potential scale-up with pre-determined laser protocols to control the size and position 

of membrane-permeabilizing cavitation bubbles. 

 

6.1.2.9 Laser-Induced Cavitation via Absorbent Particles 

To transduce laser energy into cavitation, some approaches employ a deliberate seed particle to absorb the laser energy. 

One of the first papers to do this was published by Pitsillides et al916. They labeled lymphocytes with antibody-

functionalized metal microspheres and irradiated them with a 565 nm laser at a fluence of 0.35 J cm-2 and pulse duration 

of 20 ns916. Rapid eminence of microbubbles was observed around the seed particles and cell membranes were 

subsequently permeabilized. By adjusting particle numbers, size, and laser energy delivered to the metal microspheres it 

was possible to tune the treatment either toward killing cancer cells for potential therapeutic purposes or transiently 

increasing the permeability of the plasma membrane for intracellular delivery916. Another group used femtosecond laser 

irradiation of gold nanoparticles to produce plasmonic nanobubbles and permeabilize primary human cells for ex vivo 

intracellular delivery917,918. Selective delivery of plasmids and dextrans was demonstrated in primary human cancer cells, 

T cells, and hematopoietic stem cells with reportedly good cell viability917,918. 

 

In 2010, Prausnitz and colleagues introduced an intracellular delivery strategy involving laser irradiation of dispersed 

carbon black nanoparticle919. Adherent cells were exposed to the cargo molecule to be delivered and sprinkled with ~200 

nm aggregates of carbon black followed by irradiation with femtosecond lasers919. Rather than thermal effects, they 

proposed that the mechanism of membrane disruption was primarily due to a carbon-steam reaction at the particle surface, 

which subsequently propagates cavitation-related acoustic forces919,920. Delivery of dyes, proteins, siRNA and plasmid 

DNA were achieved with acceptable cell viabilities in several cancer cell lines919,921. Control experiments verified that 

neither the carbon black particles nor laser exposure alone were sufficient to enable molecular uptake919. This intracellular 
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delivery concept was then extended beyond adherent cells to homogenous suspensions of carbon black nanoparticles and 

cells, which may be more amenable to treatment at higher throughputs922. 

 

In a different strategy from Braeckmans and co-workers, gold nanoparticles were employed as absorbing agents and laser 

excitation parameters were screened to test for and manipulate the balance between pure heating and bubble nucleation923. 

By tuning the laser energy, they identified conditions where it was possible to produce vapor nanobubbles around ~70 nm 

gold nanoparticles without transfer of heat to the surrounding environment. Comparing these two strategies revealed that 

vapor nanobubbles enabled superior delivery and siRNA transfection with less cytotoxicity923. Building on this approach, 

the same group delivered quantum dots into cells at high-throughput with efficiencies and viabilities above 80%310. 

Furthermore, in primary human T cells the vapor nanobubble approach was reported to yield greater siRNA transfection 

efficiency and cell survival when compared with nucleofection924. In congruence with these results, other groups have 

presented experimental and theoretical work that demonstrates nanobubble formation from the generation of a nanoscale 

plasma around the particle due to the enhanced near-field rather than from the heating of the particle925,926. 

 

6.1.2.10 Laser-Induced Cavitation at an Interface 

Absorbing materials can be placed at a solid-liquid interface to convert laser energy into membrane-perturbing cavitation 

bubbles or shock waves. In recent studies, Ohta and colleagues fabricated a channel of defined height, with cells cultured 

on one side apposing an optically absorbing composite layer of 1 µm amorphous silicon and 200 nm indium tin oxide927. 

Instead of generating an exploding bubble, they oscillated a bubble using a 980 nm laser with 90 μs pulses over a duration 

of 10-15 seconds. Up to 3 oscillations of 8-10 µm without collapse were able to induce microstreaming shear forces to 

trigger plasma membrane permeabilization in adjacent cells. In this configuration, the bubble had to be pressed tightly 

against the cell to induce membrane disruption. For 70 kDa fluorescently labeled dextran, up to 80% delivery at >95% 

viability was achieved. The pore-size was estimated to be about 30 nm based on exclusion of 500 kDa dextran and the 

closure dynamics indicated plasma membrane healing within ~20 seconds. In a follow-up study, the same authors lowered 

the channel height to 10 µm and generated stronger shear forces over 0.4 seconds with 60-100 μs pulses applied at a 

frequency of 50 Hz913. By generating larger pores with a more powerful shear forces, delivery efficiency of 500 kDa 

dextran improved to 70% and expression of 5.7 kb DNA plasmid was recorded at 86%. 
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Permeabilization of adherent cells can be achieved by culturing them on patterned thermoplasmonic substrates followed 

by laser irradiation509,928,929. In a strategy introduced by Mazur and colleagues, a thermoplasmonic substrate patterned with 

microscale gold-coated pyramids was fabricated by photolithography and template-stripping. A nanosecond pulsed laser 

was then scanned across the substrate to produce intense heating at the apex of each pyramid, thereby generating bubbles 

through plasmonic effects930. A large beam spot can be scanned across the substrate to permeabilize millions of cells over 

the course of minutes929. Growth and collapse of the bubbles presumably disrupts cell membranes by mechanical shear 

forces, although plasmonic chemical effects or heat cannot be ruled out. Delivery of dextrans up to 2000 kDa have been 

obtained with high cell viabilities929 through holes estimated to be in the range of 20 nm509. 

 

In a different approach, the Chiou lab developed a “photothermal nanoblade” capable of addressing single cells339. A 

metallic nanostructure was placed at the tip of a micropipette as a seed structure to harvest short laser pulse energy and 

convert it into highly localized explosive vapor bubbles. Upon placement of the device next to cells, laser irradiation 

triggered cavitation events that yielded controlled pore sizes of up to several microns on the apical surface of adherent 

cells. Delivery of large cargo such as ~2 µm bacteria, mRNA, plasmid DNA, polystyrene beads, and quantum dots was 

achieved309,339. Furthermore, in an intriguing biological application, the photothermal nanoblade was used for 

mitochondrial transplants between cells341. By delivering functional mitochondria to cells with normally dysfunctional 

mitochondria, it was possible to identify mechanisms involved in restoration of metabolism341. Consistent with what is 

known about membrane repair in healthy cells, electrical impedance measurement showed that it takes 1-2 minutes to 

recovery membrane integrity after treatment with the photothermal nanoblade931. 

 

A high throughput version of the photothermal nanoblade concept was unveiled in 2015340. Substrates arrayed with pores 

lined by metallic absorbers were irradiated to generate exploding cavitation bubbles underneath the basal side of adherent 

cells (Figure 18F). Membrane permeabilization was synchronized with active pumping of cargo through the pores to 

successfully introduce living bacteria into the cytoplasm of several cell types. Showcasing the potential of the approach, it 

was discovered that the iglC gene from the bacterial species F. novicida is required for intracellular proliferation after 

cytosolic delivery. Such a high-throughput strategy to deliver micron-sized cargo clearly has broad utility with adherent 

cells, showcasing the power of well-controlled fluid shear forces to permeabilize vast populations of cells. 
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6.1.2.11 Summary of Permeabilization by Mechanical: Fluid Shear 

Methods to exploit fluid shear forces to permeabilize cell membranes range from constriction-mediated fluid shear zones 

in microfluidic devices and syringe nozzles to cone-plate viscometers and cavitation-related phenomena. The use of 

cavitation bubbles for plasma membrane disruption has received the most attention to date due to the ability to control 

them remotely via acoustic fields and lasers. Because of the inherently unstable and powerful nature of cavitation, 

challenges remain in how to harness them for reproducible and consistent cell treatments. Cavitation bubbles, however, 

have demonstrated the ability to delivery almost any cargo to a wide range of cell types. In future we anticipate intriguing 

and innovative devices able to deploy highly localized fluid shear forces for precise membrane disruption, perhaps 

through the use of lab-on-chip, microfluidic, and nanotechnological systems. 

 

6.1.3 Mechanical: Pressure Changes 

Osmotic and hydrostatic pressure gradients can be imposed across cell membranes leading to their rupture. The geometry 

of these gradients can vary, for example between a suspended cell and the extracellular solution, across a select part of the 

plasma membrane (such as the apical membranes of an adherent cell monolayer), or between an intracellular vesicle (e.g. 

endosome) and the surrounding cytosol. Although difficult to control in time and space, transient pressure gradients 

achieved by osmotic or hydrostatic means represent a low-cost and simple avenue for membrane disruption-mediated 

intracellular delivery. These methods have not been heavily pursued to date, however, perhaps due to a poor 

understanding of their effects and hesitance of researchers to excessively perturb cells932. 

 

6.1.3.1 Osmotic Shock and Plasma Membrane Disruption 

One of the simplest perturbations that a cell can experience is an osmotic shock, whereby a hydrostatic pressure is 

generated across the cell membrane due to differences in osmotic potential. Most mammalian cells normally exist in an 

aqueous environment of ~300 mOsm and significant deviations from this condition will induce the flow of water 

molecules into (hypotonic swelling) or out of (hypertonic shrinkage) the cell. When a cell is placed into a low osmolarity 

solution water rushes into the cell through the plasma membrane and aquaporin channels to solvate impermeable 

intracellular electrolytes and osmolytes. The subsequent swelling of cell volume leads to the unfolding of loose 
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membrane, followed by well-described lipid bilayer rupture if area strain exceeds 2-3% (Figure 20A). Cells have been 

reported to possess membrane reservoirs of 2-10x their apparent surface area depending on the cell type and state415. 

Caveolae, endocytic pits, membrane folds, filopodia and microvilli are all examples of membrane reservoirs that can 

unfold to buffer membrane strain and accommodate cell surface area increase414,416. It is thought that these reservoirs 

should be exhausted globally or locally before membrane stretch can result in rupture. 

 

 
 
Figure 20. Mechanical membrane disruption via osmotic pressure changes. (A) Cells in suspension subject to hypotonic shock will 
first swell, which unravels membrane reservoirs. If the membrane strain is sufficient, permeabilization will occur. The inset shows 
microscale conformation of the plasma membrane. (B) Cells in an adherent monolayer cultured on a porous substrate can be subject 
to a perturbing osmotic gradient via hypotonic shock at their apical surface. Swelling and subsequent permeabilization occur 
similarly as in panel A but the permeabilization is localized to the apical side of the cell. (C) In a scenario where endosomes are pre-
loaded with osmolytes and cargo to be delivered, a hypotonic shock can be used to cause lysis of endosomes and release of cargo to 
the cytoplasm. 

 

6.1.3.2 Hypotonic Loading of Red Blood Cell Ghosts 

If the magnitude and duration of osmotic shock is optimal, partially burst cells can recover membrane integrity in the form 

of hollowed out “ghosts”. Although dead, ghosts can reseal and regain a limited set of functions. The concept was first 

established in red blood cells (RBCs) throughout the 1960s933-935. Although RBCs possess little surface reservoirs 

compared to most nucleated cells, their capacity to reseal after a brief hypotonic shock is well-proven936,937. Indeed, RBC 

ghosts were able enclose molecular cargo and even retain some basic biological functions despite being hollowed out of 

cytoplasmic components937,938. In one early study, by adding ferritin at various times after the onset of hemolysis, it was 
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determined that most cells were permeable for 15-25 seconds after hypotonic shock939. Furthermore, the size and shape of 

membrane disruptions, as seen in fixed cells by SEM imaging, resembled long, narrow tears up to 1 µm long940. Later 

more accurate studies, however, indicated smaller holes around tens of nanometers or less941. Further adaption of the 

technique optimized the hypotonic lysis procedures to result in high efficiency loading of proteins and enzymes into RBC 

ghosts938,942,943. Partly due to such ease of hypotonic loading and autologous biocompatibility, RBC ghosts have been 

proposed as drug carriers for decades944-947. Furthermore, fusion of loaded RBC ghosts into recipient cells was a popular 

method of intracellular delivery in the 1970s and 1980s87,938,948,949 before falling out of favor with the rise of 

electroporation and other alternatives544. 

 

6.1.3.3 Hypotonic Shock for Intracellular Delivery 

Unlike RBCs that can passively reseal, most cell types mobilize active repair processes to recover from membrane 

disruption424. It wasn’t until the early 1980s that osmotic delivery methods would be translated beyond RBCs into other 

cell types. In 1982, Borle and Snowdowne devised a simple procedure to deliver the calcium-sensitive protein aequorin 

(21 kDa) into nucleated cells92,93. Washed pellets of monkey kidney cells were suspended and immersed in a ~10 mOsm 

hypotonic solution consisting of 3 mM MgATP, 3 mM HEPES buffer, and a given concentration of aequorin for 2 

minutes at 4 °C. This was followed by sufficient addition of buffered KCl to restore isotonicity. Cells were then incubated 

in standard cell media for 1 hour at 37 °C to promote restoration of homeostasis before experiments. Optical readouts of 

aequorin activity indicated that it had been loaded successfully into fully functional cells, and it was used to measure 

accurate intracellular calcium concentrations of ~50 nM. 

 

Citing Borle and Snowden’s method as an inspiration, the hypo-osmotic approach for cytoplasmic delivery of aequorin 

was re-examined in greater detail by Klabusay et al950. They were motivated by the need to accurately measure 

intracellular calcium dynamics in follicular lymphoma B cells, an application where the aequorin protein offers higher 

signal-to-noise ratio, better dynamic range, and more reliable calcium readouts than commonly used small fura dyes. In 

their method, cell suspensions of 30 µl were added to 200 µl of pH buffered hypo-osmotic solution (~2 mOsm) and 0.1 

mg mL-1 aequorin before gentle mixing. After a pre-determined duration of hypotonic exposure, addition of 230 µl 

hyperosmotic solution was used to bring the suspension back to isotonic conditions and enable membrane recovery. To 
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test the cell response to hypo-osmotic exposure, the time between addition of hypo-osmotic and return to isotonic 

conditions was varied from 10 seconds to 10 minutes. They found that treatment times of 10-30 seconds were ineffective 

in loading aequorin (21 kDa) or GFP (28 kDa). Upon two minutes exposure, long term cell viability up to 18 hours was 

more than 50% with sufficient delivery to determine intracellular calcium concentrations, which turned out to be ~0.9 μM 

in follicular lymphoma cells. 10 minutes exposure led to robust delivery but a gradual loss of viability in almost all cells 

after 10 hours, probably due to delayed cell death responses (see section 4.3). One major advantage of Klabusay’s 

protocol is its applicability to treat difficult-to-transfect suspension cells and that it appears agnostic to cell size and type 

of cargo material to be delivered. 

 

In 1999 Koberna and co-workers unveiled a method based on a ‘hypotonic shift’ to achieve intracellular delivery of 

modified nucleotides, nucleosides, dyes, and peptides into a wide range of cell types951. The hypotonic buffer consists of 

10 mM HEPES for pH buffering and 30 mM KCl (~70 mOsm). Cells were exposed to the hypotonic buffer for 5 mins 

before a return to isotonic media for recovery. After treatment, metabolic production of DNA, RNA, and protein was 

inhibited and took ~4 hours to return to normal levels. No loss of viability or apoptosis was observed. The hypotonic shift 

method was reported to be highly effective for smaller molecules ~1 kDa but efficiency decreased for cargo of greater 

molecular weight. For example, the procedure was unable to deliver large proteins such as labeled antibodies. Koberna et 

al.’s hypotonic shift approach has been particularly popular for intracellular delivery of labeled nucleotides952-960. It has 

also been adapted for the successful loading of the peptide actinomycin D961, dye-conjugated dextrans962, and 5 nm gold 

particles963. 

 

Apart from severe hypotonic shock, intracellular delivery has also been accomplished with milder hypotonic shocks in the 

range of ~150 mOsm. Mills et al. used hypotonic swelling for intracellular loading of antibodies into rat submandibular 

acini cells964. This application is notable in that cells are not individually isolated in suspension - acini are small clusters of 

cells organized in a quasi-circular arrangement to form a hollow duct in the center. In the procedure, acini were exposed to 

a mild hypotonic solution (~150 mOsm) containing 5 mM ATP and the antibody of interest for 1 minute following a 

switch back to isotonic conditions. The loaded antibody was found capable of inhibiting its target CTFR protein in the 

cytoplasm, verifying that delivery had indeed occurred. The procedure has also been used to deliver the calcium chelator 

BAPTA965 and enzymes966 into acini cells. 
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In studies that require intracellular delivery of lanthanum-based contrast agents, milder hypotonic shocks (~90-160 mOm) 

have been used to load normally impermeable tracers, such as the Gadolinium ion, into adherent or suspension cells967. In 

this case, a 30 minute ~160 mOsm hypotonic exposure at 37 °C was used for cytoplasmic delivery of lanthanide 

complexes and dyes in various macrophage and cancer cell lines967. A comparison with electroporation and osmotic lysis 

of pinosomes concluded that hypotonic shock was the most advantageous method for delivery of these small (<1 nm) 

molecules967. Other reports appear to verify this strategy, as Gadolinium complexes have been delivered into HeLa cells 

with the same protocol968. In further cases, a more severe shock of ~90-110 mOsm for 60 minutes at 37 °C produced 

loading of Lanthanide complexes into HeLa cells969,970. Interestingly, iron oxide nanoparticles of up to 60 nm were loaded 

into RBCs with hypotonic shocks of 90-110 mOsm969. Other reports in RBCs employed a 30 minute ~160 mOsm 

hypotonic shock at 4 °C to load gadolinium-based complexes into the cytoplasm without loss of cell functionality971-973. 

 

In a strategy that synergizes hypotonic shock with the membrane perturbing effects of detergents, Medepalli and co-

workers demonstrated quantum dot loading into adherent H9C2 cells by exposure to a mild hypotonic buffer (150-200 

mOsm) combined with low concentrations of the detergent saponin311. Presumably saponin reduces the threshold for 

induction of plasma membrane defects under hypotonic stretch, thereby synergizing the permeabilization effects of both 

approaches. After delivery, quantum dots of hydrodynamic diameter 20–25 nm were observed to be evenly dispersed in 

the cytoplasm of treated cells. 

 

6.1.3.4 Osmotic Gradients Acting on Part of the Plasma Membrane 

When cells form a tight monolayer across a porous substrate, they form an impermeable barrier between two bodies of 

liquid media. An osmotic shock in one of those solutions creates an osmotic gradient across the cells. Taking advantage of 

this principle, Widdicombe et al. cultured epithelial or endothelial cells into confluent polarized monolayers on substrates 

with 0.45 µm pore size974. The apical media was then exchanged with water containing macromolecules to be loaded 

while retaining the basal media as physiological saline (Figure 20B). This resulted in a ~300 mOsm osmotic gradient 

across the cell monolayer. Disruption of the apical cell membrane was evidenced by uptake of 67 kDa fluorescent albumin 

and 2000 kDa dextrans but was reversible within ~5 mins when apical water was replaced with normal cell culture media. 
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By adding fluorescently labeled molecules at different times after hypotonic shock, it was found that the majority of 

uptake occurred within the first 4 minutes. This technique was reported to be temperature insensitive, working equally 

well at 4 or 37 °C, thereby indicating that endocytic activity had a minimal role and suggesting plasma membrane 

disruption as the prime mechanism. After the procedure, cell layers were able to recover full trans-epithelial resistance 

within several hours.  

 

In a complementary study by Widdicombe’s co-workers, Tawa et al. demonstrated successful transfection of airway 

barrier cells in rat lungs by exposure to apical water containing DNA975. A follow-up report argued that the hypotonic 

transfection of DNA to airway barrier cells could be due to active uptake by membrane trafficking, which is known to 

stimulate exocytosis and endocytosis associated with regulatory volume mechanisms976. However, this model would not 

fit with the original observation of rapid delivery by Widdicombe et al. In an analogous situation, hypotonic aerosols have 

been observed to facilitate intracellular delivery of PEI-complexed DNA by a membrane permeabilization mechanism in 

mouse airway epithelium977. Thus, a hypo-osmotic delivery principle may prove feasible when applied to exposed cell 

monolayers in vivo, particularly in the lungs. 

 

6.1.3.5 Hydrostatic Pressure and Hydrodynamic Delivery 

Membrane disruption due to a sudden increase in hydrostatic pressure is believed to be the mechanism of so-called 

‘hydrodynamic delivery’, where a rapid injection of fluid into the cardiovascular system causes transient disruption in the 

plasma membrane of cells in certain tissues. A prime example is tail vein injection, where robust transfection of 

hepatocytes and sometimes other cardiovascular tissues has been observed in rodents978,979. In a mouse model, transfection 

is achieved by fast injection (~5 seconds) of almost 2 mL of DNA-containing saline solution into a 20 g animal. The 

introduced solution is close to 10% of the body weight, thus representing a rapid expansion of blood volume that cannot 

be immediately pumped through the vena cava of the heart. This causes sudden distension and hydrostatic pressure build-

up in the surrounding tissues. A weak point is typically retrograde flow into the liver, where it has been observed that 

fenestrations in hepatic tissue expand to generate disruptions in cell membranes, thereby allowing influx of cargo 

molecules from the blood directly into the cytosol of hepatocytes980. High delivery efficiencies have been achieved using 

hydrodynamic tail vein injection, with up to 40% transfection of liver hepatocytes from a single injection979. Rapid 
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intracellular delivery of other macromolecules such as labeled dyes, proteins, oligonucleotides, siRNA, bacterial artificial 

chromosomes, and linear or circular DNA fragments as large as 175 kb have also been delivered to rodent hepatocytes by 

this method, lending similar credence to a membrane permeabilization mechanism without reliance on endocytosis980-987. 

More recently, hydrodynamic tail vein injections have found use in CRISPR-based genome editing in mouse liver, albeit 

at lower efficiencies988-991. A major limitation of hydrodynamic injection is that it is only available in rodents. 

 

Apart from injection into veins, intracellular delivery of nucleic acid cargo has been observed by direct injection of 

solutions into skeletal muscle, heart, thyroid, skin, and liver992. Mechanistic studies indicate that this also occurs by 

membrane permeabilization, but a role for endocytosis has not been completely ruled out992-995. The degree to which 

membrane permeabilization or active uptake processes underlie delivery is probably dependent upon the properties of the 

solution and manner in which the injection is performed992,994. 

 

In 1999 Mann et al. introduced a method for hydrostatic pressure-mediated transfection in human vein segments and rat 

myocardium ex vivo996. ~1-2 cm segments of veins were cannulated, encased in a plastic sleeve to prevent distension, and 

infused with pressurized solutions of up to ~100 kPa above baseline pressure996. 10 minutes of this treatment was reported 

to yield intracellular delivery of fluorescently-labeled antisense oligonucleotides into ~90% of endothelial cells lining the 

vein segment996. Moreover, ex vivo treatment of rat hearts pressurized inside and out at up to ~200 kPa showed ~50% 

transfection in myocardial cells996. Although the exact delivery mechanisms were not revealed, imaging of cells after 

treatment suggested it was non-endocytic996. Variants of this technique have been used to achieve intracellular delivery of 

siRNA997, antisense oligonucleotides996,998-1002, plasmid DNA998,1003,1004 and ~100 nm polystyrene microspheres1005. 

 

6.1.3.6 Disruption of Endosomes by Osmotic Forces 

In 1982 Okada and Rechsteiner described an intracellular delivery technique, termed osmotic lysis of pinosomes. It works 

by harnessing osmotic forces to rupture endosomes pre-loaded with cargo of interest, thereby obtaining cytosolic delivery 

(Figure 20C)94. In the first step, endocytic uptake is promoted by a ~10 minute incubation of cells in a ~800 mOsm 

hypertonic buffer containing 0.5 M sucrose, 10% polyethylene glycol (PEG)-1000 and molecules to be delivered. 

Exchange to a hypotonic solution (~180 mOsm) consisting of diluted media for ~2 minutes then generates a rush of water 
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into the cell. During this hypotonic shock phase endosomes laden with cargo and osmolytes expand and rupture, thus 

releasing their contents. The pendulum swing from hypertonic to hypotonic conditions may also disrupt the plasma 

membrane, however cells are generally able to release osmolytes to counteract swelling491. Endosomes, on the other hand, 

have no volume regulation and therefore swell uncontrollably until bursting1006,1007. This means the imposed hypotonic 

shock may impact endosomes significantly more than the plasma membrane. Okada and Rechsteiner reported that the 

osmotic lysis of pinosomes method was capable of introducing antibodies, various proteins, and 70 kDa labeled dextrans 

into the cytosol of L292, 3T3 fibroblasts, and HeLa cells94. 

 

Following in the example of the original paper, osmotic lysis of pinosomes has been particularly useful for intracellular 

delivery of proteins94,95,1007-1021, antibodies1013,1022-1026, dextrans94,1026-1028, and peptides1029-1031. In a landmark paper in 1988, 

osmotic lysis of pinosomes was used to prove that cytosolic loading of proteins could mediate their presentation as 

antigens through the major histone compatibility I pathway to invoke a specific immune response95. In other reports, 

osmotic lysis of pinosomes has found success in intracellular delivery of cell lysates1032, hyaluronan1033,1034, trehalose1035, 

Lanthanide imaging probes71,72, various small molecule dyes1026,1036, uridine triphosphate-glucuronic acid1037, antisense 

oligonucleotides1038, antisense morpholinos804, virus particles1039, and nanomaterials such as quantum dot-labeled motor 

proteins for biophysical studies306,1040,1041. 

 

With the advent of RNAi-mediated gene silencing in the early 2000s, researchers tested the ability to perform siRNA 

transfection via osmotic lysis of pinosomes. By using up to 1.6 μM siRNA in solution, gene silencing of >50% was 

reproducibly achieved in common cell lines such as HEK and HeLa1042. In a subsequent study by a different group, 

improved RNAi transfection was demonstrated in hard-to-transfect immune cell lines1043. Their modified procedure was 

more extreme, involving hypertonic sucrose solutions of up to 2 M and siRNA concentrations of 10 μM1043. Difficult-to-

transfect immune cell lines including mouse macrophage RAW264.7 and J774.1 as well as the T lymphocyte cell line 

DO11.10 were all shown to be transfectable with this approach. Other benefits were minimal cytotoxicity and 

immunomodulatory responses compared to the synthetic cationic lipid reagents lipofectamine and oligofectamine, or the 

polymer reagent jetPEI. In a microfluidic adaption of the approach, a device was deployed for rapidly cycling suspended 

cells through the various solutions to induce osmotic lysis of pinosomes, thus avoiding the need for centrifugation to 
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exchange solutions1028. Results were reported to be superior to the conventional protocol for loading fluorescent dextrans 

into Jurkat cells1028. 

 

It is important to note that the osmotic lysis of pinosomes method has several caveats: 1) cell stress, 2) delivery capacity is 

limited by extent of endocytosis, and 3) absence of reports on larger cargo such as plasmid DNA and mRNA. First, the 

hypertonic media imposes significant stress on cells and has been observed to actually inhibit endocytosis in some cell 

types1044. Second, the extent of endocytosis during the hypertonic exposure window is a limiting factor that affects the 

final concentration of cargo delivered1044. Multiple rounds of the procedure may be conducted to boost delivery efficiency 

but are time-consuming and must be balanced with considerations of cell stress1027. Several publications indicate that cell 

function and health may be compromised as a function of duration and intensity of the osmotic challenges94,932. The third 

consideration is that certain combinations of cell types and cargo molecules appear to be unfeasible with the procedure. 

This can be due to degradation of cargo in the acidic environment of endosomes or an unmet need for destabilizing agents 

to assist with endosome rupture, a role that PEG was later suggested to play1044. 

 

Interestingly, an in vivo application of the osmotic lysis of pinosomes concept was accomplished in rat arteries. Without 

surgical removal, isolated, pressurized mesenteric arteries of the rat were cycled through hypertonic and hypotonic 

solutions. Endothelial cells were found to take up dyes, dextrans, peptides, and labeled antibodies into the cytoplasm 

without comprising the structure and function of the surrounding tissues1026. This strategy was used to identify a critical 

role for connexin 40 protein in EDHF-mediated dilation of endothelial cells in rat mesenteric arteries. 

 

6.1.3.7 Induced Transduction by Osmocytosis 

Motivated by limitations of the osmotic lysis of pinosomes method in primary cell types, D’Astolfo et al. introduced an 

adaptation, termed iTOP, which stands for induced transduction by osmocytosis and propanebetaine151. Instead of relying 

on hypotonic solutions for endosome disruption, propanebetaine appears sufficient to trigger cargo leakage specifically 

from macropinosomes. The method relies on NaCl-related hypertonicity of extracellular medium to induce 

macropinocytosis followed by spontaneous endosomal leakage. A high extracellular concentration of Na+ ions was shown 

to be necessary to stimulate NHE1-mediated macropinocytosis. Unlike osmotic lysis of pinosomes, however, no discrete 
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trigger was required for endosomal rupture. Instead, intracellular macropinosome leakage was a stochastic event promoted 

by the presence of propanebetaine or other compounds with similar physicochemical properties. The osmotic pressure 

created by hypertonic endosomes may also contribute to destabilize endosomes. Using iTOP, RNPs of Cas9-sgRNA were 

delivered into KBM7 cells and H1 human embryonic stem cells to produce CRISPR-mediated gene deletions. Various 

other proteins were also delivered, demonstrating efficient delivery of several cargo materials into a variety of primary 

cell types. 

 

6.1.3.8 Summary of Permeabilization by Mechanical: Pressure Changes 

Rapid changes in hydrostatic and osmotic pressure are an obvious, straightforward, and low-cost strategy for placing cell 

membranes under mechanical force. This insult has been harnessed against both the plasma membrane (external) and 

endosomal membrane (internal) systems for the purposes of intracellular delivery. Because current procedures rely on 

buffer changes, however, there is a significant stress placed on the entire cell. Concepts for better controlling the 

spatiotemporal application of mechanical pressure changes at the scale of the cell may provide more precise membrane 

permeabilization in future. 

 

6.2 Electrical Membrane Disruption (Electroporation) 

In the 1980s, electroporation, which involves the transient permeabilization of cell membranes with electric pulses, rose to 

prominence as a powerful approach for intracellular delivery, applicable to a wide range of cell types, from animal cells to 

plants and lower organisms. Prior to its introduction, the stage had been set by more than a decade of research exploring 

the effect of voltage pulses on artificial lipid bilayers, vesicles1045,1046 and red blood cells533,534,1047. In nucleated 

mammalian cells, Eberhard Neumann and colleagues published a groundbreaking report in 1982 which demonstrated that 

electroporation led to the efficient transfection of plasmid DNA in mouse lyoma cells184. The study also stimulated 

electroporation theory by introducing a generalized van't Hoff relationship to model the extent of permeabilization in an 

electroporated cell, whereby poration phenomena is viewed as structural rearrangements of lipids and water184. 

Electroporation, while initially emphasized for DNA transfection, has subsequently shown utility for delivery of a huge 

variety of cargo: from small molecule drugs, dyes, and tracers, to larger proteins/antibodies and multiple forms of DNA 
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and RNA163,1048-1050. In this section we first cover the mechanisms of electroporation before exploring the challenges, 

technical advances and applications. 

 

6.2.1 Mechanisms of Membrane Disruption & Cargo Entry 

6.2.1.1 Mechanisms of Membrane Pore Formation 

Mechanistically, electroporation is the formation of pores in a membrane by the application of a potential difference 

across that membrane. When the potential difference reaches a critical magnitude of voltage, the probability of 

electroporation taking place drastically increases. According to theory, the increase in electric field energy within the 

membrane and ever-present thermal fluctuations combine to create and expand a heterogeneous population of 

pores163,419,1051. Although there is no fixed voltage threshold that triggers electroporation, the critical parameter of 

electroporation is the trans-membrane potential. This is because the maintenance of a trans-membrane electrical potential 

incurs a probability of generating a membrane defect for a given field strength, time, and temperature. Membrane defects 

originate as so-called hydrophobic pores of radius <0.5 nm, which form due to random thermal fluctuations of the 

individual lipid molecules that make up the membrane (Figure 21A). Fueled by the external electrical energy provided, 

these defects may then traverse their energy landscape to become hydrophilic pores, which are typically lined by at least 8 

– 10 phospholipid head groups and defined by their ability to permit free passage of water molecules (Figure 21B). 

Hydrophilic pores (r >0.5 nm) can be stable because the energy barrier also exists in the reverse direction. 
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Figure 21. Energy landscapes and theory of pore formation in membranes by electric fields. (A) Schematic of pore formation showing 
the transition from a hydrophobic pore to a hydrophilic (conducting) pore. (B) Graphs of relationship between free energy of pores 
ΔW and pore radius r for ΔΦ m = 0 (upper curve) and at ΔΦ m > 0 (lower curve). r* is the critical radius corresponding to the transition 
from hydrophobic to hydrophilic pore. ΔWf corresponds to the height of the energy barrier for pore formation while ΔWres relates to 
the energy barrier height for pore resealing. rIRE is the pore radius corresponding to state of irreversible electroporation. ΔΦ m is the 
electrical potential difference across the membrane. The higher the electrical potential, the more probability of pore formation. 
Figure reprinted by permission from Springer Nature from ref 163, Copyright 2015. (C) Calculations of the effect of applied voltage on 
the energy landscape of pore formation with transmembrane potentials ranging from 0 to 0.5 V. Reprinted figure with permission 
from ref 420 and the authors, Copyright 1999 by the American Physical Society. 

 

Current theory posits that small pores are not very good conductors; hence the continued application of an electric field is 

not only critical for their formation, but also their enlargement419,1051. Pore formation and expansion are energetically 

favorable because it relaxes the charge buildup that would otherwise become entropically unfavorable. As the pores 

become better conductors, however, the electrical expanding pressure decreases, resulting in a decay in the rate of their 

growth. This explains two phenomena characteristic of electroporation: 1) longer pulses (usually tens of ms) are required 

to grow larger pores, and 2) electroporation is not very good at producing large (e.g. >50 nm) pores579,1052. 

 

Apart from the energy landscape of electroporation, theoretical models and simulations have been used to decipher the 

chemical thermodynamic and kinetic aspects of pore formation184,1053-1058. Upon application of an electric field across a 

lipid bilayer, an early event is tilting of the electrical dipoles associated with the lipid headgroups to align with the 

direction of the applied electric field184,1053,1058. This causes rotation of lipid molecules, thus thinning the bilayer, 

perturbing its organization, and facilitating the entry of water molecules into the hydrophobic core184,1053,1058. Pore 

formation follows, and the rate of transition between pore states is subject to a hysteresis where their opening 

(microseconds range) is thought to be much faster than the timescales of their closure (seconds to minutes)1057. Such 

models of electroporation have been developed to a degree where analytical expressions are available to optimize 

electroporation in several biotechnological and medical applications1054-1056. For further explanation of the formulas and 

analytical frameworks see the abovementioned publications184,1053-1058. 

 

Electroporation phenomena are thought to be primarily related to changes in electrical conductance, but chemical, 

thermal, and electromechanical membrane deformation effects may also contribute458,1059. The application of mechanical 

tension has been observed to lower the electric voltage threshold required for membrane disruption1060,1061. This is because 

mechanical forces contribute to bias the energy landscape toward defect formation (see Figure 8). In keeping with this 

notion, lower temperatures have been observed to increase the field strength required for electroporation575,1062 and slow 
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the kinetics of resealing1054,1055. Furthermore, mathematical descriptions and models have been developed to assess, for 

example, the effect of applied voltage on the distribution of pore radii420,1063 (Figure 21C). More recently, simulations 

have also assisted in illuminating the molecular events associated with electroporation, although (due to limitations in 

computational power) they currently only cover very short time scales on the order of nanoseconds or less1053,1064,1065. It is 

imperative to note, however, that many of the mathematical models and simulations are challenging to verify 

experimentally. 

 

6.2.1.2 Electroporation in Cell Suspensions 

In suspensions of isolated cells electroporation is observed with applied trans-membrane potentials in the range of 0.2 to 

1.5 volts. Pulse times are typically on the order of microseconds to almost a second. The membrane charges like a 

capacitor with a characteristic charging time proportional to the surface area of the enclosed membranous body579. For 

conventional cuvette-style parallel plate setups, a cell suspension in conducting buffer is placed between two electrodes 

connected to a generator of high electric voltage (Figure 22). This type of setup produces a homogeneous electric field 

across the cell suspension. Upon application of voltage, the various regions of the plasma membrane take different times 

to reach their characteristic trans-membrane threshold potentials. This results in growth of a heterogeneous distribution of 

pores over the cell surface, both in terms of number and size. Moreover, because of the negative resting potential of cells 

(-35 to 80 mV for most cell types – see Figure 7A), permeabilization occurs first at the hyperpolarized side of the cell 

facing the positive electrode1048. This creates an inherent anisotropy in the area and degree of permeabilization between 

the two poles1066. The hyperpolarized side of the cell is supposed to carry smaller but more numerous pores. The 

depolarized half, which faces the negative electrode, has fewer pores due to fewer nucleation events. The pores on the 

depolarized side may, however, be larger in diameter as the prolonged electrical field exposure is focused on expanding a 

less numerous population of defects1067. In general, it is thought that coverage area of permeabilization is controlled by 

pulse strength while the pore growth size is more strongly correlated with the pulse duration1048. Once pores are formed 

and begin conducting, the local electroporation effect diminishes somewhat as charge is free to flow through these defects. 

Therefore the amount of energy channeled into the growth of pores declines through the lifetime of a particular pulse458. 

 



 111 

 
 
Figure 22. A conventional parallel plate cuvette configuration for electroporation of suspended cells (left). Zoom-in (right) shows the 
approximate distribution of pores over the cell surface as a function of orientation and polarization under applied electric field. The 
surface area of poration and number of pores is greater on the hyperpolarized side compared to the depolarized side. Further zoom-
in (bottom) illustrates the capacitor-like function of the lipid bilayer before poration and the flow of positive charges once a 
conducting pore is formed (opposite movement of negative charges not shown). Electric field lines are displayed in grey. 

 

Upon electroporation, the response within cell populations and between cell types is somewhat heterogeneous, reflecting 

differences in cell size, orientation, surface area, and physiological state, as well as variances in membrane composition 

and the presence of local inhomogeneities in the electric field itself. The microenvironment of the cell surface is 

characterized by the distribution of nearby or adhered macromolecules, membrane proteins, lipid phases and lateral 

domains, extracellular protrusions, membrane reservoirs, and underlying cytoskeletal linkages (see Figure 7B, C). It is 

currently not well understood how these complexities influence the generation of defect nucleation and growth under an 

electric field1049. A recent study to visualize the behaviour of membrane defects in artificial planar bilayers found that 

electropores form preferentially in the liquid disordered phase1068. This preference is also likely to be true in live cells, but 

lack of experimental methods to measure such phenomena has made it challenging to validate1068. Another mystery is the 

lifetimes of electropores in live cells. Once hydrophilic pores of >1 nm open up in the plasma membrane, they are thought 

to either spontaneously close or require active cellular processes for the bilayer to heal. For active repair processes, many 

researchers observe timescales of seconds to minutes1048,1069. The electroporation literature, however, suggests rapid 

shrinkage of pores after cessation of the electric field1070. A memory effect, where changes in the membrane porosity 
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remain on a longer time scale of hours has also been suggested1069. For further reading on the theory and mechanisms of 

electroporation as pertaining to live cells, we recommend other more comprehensive reviews on the 

topic163,419,544,579,1048,1049,1051,1054,1055,1069-1072. 

 

6.2.1.3 Targeting Cellular Structures Across the Pulse Strength-Duration Space  

The parameter space for electroporation is vast. As discussed, there is no fixed threshold electroporation voltage because 

formation of electropores depends on a combination of voltage strength, pulse duration, number of pulses, pulse 

waveform, temperature, buffer conductivity, and cell properties1048,1049. This large variable space presents a challenge in 

optimizing electroporation. All other variables being held constant, most approaches focus on tuning the “pulse strength-

duration space”579. Manipulating this parameter space can exert a measure of spatiotemporal control over which cellular 

membranes are permeabilized (Figure 23). In general, high voltage ultrashort pulses have been purported to perturb 

internal and organelle membranes while longer and milder pulses emphasize permeabilization of the plasma membrane 

and bias the effect toward larger cell types579. 

 

The charging time for the plasma membrane is on the order of 1 μs. It is even shorter in highly conductive buffers such as 

PBS. Pulses of duration less than the plasma membrane charging time are thought not to efficiently porate the plasma 

membrane of a cell419. For example, high voltage ultrashort pulses in the nanosecond range may rupture subcellular 

structures and organelles while leaving the plasma membrane essentially untouched458,579. A pioneering study by 

Schoenbach et al. in 2001 demonstrated short nanosecond pulses at >10 kV cm-1 field strength selectively target 

intracellular organelles1073. Specifically, human eosinophils were exposed to a field strength of 53 kV cm-1 applied in a 

train of 5 pulses of 60 nanoseconds each. In response, the cells formed intracellular granules even without extensive 

plasma membrane permeabilization. Follow up studies by the same group indicated these nanosecond pulses induced 

apoptosis, as signified by exposure of annexin-V at the cell surface and the absence of ethidium homodimer 

fluorescence1074. Further hallmarks of apoptosis were observed with fluorescent probes that report on caspase activation 

and the release of mitochondria-associated protein cytochrome c into the cytoplasm. It is thought that apoptosis occurs 

due to a release of cytotoxic factors from permeabilized mitochondria and breakdown of intracellular calcium stores. It 

was therefore concluded that apoptosis triggered by nanosecond pulsed electroporation can occur in the absence of 
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disruption to the plasma membrane. This is of widespread interest for two reasons: 1) the targeted induction of apoptosis 

by ultrashort electrical pulses could avoid the immune response associated with lysing or necrotic cells1075. 2) For 

intracellular delivery applications it is an effect that should be avoided to maintain cell survival. Unwanted disruption of 

intracellular organelles could explain observations of delayed cell death that sometimes occur after high field strength 

electroporation. 

 

As nanosecond pulses increase in duration, the chance of permeabilizing the plasma membrane also increases1076. Pulses 

in the 1 - 10 ns range have less chance of permeabilizing the plasma membrane, while pulses in the 10 - 1000 ns range 

tend to generate very small pores (≤1 nm)477,1076,1077. 

 

 
 
Figure 23. Relationship between the pulse strength-duration parameter space and subcellular targeting. High intensity short pulses 
are biased toward perturbing small membrane bound bodies like organelles while milder, longer pulses are more specific for the 
plasma membrane and larger cells. At large field strengths and longer durations thermal damage due to heating becomes an issue, 
being also dependent on buffer conductivity. 

 

Conventional electroporation systems almost exclusively target the plasma membrane. Short pulses in the microsecond to 
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millisecond range result in numerous, but smaller sized pores distributed evenly over the poles of the plasma membrane 

and sometimes nucleus579. The longer pulse space >0.1 ms is limited to lower voltages; otherwise Joule heating becomes a 

problem for treated cells, a factor also dependent on conductivity of the medium. Because voltages must be lower in this 

regime, the dependence on size of the membrane-bound body biases poration towards larger objects at their poles, 

therefore favoring plasma membrane disruption of larger cells (>tens of micron diameter)579. At these longer durations the 

membranes of larger cells such as skeletal muscle and nerve cells are much more responsive to electroporation. Taken 

together, data compiled from multiple reports suggest that manipulation of the pulse strength-duration parameter space is 

able to mediate a significant measure of control over the subcellular localization and distribution of membrane disruptions 

generated in cells (Figure 23). 

 

6.2.1.4 Cargo-Dependent Influx Mechanisms 

Electroporation has been used to deliver a diverse range of cargo molecules and materials to the intracellular space. This 

includes dyes100,742,1056,1078-1080, radiotracers1081,1082, sugars79,470,534,1083, metabolites1081,1084, poorly permeable 

drugs55,56,1085,1086, ions1087,1088, molecular beacons1089,1090, proteins100,546,1091-1097, antibodies101,125,537,1098-1102, Cas9 protein or 

RNP complexes143,144,146,147,1103, antisense oligonucleotides1104, siRNA235,1105-1109, mRNA257,260,261,1110,1111, plasmid 

DNA184,1112,1113, quantum dots294,312,313,1114, and gold nanoparticles1115. The mechanisms of uptake of these cargos vary as a 

function of their size, charge, and conformational flexibility (Figure 24). 

 

6.2.1.5 Cargo-Dependent Influx Mechanisms: Small Molecules 

Small neutral molecules enter cells via diffusion throughout the duration of a pore’s lifetime163 (Figure 24B). If the 

molecules are charged, such as propidium iodide (PI, ~660 Da), which carries two positive charges, there is an added 

electrophoretic component that can augment delivery during the pulse (Figure 24C). In this case, delivery will be 

augmented at the side of the cell facing the positive electrode, as PI will be attracted towards the negative electrode and 

into the cell1067,1116. Due to its small size and high diffusion coefficient, PI will also diffuse into the opposite side of the 

cell, but to a lesser extent. Because the lifetime of the electropores is much longer than the pulse duration, diffusion has 

been observed as the dominant mechanism of entry with only a minor contribution from electrophoresis1117,1118. 

Electropores have been reported to remain open to small molecule diffusion for up to several minutes after pulsing1084,1117. 
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Figure 24. Relationship between size and charge of cargo molecule and mechanisms of entry through a given pore size for 
electroporation. (A) Depiction of approximate size and charge properties of molecules illustrated in scenarios from panels B to E. The 
depictions are based on knowledge from the literature and explained in the text. 

 

For very small pore sizes (~1 nm) diffusion alone may be insufficient for influx of charged molecules. This is because of 

Born’s energy barrier, which describes the energetic cost of moving an ion or small charged molecule through a hole in a 

dielectric membrane163,1119. The charged entity interacts with the pore wall, increasing the energy required for 

translocation. For pore sizes close to the molecule size, the energy barrier for crossing the membrane strongly correlates 

with the charge number on the molecule. For example, Venslauskas et al. compared delivery of bleomycin (radius: ~1.2 

nm, charge: +1) to tetra-sulfonato-porphyrin (TSPP, radius: ~1.0 nm, charge: -4) under pulsing conditions designed to 

generate only small pores1120. Their experiments revealed that the electric field strength required to deliver the more 

highly charged molecule, TSPP, was several times greater than for bleomycin. Other groups claim to have identified 

ultrashort pulse electroporation conditions (~60 ns) where plasma membrane pores are so small that they do not allow 

transmission of PI, although they are conductive for smaller ions1121. In such a scenario, an electric field pulse can help 

overcome Born’s energy barrier and promote influx. 

 

6.2.1.6 Cargo-Dependent Influx Mechanisms: Proteins & Other Macromolecules 

Diffusion is the most likely mechanism underlying electroporation-mediated intracellular delivery of larger 

macromolecules (~10 – 1000 kDa), such as proteins, antibodies and dextrans1048. Most proteins and dextrans tend to be 

weakly charged or neutral, thus the electrophoretic contribution is thought to be minimal. Early experiments with proteins 

claimed efficient loading (>80% of cells), sometimes up to micromolar cytoplasmic concentrations, in a variety of 

mammalian cell lines at high survival rates (>80%)101,1092,1122. Dye-conjugated dextrans of known molecular weights (from 

3 – 2000 kDa) have also been electroporated into cells to analyze delivery efficiency and decipher the rules governing 

uptake532,1080,1091,1123-1125. In comparison to small molecules, which can diffuse into cells for minutes, proteins and larger 

molecules (>10 kDa) exhibit a narrow window of opportunity to enter cells, constituting just a few seconds1095. It is 

known that electroporation produces mostly small pores with a subset of larger pores that grow as a function of the pulse 

duration419. When the electric field is turned off the large pores shrink almost instantly, while the small pores may linger 

in the plasma membrane for minutes163. Thus, the entry of larger cargo coincides with the pulse timing and is more 
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efficient for longer pulse durations532. The smaller pores that prevail for minutes are unable to facilitate diffusive influx of 

proteins1126. 

 

Although less well-accepted, some researchers have proposed alternative delivery mechanisms. For example, the imposed 

electric field might augment macromolecule delivery through electrophoretic or electro-osmotic effects1123,1127,1128. The 

models based on electrophoresis, however, have not addressed how they would be relevant to uncharged molecules. The 

electro-osmotic explanation, on the other hand, proposes that the application of an electric field causes a convective flow 

of electrolytes and osmotically obliged solution that sweeps the cargo molecules along with it. Although discussed in 

some papers, the few studies that have sought to investigate electro-osmotic contributions to molecular delivery in live 

cells are inconclusive1123,1127. Most of the electroporation literature favors explanations that emphasize cargo influx by 

diffusion or electrophoresis163,1048,1049,1056,1129.  

 

Another idea is that electroporation-stimulated endocytosis via macropinocytosis may contribute to protein uptake in the 

minutes following electric field exposure1130. Strong electroporation treatments have sometimes been reported to cause 

proteins and dextrans to become aggregated or trapped at the plasma membrane1092,1122. Such membrane-bound proteins 

can be removed with the protease trypsin while dextrans could not, demonstrating that proteins were stuck to the cell 

surface and not inside the cell1122. If electroporation causes cargo to aggregate at the cell surface, this would make it 

amenable for uptake by endocytosis1130. The degree to which this occurs for different cargo molecules, however, has not 

been thoroughly investigated. 

 

6.2.1.7 Cargo-Dependent Influx Mechanisms: Plasmid DNA 

In contrast to small molecules, proteins and dextrans, the mechanisms of nucleic acid delivery via electroporation are 

regarded to be almost entirely dependent upon electrophoretic forces provided during the pulse163,1048,1131. In particular, the 

case of DNA plasmids has been extensively studied due to a broad interest in exogenous gene expression over the past 

decades1132,1133. After pioneering efforts demonstrating DNA transfection in mouse cells in the early 1980s184,1134, it wasn’t 

until a decade later that researchers realized that plasmids weren’t immediately crossing the cell membrane, but rather 

aggregating at the cell surface as a result of electrophoretic forces (Figure 24E)531,1113,1135. A correlation between longer 
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pulse durations, more prominent aggregates, and higher transfection efficiency also lent support to this view469,1135. 

Moreover, it was observed that pre-adsorption of DNA to the cell surface dramatically increased transfection efficiency 

and contributed to pore formation and stabilization, most likely by spearing of plasmid molecules into the 

membrane1135,1136.  

 

In 2002 Golzio et al. advanced our understanding of electroporation-mediated plasmid transfection with single-cell 

imaging experiments that visualized the interaction of DNA at the cell surface during electroporation1137. It was found that 

DNA aggregated exclusively on the side of the cell facing the negative electrode (cathode) and formed localized clumps 

of 0.1 – 0.5 μm in size. At the cell surface, it is believed that the highly negatively charged DNA plasmids are threaded 

through small pores where they become stuck in the negative electrode-facing region of the plasma membrane1067,1135,1136. 

These aggregates are then internalized via endocytosis over tens of minutes. Some of the plasmids eventually arrive at the 

nucleus over a timecourse of ~2 hours or longer1132. Collectively, these results led to the emergence of an endocytic model 

of plasmid electrotransfer that has gained significant attention (Figure 25). 
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Figure 25. Model for endocytosis of electroporation-induced DNA aggregates at the cell surface. During the electric field pulse, 
negatively charged plasmid DNA is propelled into the side of the cell facing the negative electrode. Due to conformational flexibility 
some parts of the DNA may be threaded through pores in the cell membrane. Aggregates are then endocytosed, from which they 
either escape and find their way to the nucleus for the purpose of expression or are degraded by lysosomes. 

 

As membrane remodeling via endocytosis is a core pathway used by cells to repair their membranes447,455, endocytic 

uptake could be an active cellular response to the perturbation caused by DNA entanglement in the membrane, as earlier 

predicted by Tsong and colleagues1070. Subsequent studies have shown that, in CHO cells for example, ~50% of DNA is 

internalized by caveolin/raft-mediated endocytosis, ~25% by clathrin-mediated endocytosis, and ~25% by 

macropinocytosis1138. Within 2 hours, more than half of the DNA ends up in lysosomes, as revealed by co-localization 

with the lysosomal marker LAMP11138. Furthermore, single-particle tracking experiments of fluorescently labeled 

plasmids indicate that cytoskeletal processes, involving both actin and microtubule networks, are involved in trafficking 

of DNA-associated endosomes toward the cell nucleus1138-1140. It is important to recognize, however, that many of the 

basic mechanisms of the plasmid trafficking from the membrane to the nucleus remain underexplored and poorly 

defined1131,1132. 
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How plasmids enter the nucleus is poorly understood, as DNA plasmids are invariably many times larger than the ~40 

kDa cutoff for passive influx through nuclear pores. DNA transfection is known to be greater in proliferating cells that 

undergo transient nuclear envelope breakdown through mitosis, which allows plasmids to be entrapped inside the freshly 

reformed post-mitotic nucleus1141. The revelation that nuclear membrane disruptions are not an uncommon event in the 

life of a cell, and thus generate a stochastic pathway of exchange between cytosol and nucleus, could also provide 

clues789,790. Alternatively, internalization motifs, such as nuclear targeting sequences, have been reported to promote 

import of plasmids into cell nuclei with varying success rates1142.  

 

Overall, there are a protracted series of steps required for electroporation-mediated transfection and many of them require 

membrane trafficking and other active cellular processes. Only a small fraction of electroporated DNA vectors will arrive 

in the nucleus for successful expression1132. Despite this, electroporation is one of the few membrane disruption-based 

methods that can achieve high rates of DNA expression in millions of cells at acceptable throughputs. Several other 

methods are able to introduce DNA to the cytosol, but it is often unable to migrate through the tight cytoplasmic 

meshwork and is therefore degraded before reaching the nucleus, as has been shown for plasmids after microinjection202. 

In rare cases electroporation appears to mediate rapid expression of plasmids within an hour1143. Most often, however, it 

takes anywhere from 4-24 hours for peak expression1132,1140. Electroporation’s paradigm of plasmid aggregation and 

endocytosis may thus serve to concentrate and protect DNA for the prolonged journey to the cell nucleus. 

 

6.2.1.8 Cargo-Dependent Influx Mechanisms: siRNA & Other Oligonucleotides 

Electroporation-mediated delivery of oligonucleotides and siRNA is similar to the case of DNA in that it also relies on 

electrophoretic forces163. A key distinction, however, is that siRNA undergoes direct delivery into the cytoplasm without 

relying on endocytosis (Figure 24D). This is by virtue of its smaller dimensions (2 x 7.5 nm)219 compared to DNA 

plasmids(~100 – 200 nm)206 (see Table 1). Imaging of fluorescently labeled siRNA has shown that it enters during 

application of the electric field at the side of the cell facing the cathode and disperses throughout the cytosol within tens of 

seconds1144. siRNA influx was reported not to occur after cessation of applied voltage, indicating that electrophoretic 

forces are probably required for delivery1144. For short (10 ns) pulses applied to GUVs, influx of siRNA also relied on 
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electrophoretic drive and some siRNA remains trapped in the bilayer at the end of the electric pulse1145. However, 

electrophoretic driving forces might only be necessary for delivery through small pores of <10 nm where there is a Born 

energy barrier163. Such a scenario is analogous to that discussed for small charged molecules (Figure 24C). It is likely that 

transient large pores (>10 nm) can facilitate entry of siRNA via free diffusion, since siRNA knockdown has been 

observed with membrane disruption-based methods that lack electrophoretic forces, including with pore-forming toxins238, 

microfluidic cell squeezing108,780, and laser-nucleated cavitation bubbles923. Therefore, one can speculate that siRNA 

delivery is mediated by a combination of electrophoretic and/or diffusive mechanisms depending on the size and lifetime 

of the pores. 

 

6.2.1.9 Summary of Cargo-Dependent Influx Mechanisms 

Taken together, the literature indicates electroporation-mediated intracellular delivery is influenced by the pore diameter 

(ddisruption) and the cargo dimensions (dmolecule), as well as the charge and conformational flexibility of the cargo molecule 

(Figure 26). For dmolecule << ddisruption both neutral and charged molecules should diffuse across their concentration gradient 

whilever the pore is large enough. Although the majority of delivery is via diffusion, electrophoretic or electro-osmotic 

phenomena may assist translocation during the pulse. For dmolecule ≈ ddisruption charge will play a critical role. Neutral 

molecules may diffuse through pores while their charged counterparts will face the Born’s energy barrier, only being able 

to translocate while driven by sufficient electrophoretic forces. For the case of dmolecule >> ddisruption only molecules that are 

both conformationally flexible and significantly charged will have a chance of penetrating. As exemplified by the case of 

DNA plasmids, parts of the molecule may be threaded into pores and therefore become embedded in the membrane. This 

makes the molecule available to be taken up via endocytosis, a result that may or may not be desirable for a given 

application. 
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Figure 26. Schematic of the mechanisms of influx in relation to disruption size, molecule size, molecule charge, and conformational 
flexibility. For charged objects approaching the disruption size or larger, electrophoretic forces are crucial for delivery. (A) Shown is 
the case for a molecule much smaller the size of the membrane disruption. Regardless of charge, delivery is mostly via diffusion. (B) 
Shown is the case for a negatively charged molecule of similar size to the transient membrane disruption. Delivery requires an 
electrophoretic driving force. (C) Shown is the case for a flexible molecule (here a DNA plasmid) that is much larger than the 
membrane disruption. Electrophoretic force can thread part of the molecule into the cell. 

 

6.2.1.10 Tailoring Pulse Parameters for Optimal Delivery 

In the most elementary electroporation scenario, one wants to open up pores of sufficient size and duration to allow the 

desired influx of cargo molecules via diffusion. In more complicated cases, however, involving charged molecules close 

to or larger than the pore size (Figure 26), the efficiency of delivery depends critically on magnitude and duration of 

electrophoretic forces469,531,532,1113,1135. Regarding plasmid delivery, for example, longer pulse durations are often found to 

heavily improve transfection efficiency. Yet longer pulses can bring the problem of Joule heating and excessive cell 

damage1146. One strategy to mitigate Joule heating is the use of low conductivity buffers that have lower electrolyte 

concentrations than standard physiological buffers or media. The osmolarity of the buffer will have an effect as well, 

because it can alter the size of the cell, tension on the plasma membrane, conformation of membrane reservoirs, and the 

interaction between cargo molecules and the cell surface1049. Temperature will also affect the properties of the membrane 

and energy barriers for electroporation, as well as the active cell response and membrane repair dynamics1049. 

 

Electroporation can therefore be viewed as a balancing act between a large number of parameters and conditions. There is 

significant debate surrounding the optimal electroporation protocols for intracellular delivery and this is further 

complicated by variation between cell types1147,1148. Another issue is the lack of understanding associated with post-

electroporation cell death, where loss of viability sometimes manifests after hours or even days490,529. This is an especially 
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striking problem regarding electroporation of primary or sensitive cell types1149. When wanting to optimize the delivery of 

a particular cargo molecule into a specific cell type, the starting point is usually to screen three core parameters: (1) field 

strength (voltage), (2) pulse duration, and (3) number of pulses. 

 

Based on a large number of electroporation studies, several types of pulsation strategies have been devised. In a review by 

Gehl1048, three categories of approaches for DNA transfection were described, all of which have achieved some measure 

of success: (1) Exclusively short, high-amplitude pulses184,1113,1150, for example, a series of six pulses of 100 μs at field 

strengths of 1.4 kV cm-1.1151 (2) Exclusively long, low-amplitude pulses469,532,1112,1135, for example, eight pulses of 20 ms at 

field strengths of 0.2 kV cm-1.1152 (3) A short, high-amplitude pulse followed by a long, low-amplitude pulse1153; for 

example, a first pulse of 10 μs at 6 kV cm-1 followed up with a second pulse of 10 ms at 0.2 kV cm-1 as pioneered by 

Sukharev et al.531. The rationale behind this dual pulse strategy is that the first pulse is thought to nucleate many pores 

over a large segment of the cell surface, while the second pulse should simultaneously grow the pores and 

electrophoretically propel charged molecules into the cell. Indeed, several studies have confirmed that the duration of the 

second low-voltage pulse correlates with DNA transfection efficiency531,532,1135. 

 

6.2.1.11 Dual Pulse Strategies 

The dual pulse strategy has captivated considerable attention from the field and inspired a number of further 

investigations1124,1125,1150,1154,1155. Figure 27 shows examples of pulse parameter sequences that constitute typical dual pulse 

strategies. The first example consists of two consecutive DC square wave pulses (Figure 27A)1124 while the second uses an 

AC signal for the first pulse followed by a delay then a second low-voltage DC pulse (Figure 27B)1125. The AC pulse is 

designed to increase the consistency of permeabilization at each pole of the cell and reduce side effects at the electrodes. 

These reports are a few among many to suggest that dual pulse strategies optimize delivery while preserving cell viability, 

not only for DNA transfection but also for delivery of other molecules like proteins and high molecular weight 

dextrans1124,1125. 
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Figure 27. Examples of dual-pulse electroporation protocols from the literature. (A) The first pulse has a field strength of 1 kV cm-1 
and duration of 1 ms. The second pulse 0.3 kV cm-1 in strength and 10 ms in duration. Figure reprinted from ref 1124, Copyright 2014, 
with permission from Elsevier. (B) Schematic of a pulse sequence consisting of AC first followed by a pre-programmed delay then a 
second DC pulse of lower voltage. In this case, the first pulse is 1 ms and the second one is 30 ms. Figure reprinted from ref 1125, 
Copyright 2015, with permission from Elsevier. 

 

6.2.1.12 Nucleofection Mechanisms 

Nucleofection, one of the most popular electroporation systems of all time, was introduced in the early 2000s and rapidly 

gained traction as an effective intracellular delivery method. It is based upon a classical cuvette configuration with parallel 

plate electrodes, but the novelty comes from the systematic selection of optimal pulsing parameters and cell-type specific 

buffers550,1156,1157. Although the exact pulsing parameters are proprietary, patents indicate that it is based around a dual 

pulse approach1158. The first pulse is administered at field strengths of 2-10 kV cm-1 for durations ranging from 10-100 μs. 

The second pulse lasts 1-100 ms at a lower, unspecified, field strength. Dozens of different pulsing protocols are 

programmed into the nucleofector control unit, presumably based on variations on this theme. The user then finds optimal 

electroporation conditions by screening the programs against delivery and viability outcomes for different cell types. To 

facilitate best results, cell type-specific buffers are also recommended. Patents on nucleofection buffers report near-

physiological concentrations of extracellular (high) Na+ and (low) K+ augmented by >10 mM Mg2+ and robust pH 

buffering550. This is in contrast with the trend of literature promoting the benefits of low conductivity buffers featuring 

organic osmolytes1148 or high K+ cytoplasm-mimicking buffers548. The high conductivity of nucleofection buffers (ionic 

strength >200 mM) is thought not to cause Joule heating problems due to the emphasis on small volumes and shorter 

pulse durations550,1157. Users have reported adapting nucleofection for use with phosphate buffered saline without a decline 

in performance552,554. A number of publications share protocols for homemade nucleofection buffer formulations to 

increase transparency of the protocols and lower costs551,552. 
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A notable appeal of the nucleofector system has been the assertion that it delivers plasmid DNA rapidly and directly to the 

nucleus1156,1159. This speculation, however, is controversial and difficult to find experimental support for it in the literature. 

An alternative explanation is that endocytic trafficking directs DNA to the nucleus, as has been observed for other types 

of electroporation1132. A number of factors lend credence to the endocytic explanation. First, the cytoplasm is a highly 

crowded and viscous environment laced with cytoskeletal filaments and organelles. The mobility of microinjected plasmid 

DNA is extremely small or even negligible in the cytoplasm or cell nucleus1160-1162. To be electrophoretically propelled 

through the cytoplasm into the nucleus, a combination of significant plasmid compaction and large electrophoretic forces 

would potentially be required, although this has not been directly proven1132. Second, the reported timing of gene 

expression is in the range of 6 hours after treatment1156,1159, which is actually longer than achieved with standard 

electroporation that relies on endocytosis1132. In contrast, microinjection of DNA directly into the nucleus can mediate 

gene expression within 30 minutes. Some authors have speculated whether nucleofection permeabilizes the nucleus with 

its first high-voltage pulse, thus assisting in nuclear delivery105,579,1157. This hypothesis has not been rigorously tested in 

experiments to date. 

 

Regardless of the actual mechanisms, nucleofection has shown significant success rates for DNA transfection and 

expression in traditionally difficult-to-transfect cell types1108. This has been demonstrated in various types of stems cells, 

primary cells, and post-mitotic cells, for example, primary human melanocytes, smooth muscle cells, chondrocytes, and 

mesenchymal stem cells1156,1163,1164, human monocyte-derived dendritic cells1165,1166, monocytic cell lines1159, primary 

leukemia cells and cell lines1167,1168, primary natural killer cells and cell lines1169,1170, primary lymphocytes1171,1172, 

embryonic and adult stem cells1173,1174, and mammalian neurons1157,1175. These papers and others contributed to the 

emergence of nucleofection as a leading method for transfection of recalcitrant cell types. 

 

Overall, there are many examples of pulsing strategies that have been successfully employed to electroporate molecules 

into cells163,1048,1049,1132. Nucleofection is but one example of a dual pulse strategy that has been systematically honed for 

application with a wide range of cell types, including difficult-to-transfect cells. A deeper understanding of the 

mechanisms of electroporation phenomena on both cells and cargo molecules could yield even further advancements in 

delivery performance and cell health. 
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6.2.2 Electroporation Challenges & Technical Advancements 

As with most membrane disruption-based intracellular delivery strategies, a major challenge with electroporation is cell 

mortality post-treatment. Cell death may occur immediately due to irreversible electroporation, lysis, or excessive thermal 

damage490 (see Figure 11). Or it may take the form of a delayed necrosis, possibly due to failure of membrane repair, or 

prolonged apoptotic responses, taking place hours or days after treatment529. As an example of this problem, early reports 

on nucleofection of human monocyte-derived dendritic cells yielded unprecedented plasmid transfection results, with up 

to 60% gene expression. However, long-term functional assays indicated that cells were hampered by gradual loss of 

proliferative potential and poor viability1165. In this section, we discuss the problems with electroporation and the efforts 

that have gone into reducing its toxic burden on cells. 

 

6.2.2.1 The Problem of Joule Heating 

When electric current passes through an aqueous solution, it triggers temperature increase (Joule heating) concurrent with 

various chemical reactions at the solution-electrode interface (electrolysis). Electrolysis itself produces changes in the 

temperature, pH, and the chemical composition of the adjacent solution. The degree of Joule heating is influenced by the 

conductivity of the buffer, electrode architecture, electric field parameters, and capacity of the system for dissipation. For 

cuvette style setups, temperature spikes of more than 30 K above ambient conditions have been measured in physiological 

saline at millisecond pulse durations1146. Such observations have led some researchers in the field to assert that Joule 

heating is a significant problem579. For example, an 8 kV cm-1 pulse of 100 μs has been calculated to lead to a temperature 

increase from 23 °C to 42 °C in PBS solution579. Lipid membranes and proteins are destabilized by temperatures above 42 

°C1176. Therefore, Joule heating is not just an issue for the plasma membrane, but also for intracellular membranes and 

proteins throughout the cell. To mitigate the negative effects of Joule heating, electroporation procedures can be 

performed at room temperature (20-25 °C) or on ice (0-4 °C). Lower temperatures, however, makes cells more resistant to 

pore formation574,575, thereby reducing delivery efficiency. Another approach to combat Joule heating is to use low-

conductivity buffers, which feature lower concentrations of electrolytes and instead maintain osmolarity by inclusion of 

organic osmolytes or sugars like sucrose and mannitol532. Low-conductivity buffers reduce Joule heating while enabling 

the long pulses that are preferred for some protocols, such as for DNA transfection. 
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6.2.2.2 The Problem of Metal Contamination 

A number of publications have assessed the detrimental effects of metal ions released into solution by electrolysis574,1177-

1180. For large surface area electrodes, such as cuvette style electroporation chambers, the most commonly used materials 

are aluminium, copper, and stainless steel. Analysis of stainless steel and aluminium electrodes found that, after a train of 

pulses similar to a standard electroporation protocol, metal ions were found in solution at up to milliMolar 

concentrations574,1178,1180,1181. Aluminium ions and aluminium hydroxides can wreak havoc on cellular processes, such as 

inositol phosphate activity574,1177. Moreover, Stapulionis et al. found that released copper, iron, and aluminium ions can 

interact with nucleic acids and cause their precipitation out of solution1178. Other studies have found Fe2+/Fe3+ to be toxic 

to in vitro cell cultures at milliMolar concentrations1180. Fe2+/Fe3+ released from the anode behave as Lewis acids and 

hydrolyze the water molecules in the solution. This effect can reduce pH and potentially alter the medium conductivity1181. 

Metal ions released from the electrodes can also contribute to local distortion of the electric field, further compounding 

the problems associated with metal ion contamination1182. 

 

6.2.2.3 The Problem of pH Changes 

As touched upon previously, pH changes that take place at the electrodes can have a substantial impact on cell health. The 

changes in pH values in solution have been measured to exceed 1-2 pH units under conditions similar to those used in 

standard electroporation1183. As with Joule heating, any shift in pH (ΔpH) depends on the medium conductivity. ΔpH of a 

solution in which sucrose was substituted for NaCl, was reported to be about 5 times less than phosphate buffered saline. 

The electrode material also contributes, with aluminium cathodes yielding a two-fold greater ΔpH in comparison with 

platinum, copper or stainless-steel cathodes. This led to the recommendation of stainless steel electrodes instead of 

aluminium1183. Several studies have successfully visualized the changes in pH at electrodes by using pH sensitive 

dyes574,1184,1185. Acidic fronts form at the anode while the cathode becomes basic. A study by Li et al. used microchip-

based electroporation to determine that hydroxyl ions at the cathode are more toxic than protons at the anode1185. They 

observed that strong pH buffering can, to some extent, neutralize the problem, thereby bringing cell viability up above 

90% in comparison with 60% for inadequately buffered and 40% for unbuffered solutions1185. The idea of switching the 

polarity of electrodes between pulses has also been suggested to prevent cumulative pH biases at the electrodes1183. 
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6.2.2.4 The Problem of Non-Uniformity in the Electric Field 

Non-uniformity of the electric field can cause some cells to be treated too harshly while others are insufficiently 

permeabilzied. Indeed, significant heterogeneity in electroporation arises due to a lack of consistency of the electric 

field1049,1146. One effect of excessive electrolysis is degradation of the electrode performance. For example, a study with 

stainless steel electrodes in parallel plate geometry showed significant pitting of the anode1186. The increase in the 

roughness of the electrode was proposed to contribute heterogeneity and loss of consistency of the field applied across the 

cell suspension. Subsequent studies also showed that the pulsing frequency and the presence of chloride ions amplified the 

corrosion of iron electrodes1187. Furthermore, in a dense suspension of electroporated cells, neighboring cells will affect 

the geometry of the electric field due to mutual electrical shading1147,1188. When cells represent 1% of the volume fraction 

they behave as single cells, while for volume fractions greater than 10% (or for clusters of cells), the suspension density 

will distort the conferred transmembrane potential1087,1189. 

 

6.2.2.5 Counteracting Electrolysis 

The abovementioned studies show that electrolytic effects and electrode corrosion are a critical consideration for 

electroporation. This is especially important for cells and biological material bound for medical applications, such as cell-

based therapies. Tactics that may be used to mitigate the negative effects of electrolysis include lowering solution 

conductivity, changing the pulsing schemes, buffering more strongly against pH changes, and reducing the surface area of 

electrodes adjacent to cells. Another strategy is to switch the polarity of electrodes between successive pulses, which has 

been shown to minimize cumulative electrolysis and decrease the contamination of metal ions in solution by an order of 

magnitude1180. The idea of using more inert gold or platinum, or replacing metal electrodes with plastic, graphite, or liquid 

ones has also been explored. 

 

6.2.2.6 Cell Damage from the Electric Field 

Aside from cell damage due to electrolytic effects (e.g. Joule heating, contamination via corrosion of electrodes, and pH 

changes), the electric field itself may harm cell components more directly. For example, the application of strong electric 

fields to cells has been suggested to trigger lipid peroxidation1190-1192, generation of reactive oxygen species1193,1194, protein 
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denaturation, and DNA damage1195,1196 amongst other responses. Under electroporation conditions compatible with cell 

survival, it was shown that electroporation can trigger an “oxidative jump” where the level of reactive oxygen species 

(ROS) rises sharply1193. The measured generation of ROS was to some extent dependent on extracellular calcium and 

magnesium but could be prevented by addition of anti-oxidants. In subsequent studies, lipid peroxidation, as evidenced by 

the presence of lipid hydroperoxides, was observed in the membranes of both plant and animal cells following 

electroporation1191,1192. Further investigations using the chemiluminescent probe lucigenin found that CHO cells subject to 

millisecond pulses undergo a threshold level of oxidation of their plasma membrane lipids, but that this effect only 

partially correlates with cell survival1194. Interestingly, lipid peroxidation of unsaturated phosphatidyl choline species has 

also been observed during electroformation of giant unilamellar vesicles1197. Membranes characterized by a high degree of 

peroxidized lipids tend to be weaker and more susceptible to disruption, including by electroporation1198. Indeed, lipid 

peroxidation is well known to influence membrane behaviour, including domain formation and mechanical properties, 

which could have implications for cell recovery post-electroporation. 

 

The reactive oxygen species produced by electroporation will not only target lipids but can also degrade proteins and 

nucleic acids. DNA damage in proportion to the applied voltage and duration has been reported in HL60 cells, although 

no specific mechanisms were pinpointed1196. It could be that DNA damage is due to influx of oxidative agents from the 

extracellular environment. Regarding proteins, Chen and colleagues have suggested non-thermal electroconformational 

damage to ion channels following exposure to strong electric fields1199-1202. More general models describing 

electroconformational damage of membrane proteins and other cellular components have subsequently been 

described1203,1204. In particular, it is proposed that charged amino acids in membrane proteins or voltage-sensing segments 

in voltage-dependent transporters are vulnerable to sharp changes in electrical potential. These effects are thought to be 

more pronounced for shorter pulses of higher amplitude1205. Indeed, other studies showed that high voltage nanosecond 

pulses are likely to perturb the function of voltage-gated channel proteins1206, and possibly other proteins in general1207.  

 

Although not typically used for intracellular delivery, nanosecond pulsed electric fields are of interest for understanding 

how electric fields can affect cells on different timescales and in various compartments. One study examined generation 

of ROS in response to nanosecond pulsed electric fields (30 kV cm-1 at 100 ns)1208. They found that ROS was inhibited by 

both calcium chelators, and the antioxidant trolox, in agreement with earlier observations that the presence of divalent 
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ions appears to participate in ROS generation1193. Other reports have shown that H2O2 is among the damaging species 

generated by nanosecond pulsed electric fields1209. Although undesirable for intracellular delivery, non-thermal electrical 

destruction of proteins, cells and tissue have been proposed for a host of other medical and industrial applications1210. 

 

Molecular dynamics simulations have shown that the presence of hydrophilic pores can augment the process of lipid flip-

flop, whereby lipids translocate from one leaflet of a bilayer to the other410. Partial abolition of the naturally uneven 

bilayer distribution of lipids has been observed in RBCs as a consequence of electric fields1211. Vernier and others found 

that nanosecond electric pulses can facilitate phosphatidylserine (PS) exposure to the outer leaflet within seconds1212-1214, 

indicating a biophysical mode of action rather than cell signaling. Rols and colleagues performed a follow-up study with 

millisecond permeabilizing pulses to examine membrane disorganization and phospholipid scrambling1215. Under the 

chosen conditions, PS exposure could not be detected. The threshold conditions that trigger PS exposure thus remain to be 

precisely determined, however, it appears that PS scrambling may only be relevant under regimes of very high field 

strength. Scrambling of the membrane asymmetry has implications for the long-term survival of cells, particularly in vivo 

where immune recognition mechanisms tend to destroy cells exhibiting wayward externalization of lipids. 

 

6.2.2.7 Cargo Damage from the Electric Field 

Apart from damage to the cell, administration of the field strengths commonly used for electroporation may also cause 

problems with the cargo molecules. Degradation and damage of electrically sensitive cargo has been suggested by some 

reports. For example, the Bhatia group reported aggregation of quantum dots upon electroporation, indicating it is not a 

suitable technique for intracellular delivery of quantum dots294. Electric pulse-induced precipitation of nucleic acids and 

other biological macromolecules has also been observed under certain conditions1178,1216, although it is unclear why other 

groups haven’t seen such problems. These studies noted that nucleic acids aggregated into a non-functional state under the 

conditions of their experiment. If they can be identified, it seems likely that the conditions leading to precipitation must 

simply be avoided. Nevertheless, it is worth noting that not all molecular cargo can be assumed to be compatible with 

strong electric fields. 
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6.2.2.8 Technical Innovations: Bulk, Micro- & Nano- Electroporation 

The early generation of electroporation systems were configured with a cuvette style geometry1134. Subsequently, the first 

commercial electroporator, the BioRad Gene Pulser, was launched with this configuration in the mid 1980s. Since then, 

the cuvette geometry has become the standard platform for electroporation, being simple, robust, and reasonably well 

understood (Figure 28A(i)). The nucleofector is no exception, and as discussed previously, its novelty arises not through a 

deviation from this geometry, but rather from the systematic use of optimized pulsing protocols and cell type-specific 

buffers. Despite its widespread adoption, the cuvette style geometry is not without problems. As discussed above, the 

large surface area of the metal electrodes presents issues concerning electrolysis, such as Joule heating, corrosion, pH 

deviations, and inconsistent field profile. Second, cuvette style electroporation is difficult to perform with low volumes 

(<20 μl). As the intracellular delivery of a molecule via permeabilization is directly related to extracellular concentration, 

it is often advantageous to concentrate the cells into a minimal volume in the range of 10 μl or less. This maximizes the 

concentration, which is especially useful for expensive or precious reagents. Below we discuss the innovations that have 

been produced in the electroporation field, including difference setups for bulk, micro- and nano-electroporation. 

 

6.2.2.9 Capillary Electroporation 

One of the first commercial setups to challenge the dominance of the cuvette style geometry came in the form of capillary 

electroporation (Figure 28A(ii)). This design was introduced by a company called NanoEntek in Korea and subsequently 

commercialized by Invitrogen/Thermo Fisher as the “Neon” electroporation system558. In the Neon system, cells and 

buffer solution are pipetted into a narrow capillary (0.56 mm wide and 30 mm long) featuring a wire gold electrode with 

minimal surface area at the top. The other electrode, also made of gold, is located within a conductive electrolyte bath 

outside the capillary. Because of the small surface area and distance from the cells, bubbles, Joule heating, and pH waves 

are more effectively separated from the cells. The small size of the electrodes also means that gold plating becomes 

economical. Chemical stability of the electrodes is superior to those made from less inert metals like iron, aluminium, or 

copper. The inventors compared pH deviations in the capillary system to those of conventional cuvette style chambers and 

it appeared to confer substantial advantages in protecting cells from the toxic electrolytic processes that can occur at 
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electrodes. Together these features are purported to increase the viability of cells treated in capillary electroporation 

system558.  

 

On the other hand, one disadvantage of the Neon system is the reduced flexibility in determining pulse parameters. The 

pulse duration is limited in the range 1-100 ms and voltage from 500-2000 V. Given the distance of the conductive path 

between the electrodes, this means the field strength does not exceed 1 kV cm-1. The user may increase the number of 

pulses but there is no option to program pulses of different voltage, or frequency. Thus, the dual pulse strategies that have 

become so popular with the Nucleofector system are not possible with the Neon platform. High cost of capillary tips, 

electrodes, and buffers is another factor that users dislike559. In response to this, some researchers have published 

protocols advising users on how to recycle the components and employ homemade buffers, such as one consisting of PBS 

supplemented with 250 mM sucrose and 1 mM MgCl2
559. 

 

6.2.2.10 Microfluidic Electroporation 

Motivated by the shortcomings of conventional electroporation equipment, a number of researchers and engineers have 

explored alternative solutions. Electroporation combined with microfabricated, microfluidic, and nanotechnology 

concepts has received a great deal of attention in the last two decades as evidenced by a spate of reviews on the topic1217-

1222. Compared to bulk electroporation systems, it has been argued that micro- and nano- electroporation can provide the 

following advantages1220,1221: 1) lower voltages due to smaller scale, thus obviating the need for high powered pulse 

generators, 2) ability to concentrate, trap, and position cells and cargoes for higher efficiency delivery, 3) real time 

monitoring of device performance at single cell level, and 4) scalable solutions from single cells up to large populations. 
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Figure 28. Electroporation (EP) configurations. (A) Bulk (conventional) electroporation in parallel plate cuvette (i) and capillary (ii) 
geometries. (B) Microscale electroporation examples showing (i) electroporation in droplets, (ii) the use of channel architecture to 
manipulate voltage pulses, (iii) hydrodynamic focusing to generate liquid electrodes, and (iv) hydrodynamic vortices to rotate cells 
through electric fields for more homogenous permeabilization. (C) Nanoscale electroporation with examples of (i) nanochannel 
electroporation, where cells are pressed against nanoscale apertures; (ii) nanostraw electroporation, in which the electric field is 
concentrated onto the end of a nanostraw; and (iii) nanofountain electroporation, which exploits a hollow AFM tip for addressing 
individual cells. 

 



 134 

One of the first microfluidic electroporation systems was constructed by Huang and Rubinsky in the late 1990s1223. It was 

essentially a small hole of 2 – 10 μm diameter that a single cell could be sucked onto. The application of an electric pulse 

from below was used to permeabilize the basal side of the trapped cell and study the mechanisms of electroporation at 

single cell level. Although only demonstrated as a proof of concept, such developments spurred the field on toward further 

efforts. Several years later the first microfluidic flow electroporation devices appeared on the scene. Huang and Rubinsky 

were again pioneers in this department, demonstrating loading of small molecule dyes and transfection with GFP-

encoding plasmids, albeit at low throughput1224. In the following, we will highlight several examples of flow-based 

microfluidic electroporation. 

 

Droplet-based microfluidics enables the use of microscale compartments to expose cells to a particular chemical 

environment within picoliter reaction volumes1225. Zhang et al. encapsulated cells in aqueous droplets before flowing them 

over a pair of electrodes subjected to a constant DC voltage1226. Due to the non-conductivity of the oil phase, cells only 

experience a transient electric pulse when the conductive droplets pass the electrodes (Figure 28B(i)). The cell is then 

permeabilized to the molecular cargo loaded within the droplet. In this case a DNA plasmid encoding for GFP was 

successfully delivered into CHO cells1226. The pulse parameters were governed by the flow speed, size of the droplet, 

distance between the electrode pair, and the positioning of the cell inside the droplet. Owing to the rise in droplet-based 

microfluidics for high-throughput single-cell manipulation, techniques that can perform intracellular delivery on cells 

within droplets are expected to be important.  

 

In a second example of flow-based microfluidic electroporation, electric pulse parameters are again determined by the 

device geometry and flow speed under constant DC voltage. But in this case electroporation occurs at narrow 

constrictions within the main flow channel489. The geometry of the device channel controls the field amplification so that 

cells experience an electric pulse as they passage through a constriction (Figure 28B(ii)). Pulse duration imposed on the 

cell is therefore determined by flow speed, while amplitude is given by width ratio of the constriction to main channel. 

The number of constrictions in series will effectively determine the number of pulses. In subsequent efforts, Geng et al., 

scaled up this concept to process 20 mL min-1 of cells in continuous flow mode with a minimalist setup featuring low-cost 

components, a syringe pump, and a bench top DC power supply without the need for a pulse generator1227. For plasmid 

transfection in CHO cells a transfection efficiency of up to 75% was achieved. 
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In a different microfluidic electroporation strategy, hydrodynamic flow focusing was exploited to create parallel laminar 

flow streams of different conductance (Figure 28B(iii)). Using a three-inlet approach, the top and bottom sheath flows 

were composed of highly conductive 3M KCl solutions, which acted as liquid electrodes, while cells in standard aqueous 

solution were flowed through the center of the configuration1228. By applying a DC voltage of only 1.5 V, electric field 

intensities of more than 1 kV cm-1 could be generated across the central zone to electroporate the passing cells. The device 

showed up to 70% delivery efficiency of fluorescein dyes into yeast cells1228. Moreover, distancing the metal electrodes 

from cells using hydrodynamic focusing had the advantage of separating cells from electrolysis issues such as heating, 

bubble generation, pH changes, and production of toxic ions1228. Thus, the use of non-metal liquid electrodes in 

hydrodynamic flow mode may mitigate some of the problems associated with cuvette-style electroporation. 

 

In a fourth example of microfluidic ingenuity, a spiral-shaped microfluidic channel was implemented to generate flow 

vortices1229. As cells traverse through the curved channels, vortices caused by Dean flows facilitate their rotation in 

reference to the electric field (Figure 28B(iv)). This results in permeabilizing the entire cell surface, rather than just the 

cell poles. By increasing the cell surface area that can be electropermeabilized high delivery efficiency was achieved with 

both dyes and DNA plasmids1229. Other vortex-based microfluidic systems have been implemented to achieve a similar 

effect1230,1231 and have demonstrated intracellular deliver of dyes, miRNA, siRNA, proteins, and plasmids1232. 

 

6.2.2.11 Nanochannel Electroporation 

Inspired by early work on electroporation through micron-sized apertures1223, James Lee and colleagues introduced the 

concept of nanochannel electroporation1233. By scaling the aperture size down to ~90 nm, the membrane disruption effect 

of electroporation could be concentrated onto a very small spot on the cell surface (Figure 28C(i)). A significant claim of 

this strategy is dose control, i.e. the finding that the amount of delivered material directly correlates with the voltage pulse 

duration. Nanochannel electroporation also appears to introduce agents faster and deeper into the cytoplasm, a result 

attributed to enhanced and concentrated electrophoretic forces. In support of this, finite element simulations found that 

fringe fields extend into the cell and could possibly be used to propel molecular cargo through the permeabilized section 

of the cell periphery and deep into the cytoplasm. Compared to conventional electroporation and other forms of 
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microfluidic electroporation, it was proposed that nanochannel delivery mechanism is based on electrophoretic forces 

rather than diffusion and/or endocytosis. Nanochannel electroporation was able to deliver dyes, oligonucleotides, siRNA, 

plasmids and quantum dots into recipient cells. Moreover, only nanochannel electroporation could deliver quantum dots 

into Jurkat cells, while conventional or microfluidic electroporation could not. One drawback of the method, however, 

was the low throughput nature of the technique. Prior to electroporation each single cell requires placement against the 

nanochannel with optical tweezers. 

 

In 2016 the James Lee group published a scaled-up version of nanochannel electroporation able to process up to 40,000 

cells on a single chip over a 1 cm2 area1234. In this version, termed “3D nanochannel electroporation”, the aperture 

dimensions were expanded to 300-650 nm. Positive dielectrophoresis was employed to simultaneously position thousands 

of cells across the array and press them against the array of nanochannels. This was necessary because a tight seal 

between the cell membrane and nanochannel is critical to ensure consistent electroporation performance across the device. 

Molecules to be loaded are filled into a reservoir below the substrate and delivered into cells concurrently with application 

of the electric field. The system was used for transfecting plasmid DNA into batches of natural killer cells, which are 

otherwise difficult to transfect. A predecessor to this idea was published in 2006 by Kurosawa et al. using an insulating 

substrate with an array of 2 μm holes in it1235. Just like in 3D nanochannel electroporation, the field was concentrated at 

the holes and molecules to be delivered were supplied from underneath. This design is essentially a scaled-up version of 

the original microfluidic electroporation system published by Huang in 19991223. 

 

The Luke Lee lab also published a series of papers where cells were sucked into microchannels made of PDMS. In effect, 

this design was not too dissimilar from a parallel array of micropipettes1236-1238. An electric field was introduced to focus 

the electroporation effects to the region of the cell sucked into the microchannels, thereby locally permeabilizing them1236-

1238. The concept was later combined with electrophoresis for increasing the efficiency of delivery, where the delivery of 

molecules could be optically monitored in real time1239. Again, a similar concept to take advantage of using channels as 

trapping arrays was used to transfect plasmid DNA into stem cells1240. Collectively, these innovations show the power of 

localizing electric fields to the subcellular scale. If the problem of scale-up to high throughput can be solved at an 

acceptable cost, this approach can be expected to benefit the intracellular delivery toolkit. 
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6.2.2.12 Nanostraw Electroporation 

Another form of nanoscale electroporation takes the form of so called nanostraws (Figure 28C(ii)). The key difference is 

that the nanoscale aperture protrudes into the target cell as a hollow nanoneedle. Although cell membranes appear to be 

resistant to penetration by such nanoneedle under passive conditions, the addition of an electric field permeabilizes the 

cell membrane at the tip of the nanostraw702. One benefit of this approach is that active forces, such as optical tweezers or 

positive dielectrophoresis, are probably not required to establish optimal contact between cells and the nanostraw. Rather, 

a consistent period of settling might be required to facilitate uniform contact between cells and the substrate428. 

Furthermore, with sufficient adhesion to the nanostraw array, substantial pumping forces can presumably be used to flow 

molecules into the cell cytoplasm without cell detachment. In light of poor results with aluminium electrodes in bulk 

conditions, however, the choice of aluminium nanostraws as the fabrication material may need to be revised in future 

versions of this device. 

 

6.2.2.13 Nanofountain Probe Electroporation 

A scanning probe-based approach for localized electroporation, termed nanofountain probe electroporation, has been 

introduced by Espinosa and colleagues1241,1242. It is essentially an atomic force microscope cantilever engineering with a 

hollow channel for fluid flow. Target cells are cultured on a grounded coverslip and positive or negative voltages are 

applied to the conductive cantilever, thereby focusing the electric field at the site of contact between the cantilever and 

cell (Figure 28C(iii)). By coordinating the movement of the tip and the flow of fluid, introduction of dextrans and proteins 

into cells can be achieved1241. In follow-up applications of this system, it has successfully been employed to deliver 

molecular beacons to the cytoplasm for detection of mRNA transcription1242. 

  

6.2.2.14 Summary of Micro- and Nano-electroporation 

Innovations in micro- and nano-electroporation have showcased a number of interesting proof-of-concept prototypes. 

Diverse architectures have been developed, including the use of micro- or nano-channels smaller than the cell, channels 

larger than the cell, chambers, compartments, and droplets, and hydrodynamic effects such as sheath focusing and 

vortices1218,1220. Some of these reports claim improved delivery efficiency and viability over conventional bulk 
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electroporation. They have also provided elegant solutions to problems that have long troubled traditional electroporation 

setups, such as electrolytic reactions at the electrodes, gas bubble formation, pH deviations, Joule heating, inconsistent 

cell treatment, inability to scale down reagent volumes, excessive power consumption, and requirement for cumbersome 

equipment. Yet the technical advancements of miniaturized approaches have not translated to widespread adoption, most 

likely due to high cost, impractical throughput, lack of focus on clinical or industrially relevant problems, or lack of user-

friendly designs1221. Thus, it remains to be seen what the next generation electroporation systems will look like, and 

whether they will challenge the dominance of existing methods. Apart from technical upgrades, recent literature 

emphasizes that further theoretical studies on mechanisms of cell membrane permeabilization and cargo uptake are 

needed to obtain further progress in the field163,1118,1131,1132,1138,1144,1219. 

 

6.2.3 In Vitro & Ex Vivo Applications of Electroporation 

Of the membrane disruption-based approaches, electroporation is currently the most mature in regard to industrial 

applications and clinical translation. Electroporation-based technologies have been deployed in vivo as well as in vitro. 

The in vivo applications include electrochemotherapy, non-thermal tissue ablation, DNA vaccines, and transdermal drug 

delivery. These have already been discussed in other reviews1048,1050,1243-1247. In biotechnology, electroporation has also 

been used for extraction of biomolecules, sterilization/pasteurization of solutions, and transformation of 

microorganism1248. In keeping with the focus of this review, we will focus our discussion on the in vitro and ex vivo 

applications relevant to intracellular delivery in human and animal cells. Within this context, electroporation has been 

employed mainly for nucleic acid transfection, of which there are three main market areas: 1) biomedical research, 2) 

biomanufacture of biologics (proteins, antibodies, and viral vectors/particles), and 3) therapeutics (cell-based therapies, 

gene therapy, and cell manipulation for regenerative medicine)(see Figure 3). Furthermore, intracellular delivery of non-

nucleic acid cargo is beginning to enjoy increased attention, especially with the rise of genome editing and new forms of 

cell-based therapies. Below we highlight a selection of key applications where electroporation had made an impact. 

 

6.2.3.1 Intracellular Delivery of Impermeable Drugs 

Permeabilization via electroporation has been proposed for pharmacological applications to identify the cytoplasmic 

activity of otherwise impermeable drugs and small molecules1249 (Figure 29A). In the 1980s a study by Melvik et al. 
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showed that electroporation of cell lines significantly enhanced the efficacy of cis-

dichlorodiammineplatinum(II)(cisplatin) up to 3-fold greater than controls1085. Using radiolabeled tracers, they found 

electroporation rendered cells permeable to small molecules for up to 10 minutes. Subsequently, electroporation has been 

used to screen for cytotoxicity of drugs that are otherwise susceptible to be pumped out of cells by the activity of cellular 

efflux pumps55,1086. Bleomycin (~1.4 kDa) represents a particularly striking example of a drug where activity is drastically 

increased with electroporation-mediated intracellular delivery55,1086. Thus, electroporation can be leveraged to test for the 

cytoplasmic activity of otherwise impermeable small molecules, peptides, and biochemical agents. 
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Figure 29. In vitro and ex vivo applications of intracellular delivery achieved with electroporation. (A) Delivery of impermeable drugs 
to the intracellular space for drug testing and/or cell manipulation. (B) Transfection with plasmid DNA encoding proteins, antibodies, 
and viral components for biomanufacturing purposes. (C) Loading of protein antigens or mRNA encoding such into dendritic cells. 
Presentation of antigen fragments through MHC pathways is able to prime T cells against cells carrying the antigens and may be 
useful for cancer immunotherapy. (D) Transfection of cytotoxic immune cells with mRNA encoding TCRs and/or CARs can be used to 
direct immune cells against specific cell targets, such as cancer cells. TCR = T cell receptor. CAR = chimeric antigen receptor. (E) 
Genome-editing molecules can be delivered into stem cells for the purposes of adding, deleting, or correcting genes. Modified stem 
cells can then be expanded for potential deployment in cell- and tissue-based gene therapy. Red signifies areas of the genome that 
have been edited. ZFN = zinc finger nuclease. 
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6.2.3.2 Biomanufacture Through Transfection 

Biomanufacture refers to the production of biomaterials or biomolecules by the harnessing of biological systems. 

Transfection of common cells lines can be used for production of proteins, antibodies, viral vectors, or viral particles1250-

1255 (Figure 29B). These are often produced in mammalian cell lines such as CHO, HEK-293T, HeLa, A549 cells or insect 

cell lines, depending, for example, on the need for species-specific post-translational modifications. Significant efforts 

have gone into engineering these systems for maximum yield and economies of scale. Both stable genetically modified 

cell lines and transient transfection are key strategies for biomanufacture. Although lipid and polymer reagents are most 

commonly used for transfection in biomanufacture, electroporation is currently the leading option among membrane 

disruption-mediated methods. 

 

6.2.3.3 Large Volume Flow Electroporation 

The concept of large volume flow-based electroporation for cell processing emerged in the late 1980s. A flow-based 

electrofusion system for processing several milliliters of suspended cells per minute was introduced by Teissié and 

colleagues1256,1257. Following that, the same group reported on a flow-based intracellular delivery system with similar 

throughput capable of transfecting plasmid DNA into different cell types at efficiencies of 25-35%1258. In 2002, a 

commercial large volume flow electroporation system for clinical and industrial bioprocessing was reported in the 

scientific literature by the company Maxcyte1259. Initial reports claimed that common suspension and adherent cells lines 

could be loaded with 500 kDa dextran at >90% efficiency and >90% viability while gene transfection rates could reach up 

to 75%. The latest versions of this technology are capable of tunable scale, from tens of thousands of cells up to 200 

billion cells packed into liters of solution. The run time for a batch of 200 billion cells is approximately 30 minutes in a 

single run. Moreover, the system is sterile and compliant with current good manufacturing processes (cGMPs) for 

biological clean room facilities. In further demonstrations of its utility in manufacturing scenarios, the flow 

electroporation platform was used to batch transfect HEK293T cells for large-scale bio-production of lentiviral vectors1260. 

 

Recently, Zhao et al. published a different strategy for large volume flow electroporation with a device that integrates a 

flow tube and a miniaturized needle electrode array with uniform spacing1261. The microfluidic design of the needle 

electrode array brings the benefit of lowering the required voltage. The system enables processing rates of 20 million cells 
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per minute and was suggested to be suitable for in vitro and ex vivo batch mode applications. Another group published a 

similar concept constructed from custom-made microfluidics components as a solution for batch flow electroporation of 

mRNA into tens of millions of dendritic cells1262. 

 

6.2.3.4 Delivery of Genome-Editing Proteins and RNPs 

Recent advances in genome editing via programmable nuclease have spurred an interest in intracellular delivery of these 

proteins, particularly Cas9 RNPs. In the last few years RNP delivery has been successfully accomplished with 

electroporation143,144,146,147, microinjection148,149, lipid nanoparticle formulations150, osmotically-induced endocytosis 

followed by endosome disruption151, microfluidic cell deformation152 and CPPs153. Electroporation, however, is reported 

to be more efficient with a number of primary, blood, and immune cell types in vitro. RNP delivery via electroporation 

has been demonstrated in a range of cell types, from common cell lines to blood and immune cells of clinical relevance, 

with both conventional cuvette style (Nucleofection)30,143,146,147,287 and capillary electroporation (Neon)45,144,145,1263 

platforms. 

 

The mechanisms of RNP entry via electroporation have not been heavily studied yet. Given what we already know about 

the influx behaviour of nucleic acids and proteins (Figures 24, 25, and 26), it is worth considering the possibilities. As 

discussed in section 2.2.2, an RNP complex should have about -80 negative charges, be ~188 kDa, and up to 15 nm in size 

(Table 1). The mechanisms of electroporation-mediated delivery could thus be similar to siRNA, namely direct 

translocation of a highly negatively charged molecule into the cytoplasm at the side of the cell facing the negative 

electrode during the pulse (Figure 24D). Once in the cytoplasm a nuclear localization sequence (NLS) on the Cas9 would 

then promote its shuttling to the nucleus. Another possibility is that RNPs are endocytosed after being entangled in the 

destabilized plasma membrane, such as is the case for plasmid DNA (Figure 24E, Figure 25). Indeed, post-electroporation 

aggregation or trapping of proteins at the plasma membrane has been observed in several cases1092,1122. The ground-

breaking potential of genome editing will no doubt stimulate the field toward studying mechanisms of protein and RNP 

delivery to the nucleus. For example, the optimal nuclear concentrations of Cas9 RNP needed for efficient genome editing 

are still unknown. In future, it will also be interesting to see how other membrane disruption-based delivery approaches 

(which do not supply electrophoretic forces) compare in their efficiencies of RNP delivery. 
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6.2.3.5 Hard-to-Transfect Cells 

A number of sensitive primary cell types do not easily tolerate foreign nucleic acids or the toxic side-effects of common 

transfection reagents. For example, dendritic cells, T lymphocytes (T cells), B lymphocytes (B cells), natural killer (NK) 

cells, leukemia cells, hematopoietic stem cells (HSCs), macrophages, and neurons have all been reported to be recalcitrant 

to polymer- or lipid-based transfection233,260,261,282,286,290,1172,1264,1265. Lentiviral transduction and electroporation have 

emerged as the two leading alternatives. However, procedures with viral vectors are sometimes unfavorable because they 

can: (1) be labor-intensive, inconsistent, and expensive, (2) present safety hazards, (3) cause untoward immune or 

inflammatory responses in vivo, and (4) carry a risk of insertional genotoxicity via genomic integration. Electroporation, 

on the other hand, is rapid and simple, but its core weakness is poor viability or loss of cell functionality, as has been 

reported for nucleofection of dendritic cells or T cells279,1165,1264. 

 

Nucleofection, in particular, has sought to build a reputation on effectiveness with hard-to-transfect cells289,1108. 

Nucleofection has demonstrated significant success with DNA and RNA transfection in various types of stem cells, 

primary cells, and post-mitotic cells. Published examples include primary human melanocytes, smooth muscles cells, 

chondrocytes, and mesenchymal stem cells1156,1163,1164, dendritic cells1165,1166, monocytic cell lines1159, primary leukemia 

cells and cell lines233,1167,1168, primary natural killer cells and their derivative cell lines1169,1170, primary 

lymphocytes1171,1172,1266, embryonic and adult stem cells1173,1174, and mammalian neurons1157,1175. 

 

Other electroporation platforms have also achieved a measure of success in hard-to-transfect cells. Minimalist setups 

featuring standard 2 or 4 mm cuvettes, commercial pulse generators (such as the BioRad Gene Pulser or BTX units), and 

an electroporation buffer consisting of OPTIMEM media (or equivalent) have attained favorable results with 

macrophages234,275, T lymphocytes187,257,551,1267-1271, dendritic cells186,260-262,1110,1272,1273, and B cells1274,1275. Some of these 

groups have even used such setups to perform small scale clinical trials560. In other cases, the Maxcyte system for large-

scale clinical-grade flow electroporation has demonstrated effectiveness with leukemia cells1276, natural killer cells1277,1278, 

dendritic cells136-138, T cells187, and CD34(+) hematopoietic cells185. The Neon capillary electroporation system has 

successfully delivered molecules into iPSCs45,145, T cells144 and HSCs1263. Together these studies suggest that no one 

electroporation system has a monopoly on effectiveness with sensitive or difficult to treat cell types. 
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6.2.3.6 T Cells & Other Immune Cells 

Immune cells are a key category of cells for biomedical investigations and therapeutic applications. In T cells it has been 

asserted that RNA delivery to cytoplasm is not difficult, but DNA plasmid transfection, which requires nuclear 

penetration, remains a significant hurdle279,1279. This is an example where primary cells may exhibit an innate toxic 

reaction against delivered material. T cells, in particular, appear to display little tolerance to plasmid transfection 

regardless of delivery technique146,279. Electroporation is counted among the techniques that perform well in delivering 

siRNA and mRNA into T cells, however, the margin of error leading to loss of viability can be narrow279, and changes in 

the activation state, signaling pathways, and transcriptional responses of cells must be taken into account1280,1281.  

 

Many of the published electroporation protocols underscore the narrow window of appropriate parameters, emphasizing 

that there exists a fine line between effectiveness and cell death275,1168. The challenge for electroporation appears to be the 

long-term survival, potency and functionality of treated cells, not so much the initial delivery. Indeed, post-treatment loss 

of viability, proliferative potential or potency has been reported for immune cells and other primary cell types279,1165,1264. 

Moreover, electroporated immune cells have sometimes been observed to exhibit an unfavorable response or poor 

engraftment when infused back to the in vivo setting279. On the other hand, several studies have shown electroporated cells 

to recover well and exhibit decent potency in clinical contexts187,560,1282,1283. 

 

6.2.3.7 Ex Vivo Intracellular Delivery for Cell-Based Therapies 

Scientists have long envisaged the power of ex vivo cell manipulation for cell-based therapies, especially in regard to gene 

therapy, immunothereapy and regenerative medicine28,29,31,41. The concept is to remove cells or tissues from the patient, 

engineer their function, and re-implant them to confer a therapeutic effect. Many of the relevant cell types, however, fall 

into the category of “hard to transfect” cells as outlined above. In the following we will highlight several areas where 

electroporation has been attempted for ex vivo cell-based therapies. 



 145 

 

6.2.3.8 Protein Loading for Antigen Display in Cancer Immunotherapy 

Loading of exogenous proteins into the cytoplasm of antigen-presenting cells leads to their processing and display through 

the MHC-I pathway95,1284 (Figure 29C). This primes cytotoxic T cells against any cells carrying the antigens, such as 

cancerous cells that produce mutant proteins (Figure 29C). Thus intracellular delivery of tumor proteins into antigen 

presenting cells, especially dendritic cells, has been proposed as a strategy for cancer immunotherapy1285. Kim et al. were 

among the first to use electroporation to load dendritic cells with exogenous antigens ex vivo before implanting them back 

into the body to elicit a robust anti-tumor response in mouse models135. The Maxcyte clinical electroporation system was 

also used to achieve similar results by loading tumor cell lysate into dendritic cells136. In recent years this concept has 

been put to the test in human clinical trials. In 2013, a Japanese group confirmed the safety and feasibility of 

administering dendritic cell vaccines generated by cytosolic loading of autologous tumor lysates via the Maxcyte 

system137. This strategy was reported to produce a significant anti-tumor effect compared to passive incubation (pulsing) 

of dendritic cells with tumor lysate138. 

 

6.2.3.9 mRNA Transfection for Antigen Display in Cancer Immunotherapy 

For induction of the MHC-1 antigen presentation pathway, mRNA transfection may be preferred to protein loading1286 

(Figure 29C). Van Tendeloo et al. published a paper in 2001 showcasing the efficacy of such an mRNA-based strategy in 

dendritic cells260. Using a basic cuvette style electroporation setup with OPTIMEM buffer, they were able to able to 

achieve >80% expression with >80% viability compared with much poorer results from plasmid DNA in earlier 

studies1287. Their comparison of methods for mRNA transfection to dendritic cells suggested that electroporation was far 

superior to lipofection and other methods1288. Based on these studies, the idea of electroporation-mediated mRNA 

transfection for ex vivo immunotherapy and gene therapy gained significant momentum1289. Using similar electroporation 

methods as those described by Van Tendeloo et al.1273, several groups have pressed ahead with small-scale clinical trials to 

treat human patients suffering from melanoma and other cancers560,1290. Results gathered to date indicate positive long-

term survival rates and safety of the treatments. 
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6.2.3.10 Electroporated B Cells for Antigen Display in Cancer Immunotherapy 

Apart from dendritic cells, several other types of professional antigen-presenting cells have been tested for their ability to 

prime T cells against a tumor antigen. Coughlin et al. employed nucleofection to demonstrate that B cells from pediatric 

patients can be efficient antigen presenting cells upon loading with tumor mRNA1266. As a proof of concept, mRNA-

transfected B cells were used to successfully prime a T cell response against cultured neuroblastoma cells in vitro1266. 

According to another study, electroporation of multiple RNAs into activated B cells with a standard cuvette style system 

elicited in vitro antigen-specific cytotoxic T cell responses with similar efficiencies as those of mature dendritic cells1275. 

Thus, the use of intracellular delivery for ex vivo activation of B cells may represent an alternative source of antigen 

presenting cells in cancer immunotherapy, especially in pediatric cases where dendritic cells are not as readily available. 

 

6.2.3.11 Electroporation to Produce CAR-T Cells for Cancer Immunotherapy 

A more direct way of inducing an immune response against cancer is to express a T cell receptor (TCR) or chimeric 

antigen receptor (CAR) directly into cytotoxic immune cells, such as T cells or natural killer (NK) cells32,1283,1291,1292 

(Figure 29D). A CAR is a genetically engineered immunoreceptor that endows modified cells with a novel specificity to 

kill any cell that carries molecules to which the CAR binds. The goal is to target the killing action of TCR- or CAR-

modified immune cells against cancer cells carrying complementary surface markers. Electroporation has been used to 

deliver mRNA for expression of TCRs or CARs, chemokine receptors, or cytokines in T cells187,257,1293,1294. Similar to the 

case of dendritic cells, switching from plasmid DNA to mRNA was reported to allow >90% gene expression with >80% 

viability in T cells post-electroporation, even while using a basic cuvette-style electroporation protocol in OPTIMEM 

buffer257. Using such methods, it was shown that multiple infusions of mRNA-electroporated CAR-T cells mediated 

shrinkage of large vascularized flank mesothelioma tumors of human origin in a genetic mouse model187. CAR expression 

and anti-tumor activity of mRNA-electroporated T cells was detected up to a week after electroporation. This is important 

because mRNA electroporation for transient expression of CARs in T cells is seen as a far safer alternative to permanent 

integration of CAR genes into the genome1291,1295. T cells electroporated with mRNA encoding for a CAR against CD19 

showed cancer killing capacity in immunodeficient mice bearing xenografted leukemia259. Even a single injection of 

CD19 mRNA CAR-T cells yielded a significant prolongation in survival in this model. Because mRNA electroporation is 



 147 

a cost-effective and efficient path to engineer T cells for pilot studies, this approach has been pursued for high-throughput 

and iterative testing of novel constructs and targets in small scale clinical trials in humans32,1283,1291. 

 

6.2.3.12 Electroporation to Produce Cytotoxic NK Cells for Cancer Immunotherapy 

Although most work with CARs has been carried out with T cells, NK cells represent an alternative option1292. Among the 

first attempts to investigate this possibility were a series of experiments in 2005 by Imai et al. that used retroviral 

transduction to guide the activity of NK cells expressing CD19 CARs against patient leukemia cells in in vitro assays1296. 

Next, electroporation of CAR mRNA into NK cells was attempted in 2010. Members of the Maxcyte team used their 

clinical-scale large-volume electroporation platform to transfect mRNA encoding a CD19 CAR into NK cells1277. The 

engineered cells demonstrated cytotoxic killing of acute lymphoblastic leukemia and B-lineage chronic lymphocytic 

leukemia cells for up to 3 days after electroporation1277. Shimasaki et al. then employed the Maxcyte system to scale up 

mRNA transfection to large batches of expanded NK cells with numbers reaching up to 250 million cells per run1278. 

Under these conditions CD19 CAR expression reached >80% after 24 hours and mediated significant anti-tumor 

cytotoxicity in a mouse xenograft model of B cell leukemia. 

 

6.2.3.13 Electroporation for Ex Vivo Gene Therapy of Blood & Immune Cells 

Ex vivo cell-based therapies have long been pursued as an avenue for treatment of blood cells to address hematological 

diseases29. But only recently have gene therapy clinical trials in T cells and HSCs shown significant progress. These trials 

mostly used lentiviral transduction, which can carry a risk of genotoxicity due to random genomic integration26,1297-1299. To 

address this problem, new approaches that deliver genome editing molecules directly into cells have attracted interest for 

ongoing studies1300. As discussed in previous sections of this review, electroporation is among the techniques that can 

deliver genome-editing molecules in the form of mRNA, sgRNA, proteins, and RNPs into clinically relevant cell types at 

reasonable efficiencies and viabilities.  

 

Here are two examples where electroporation of one component is combined with non-integrating viral transduction of 

another. First, integrase-defective lentiviral expression of donor DNA combined with nucleofection of zinc finger mRNA 

was used for HDR-mediated correction of monogenic mutations in the IL2RG gene of patient HSCs30. This strategy has 
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the potential to provide a one-time cure for the immune disorder X-linked severe combined immunodeficiency (SCID-X1) 

as gene-edited HSCs give rise to functional lymphoid progenitors that exhibit a selective growth advantage over disease 

mutants. Second, a recent study by DeRavin et al. used targeted integration of a corrected gene into CD34(+) HSCs as a 

treatment strategy for X-linked chronic granulomatous disease185. Similar to the previous example, they used 

electroporation (in this case, the MaxCyte platform) to transfect zinc finger mRNA into cells while donor DNA for gene 

correction was supplied by adeno-associated viral (AAV) 6 vectors. By targeted integration of a corrected gene into the 

AAVS1 safe harbor locus of the genome, it was argued that genotoxicity associated with random integration can be 

avoided. In mice transplanted with corrected HSC progenitors, 4–11% of human cells in the bone marrow expressed the 

therapeutically corrected gp91phox protein.  

 

6.2.3.14 Electroporation for Gene-Editing of Blood & Immune Cells 

Other proof of concept studies for therapeutic genome editing in HSCs and T cells have been carried out with 

Nucleofection146, Neon electroporation144,1263, or standard BTX cuvette-based electroporation1271. In these cases, delivery 

of Cas9 RNPs144,146, or mRNA encoding Cas9, ZFNs, TALENS, or megaTAL nucleases was demonstrated146,1263,1271. In 

comparison, plasmid DNA encoding for these components usually led to comparatively lower efficiencies or poorer 

tolerance in these cell types146. Also of note, electroporation-mediated co-delivery of RNPs and a single-stranded 

oligonucleotide DNA template (HDR template) with 90 nucleotide homology arms mediated up to 20% knock-in in 

primary human T cells144, obviating the need to express DNA template from plasmids or viral vectors.  

 

6.2.3.15 Electroporation for Genome Editing of Stem Cells 

iPSCs, HSCs and embryonic stem cells hold potential for regenerative medicine as a source of autologous cells and tissues 

for patients. By introducing genome-editing molecules through intracellular delivery, stem cells can be prepared for gene 

therapy (Figure 29E). Using nucleofection, Kim et al. were among the first to determine the advantages of RNP delivery 

versus plasmid transfection by observing higher site-specific editing rates with reduced off-target mutations in stem 

cells143. They reported that RNP delivery is less stressful to human embryonic stem cells, producing at least two-fold more 

colonies than plasmid transfection strategies143. In keeping with this notion, recent CRISPR protocols for implementation 

in human stem cells and primary cells indicate a preference for Nucleofection of Cas9-sgRNA RNPs over plasmids287. 
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Furthermore, Neon capillary-based electroporation was used to introduce CRISPR-Cas9 nucleases via plasmids and/or 

RNPs to correct disease-causing mutations in patient-derived iPSCs45. This strategy mediated functional correction of 

large factor VIII gene chromosomal inversions in patient cells, a mutation that underlies hemophilia A. Endothelial cells 

derived from these iPSCs were competent in rescuing factor VIII deficiency in an otherwise lethal mouse phenotype of 

hemophilia. Thus, direct intracellular delivery of genome editing molecules takes us closer to the long-standing goal of 

exploiting patient-derived autologously sourced iPSCs for therapeutic gene editing before re-implantation41. 

 

6.2.3.16 Electroporation Summary 

Electroporation can deliver a vast range of molecular cargo into a wide variety of cell types with precise temporal control. 

With conventional electroporation the pulse parameters (field strength, pulse duration, pulse number, frequency) are 

flexible, therefore the same piece of hardware can be programmed to address a large number of scenarios. Parameters can 

be manipulated to focus the membrane-perturbing effects on different regions of the cell, such as certain parts of the 

plasma membrane or membranes of intracellular organelles (Figure 23). Additionally, the dual mechanisms of pore 

formation and electrophoretic propulsion of cargo may be beneficial for delivery of charged cargos, such as plasmid DNA 

or mRNA (Figure 24). Fundamentally, it is not well understood how cell structure, cytoskeleton, membrane proteins, 

domain phases, and membrane reservoirs influence electroporation in live cells, making it difficult to decipher critical 

molecular events. Additionally, the intrinsic pore-formation mechanisms bias electroporation toward the formation of 

numerous small pores, somewhat limiting the delivery of large cargoes. 

 

 

Electroporation has a number of challenges, especially post-treatment cell death. Indeed, the window for effective 

treatment can be quite narrow, especially in primary cells. Detrimental effects of electroporation can be attributed to 

electrochemical phenomena at the electrodes including Joule heating, pH waves, bubble formation, corrosion, and 

contamination of the solution. Other potential issues include electric field-based perturbation of native proteins, 

scrambling of lipid membranes, generation of ROS, and damage to cargo molecules. Technical innovations featuring 

different electrode designs or microfluidic and nanochannel designs have been developed to overcome some of these 
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issues (Figure 28), but they have not yet superseded the basic cuvette-style electroporation, which remains the most 

widely used platform for common use. 

 

The challenges of current electroporation techniques notwithstanding, for many applications the benefits outweigh the 

weaknesses. Consequently, it has become the most widely used membrane disruption-mediated intracellular delivery 

approach. Electroporation has shown promise for treatment of a wide variety of patient derived cells and stem cells, with 

even the most basic electroporation platforms finding use among in vitro and ex vivo medical and industrial applications, 

from biomanufacture and clinical trials of cancer immunotherapy to ex vivo cell-based gene therapy and regenerative 

medicine. 

 

6.3 Thermal Membrane Disruption 

Membrane formation, dynamics, and properties are temperature-dependent. At sufficiently high temperatures, lipid 

bilayers will dissociate due to kinetic energy of the constituent molecules being greater than the forces that maintain the 

membrane formation, namely the hydrophobic forces that repel water from the lipid tails. The thermodynamic 

considerations of lipid bilayer behaviour dictate that temperature is key in determining the energy required for a given 

membrane disruption event. They key role of temperature has been emphasized in the electroporation literature, for 

example, where theory posits that electric potential differences across membranes can tilt the energy landscape of 

stochastic thermally-driven defect formation419. The implications of temperature must be fully considered in any 

membrane disruption event. This applies both to the physical properties of lipid membranes and the active response of the 

cell (see section 4.3). 

 

Membrane permeability is known to increase during thermal phase transitions73,1047,1301. Both magnitude and rate of 

temperature changes influence the molecular rearrangements in membrane domains that are linked to the stochastic 

formation of defects1302. Close to phase transitions, ion channel-like events are known to occur, even in the complete 

absence of proteins1301,1303,1304. The occurrence of purely lipid ion channels depends on temperature, hydrostatic pressure, 

lateral pressure, voltage, pH, and ion concentrations. Such pore formation is expected to be especially probable adjacent to 

domain interfaces and protein clusters. 
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Strategies for permeabilizing cells by thermal means include: 1) cycling cells through a cooling-heating cycle, which may 

or may not involve freezing; 2) heating cells to supraphysiological temperatures, and 3) transient intense heating of a 

small part of the cell. The literature includes examples of each of these approaches, which will be discussed here in this 

section. Overall though, thermal methods of membrane perturbation have not been widely employed with animal cells, 

despite being universal and obvious. This can probably be attributed to challenges in spatiotemporal control of 

temperature exposure and concerns related to off-target damage. In future there exists an opportunity to address these 

challenges with emerging lab-on-chip, microfluidic, optical, and nanotechnological systems19,104-107. 

 

6.3.1.1 Thermal Shock of Competent Bacteria 

In bacteria, thermal shock has been used for decades to transfect “competent” bacteria with DNA plasmids. The method 

was described in early papers from the 1980s where agents such as divalent cations (typically in the form of CaCl2) and 

dimethyl sulfoxide (DMSO) were added to make E. Coli amenable or “competent” to DNA transfection. Subsequently, 

the bacteria undergo transient incubation at 0 °C, a brief pulse to 37-42 °C, and subsequent return to normal growth 

conditions where the genes of interest are expressed1305,1306. Multiple cycles are sometimes conducted to boost efficiency. 

Mechanistic studies suggest that phase transitions of membrane lipids cause damage to the outer membrane, and are 

necessary for DNA entry1307,1308. Some data indicates that cold shock may not need to go down as low as 0 °C, as the rate 

and magnitude of temperature changes are more critical than specific temperature extremes1307. However, more recent 

reports claim that a brief freeze in liquid nitrogen for 20 seconds increases the efficiency of freeze-thaw transfection, even 

obviating the need for standard pre-treatment steps normally employed to make bacteria competent1309. Interestingly, 

microwave irradiation of frozen bacteria/DNA samples was also found to improve DNA transfection1309. Finally, 

microfluidic reactors have been employed for temperature shock transfection of bacteria1310. The advantages include fewer 

materials, smaller sample volume, and increased precision compared to conventional bulk procedures1310. 

 

6.3.1.2 Freeze-Thaw & Other Temperature Cycling Strategies 

Apart from bacteria, rapid freeze-thaw procedures have also been demonstrated to facilitate exchange between 

intracellular and extracellular solutions when conducted with animal cell membranes (Figure 30A). In 1989 this was 

shown with synaptosomes, which are vesicular sacs reconstituted from synaptic terminal membranes by 
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mild homogenization of nervous tissue1311. In the reported procedure rat brain synaptosomes were frozen and thawed in 

the presence of 5% DMSO1311. Impermeant proteins, inhibitors and metabolites were successfully introduced to study 

neural signaling processes1311. An updated ‘cryoloading’ procedure was reported by Nath et al. where molecules of at least 

150 kDa were successfully delivered into chick synaptosomes1312. After recovery ~80% of the synaptosomes were 

properly functional and capable of recycling synaptic vesicles1312. 

 

Intracellular delivery by cooling-heating cycles has rarely been attempted in animal cells, probably due to the delicate and 

complex nature of cell recovery and growth from the frozen state. In one of the few cases where it was tested, trehalose 

(~0.34 kDa) was loaded into suspensions of adult islet cells by cooling them through their membrane phase transition73. 

Under conditions where cells were cooled at a rate of 1 °C per minute, permeability to trehalose was greatest around the 

region 0-5 °C73. Loaded trehalose exhibited cryoprotectant properties and was able to significantly increase cell survival 

and insulin production of islet cells. Building on this approach, Puhlev et al. compared intracellular delivery via cooling in 

suspension versus adherent fibroblasts. In their procedure cells were exposed to 50 mM trehalose for 5 minutes on ice, 

followed by 10 minutes at 37 °C1035. As with the previous paper, maximal delivery was estimated to occur below 5 °C and 

was more efficient in suspended cells versus their adherent counterparts. A similar strategy was also tested by the Mehmet 

Toner lab75. Temperature cycling from 0 to 39 °C was able to load trehalose into a target cell population of suspended rat 

hepatocytes without compromising cell viability75. Using an extracellular concentration of 0.4 M in diluted culture 

medium, 1 hour of temperature oscillations conducted every 10 minutes produced an average cytoplasmic concentration 

of 0.13 M (~3% of extracellular concentration) as detected by high-performance liquid chromatography75. Extended 

periods of incubation at 39 °C increased loading efficiency but came with the caveat of harming cell survival. 
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Figure 30. Thermal membrane disruption. (A) Membrane disruption by freeze-thaw cycles. Formation of ice crystals leads to volume 
expansion due to the changes in hydrogen bonding arrangement. Volume expansions are thought to be related to cracking of 
membranes during ice crystal formation. (B) Heating of cells above 42 °C increases the chances of spontaneous defect formation in 
membranes. (C) Microfluidic geometries may be used to confine the heating locally to a part of the cell, such as is possibly the case 
for thermal inkjet printing. (D) Absorbent nanoparticles may be used to locally convert laser power into local heating for membrane 
perturbation. (E) A focused laser can generate local heating at the membrane with selection of appropriate parameters. 

 

6.3.1.3 Supraphysiological Heating 

As temperature moves above 37 °C, the probability of membrane defects arising increases. In experiments on mammalian 

cells, Bischof et al. exposed fibroblasts and muscle cells to temperatures ranging from 37 to 70 °C and monitored 

membrane integrity in real time. Permeability was assessed by tracking the leakage of calcein (0.62 kDa) with timelapse 

fluorescence microscopy. Slow leakage, which starts above 40 °C, was found to be a function of both temperature and 

time. Cells held at 45 °C were completely depleted of calcein within 25 minutes. This corroborates well with other data 

indicating cells must work harder to maintain their relatively high potassium concentrations during treatments at 43 °C1313. 

In Bishof et al.’s experiment, leakage takes slightly less than 10 minutes at 50 °C. Above 55 °C, almost 50% of calcein 

leaks out of the cell within one minute and efflux is fully complete by 2 minutes. To explain the increase in permeability, 

contributions from both protein denaturation and increased kinetic diffusion of lipid molecules were suggested. Other 
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studies in red blood cells indicate that thermally-induced membrane disruption occurs at about 60 °C and protein 

denaturation temperature depends on the specific protein1314,1315. Interestingly, addition of poloxamers, which are both 

membrane-healing and anti-oxidant459, are able to rescue viability of thermally challenged cells1316. This indicates that loss 

of membrane integrity is a key aspect of immediate cell toxicity upon heating1316. For intracellular delivery purposes, 

supraphysiological temperatures have rarely been employed (Figure 30B), probably due to concerns of non-specific cell 

damage and toxicity as exemplified by the trehalose experiments discussed above75. Baseline temperature is a critical 

parameter for any delivery protocol, however, and there have been a few rare reports of supraphysiological regimes. For 

example, 43 °C was found employed in one study to make cell membranes more susceptible to fluid shear from laser-

induced stress waves1317. 

 

6.3.1.4 Thermal Inkjet Printers 

Thermal inkjet printers that disperse small volumes of fluid have been successfully deployed for mammalian cell gene 

transfection and intracellular delivery1318,1319. By replacing standard ink with media and cells, these printers not only 

perform intracellular delivery but can additionally pattern cells over a substrate. In thermal inkjet printers, a metal plate is 

heated at one side of the nozzle, which creates small air bubbles that collapse to provide pressure pulses to eject tiny drops 

of fluid. Over several microseconds the plate temperature may transiently rise to 300 °C. It is not known whether 

membrane permeabilization is obtained by fluid shear forces or transient thermal disruption at the nozzle. In the studies 

performed so far Xu et al. achieved transfection efficiencies of 10% with GFP plasmids in porcine aortic endothelial cells 

at 90% cell viability1318 while Cue and Boland obtained above 30% transfection efficiency in CHO cells with similar 

viabilities1319. Further mechanistic insights may improve the efficiency of this approach. A potential bonus of thermal 

inkjet printing is the ability to array cells into specific geometries and perform intracellular delivery in a single step, 

thereby facilitating the possibility of in vitro tissue engineering1320. The results with thermal inkjet printers point to an 

opportunity for future studies with microfabricated devices, where it should be possible to gain spatiotemporal control 

over temperature exposure through microfluidics (Figure 30C). 
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6.3.1.5 Laser-Particle Interactions 

As discussed in the sections on fluid shear, laser irradiance of an absorbent object in an aqueous environment can produce 

a variety of effects including cavitation, plasma production, chemical reactions, and heat1321-1323. Although it is sometimes 

difficult to be sure of the mechanisms, we report here on studies that claim to disrupt membranes by laser-mediating 

temperature changes. In most of cases nanoparticles are used as nucleation sites for intense local heating (Figure 30D). 

Umebayashi et al. showed that laser irradiation of unbound latex particles dispersed in solution leads to the uptake of 

impermeant dye molecules1324. The mechanism was proposed to be through thermal perturbation at the particle-membrane 

interface, pore formation, and subsequent diffusive influx of extracellular molecules1324. A similar thermal delivery 

concept was shown by Yao et al. with selectively bound antibody-conjugated gold nanoparticles, featuring a strong 

correlation between nanoparticle size and heating intensity1325. Follow up studies investigated the effects of laser pulsing 

parameters (pulse duration, exposure intensity, and irradiation mode) and found conditions where more than 50% of the 

treated suspension cells could take up a labeled 150-kDa IgG antibody1326. In other studies, cancer cells were targeted by 

folate-conjugated gold nanorods. Under femtosecond laser irradiation the nanorods were shown to thermally disrupt the 

membranes as evidenced by flux of dye molecules across the plasma membrane1327. Gu et al. reported using low power 

continuous wave near-infrared (NIR) lasers to thermally excite inert crystalline magnetic carbon nanoparticles for delivery 

of impermeable dyes and plasmids1328. Gold nanoparticles have also been packed into a dense surface layer where >10 

seconds of infrared laser irradiation heats the underside of cells to trigger permeabilization and delivery of dyes, dextrans 

and plasmids1329. 

 

6.3.1.6 Lasers-Membrane Interactions 

In the absence of absorbing structures, lasers alone can be harnessed for local heating of cell membranes within the focal 

region (Figure 30E). The mechanisms of laser interaction with lipid membranes are complex, usually being underpinned 

by mixture of thermal, chemical and mechanical components1321-1323. Hence, only under a narrow range of conditions are 

lasers thought to produce purely thermal membrane disruption. One example was published by Palumbo et al. where 0.25 

seconds exposure to a 488 nm continuous wave argon laser of spot size 5-8 μm was focused onto the cell surface1330. Their 
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report indicated that the poration mechanism was via heating, however other effects cannot be ruled out. More 

information on laser optoporation is presented the next section of this review. 

 

6.3.1.7 Summary of Thermal Membrane Disruption 

Baseline temperature is a basic consideration in any intracellular delivery technique. Moreover, fast temperature 

fluctuations within, and deviations outside, the physiological temperature range can result in thermally-driven membrane 

defects. Transfection assisted by thermal membrane disruption has been harnessed in bacteria for decades. In metazoan 

cells, strategies to control the spatiotemporal control of temperature exposures may yield fruit, as evidenced by 

encouraging reports with microfluidics, thermal inkjet printing, and laser-particle interactions. 

 

6.4 Optical Membrane Disruption (Optoporation) 

A wide variety of laser procedures have been implemented to selectively perform nanosurgery on cells and their 

components1331. Targets include individual chromosomes, organelles, mitochondria, cytoskeletal structures, and lipid 

membranes. Optoporation is the permeabilization of lipid membranes by high intensity light. In some studies it has also 

been referred to by terms such as photoporation, optoinjection, laserfection, and optical transfection486,1332,1333. The aim of 

optoporation is to permeabilize the plasma membrane to cargo while leaving other cellular structures intact, thus 

preserving the health of the cell to the maximum extent possible. In this review, we define optoporation as membrane 

disruption arising from direct interaction of a laser focal region with the plasma membrane, and not absorption of laser 

energy by an intermediate structure such as nanoparticle or metal surface. Those strategies permeabilize membranes by 

secondary effects such as fluid shear (section 6.1.2) and chemical effects (section 6.5.5), and are covered in the respective 

sections dealing with those phenomena. 

 

6.4.1.1 Optoporation – Pioneering Studies 

DNA transfection by laser optoration was first reported in 19841334. Nanosecond pulses of an Nd:YAG UV laser 

(wavelength 355 nm) at an energy of 1 mJ with spot size of ~0.5 μm were focused on the surface of adherent NRK cells. 

A single pulse of 5-10 ns was sufficient to open up a hole several microns wide and promote the influx of DNA plasmids 
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from an extracellular concentration of 10 μg ml-1 before closure of the wound. When manually targeting the laser pulse 

above the nucleus, 10% transfection efficiency was achieved while random scanning of the laser over the substrate 

resulted in only 0.6% chance of success1335. Laser transfection with a similar laser but different cell types was repeated 

several years later, this time establishing that a small percentage of target cells stably integrated the plasmid into their 

genome1336. Addition of dyes to change absorption properties of the media is another variable that was examined, with the 

presence of standard cell culture media additive phenol red shown to decrease the laser power needed for optoporation1330. 

A 488 nm continuous wave argon laser with nominal power of 2 W and spot size of 5-8 μm was focused onto the surface 

of NIH 3T3 fibroblasts with an exposure time of 0.25 seconds to puncture the plasma membrane1330. After conducting the 

procedure in the presence of 10 μg ml-1 plasmid DNA, repair of a single large hole in the membrane took 1-2 minutes, 

followed by detectable gene expression after 2 hours1330. Plasma membrane disruption mechanisms were reported to be 

thermal and laser exposures of greater than 0.5 seconds were found to permanently damage cells1330. 

 

The next major breakthrough in optoporation occurred in 2002, with the implementation of femtosecond-pulsed lasers1337. 

Tirlapur and König used a high-intensity, near-infrared (wavelength 800 nm), femtosecond-pulsed laser beam from an 80 

MHz titanium–sapphire laser, with a mean power of 50–100 mW. The laser was tightly focused to a sub-femtolitre focal 

volume just above the cell membrane. Under 16 ms exposure time, CHO and Ptk2 cells were transfected with GFP using 

only 0.4 μg ml-1 of DNA plasmid in solution. Unprecedented high transfection efficiency and viability were reported, with 

both coming in at close to 100%. A prime limitation of the procedure, however, was the need to manually refocus on each 

cell, yielding a throughput of only a few cells per minute. Since this landmark report 1) femtosecond lasers gained 

prominence as the most effective pulsing strategy for optoporation, and 2) the number of optoporation publications has 

increased dramatically. In terms of cargo delivery, the field has placed particular focus on delivery of small molecule dyes 

for mechanistic studies and DNA transfection to demonstrate applications. Indeed, laser optoporation have achieved 

successful delivery of plasmid DNA481,483,484,1330,1332-1358, mRNA252,1353, siRNA1333,1343,1352, antisense morpholinos1353, 

peptides486,1359, proteins1333,1343, dextrans1333,1343,1349,1353,1360,1361, dyes252,480-484,486,1333,1340,1341,1343,1345,1346,1348,1354,1357,1361-1366, 

sucrose485, molecular beacons1367, ions1333,1343,1368, semiconductor nanocrystals1333,1343, gold nanoparticles1369, quantum 

dots1370, and ~1 μm polystyrene beads1371. Moreover, many of these studies have sought to compare the mechanisms of 

various laser treatment regimes in order to optimize delivery efficiency and minimize off-target damage. 
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6.4.1.2 Mechanisms of Optoporation 

The mechanisms of laser-mediated membrane disruption are complex, involving combinations of mechanical, thermal, 

and chemical effects. Possibilities include burning/evaporation, thermoelastic mechanical stress, generation of low-density 

free-electron plasma and reactive oxygen specifies (ROS), and effects beyond the focal region, such as shock wave 

emission and growth/collapse of cavitation bubbles, which themselves produce fluid shear stress, extreme heat, and 

sonochemical phenomena1321-1323,1331 (Figure 31). The relative dominance of these phenomena depends on factors such as 

wavelength, frequency, whether the source is continuous wave or pulsed, laser power, exposure time, spot size, and 

absorbance properties of focal region. For example, membrane wounding from continuous wave irradiation is thought to 

arise primarily from local heating, which intensifies as a function of exposure time. Nanosecond pulsed lasers have been 

suggested to produce a combination of heating, bubble formation, and thermoelastic or di-electric mechanical stresses to 

damage the membrane. Femtosecond laser mechanisms appear tunable based on irradiance strength, pulse duration, and 

frequency. Mechanisms range from almost purely chemical degradation to combinations of thermal and mechanical. In 

cases where laser energy is transduced into fluid shear that travels far beyond the focal region, such as cavitation or shock 

waves, the mechanisms of membrane damage are not strictly optoporation and these scenarios are covered elsewhere in 

the section on fluid shear (section 6.1.2). Alternatively, if transmission of thermal energy from an absorbing object in 

immediate contact is the mechanism of membrane disruption, these accounts are covered in the thermal section (section 

6.3). 

 

6.4.1.3 Femtosecond Optoporation 

Most recent work favors the use of a laser regime characterized by wavelengths >700 nm administered at high frequencies 

(~MHz range) and femtosecond pulse timings with a cumulative exposure of milliseconds or less1321. For example, a 

typical protocol might involve 5 ms of exposure to a cycle of 100 fs pulses with gaps of 10 ns (~100 MHz frequency) for 

cooldown. When operating at wavelengths >700 nm the mechanisms are related to multi-photon effects inherently 

concentrated within the focal region, thus offering increased precision and high spatial resolution1321. NIR and IR 

wavelengths also have the advantage of being less toxic to cells, as UV and blue light in particular are notorious for 

causing damage to DNA and other cellular structures. By using extremely short femtosecond pulses, absorbing material in 

focal region does not have sufficient time to transmit heat to adjacent regions. This enables extremely high-powered lasers 
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to be deployed while avoiding excessive heating of cells. In such a scenario the resultant membrane disruption 

mechanisms have been reported to be due to chemical effects, such as the breakdown of bonds in lipid tails by low-energy 

plasma1321-1323,1331 (Figure 31C). In other cases, femtosecond pulsing generates a well-controlled cavitation bubble 

originating within the focal region, the presence of which can destroy the membrane (Figure 31B). In many of these 

studies, distinctions between exact mechanisms are difficult to determine, and could be multifactorial. 

 
 
Figure 31 | Optoporation strategies for membrane disruption. Focused laser can inflict (A) thermal, (B) cavitation, (C) chemical, or 
(D) mechanical effects (such as di-electric strain) against lipid bilayers. 

 

A number of elegant studies have been performed with femtosecond pulsed lasers. For example, in optical setups that 

combine laser tweezing and optoporation, optical tweezers may be used to guide a microbead (~1 μm) or nanoparticle 

through a hole formed by the laser, thus delivering large cargo1369,1371. In studies with frog embryos quantum dots were 

delivered by NIR femtosecond lasers. Neither the quantum dots nor optoporation retarded the ability of these embryos to 

grow into tadpoles. In another case, cargo was introduced into distinct regions of adherent primary rat neurons to assess 

localization-dependent biological functions252. mRNA-mediated expression of the transcription factor Elk-1 was found to 

produce different responses whether delivered to the soma or axon of the neurons252. This optoporation protocol involved 

an 840 nm titanium-sapphire laser delivering 100 fs pulses at a repetition rate of 80 MHz for 1 – 5 ms at a power of 30 

mW252. Other studies have quantitatively measured the loading efficiency of femtosecond optoporation, and found that 

targeted cells can incorporate up to 40% of the concentration of extracellular molecules before resealing483. Furthermore, 
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sub-20 femtosecond pulses at MHz frequencies with sub-millisecond exposure times have been demonstrated for the 

effective transfection of human primary pancreatic and salivary gland stem cells1348. 

 

6.4.1.4 Towards High Throughput & More User-Friendly Optoporation 

A major rate-limiting step for optoporation is the reliance on precise positioning of the laser focal spot and alignment with 

target membranes1322,1337. A misfocus of as little as 3 μm results in greater than 50 percent reduction in membrane 

disruption efficiency1344. One strategy to mitigate this limitation is the implementation of a “bessel beam”, where the focal 

region is stretched into a rod of light over 100 μm in length and a few microns wide1344. Bessel beam setups have been 

combined with microfluidics for hydrodynamic flow focusing to reach throughputs of tens of cells per second1365. 

However, cell viability and delivery efficiency were substantially less than standard femtosecond optoporation1365. 

Whether or not bessel beams cause off-target damage to non-membranous cellular structures is unknown1321.  

 

Other attempts to increase throughput of optoporation include a user-friendly “point and click” touchscreen software-

integrated approach1355. With this system throughputs of up to 100 cells per minute were obtained on adherent neurons1355. 

An extension of this strategy relies on automated image analysis of cell morphology, centering of the microscope stage to 

the laser focus, and execution of a femtosecond laser illumination protocol1357. With this system, software-controlled 

meandering of the sample stage allows adherent cells in a typical cell culture dish to be automatically targeted at a rate 

around 10,000 cells per hour1357. If optoporation is to be adopted by users outside of specialized labs, further efforts will 

need to address the challenge of how to precisely focus the laser spot onto thousands of cells for rapid treatment. Other 

issues that need to be addressed are portability, instrument complexity, and high cost. 

 

6.4.1.5 Summary of Optoporation 

Optoporation has captured a significant amount of attention over the last several decades, particularly for transfection. 

One of the main problems is the high cost of lasers and the optical systems required to harness them, as well as poor 

adoption outside expert communities. A second main problem is how to increase the throughput of treatments, which is an 

area where microfluidics and computer automation have made positive contributions. Future progress in optoporation will 

need to develop creative ideas to move beyond traditional limitations. 
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6.5 Biochemical Membrane Disruption 

A range of chemical effects and biochemical agents can be used to disrupt cell membranes. These include synthetic 

detergents, surface-active agents (surfactants), organic solvents, and oxidizing agents to naturally secreted proteins and 

metabolites from a diversity of organisms. For example, organic solvents have been used for decades as penetration 

enhancers for transdermal delivery by fluidizing, destabilizing, or extracting components from lipid bilayers1372. Since the 

dawn of life, living organisms have evolved a range of potent molecules to attack and disrupt the membrane integrity of 

competing lifeforms. Pore-forming proteins (PFPs), which are produced by humans, animals, plants, fungi, protists, and 

bacteria for self-defense, are one such example399. Many plants synthesize and secrete metabolites like saponins to serve 

as an innate immune barrier to disrupt the membranes of invading microbes or other threatening organisms1373. These 

natural compounds tend to be relatively specific, relying on unique characteristics of the target membrane for their action, 

such as composition of membrane lipids and presence of external receptors. Several artificially produced detergents and 

solvents also exhibit a useful ability to disrupt plasma membranes in a relatively controlled manner. Furthermore, 

emerging concepts from nanotechnology, such as near-field ionizing plasmas, present opportunities to confine chemical 

destabilization phenomena to small membrane patches for short durations. This section will cover artificial and natural 

biochemical permeabilization strategies that hold demonstrated or theoretical potential for intracellular delivery 

applications. 

 

6.5.1 Organic Solvents & Penetration Enhancers 

6.5.1.1 DMSO 

Organic solvents are low-molecular weight compounds that can perturb bilayer structures by burying their hydrophobic 

residues into the membrane. A classic example of a membrane-active organic solvent is dimethyl sulfoxide (DMSO), 

often used as a penetration enhancer to increase the permeability of drugs and other small molecules54,1374. DMSO is 

amphiphilic, containing one hydrophilic sulfoxide group and two hydrophobic methyl groups. It is known to promote 

permeation of both hydrophilic54 and hydrophobic1374 species across lipid bilayers. DMSO’s penetration enhancing effect 

can be attributed to two mechanisms. First, its ability to increase the solubility of small molecules, and second, because of 
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increased incidence of membrane defects that allow passage of normally-impermeant molecules. Experiments with 

phospholipid vesicles have found leakage of carboxyfluorescein (~376 Da) at concentrations of DMSO >10%1375. For a 

given DMSO concentration, leakage also increases as a function of temperature1375. 

 

Experiments have been used to understand the mechanisms by which DMSO increases lipid bilayer permeability. They 

have found that DMSO incorporation into the bilayer increases the distance between polar lipid headgroups and reduces 

membrane thickness, thereby weakening the membrane1374. This has been experimentally verified by the use of X-ray 

diffraction techniques1376. Second, the association of DMSO with solute molecules lowers the activation energy needed 

for them to enter into, and ultimately cross, the bilayer1374. This interpretation is supported by vibrational spectroscopic 

studies1377. 

 

In addition to physical measurements, simulations have been used to visualize the molecular events associated with 

membane disruption by DMSO410. Gurtovenko et al. observed that at low concentrations, DMSO causes membrane 

thinning and increases fluidity of the membrane's hydrophobic core1378. In agreement with experimental data, DMSO 

molecules are seen to penetrate into the bilayer, both expanding the distance between the lipids and reducing the thickness 

of the bilayer (Figure 32A). Consequently, the lipid-water interface becomes more prone to structural defects, especially 

due to thermal fluctuations. At higher DMSO concentrations, water molecules enter the membrane interior via DMSO-

mediated structural defects. As the number of penetrating water molecules increases, a significant re-orientation of lipid 

headgroups toward the membrane interior is required to minimize the free-energy of the system, resulting in the formation 

of hydrophilic channels spanning the membrane bilayer410. The emergence of hydrophilic channels occurs spontaneously 

between 10-20% molar concentration of DMSO1378. The addition of sterols (i.e. cholesterol) can provide stabilization to 

the membrane and thus increase the DMSO concentration required for pore formation1379. 

 

6.5.1.2 Ethanol & Other Alcohols 

In contrast to DMSO, ethanol’s hydrophobicity is rather limited as a short-chain alcohol. Rather than embed deep, ethanol 

molecules tend to remain at the water-lipid interface forming hydrogen bonds with hydrophilic lipid headgroups1380,1381. 

Ethanol has a disordering effect on lipid hydrocarbon tails, increasing fluidity of the membrane and reducing rigidity. 
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Simulations confirm that compromising the water-lipid interface induces ingression of water pockets into the membrane 

as inverse micelles, rather than pores that span the whole membrane1382 (Figure 32B). The bilayer structure is partly 

destroyed due to lipid desorption1382. Both experimental and simulation studies have shown that the bilayer structure 

cannot be maintained beyond an ethanol concentration around 12% molar or 30% v/v concentration. Correspondingly 

stronger results can be expected with longer chain alcohols, such as propanol, butanol, pentanol, as the concentration 

required for defect formation is inversely proportional to hydrocarbon chain length1383. As an example, significant 

membrane defects have been reported in membranes exposed to only 1% butanol1384.  

 

One case where ethanol was used for intracellular delivery purposes was reported recently by O’Dea et al1385. Reversible 

cell permeabilization was achieved by temporally and volumetrically controlling the contact of the target cells with a 

hypotonic solution of 75% H2O, 25% ethanol, 32 mM sucrose, 12 mM potassium chloride, 12 mM ammonium acetate and 

5 mM HEPES. An atomizer was employed to spray a small volume of this solution to form a thin film over a monolayer 

of cells. After 2 minutes, permeabilization was terminated with a neutralizing solution. Using this protocol intracellular 

delivery of proteins, mRNA, and plasmids was reported1385. The observation that ethanol permeabilization is optimal at 

25% v/v fits well with the results from simulations that predict the effects of ethanol should be reversible at concentrations 

< 30% v/v1382. 

 

 
 
Figure 32. Simulations of membrane bilayer perturbation with DMSO and Ethanol. (A) Presented are side views of the final 
structures for the bilayer systems containing 0, 5, 10, and 40 mol% of DMSO. Lipids are shown in cyan, water in red, and DMSO in 
yellow. Reproduced from ref 1378. Copyright 2007 American Chemical Society. (B) Formation of non-bilayer structures within the 
membrane interior with 15 mol% of ethanol: (1) 3100 ps; (2) 13,180 ps; (3) 19,920 ps; (4) 30,000 ps. Shown are water molecules (red 
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and white) and phosphorus (green) and nitrogen (blue) atoms of lipid head groups. The rest of the lipid atoms as well as ethanol 
molecules are not shown. Reproduced from ref 1382. Copyright 2009 American Chemical Society. 

 

 

6.5.1.3 Organic Solvents & Penetration Enhancers Summary 

Although widely used for permeabilizing fixed cells1386 and increasing the permeability of small molecules54, organic 

solvents and other low molecular weight penetration enhancers have generally not been used as the sole membrane 

disruption agents to deliver cargo molecules. This is probably due to their non-specific nature and lack of spatiotemporal 

control over the membrane disruption process. They may be useful as non-specific and relatively inert adjuvants to 

modify other membrane permeabilization strategies such as electroporation1387-1389. 

 

6.5.2 Detergents 

Detergents are water-soluble surfactants capable of solubilizing phospholipids found in biological membranes. 

Solubilization refers to the dissolution of the bilayer structure by sequestration into detergent-lipid micelles441,442. For the 

purposes of intracellular delivery, complete solubilization of membranes is lethal and undesirable, thus detergents must be 

used at intermediate concentrations for limited durations to yield optimal levels of cell permeabilization. Although the 

mechanisms of detergent solubilization of biological membranes have been discussed for decades441,1390-1392, the milder 

intermediate regime of non-lethal permeabilization is less well understood. As well as intracellular delivery applications, 

motivations to investigate this regime include understanding the action of membrane-perturbing secondary metabolites 

and characterizing new candidates for antimicrobials. 

 

6.5.2.1 Membrane Disruption by Detergents That Flip Flop 

Owing to their amphiphilic properties, detergent molecules integrate into lipid membranes. Most detergents are cone-

shaped, in that the head group of the detergent is disproportionately larger than the hydrophobic chains. They generally 

work by inserting into lipid bilayers and distorting their structure. Several mechanisms have been suggested for detergent-

mediated permeabilization of lipid bilayers depending on the type of detergent441. Those capable of flip-flopping to the 

inner leaflet will distribute throughout both leaflets of the bilayer (Figure 33). Because of the cone-shaped nature of 

detergents, the structure of the monolayer wants to assume a degree of convex intrinsic curvature. However, this is 
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impossible if the monolayer is part of a bilayer, because it competes with the opposite spontaneous curvature of the other 

leaflet since are coupled with each other. Instead, the monolayers are ‘bent straight’ by an elastic deformation giving rise 

to a monolayer curvature strain. The major structural consequence of this curvature strain is a disordering of the 

hydrophobic chains. In turn, the membrane becomes thinner and more flexible. Monolayer curvature strain can be 

partially relaxed by the sequestering of surfactants into highly curved rims covering the hydrophobic edges of toroidal 

pores441. Over time, thermal fluctuations will give rise to such events. Moreover, reduction of the pore’s line tension by 

detergents may massively increase the lifetimes of induced pores or even stabilize them indefinitely. Above a critical 

surfactant concentration, pores appear spontaneously so that permeabilization becomes effectively persistent441. 

 

 
 
Figure 33. Proposed mechanisms of membrane permeabilization by detergents that flip flop. Integration of detergent monomers 
perturbs membrane integrity while stochastic local enrichment of detergents leads to formation of pores. 
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6.5.2.2 Membrane Disruption by Detergents That Do Not Flip Flop 

Detergents that embed into the outer leaflet but cannot flip flop expand the bilayer asymmetrically (Figure 34)441,442. If the 

bilayer is unable to bend to assume its spontaneous bilayer curvature, it develops a bilayer curvature strain by 

compressing the molecules in the overpopulated (outer) leaflet and/or expanding those in the underpopulated (inner) 

leaflet. Bilayer curvature eventually leads to mechanical failure of the membrane because the outer monolayer forms 

mixed micellar structures that bud off from the membrane. Shedding of these micelles into the aqueous solution results in 

emergence of defects and subsequent permeabilization442. These disruptions can have several effects. First, relaxation of 

the curvature strain allows the membrane leaflets to anneal, and second, they permit the passage of detergent molecules 

inside the cell to access the inner leaflet, thereby promoting further infiltration of the membrane by mechanisms akin to 

detergents that flip flop (Figure 33). 
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Figure 34. Proposed mechanisms of membrane permeabilization by detergents that do not flip flop. Once detergent monomers gain 
access to the interior side of the membrane, they can distribute to both leaflets and perturb the membrane by mechanisms similar 
to detergents that flip flop (see figure 33). 

 

6.5.2.3 Membrane Disruption by Detergents That Do Not Embed 

A third possibility is that collision of detergent micelles with the cell membranes recruits lipid units into the micelles, 

thereby generating defects in the membrane (Figure 35)461,1393. There is little theory to support this third possibility, 

however it should be mentioned as a possibility. In order to first achieve micelles, the detergent will need to be at 
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concentrations above the critical micelle concentration (CMC). This will only be a realistic scenario in the case of 

detergents that don’t readily embed into cell membranes. Thus, integration of individual detergent molecules into the 

target membrane may not be necessary to cause defect generation and subsequent permeabilization. 

 

 
 
Figure 35. Proposed mechanisms of membrane permeabilization by detergent micelle collisions. Micelles colliding with the 
membrane may create defects by sequestering lipid molecules from the bilayer. 

 

6.5.2.4 Relationship Between Strain and Emergence of Defects 

Most of the detergents used to permeabilize biological membranes integrate into the bilayer441. Curvature-driven distortion 

and disordering of membranes leads to perturbation of the bilayer structure and subsequent permeabilization. As 

discussed, the key property of a micelle-forming amphiphile inserting into a lipid bilayer is its preference for a locally 

curved interface that is in conflict with the (on average) planar topology of a bilayer. Indeed, strongly curvature-inducing 

detergents are known to be far more effective in membrane permeabilization441. When local concentrations of detergents 

are high enough (perhaps due to random fluctuations), local mechanical distortions can cause defects in the form of 

spontaneous pores or shedding of micelles. 
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A comprehensive study from Nazari et al. compared the membrane perturbing effects of a number of different detergents 

and surfactants on lipid vesicles, categorizing them into homogeneously and heterogeneously perturbing surfactants1394. In 

the homogeneous category were typical synthetic detergents, such as C12EO8, octyl glucoside, sodium dodecyl sulfate 

(SDS), and lauryl maltoside, which destroy the membrane through homogeneous disordering when a critical curvature 

stress is reached. In contrast, the hetergenous category included the fungicidal lipopeptides surfactin, fengycin, and iturin, 

as well as digitonin, CHAPS, and lysophosphatidylcholine, which perturb membranes without substantial overall 

disordering. Rather, they disrupt membranes locally in surfactant-rich defect structures. Nazari et al. proposed that such 

heterogeneous perturbation mechanisms may account for the superior activity, selectivity, and mutual synergism of 

antimicrobial biosurfactants, such as lipopeptides and saponins, to efficiently permeabilize target cell membranes in 

discrete loci at minimal concentrations1394. 

 

6.5.2.5 Detergent Permeabilization of Live Cells 

A further consideration influencing detergent-mediated membrane permeabilization is the composition of the target 

membrane of living cells. The permeabilizing activity of certain antimicrobial peptides and surfactants is strongly 

modulated by cholesterol, proteins and other raft domain components441. Owing to the heterogeneous and dynamic nature 

of living cell membranes, it has been a challenge to predict how detergents will permeabilize cells. One study by 

Vaidyanathan and colleagues used patch clamp to analyze permeabilization behaviour of detergents as a function of 

concentration1395. They observed that anionic SDS, cationic cetyltrimethylammonium bromide (CTAB), and cationic 

fluorescent octadecyl rhodamine B (ORB) increased the membrane permeability of cells substantially within a second of 

exposure. It was reported that SDS ≤ 0.2 mM (below SDS’s CMC of ~1 mM) and CTAB and ORB ≤ 1 mM (above 

CTAB’s CMC of ~50 µM) induced transient cell membrane permeability without causing acute or permanent toxicity1395. 

Thus, careful titration of detergent concentration enabled the identification of conditions from which cells can recover 

after permeabilization. 

 

In another study of detergent permeabilization in live cells, Koley and Bard used electrochemical microscopy to monitor 

the permeability of HeLa cells to the hydrophilic anion ferrocyanide (~0.2 kDa) in the presence of increasing 

concentrations of the nonionic detergent triton X-1001396. No effect on permeability was seen at triton X-100 
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concentrations of 0.15 mM for up to 1 hour. At 0.17 mM, initial permeabilization was observed followed by a recovery of 

cell viability. From 0.19 mM, which approaches the CMC, rapid irreversible permeabilization and cell death resulted. 

Thus, the effective concentration window of triton- X-100 on live cells is narrow under the tested set of experimental 

conditions. The above results underscore the importance of conducting systematic permeabilization studies in live cells. 

 

6.5.2.6 Saponins 

Saponins are steroid and triterpinoid glycosides produced by plants and certain marine organisms as secondary 

metabolites in response to environmental stimuli1373,1397. By perturbing the membranes of competing life forms, saponins 

constitute a form of innate immune system to poison threatening microbes, parasites, insects, and herbivores1373,1398. The 

detergent phenomena of saponins originates from their amphiphilic properties, featuring a lipophilic sapogenin part 

(usually a triterpene or steroid group) and a hydrophilic glycoside moiety. A wide range of applications for saponins 

relating to their membrane perturbing activity have been proposed. They include augmenting the penetration of drugs and 

cytotoxic agents to cancer cells, vaccine adjuvants, or deployment as microbials and pest control agents1399-1401.  

 

For applications with mammalian cells, studies usually employ generic saponins or pure digitonin. Generic saponins are 

commercially available cocktails typified by a sapogenin content >10% while digitonin is a prototype member of the 

saponin family isolated from the foxglove plant Digitalis purpurea. Other less-studied saponins that have been reported to 

disrupt membranes include α-tomatine, glycyrrhizin, α-chaconine, and α-hederin1393. Saponins in general, and digitonin 

specifically, have been used with live cells for two main applications: 1) persistent permeabilization to produce “semi-

intact cells” for real-time manipulation of cytoplasmic constituents, and 2) to transiently disrupt the plasma membrane for 

intracellular delivery. Early work emphasized the first of these two applications. 

 

6.5.2.7 Characteristics & Mechanisms of Saponin-Induced Membrane Disruption 

Saponins were initially characterized as membrane-perturbing agents in the scientific literature of the 1960s and 

1970s940,1402. Electron micrographs captured their membrane disrupting capabilities in reconstituted membranes, indicating 

arrays of holes around 8 nm1402. Serial section electron microscopy of fixed hemolysing erythrocytes revealed lesions of 4 

– 5 nm after saponin treatment940. Most cell permeabilization studies have employed saponins in the concentration range 
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10 – 1000 μg ml-1, which represents ~8 – 800 μM. In this range, disruption sizes from a few nanometers up to one micron 

have been reported. Differences are probably related to variations in cell type, concentration, duration of exposure and 

other experimental conditions397,1403,1404. The inconsistency of these reports may also stem from the variety of analysis 

techniques. For example, misleading artifacts can occur during fixation of membranes for AFM and SEM imaging. Thus, 

our knowledge on saponin-based permeabilization and characteristics of holes formed may require revision with more 

current methods and stricter control of environmental conditions. 

 

Most saponins preferentially interact with cholesterol- and hydroxysterol-rich membranes, a property that makes them 

relatively specific for the plasma membranes of animal cells. In this case the efficiency of their membrane perturbing 

effects are directly correlated with sterol content. Indeed, cholesterol-rich bilayers are thought to be about 20- to 100-fold 

more sensitive to saponins408. Hence, saponins can be been exploited to target the plasma membrane while leaving those 

of cholesterol-poor organelles, such as the ER and mitochondria, largely unaffected397,585,1405. Calcium stores within 

intracellular organelles are generally not eroded by the saponin concentrations that permeabilize plasma membranes583. 

 

How do saponins interact with cholesterol to disrupt membranes? Frenkel et al. conducted investigations into the 

mechanism using quantitative physical techniques in model membranes. Their measurements indicate that digitonin 

extracts cholesterol out of the bilayer core to form a surface complex, which then induces curvature and disordering of the 

membrane1406. The magnitude of these effects was directly proportional to the amount of cholesterol in the bilayer (Figure 

36). At 0% cholesterol, digitonin could not bind to the membrane and thus had no effect. At 5% cholesterol, exposure to 

digitonin triggered the formation of sterol-aglycone complexes without significant membrane distortion. At 20% 

cholesterol, digitonin extracts cholesterol into aggregates, thus removing it from the hydrophobic core region. The steric 

hindrance between saccharide residues in these aggregates may induce changes in the curvature of the membrane outer 

leaflet leading to compromisation of the membrane integrity and concomitant increase in membrane permeability1406. In 

essence, digitonin binds to cholesterol and transforms it into a detergent. 

 

Beyond digitonin, studies have explored a wider range of individual saponins for membrane permeabilization. Recently a 

set of oleanane saponins (glycyrrhizic acid, Gypsophila, Saponaria and Quillaja saponins) and digitonin were tested in 

live cells. These saponins showed variable permeabilizing effects on cellular membranes from 6 μM, as measured by an 
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impedance-based plate reader with ECV-304 human urinary bladder carcinoma cells1407. The results indicated that the 

molecular charge may be a relevant consideration in explaining the action of oleanane saponins. Further studies on α-

hederin indicate that the critical micelle concentration (CMC) plays a key role in its mechanism. At concentrations lower 

than the CMC, α-hederin monomers bind to cholesterol and induce vesiculation and lateral phase separation1408,1409. These 

effects are analogous to the action of detergents that do not flip flop, as depicted in figure 34. At concentrations higher 

than the CMC, α-hederin aggregates promote pore formation and the loss of membrane material by analogy to the 

scenario illustrated in figure 35. Thus, the self-aggregating properties and co-operative action of saponins may also be 

important for their effects. Most studies agree that the permeabilizing activity of saponins rely on the presence of sterols, 

from which they forms complexes to distort the membrane into non-bilayer structures. As an exception to this rule, some 

bidesmosidic saponins, such as avicin D1410, appear capable of porating cell membranes through detergent properties 

independent of cholesterol binding1393. 

 

 
 
Figure 36. Interactions of 50 µM digitonin (c < CMC) with SOPC (1-Stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) phospholipid 

bilayer membranes containing varying amounts of cholesterol. Reproduced from reference 1406. Copyright 2014 American Chemical 
Society. 

 

6.5.2.8 Saponin-Mediated Permeabilization for Studies in Semi-Intact Cells 

Detergent-permeabilized semi-intact cells have led to advances in several areas of biology, including decoding the rules 

governing nuclear import of proteins and DNA592,593, studying mammalian protein synthesis and secretion 



 173 

machinery590,591, and the analysis of functional mitochondria in muscle fibers, tissues, and cells in situ594. The emergence 

of saponins for the production of semi-intact cells began around the early 1980s. In 1982 Wakasugi et al. used saponin or 

digitonin in the range 20 – 100 μg ml-1 (~16 –80 μM) to permeabilize acini from rat pancreases and probe the effect of 

ATP on intracellular calcium dynamics1411. A year later, the plasma membranes of isolated guinea pig hepatocytes were 

made permeable with 75 μg ml-1 (~60 μM) saponin to study the ATP-dependent uptake of calcium into the endoplasmic 

reticulum583. Upon saponin treatment, cells were suspended in a medium resembling cytosol with an ATP-regenerating 

system consisting of ATP, creatine phosphate, and creatine phosphokinase. Dunn and Holz used 20 μM digitonin to 

permeabilize chromaffin cells, and this protocol became a popular system to study intracellular processes in this cell 

type584,1412. Human platelets were also treated with saponins for the loading of the secondary messenger inositol 1,4,5-

trisphosphate into the cytoplasm and studying of the metabolic signaling response1413. Several groups reported that with 

optimal conditions, 50% or more of the cytoplasmic enzyme lactate dehydrogenase (~140 kDa) is able to remain inside 

cells for extended periods, indicating the possibility of maintaining a feasible balance between plasma membrane 

permeabilization and cell function in these experiments584,585,1414. In most of these papers the plasma membrane resealing 

dynamics were not discussed. Thus, it is difficult to ascertain whether or not the cells were persistently permeabilized or 

whether they recovered due to plasma membrane repair. 

 

6.5.2.9 Saponin-Mediated Permeabilization for Intracellular Delivery 

An optimized protocol for peptide delivery into cardiac myocytes employed a 10 minute incubation at 4 °C with 50 μg ml-

1 (~40 μM) saponin539. Along with saponin, the permeabilization buffer was designed to mimic aspects of the intracellular 

environment by including high potassium, extracellular ATP to maintain energy stocks, and ascorbic acid as an 

antioxidant539. The authors reported loading of peptides at up to ~10% of the extracellular concentration without loss of 

long-term viability. In another method, Miyamoto et al. used 7.5 μg ml-1 (~6 μM) digitonin to induce reversible 

permeabilization of the plasma membrane in bovine, mouse, and porcine somatic cells1415. By optimizing the procedure, 

high efficiency (~80%) loading of 70 kDa dextrans was achieved in bovine cumulus cells. It was also used to introduce 

cytoplasmic extracts from Xenopus laevas eggs into several mammalian cell types for successful induction of nuclear 

reprogramming and activation of pluripotent genes1415. 
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More recently, saponins have been exploited for the delivery of quantum dots and nanoparticles. Lukyanenko published a 

protocol for the delivery of nanoparticles up to 20 nm with a transient 30-60 second exposure to 0.01% saponin (10 μg ml-

1 or ~8 μM) in high potassium low calcium permeabilization buffer1416. Depolymerization of cytoplasmic actin with 

cytochalasin D was reported to boost the efficiency of nanoparticle penetration into the cytoplasm, as the actin meshwork 

that underlies the plasma membrane may be considered another barrier to delivery1416. Medepalli and co-workers 

demonstrated quantum dot loading into adherent H9C2 with a combination of 50 μg ml-1 (~40 μM) saponin and 180 

mOsm hypotonic media for 5 minutes at 4 °C311. Whether hypoosmotic shock produces a membrane tension to synergize 

with the membrane perturbing effect of saponin, or to generate inward fluid flux to promote delivery, remains to be 

determined311. 

 

For intracellular analysis with antibodies, Jacob et al. developed a saponin-based permeabilization protocol to load 

immune cells with monoclonal antibodies for the detection of cytoplasmic antigens by flow cytometry1417. They incubated 

primary lymphocytes and lymphoma cell lines at 4 °C in HBSS buffer with antibodies in a buffer containing 2% FBS and 

0.1 – 0.3% saponin (10 – 30 μg ml-1 or ~8 – 24 μM) for 30 minutes. As judged by flow cytometry analysis, monoclonal 

antibody delivery was achieved while cell integrity and morphology remained intact1417. Interestingly, this protocol did 

not rely on fixation with paraformaldehyde, a step that was only incorporated in later adaptations, presumably to prevent 

leakage of cytokines from the cell or avoid dealing with apoptotic cells1418-1420. An earlier method featuring 

lysophosphatidylcholine as permeabilization agent was similarly independent of fixation99. 

 

6.5.2.10 Detergent-Like Lipids & Other Surfactants for Intracellular Delivery 

Surfactants include synthetic detergents, physiological compounds such as bile salts, lysolipids and certain amphiphilic 

peptides and amphiphiles. A widely used example is the naturally occurring lipid lysophosphatidylcholine (also known as 

lysolecithin). Miller et al. employed lysophosphatidylcholine exposures to permeabilize CHO cells and maintain them as 

semi-intact cells capable of DNA synthesis for several hours541. The protocol was used to explore for soluble factors that 

inhibit or stimulate DNA synthesis. A follow-up paper outlined generalized protocols for delivery of cargo molecules to a 

wide range of monolayer and suspension cells1421. In it, lysophosphatidylcholine concentrations from 30 – 250 μg ml-1 (60 

– 500 μM) were chosen depending on the balance between delivery, viability, and leakage of the representative 
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endogenous protein lactase dehydrogenase. Balinska employed lysophosphatidylcholine to introduce the exogenous 

nucleoside dTTP into the DNA of hepatoma cells via permeabilization-mediated intracellular delivery1422. Because there 

was only a slight loss (20-25%) of lactate dehydrogenase, they concluded permeabilization of cells does not persistently 

disrupt membrane integrity and resealing could be achieved by exchanging back to standard media1422. Nomura and 

colleagues used lysophosphatidylcholine permeabilization for the delivery of larger proteins: diphtheria toxin (A 

fragment), horseradish peroxidase and antibodies against SV40 T-antigens1423. These macromolecules were successfully 

introduced into living mouse erythroleukemia cells, baby hamster kidney, and mouse fibroblast cells1423. Furthermore, 

lysophosphatidylcholine has been used to permeabilize primary human lymphocytes and monocytes for detection of 

intracellular antigens by flow cytometry99. 50 μg ml-1 (100 μM) of lysophosphatidylcholine was incubated at 4 °C for 5 

min before recovery with antibodies inside, thus avoiding the need for fixation. 

 

Along with lysophosphatidylcholine, similar compounds have been investigated for their detergent-like mechanisms. For 

example, simulations have been performed on plant-derived resorcinols1424 and dioctanoyl-phosphatidylcholine, a cone-

shaped counterpart of the native lipid DPPC1425. Studies with dioctanoyl-phosphatidylcholine reveal a curvature stress that 

can be relieved upon pore formation1425. Such mechanisms may also be applicable to lysophosphatidylcholine, which is 

also a cone-shaped lipid. In the case of resorcinols, micelles are observed to bind to the membrane. If micelles remain 

compact, they displace phospholipids head groups into the bilayer center, thereby disrupting the structure of the leaflet 

and causing the lipids to surround the micelle1424. However, if resorcinols are already embedded within the bi-layer their 

presence leads to stabilization instead, just like cholesterol. Thus, simulations are a useful tool to gain insight into the 

mechanisms and molecular events that underlie membrane disruption mechanisms that could be leveraged for intracellular 

delivery. 

 

6.5.2.11 Microfluidic & Nanotechnological Control of Detergent Exposure 

For detergents and surfactants applied in bulk solution, a key weakness is that the nature of the membrane injury lacks 

precise spatiotemporal control. Molecules are added indiscriminately to solution, and it is difficult to get rid of them once 

then job is done. Thus, it is difficult to balance the required level of membrane permeabilization against excessive toxicity 

(Figure 37A). Recently, Kilinc et al. used microfluidics to demonstrate controlled flux of localized saponins to perform 
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precise axotomy (cut off an axon) on neurons cultured on microchips1426. In a variation on this theme, the detergent 

sodium dodecyl sulfate (SDS) was employed in laminar flow mode in a microfluidic device to damage specific sections of 

neurites and investigate the recovery process1427. Saponin has also been combined with nanostraws to localize membrane 

disruption to the nanostraw openings701. These examples showcase the potential of nano and microfluidic systems to 

localize and control damage conferred by detergents to subcellular regions (Figure 37B). It remains to be seen whether 

such strategies can be feasible for intracellular delivery at high throughput, although we anticipate that inventors will test 

this possibility in the near future.  

 

Membrane-perturbing nanoparticles are another concept worth considering (Figure 37C). Multifunctional nanocarriers 

that switch to a membrane disrupting state are already being developed for endosomal escape purposes6. Similarly, 

conjugation with membrane-active peptides116 or pore-forming toxins119 can be harnessed to produce nanoscale cargo with 

more potent cell penetration properties. If membrane-perturbing nanoparticles can be made switchable by light or other 

environmental stimuli, they may confer the level of control required for reversible permeabilization at discrete locations 

on the cell surface. 

 

 
 
Figure 37. Schematic of exposure to membrane-perturbing detergent and/or surfactants by (A) bulk mixing, (B) microfluidic 
hydrodynamic focusing, and (C) localization to a nanoscale particle. 

 

6.5.2.12 Summary of Permeabilization by Detergents 

The abovementioned studies suggest saponins, detergents, and other membrane permeabilizing surfactants can be used to 

introduce a wide range of cargo molecules into various cell types. The emergence of membrane defects depends on 

variables such as exposure time, temperature, diffusion, random fluctuations, mixing effects, and spontaneous 
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interactions. This is in contrast to physical methods where a well-defined stimulus triggers a clean disruption event. 

Electroporation, in particular, has often been reported to achieve superior results in the hands of researchers when 

compared with detergents1098. The use of physically controllable or light-switchable surfactant systems may aid in 

developing more precise membrane perturbation strategies. Furthermore, it is worth considering that a wide range of 

organisms produce secondary metabolites with membrane-disrupting properties. As an increasing abundance of these 

natural detergents and lipopeptides are characterized, new possibilities for ideal membrane permeabilization agents may 

become available. For example, anabaenolysin lipopeptide toxins have recently been proposed as a potent alternative to 

digitonin for the selective disruption of cholesterol-containing biological membranes1428. Finally, using microfluidics and 

nanotechnology for local and transient exposure of cells to surfactants is another frontier where spatiotemporal control of 

membrane disruption may increase the effectiveness of intracellular delivery. 

 

6.5.3 Membrane-Active Peptides 

Various membrane-active peptides are known to disrupt lipid bilayer membranes433,440. Anti-microbial peptides (AMPs), 

which are usually both amphiphilic and cationic, can induce pore-formation at critical concentrations1429,1430. Under certain 

circumstances, cell-penetrating peptides (CPPs) and pathogenic amyloid peptides can also permeabilize lipid bilayers, 

although the mechanisms are less well-defined433. Most membrane-active peptides are thought to be intrinsically 

disordered in solution but adopt more defined structures upon contact with biological membranes, giving rise to their 

membrane-disrupting properties433. Membrane-active peptides are often conjugated to cargo to facilitate intracellular 

delivery1431,1432. However, there are also reports of membrane-active peptides permeabilizing cells to enable cytosolic 

delivery of dyes1433,1434, small proteins1435, low-molecular weight dextrans1436, and short oligonucleotides1437. 

 

6.5.3.1 Anti-Microbial Peptides 

The best-characterized membrane-active peptides are the AMPs. To date, more than 5,000 of them have been 

catalogued1438,1439, with frog skin alone representing a source of more than 300 variants1440. Only a small selection of 

AMPs have been studied for their molecular mechanisms of action. A common feature is their ability to adopt a 

conformation with hydrophobic segments distinct from hydrophilic/cationic segments1429. For a given AMP, the ability to 

disrupt membranes also depends on the lipid composition of the target membrane. In contrast to the plasma membrane of 
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animal cells, most microbial membranes, including those of gram-positive (monoderm) and gram-negative (diderm) 

bacteria, fungi, and protozoa, feature many negatively charged lipid headgroups on their outer leaflets1441. This allows a 

combination of electrostatic and hydrophobic interactions to drive adsorption of cationic AMPs to the surface of microbes 

with high affinity1429. Once at the interface, hydrophobic segments integrate into the membrane to disrupt it, with several 

different models proposed for how they generate pores440,1430,1442. Due to the higher affinity for microbial membranes, 

AMPs can lyse microbes at μM concentrations while having less effect on animal cell membranes. This enables them to 

kill microorganisms without being significantly toxic to mammalian cells. Moreover, in an opposite manner to saponins, 

cholesterol in the plasma membrane of animal cells serves to suppress the activity of AMPs due to its stabilizing effect. At 

high enough concentrations, however, AMPs will disrupt plasma membranes of mammalian cells, and this is the regime 

of interest for potential intracellular delivery applications. 

 

6.5.3.2 Mechanisms of Membrane Disruption by AMPs 

The main models used to describe AMP-mediated pore formation mechanisms share a common aspect, namely two 

distinct peptide–lipid states: an inactive surface-bound state and a pore-like insertion state1429,1443. One of the best studied 

AMPs is melittin, a peptide extracted from bee venom1444. It is a 26 amino acid chain containing +6 positive charges in 

total. Amino-terminal residues 1-20 are mostly hydrophobic while carboxyl-terminal residues 21-26 are hydrophilic due 

to a string of positive charges. Pores produced by melittin exposure have been estimated at 2.5 – 3 nm in 

palmitoyloleoylphosphatidylcholine (POPC) vesicles1445. Experiments with GUVs held by micropipettes revealed that 

melittin first increases the membrane surface area due to adsorption/integration before rearranging to induce stable pores 

without vesicle rupture1446. Later studies showed that melittin partitions to both sides of the bilayer, probably via transient 

defects, before finally reaching a concentration where stable pore formation occurs. The critical concentration lies in the 

μM range and corresponds to a peptide-to-lipid ratio of 1:100 or greater1447. 

 

Another heavily studied AMP is magainin 2. Tamba et al. showed that pore-formation is triggered when magainin 2 

reaches a critical concentration at the membrane interface1448. Their studies predicted that the initial disruption size could 

be as large as tens of nanometers before shrinking to a more stable pore of several nanometers1449. The pores are thought 

to be “chaotic”, lined by a mixture of peptides and lipids acting in cooperation, rather than a well-defined peptide lined 
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channel1450. In keeping with the notion of a two-state model, the human LL37 peptide has been observed to first absorb 

parallel to the surface as an alpha-helix before inserting and rotating normal to the membrane to form pores with an 

estimated diameter of 2.3 – 3.3 nm1451. AMPs can to some extent exhibit detergent-like effects including membrane 

thinning, bilayer stresses, toroidal pore formation, micellization1452. Unlike detergents, however, they tend not to dissolve 

the membrane structure but rather induce smaller pores for the passage of low-molecular weight molecules1447. On the 

other hand, one report suggested that AMPs can form larger holes in certain types of membranes1453. Atomic force 

microscopy imaging of supported lipid bilayers was used to visualize a population of pores that could grow as a function 

of AMP concentration1453. 

 

In many cases the exact structure of AMP-mediated pores is unknown. Multiple models have been proposed such as 

toroidal, disordered toroidal, and barrel stave. The depictions of these pore models are shown in Figure 381454. Molecular 

dynamics simulations have played a part in elucidating possible molecular events410. They indicate that synergistic 

aggregation of several peptides together cooperatively results in defect formation410. AMP aggregation leads to a high 

local density of positive charges. This dense concentration of positive charges at the membrane interface can result in a 

highly localized electric field, which could destabilize the bilayer by an electroporation-like effect1455-1457. Interestingly, 

simulations indicate that the emerging defects appear to exhibit a significantly disordered shape, rather than a classic 

toroidal pore1454. Studies of magainin MG-H2 peptide reveal that its binding creates a local tension in the exposed leaflet, 

which creates a compressive stress that is relieved upon pore formation1458. Simulations of melittin1454 and cateslytin1459 

support a similar interpretation. Overall, the prerequisites for AMP-mediated pore formation appear to be: 1) a high 

concentration of peptides in solution and, 2) aggregation. The simulations used to visualize pore formation favor a model 

whereby membrane defects occur as disordered non-uniform pores1454. 

 



 180 

 
 
Figure 38. Schematic overview of the possible interaction pathways of an antimicrobial peptide with a lipid bilayer. Possible 
thermodynamic states (either stable or metastable) are indicated by black labels and the major kinetic pathways connecting them by 
gray arrows and red labels. Short black arrows represent additional inter-conversion pathways. Outside the target membrane, 
peptide monomers and small aggregates exist in equilibrium. At the target membrane, the peptides bind to the interface 
(Adsorption). At the interface an equilibrium may exist between monomeric and polymeric aggregation states. For a symmetric 
bilayer, the asymmetric membrane bound state is not thermodynamically stable. Eventually the peptides will distribute equally 
between the two monolayer leaflets. This can occur via two alternative translocation pathways. In the non-leaky variant the 
peptides are able to cross the bilayer without the formation of a pore. In some cases, the intermediate transmembrane state is 
thermodynamically stable (e.g. hydrophobic peptides which adopt a transmembrane orientation). The key feature of many 
antimicrobial peptides is that they permeabilize the membrane following a leaky translocation pathway. Above a certain peptide–
lipid ratio, the peptides insert into the bilayer to form a porated lamellar phase (poration). A variety of different pore structures may 
be formed, including the barrel-stave, the toroidal and the disordered toroidal state. These separate states should be interpreted as 
extreme cases with mixed varieties of these models, and conversion between alternative states is likely to occur. The porated states 
can be stable themselves, but they can also be transient structures in the translocation pathway. In that case, once enough peptides 
are adsorbed at the opposing monolayer leaflet, the pores seal. On the other hand, increased accumulation of certain peptides may 
lead to a detergent-like disintegration of the membrane resulting in formation of non-lamellar, e.g. micellar, systems (solubilization 
pathway). Note that the secondary structure of the peptides could vary along the various pathways. The helical or random 
configurations drawn here are merely illustrative of these processes and should not be taken literally. Figure and legend reproduced 
from ref 1454, Copyright 2008, with permission from Elsevier. 

 

6.5.3.3 Cell-Penetrating Peptides & Amyloid Peptides 

In contrast to the case of AMPs, cell-penetrating peptides (CPPs) and amyloid peptides do not adhere to the principle of 

well-defined hydrophilic/cationic and hydrophobic segments. Though most CPPs tend to be cationic, they may also be 

uncharged and hydrophilic. Well-studied CPPs include penetratin, HIV-1 TAT peptide, and poly-arginines of 8 or 9 units. 

For these peptides molecular dynamics simulations have observed only very transient pores1460. Other simulations reveal 

deformations and bending phenomena without actual pore formation, although this is controversial and it has been argued 

that some simulations of CPP behaviour could be artifactual410. When attached to bulky cargo molecules, CPPs are 
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believed to enter cells via endocytosis rather than direct translocation through the membrane, arguing that pore-formation 

in the plasma membrane might have very little role in actual delivery116. Thus, the mechanisms could be different when 

CPPs are present as lone molecules versus when they are conjugated to a cargo molecule. 

 

 
 
Figure 39. Schematic of the effect of peptide binding on lipid bilayer integrity. (i) The reference state for energy change is an intact 
phospholipid bilayer. (ii) Spontaneous fluctuations result in the sampling of membrane defects. These are energetically unfavorable 
and therefore sampled infrequently. (iii) Widening of the defect to permit leakage results in a further energetic penalty. (iv) In the 
presence of surface-bound peptides (magenta), membrane tension is induced. (v) Peptide binding increases the frequency of defect 
formation. (vi) Surface tension is released by pore formation1461 and stabilized by peptide binding resulting in equilibrium poration 
(vii). Note, many forms of defect, such as chaotic pores1462, can be accommodated by this model, and defect characteristics may 
differ between alternate peptides or the same peptide under alternate conditions. Figure and legend reproduced from ref 1463, 
Copyright 2013, with permission from John Wiley and Sons. 

 

To explain the observations gathered from various studies, Miranker and colleagues propose a common mechanistic 

landscape for membrane-active peptides433. The initial formation of a pore is catalyzed by peptide-induced membrane 

tension that lowers the activation energy of spontaneous poration to a regime more accessible by thermal fluctuations 

(Figure 39)433,1463. In other words, membrane-active peptides distort the structure of lipid bilayers to a point where pore 

formation becomes the most energetically favorable option at a given temperature. The structure and lifetime of such 

pores in live cells remain to be determined. 
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6.5.3.4 Summary of Permeabilization by Membrane-Active Peptides 

Reviews of the literature increasingly look to examine common principles underlying the action of AMPs, CPPs, and 

amyloid peptides433,440,1452,1464. Further studies will be required to uncover their mechanisms of action in live cell 

membranes and to what degree they can be harnessed for intracellular delivery1432. So far, there are examples of 

membrane-active peptides permeabilizing cells to enable cytosolic delivery of dyes1433,1434, small proteins1435, low-

molecular weight dextrans1436, and short oligonucleotides1437. It remains to be seen whether membrane-active peptides can 

create pores large enough for siRNA, mRNA, RNPs or larger protein influx without excessive cell toxicity. Provided 

treatment with membrane-active peptides can be made sufficiently reversible and tolerable, their specificity for different 

types of membranes suggests they could be an intriguing strategy for intracellular delivery1465. 

 

6.5.4 Pore-Forming Proteins & Toxins 

Organisms from all kingdoms have evolved pore-forming proteins (PFPs) that can permeabilize the membranes of 

competing lifeforms399. PFPs are produced by prokaryotes, eukaryotic parasites, fungi, marine organisms, and plants 

either as a defense mechanism or to access nutrients, especially under conditions of high competition or stress. Vertebrates 

also produce PFPs, such as the complement membrane attack complex (MAC) to kill bacteria, and the perforins expressed 

by immune killer cells to destroy malignant or infected cells. The best-characterized and largest class of PFPs, however, is 

that of the bacterial pore-forming toxins (PFTs). 

 

PFTs are generally secreted as soluble monomers that can assemble into oligomers, undergo conformational changes, and 

insert into the membrane as an assembled pore complex (Figure 40)399,439. Depending on the PFT, pore assembly may take 

place before reaching the target cell surface or via lateral diffusion and binding of monomers once embedded within the 

target cell plasma membrane. For many PFTs, the stoichiometry of the assembled pore is around 7 subunits, such as is the 

case for S. Aureus α-hemolysin or the aerolysin family. These PFTs form 1 – 3 nm pores to permit the passage of ions, 

ATP, and nucleotides399,439,1466. 
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Figure 40. Schematic representation of the pore formation pathway of pore-forming toxins (PFTs). Soluble PFTs are recruited to the 
host membrane by protein receptors and/or specific interactions with lipids (for example, sphingomyelin for actinoporins or sterols 
for cholesterol-dependent cytolysins (CDCs)). Upon membrane binding, the toxins concentrate and start the oligomerization process, 
which usually follows one of two pathways. In the pathway followed by most β-PFTs, oligomerization occurs at the membrane 
surface, producing an intermediate structure known as a pre-pore (mechanism 1), which eventually undergoes conformational 
rearrangements that lead to concerted membrane insertion. In the pathway followed by most α-PFTs, PFT insertion into the 
membrane occurs concomitantly with a sequential oligomerization mechanism, which can lead to the formation of either a partially 
formed, but active, pore (mechanism 2), or the formation of complete pores. Although classified as β-PFTs, CDCs also share some of 
the features of this second pathway, as they can also form intermediate structures (known as 'arcs', named after their shape) during 
pore formation. In both α-PFT and β-PFT pathways, the final result is the formation of a transmembrane pore with different 
architecture, stoichiometry, size and conduction features, which promote the influx or efflux of ions, small molecules and proteins 
through the host membrane, and trigger various secondary responses involved in the repair of the host membrane. Note that, 
although the host membrane shown here is the eukaryotic plasma membrane, some PFTs are antibacterial and form pores in the 
inner membranes of gram-negative bacteria or the cell membranes of gram-positive bacteria. Figure and legend reproduced by 
permission from Springer Nature from ref 439, Copyright 2015. 

 

Alternatively, cholesterol-dependent cytolysins (CDCs) form multimeric assemblies of >30 units and generate large pores 

in the range of 20 – 50 nm (Figure 41A)439. Atomic force microscopy images of prototype CDC perfringolysin O (PFO) 

embedded into cholesterol-containing supported lipid bilayers reveals the formation of ring-like pores with ~25 nm 

diameter (Figure 41B)1467,1468. Many PFTs rely on the presence of specific surface receptors to bind and insert. CDCs, for 

example, exploit the presence of cholesterol or other lipid raft components, making them quite specific for the plasma 

membrane of animal cells407. This cholesterol-specific action makes CDCs reminiscent of saponins in their selectivity. 

Owing to this specificity and their large pore size, CDCs are the PFTs that have primarily been used for intracellular 

delivery of larger cargo (>1 nm) and will be the focus of subsequent discussion in this section. 
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Figure 41. The structure of pores created by Perfringolysin O (PFO), a CDC pore-forming toxin. (A) PFO oligomerizes into large pre-
pores, which, after an extended conformational change, form a membrane-inserted β-barrel pore. Top view of the pore is on the 
right. Figure adapted by permission from Springer Nature from ref 439, Copyright 2015. (B) AFM images of the PFO pore complexes in 
supported lipid bilayers that contain cholesterol. Scale bar 25 nm. Figure reprinted from ref 1467, Copyright 2004, with permission 
from John Wiley and Sons. 

 

6.5.4.1 Cholesterol-Dependent Cytolysins for Intracellular Delivery 

The most widely used PFTs for permeabilization-mediated intracellular delivery are the cholesterol-dependent cytolysins 

(CDCs), of which Streptolysin O (SLO), Listeriolysin O (LLO) and Perfringolysin O (PFO) are the best-known examples. 

SLO is secreted by the bacteria Streptococcus pyogenes and has been used since the 1970s to selectively permeabilize the 

plasma membrane for the study of intracellular processes in semi-intact cell models1469,1470. In the 1990s SLO began to be 

used widely for intracellular delivery purposes1471. Barry et al. demonstrated that antisense phosphodiester 

oligodeoxynucleotides (ODN) could be introduced into cells during a brief permeabilization step with SLO1471. Cells were 

able to recover full function and showed maximum ODN-induced down regulation of gene expression at 18 hours before 

recovery to normal expression at 48 hours1471. A subsequent study compared SLO-mediated permeabilization versus 

electroporation for delivery of a restriction enzyme, concluding that electroporation was more cytotoxic and SLO a better 

option for both CHO and human fibroblast cells1472. In their hands, SLO provided a more uniform permeabilization across 

the cell population, possibly because electroporation is to some extent cell size-dependent. In another comparative study, 

SLO treatment, electroporation, and lipid-carriers were tested for delivery of antisense ODNs that neutralize BCR-ABL 

mRNA to reduce protein expression1104. Contrasting the earlier report, greater variation in ODN uptake was seen for SLO 
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permeabilized cells when compared with electroporated cells in the chronic myeloid leukemia model cell line KYO-1. 

The authors suggested that SLO exposure led to relatively under-permeabilized and over-permeabilized populations. 

Compared to SLO and electroporation, lipid delivery vehicles were found to be ineffective for KYO-1 cells. A separate 

study in primary rat ventricular myocytes used SLO to successfully deliver FITC-dextrans up to 148 kDa and bovine 

albumin serum (67 kDa), followed by full neutralization of toxin permeabilization and cell recovery1473. 

 

In 2001, Bhakdi and co-workers published a report that significantly advanced our understanding of SLO-mediated 

intracellular delivery497. First, pre-titrated concentrations of high-quality SLO were administered to cells to determine 

precise concentrations for permeabilization in a variety of mammalian cell lines. Second, they deliberately employed 

calcium to trigger plasma membrane repair. With this approach, effective delivery of proteins and dextrans was achieved 

in 60-80% of cells with >50% long-term viability. Third, they explored the size limits of cargo influx to estimate pore 

size. SLO permeabilization was able to deliver 150 kDa dextrans but failed to mediate the passage of 250 kDa dextrans 

(approximate diameter ~23 nm)866. These results suggest that SLO pores exhibit a cutoff size in the range 20 nm. This is 

in reasonably good agreement with AFM images of another CDC family member perfringolysin O, which showed pore 

diameters of ~25 nm1467. A fourth observation was that calmodulin activity, intact microtubules, and cytoplasmic ATP 

only returned to normal levels after ~4 hrs. Under various conditions screened, the method permitted proteins to be 

delivered to approximately 50% of the total cell population under near-full retention of viability, a performance level that 

has since been confirmed by others1474. 

 

In subsequent studies it has been shown that delivery performance can be better for siRNA-mediated gene knockdown, 

where the molecule to be introduced is significantly smaller (~13 kDa). Transfection with an optimized SLO 

permeabilization method showed > 80% RNAi-mediated knockdown in difficult to transfect myeloma cell lines (JIM-3, 

H929, RPMI8226 and U266 cell lines) with minimal effect on cell viability (< 10% death) and cell cycle238. However, as 

noted by Bhakdi and colleagues497, several caveats exist for the use of SLO. Primary among them is that the quality of 

SLO preparations is important, because contaminations with proteases or DNAses may create deleterious artifacts. Due to 

variations in batch quality, the appropriate SLO concentration window usually needs to be pre-calibrated by titration 

experiments prior to cell treatment. Moreover, an oxygen-stable C530A substitution mutant obviates the need for a 

reducing agent to maintain SLO activity in the permeabilization buffer497. Thus, protein engineering efforts have 
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contributed towards improved versions of pore-forming proteins for cell permeabilization. Despite these caveats, SLO 

permeabilization represents a relatively cheap, simple and effective method to introduce molecular cargo up to ~20 nm 

into living cells. SLO has been used to perform cytoplasmic delivery of siRNA238,239,1475, antisense 

oligonucleotides1104,1471,1476-1485, proteins102,121,497,1472,1473,1486-1488, peptides1474,1489,1490, cytoplasmic extracts508,540,1491-1506, 

dextrans1473, PNA probes1507-1509, molecular beacons1089,1510-1516, photosensitizers1517, phosphatidic acid1518, Rb+ ions102, 

ATP102, various RNA probes1519-1521, lanthanum probes72,1522 and gold nanoparticles1523.  

 

Beyond SLO, permeabilization-based delivery with other CDC family members, such as LLO and PFO, have also been 

reported in the literature1524-1526. Recently LLO, which is produced by the bacteria Listeria monocytogenes, was found to 

be useful for delivery of small to mid-sized molecular cargo, <10 kDa1526. By screening for passage of dextrans of size 3, 

10, 40, 70, and 150 kDa, Murakami and co-authors found a size cutoff between 10 and 40 kDa. Thus, LLO-mediated 

permeabilization could be used to efficiently deliver the nucleotide analogue 8-OH-cAMP (~0.4 kDa, a PKA activator) 

and the small peptide Akt-in (~2 kDa, an Akt inhibitor) inside cells without loss of proteins, such as GFP (~28 kDa), from 

the cytosol1526. 

 

6.5.4.2 Pore-Forming Proteins as Endosome Disruptors 

There are a number of naturally occurring scenarios where organisms use pore-forming proteins to deliver cargo into 

target cells. So-called AB toxins can mediate this effect399. The B component permeabilizes membranes, often triggered 

by the acidic environment of endosomes, while the A subunit exerts separate enzymatic activity when unleashed into the 

cytoplasm399. In other words, A is the cargo and B is the membrane disruptor. Under this principle, the vertebrate immune 

system has evolved perforins for the purpose of permeabilization to deliver toxic granzymes1527. 

 

One model for how AB toxins operate was presented in an elegant study from Lieberman and colleagues. They observed 

that sublytic perforin permeabilization at the plasma membrane (featuring small 1 – 2 nm pores) induces endocytosis in 

response to calcium influx, thereby promoting endocytic uptake of the perforin plus cytotoxic granzymes1528. Perforins 

then lodge in the membrane of endosomes, inhibit maturation, and subsequently trigger rupture to release endosomal 

contents and cytotoxic granzymes, which then induce the death of target cells1528. In an analogous scenario, adenovirus 
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employs the viral membrane lytic protein-VI to first generate small pores that trigger plasma membrane repair 

processes1529. This is followed by its endocytosis into leaky compartments from which it, and potentially other viral 

components, can subsequently escape1529. 

 

Recently, the natural AB-toxin mechanism has been repurposed for intracellular delivery through protein engineering 

efforts. Yang et al. showed that a neutralized version of perfringolysin (PFO) can be targeted to the EGF receptor of 

cancer cells and preferentially activated in endosomes to deliver toxic gelonin into the cytoplasm119. To do this, they 

designed a bi-specific antibody, where one terminal binds PFO while the other targets the EGF receptor for endocytosis. 

Once in endosomes, the acidic environment triggers PFO to disrupt the endosomal membrane. In another example of this 

strategy, Pentelute and colleagues showed that the protective antigen component of anthrax toxin generates a pore that can 

mediate egress of polypeptides, impermeable small molecule drugs, and antibody mimics from endosomes to the 

cytosol1530. The power of these bio-inspired approaches is in their specificity against different types of membranes and 

endosomal compartments118. Such studies indicate the utility of pore-forming toxins and their components not just for 

plasma membrane permeabilization, but also controlled disruption of cargo-laden endosomes. 

 

6.5.4.3 Summary of Permeabilization by Pore-Forming Proteins & Toxins 

Pore-forming proteins are produced by a wide range of organisms, many of which still remain to be characterized. While 

most of them produce small pores that are limited in their usefulness for intracellular delivery, some families, such as the 

cholesterol-dependent cytolysins, are commonly used for permeabilizing cell membranes to introduce molecular cargo. 

Limitations are similar to detergents, surfactants and membrane-active peptides, namely the delayed kinetics of pore 

formation /membrane disruption and the lack of spatiotemporal control. Significant improvements in cell treatment and 

intracellular delivery may be attainable if these problems are solved. Moreover, we anticipate that pore-forming proteins 

will continue to find utility in molecular conjugates and nanoparticles designed to overcome the various types of 

membranes barriers. 

 

6.5.5 Chemical Destabilization 
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Chemical destabilization of lipid molecules can occur due to oxidative damage from a variety of sources. In fact, 

membrane disruptive lipid peroxidation events are thought to be a normal part of cell physiology. In a recent study, for 

example, endogenous production of reactive oxygen species (ROS) by the NOX2 enzyme mediates disruption of 

endosomal membranes to trigger leakage of antigens into the cytosol of dendritic cells for subsequent immune 

activation1531. ROS and other free radicals cause peroxidation of lipid tails, which can lead to similar effects as those seen 

for surfactants, including distortion, buckling, curvature strain, and peeling off of micelles from lipid bilayers461,1532,1533. 

Common species of peroxidized lipids have been proposed to exist in two main classes: 1) phospatidylcholines with a 

hydroperoxide side chain, and 2) phospatidylcholines with oxidized and truncated chains terminated by an aldehyde or 

carboxylic group (Figure 42)1532. Lipid tails become more polar due to the presence of hydroperoxides, aldehyde or 

carboxyl groups. Consequently, these groups bend toward the water phase to allow hydrogen bonding with water and the 

lipid headgroups. The result of these distortions is an increase in area per lipid headgroup, which leads to membrane 

thinning, a decrease in lateral ordering, and membrane area expansion436. 

 

 
 
Figure 42. Chemical structures of oxidized phosphatidylcholines and their effects on bilayer packing. (A) Hydroxy- (HOSAPC and 
HOPLPC) and hydroperoxy‐(HPSAPC, HPPLPC, and 9-tc) phospatidylcholines. Different cis/trans isomers are possible. 13-tc refers 
to trans-11, cis-9 isomer of HPPLPC. (B) Truncated (cleaved chain) phosphatidylcholines with aldehyde (12-al, PONPC, POVPC, ox1-
DOPC, and ox2-DOPC) and carboxylic (PAzPC and PGPC), functional groups. Figure reprinted from ref 1532, Copyright 2012, with 
permission from Elsevier. (C) Example of conformation changes that lipid molecules undergo due to peroxidation. In this case singlet 
oxygen adds the more hydrophilic group -OOH at either 9 or 10 position, which migrates to the bilayer surface. This imposes a kink 
to the acyl chain, with an accompanying increase in area δA per lipid. Figure reprinted from ref 436, Copyright 2009, with permission 
from Elsevier. 

 

Using GUVS as a model system, Riske et al. artificially converted the native lipid phospatidylcholine to an oxidized 

version with hydroperoxides groups at the 9 or 10 chain position (Figure 42C). This was accomplished by using a 

membrane-localized amphiphile photosensitizer that generates singlet oxidation under irradiation with visible light. They 
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found a substantial increase in GUVs membrane surface area without membrane disruption or evidence of poration436. It 

was hypothesized that more intense treatment would eventually lead to compromisation of membrane integrity, just like 

with detergents. Compared to the oxidized lipids investigated by Riske et al., oxidized lipids with truncated chains 

featuring aldehydes or carboxyl termini are much more potent perturbants of membrane organization1532,1533. In the latter 

scenarios, simulations and experiments both observe pore formation and micellization as a function of concentration, 

concomitant with an increased susceptibility to bilayer rupture437,438. 

 

6.5.5.1 Confinement of Oxidative Damage through Ionizing Plasmas 

How is it possible to confine lipid oxidation to subcellular regions? Under certain regimes, lasers exert a chemical 

oxidation effect on membranes through generation of near-field ionizing plasmas, as opposed to thermal or mechanical 

affects. For example, femtosecond lasers can produce near-field ionizing plasmas under specific intensities, pulse 

durations, and frequencies1321,1331 (see optoporation section 6.4 and figure 31D). Furthermore, near-field ionizing plasmas 

emanating from laser-irradiated gold nanoparticles have been proposed as a primary mechanism of membrane 

permeabilization in a recent study1534. Theoretical simulations and experiments both indicate that generation of a low-

density plasma with multiphoton ionization of the surrounding environment perforates the cell membrane by oxidative 

effects. This strategy was reported to transfect siRNA into cells with > 90% efficiency and viability1534. Other delivery 

strategies that rely on fast pulse laser irradiation of metal nanoparticles or microscale features may work through a similar 

mechanism of plasma-induced damage310,923,925,926,929,930, and have been used to load cells with cargoes such as dyes, 

dextrans, siRNA, and quantum dots. The diffusive range of singlet oxygen species in aqueous environments has been 

estimated at about 100 nm436. Thus, local confinement of lipid oxidation may be feasible strategy for transient and precise 

membrane perforation without damage to the bulk of the cell. 

 

7. Gated Channels & Valves 

So far, we have discussed membrane disruption approaches whereby cells recover through active plasma membrane repair 

(see section 4.3). In some cases, however, it may be possible to deliver cargo into cells by actuating opening and closing 

of ‘windows’ in the cell membrane. Such a strategy can be executed by external manipulation of native transmembrane 
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proteins (e.g. channels and transporters), insertion of engineered molecular valves, or deployment of synthetic 

nanodevices. 

 

7.1.1.1 Endogenous Channels (ATP-activated) 

Since the 1980s several reports have demonstrated the influx of small molecules through the manipulation of particular 

endogenous membrane transporters and channels. Impermeable dyes have been observed to enter a number of cell types 

in the presence of high concentrations (up to 5 mM) of extracellular ATP1535. This is because ATP-gated channels 

permitting delivery are present in certain immortalized cell lines and primary immune cells1536. Steinberg et al. showed 

that only cargo of molecular weight less than 900 Dalton were able to enter cells in the presence of ATP1537. Specifically, 

it was found that ATP permeabilizes the plasma membrane of mouse macrophages to 6-carboxyfluorescein (376 Da), 

lucifer yellow (457 Da), and fura-2 (831 Da) but not to trypan blue (961 Da), evans blue (961 Da), or larger dye 

conjugates. These studies led to the idea that purinergic (i.e. ATP-mediated) activation of membrane channels can enable 

passage of cations and other small molecules. Toner and colleagues later used ATP-activated channels to load cells with 

trehalose1538, a 342 Da disaccharide with widespread applications in cryopreservation. 

 

7.1.1.2 Endogenous Channels (Swelling-activated) 

Osmotic swelling is another stimulus that can trigger the opening of mechanosensitive channels for influx of certain 

molecules. For example, osmotic swelling of Jurkat cells at 100 mOsm but not 200 mOsm was found to trigger opening of 

channels for the delivery of monomeric sugars and sugar alcohols, but not larger molecules1539. It was found that extensive 

hypotonic swelling rendered the cell membrane permeable to PEG300-400, but not to PEG600–1500. By reference to the 

hydrodynamic radii of these PEG molecules, the size-selectivity of membrane permeation yielded an estimate of 

∼0.74 nm for the cut-off radius of the swelling-activated channel1540. Further work identified SLC5A3 as an osmotically 

sensitive myo-inositol transporter that opens at imposed extracellular osmolarities of less than 200 mOsm1541. Thus, this 

set of endogenous channels may be manipulated by osmotic stimuli to transport small molecules into cells. 
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7.1.1.3 Engineered Channels/Valves 

One of the first efforts towards engineering a switchable channel for intracellular delivery was reported by Toner, Bayley, 

and colleagues. Using a strategy that takes advantage of site-directed mutagenesis of S. Aureus α-toxin, they developed a 

self-assembling, proteinaceous, 2 nm pore equipped with a Zn2+-actuated switch1542. Toxin monomers added to solution 

integrate into the plasma membranes of target cells and assemble to form an oligomeric pore complex. By adjusting the 

concentration of extracellular Zn2+, reversible permeabilization of the plasma membrane to small molecules (1 kDa or 

less) was achieved1542. In a follow-up study, the switchable pore was used to load trehalose at up to 0.5 M concentration 

into fibroblasts77. These report were an intriguing demonstration of the idea that protein engineering could be leveraged to 

generate membranes with inbuilt permeability switches triggered by chemical, enzymatic, and physical stimuli1543,1544.  

 

7.1.1.4 Optogenetic Control of Cell Permeability 

The emergence of optogenetics heralded the concept of engineered light-activated transporters for manipulating cell 

permeability1545,1546. Kocer and colleagues modified the mechanosensitive channel of large conductance (MscL) from E. 

Coli into a light-addressable nanovalve sensitive to 366 nm UV irradiation1545. They verified the system by controlling the 

flux of calcein across proteoliposome membranes for both one-way and reversible nanovalves. In a parallel approach, 

Boyden et al. exploited the naturally occurring algal protein channelrhodopsin-2 as a rapidly gated light-sensitive cation 

channel in neurons1546. Lentiviral transduction was used to express these channels in neurons, whereby photostimulatation 

with blue light enabled cation influx and subsequent spatiotemporal actuation of neuron action potential firing, which was 

a long-sought goal in the field. Although limited to cations, this optogenetic proof of concept can conceivably be extended 

to a wider range of synthetic and bio-inspired nanovalves. 

 

7.1.1.5 Stimuli-Sensitive Channels for Larger Cargo Delivery 

Doerner et al. showed that the mechanosensitive bacterial MscL channel can be functionally expressed in mammalian 

cells to afford controlled uptake of membrane-impermeable molecules1547. The pore diameter of >2.5 nm allows passage 

of large organic ions and small proteins up to 6.5 kDa. Furthermore, gating of the channel was found to be responsive to 

changes in membrane tension, both in native bacteria and mammalian cell membranes. To engineer more convenient 

gating, charges were engineered within the pore of MscL to induce spontaneous channel closure. The addition of charged 
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methanethiosulphonate agents (such as MTSET) at 1 mM were found to switch the channel between open and closed 

conformations. As a demonstration of utility, this system was exploited to load the bi-cyclic peptide phalloidin (789 Da) 

into CHO cells to label actin filaments. 

  

7.1.1.6 Nanodevice Gating 

More radical concepts for engineering switchable permeability have been demonstrated with synthetic nanodevices. 

Langecker et al. created an artificial membrane channel based on DNA origami nanostructures that anchor to the lipid 

membrane by cholesterol side chains (Figure 43A)1548. The shape of the DNA-based channel was inspired by the bacterial 

channel protein α-hemolysin with some differences in physical properties such as charge, hydrophobicity, and size. 

Although not implemented in cells, future applications in cell membranes could include their deployment as antimicrobial 

agents, controlled interference of cellular homeostasis, or as intracellular delivery conduits1548. 

 

 
 
Figure 43. Synthetic nanodevices for use as membrane-embedded valves or channels. (A) DNA origami nanostructures assembled to 
form a membrane channel. Reprinted with permission from AAAS from ref 1548. (B) Carbon nanotubes embedded within lipid bilayers 
for molecular transport. Figure reprinted by permission from Springer Nature from ref 1549, Copyright 2014. 

 

Carbon nanotubes (CNTs) represent another form of nanotechnology with engineering potential at the scale of the cell 

membrane. Geng et al. exploited the nature of their narrow hydrophobic inner pores that mimic structural motifs typical of 

biological channels1549. They developed a method to insert CNTs into lipid bilayers and live cell membranes to form 

conducting channels capable of transporting water, protons, small ions and DNA under physiological conditions (Figure 

43B). It was found that the local channel and membrane charges control the conductance and ion selectivity of the CNT 

pores, thus suggesting potential starting points for engineering gating function. 
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Recently one group devised molecular motors that can burrow through lipid membranes upon excitation with light1550. 

Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation by ultraviolet light, holes 

were drilled in the cell membranes. They demonstrated intracellular delivery of the motors themselves, small molecule 

dyes such as PI, and accelerated cell death as a result of apoptosis or necrosis1550. Experimental results indicate an 

explanation based on the transduction of light energy into nanomechanical action rather than chemical or thermal 

effects1550. 

 

8. Summary & Outlook  

8.1.1.1 Summary 

Motivations for better intracellular delivery range from basic research to the potential of therapeutic applications including 

cell-based therapies, gene therapy and regenerative medicine. Cargo of interest vary from small molecules that can 

naturally permeate the lipid bilayer to highly charged molecules and large complexes, genetic constructs, synthetic 

materials or organelles approaching the size of the cell itself. For the majority of these cargo, the plasma membrane is the 

primary barrier to intracellular delivery. Cells exhibit a distinct set of properties that can be exploited to overcome this 

barrier. For example, delivery methods can take advantage of the negative membrane potential, cholesterol-rich nature of 

the plasma membrane, or presence of specific extracellular receptors.  

 

A broad assortment of approaches has been designed to deliver cargo into cells. They can be categorized as either carrier-

mediated or membrane disruption-mediated strategies. Cells generally respond to the presence of carriers by processing 

them through endocytosis and other membrane trafficking pathways. On the other hand, they react to membrane 

disruption by deploying membrane repair processes to heal the plasma membrane and restore cell homeostasis. Due to 

their perturbing nature, most delivery strategies involve a trade-off between effective delivery and tolerable cell damage. 

Membrane disruption-mediated delivery strategies have the advantage of rapid and near-universal delivery of almost any 

cargo that can be dispersed in solution. The latest understanding of membrane repair pathways indicates that membrane 

disruption is a common event in the life of cells, and they are well equipped to deal with it. More challenging is the 
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selection of appropriate membrane disruption modalities and their precise implementation to large batches of cells at high 

throughput. This is an engineering challenge that involves elements of both technological innovation and mechanistic 

understanding of the cell itself. Theories have been developed to explain defect formation in lipid bilayers and the 

phenomena that can be leveraged to achieve controlled disruption of cell membranes. In parallel, empirical studies have 

identified key modalities, such as electroporation and mechanical deformation, which can be deployed to achieve a 

relatively scalable and reproducible control of plasma membrane disruption. 

 

Tables 5 and 6 summarize the membrane disruption approaches that have been discussed in this review. Table 5 lists each 

method with what is known about disruption mechanisms, size and distribution of resultant holes, treatment throughput, 

and whether it is applicable to adherent or suspension cells. If there is one theme that emerges from this analysis, it is that 

we still lack clear mechanistic understanding on how many membrane disruption-mediated intracellular delivery methods 

actually work. Indeed, many of the methods suffer from a lack of mechanistic insight to hone and optimize the salient 

parameters. Sonoporation is an example of a delivery strategy that has been challenging to optimize because of such 

complexity. In other cases, a membrane disruption method may work well but a lack of knowledge on appropriate 

environmental conditions leads to underperformance. For example, we have a limited understanding of how cell 

membranes behave and recover at different temperatures and osmolarities. Other methods feature clearly defined 

mechanisms but face intrinsic limitations because of the nature of the membrane disruption effect. For example, 

conventional electroporation and pore-forming toxins tend to generate membrane disruptions of less than 50 nm and are 

therefore limited in their ability to deliver large cargo. 

 

Throughput and applicability to suspension or adherent cells are further considerations. In microinjection, for example, 

almost any cargo can be delivered to any cell type but only one at a time. The challenges involved in scale-up to high 

throughput are yet to be surmounted. Other methods, such as scrape loading, are low cost and high throughput but may 

lack consistency and precision across cell populations. In a further example, large cargo delivery can be accomplished 

with laser-controlled cavitation bubbles, but the systems require complex equipment and may only be applicable to 

adherent cells. Such a scenario rules out delivery to most immune and blood cells that naturally exist in suspension. 

Electroporation is currently the dominant high throughput method in the field. As covered in section 6.2.3, it has been 

demonstrated in applications ranging from testing of impermeable drugs and biomanufacture to engineering cells for 
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cancer immunotherapy and stem cell-based gene therapy (Figure 29). However, electroporation is not without its 

limitations. Post-treatment cell death and inability to deliver large cargo are two such examples. Overall, no single method 

has a monopoly on all applications and further work is required to identify the optimal delivery strategies for a given 

application. 

 

Table 6 compares membrane disruption approaches versus the cargoes they have been reported to deliver. It is important 

to note that many combinations have simply not been attempted. Moreover, many reports use a certain technique to 

deliver a particular cargo only because they adapt the protocol from an earlier publication. Thus, certain techniques seem 

to have an arbitrary emphasis on a particular cargo. For example, optoporation publications have tended to focus heavily 

on plasmid transfection while neglecting other cargoes. Filling out the table by screening all possible combinations would 

be extremely informative for the field. Comparisons of cost and cell type applicability would also add value to such an 

analysis and help to guide experimentalists toward optimal solutions. In future, we expect to see more publications move 

beyond trivial delivery of small molecules dyes (<1 kDa) and showcase delivery of a smorgasbord of diverse cargo, 

especially proteins, nanomaterials, and larger cargo. 

 

8.1.1.2 Outlook 

Several membrane disruption-based methods are in widespread use in academic, industrial, and medical laboratories 

across the world, such as electroporation and microinjection. Yet the majority of modalities are either in nascent 

development or are yet to be pursued to their full potential. By identifying where the field can reduce costs and 

complexity, the potential exists to lower the barrier of entry to interdisciplinary scientists and researchers in resource-poor 

settings. This would no doubt strengthen global discovery. Overall, we believe that better and more streamlined 

intracellular delivery is more likely to arise out of a deeper understanding of current approaches and their capabilities. 

 

The field has a number of frontiers where opportunities are ripe. One is the huge repository of unexplored membrane 

perturbing compounds in the form of natural and synthetic detergents, surfactants, pore-forming toxins, membrane-active 

peptides, and other secondary metabolites. Another is the rise of new microfluidic and nanotechnological tools that 

provide an unprecedented level of control to the membrane disruption process. This may be via high-throughput systems 
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for mechanical deformation, such as microfluidic cell squeezing, or advanced fabrication of nanostructures, including 

nanowires and nanostraws. Combining the strengths of multiple modalities may be a prudent approach toward better 

technologies. For example, electroporation is biased toward producing small pores but provides a convenient 

electrophoretic force for the delivery of charged molecules. Methods that combine large disruption sizes with 

electrophoretic drive could potentially harness the benefits of both techniques. Future strategies could also be based on 

synthetic valves and nanodevices that embed within the membrane and enable remote control of permeability via external 

triggers. Light-gated methods that confer switchable control of membrane disruption are only beginning to be explored. In 

the coming years cost and convenience will be another important factor, as many of the current methods are either 

expensive or overly reliant on cumbersome equipment. 

 

As our insight into membrane repair processes and cell recovery deepen, it may be possible to provide stimuli that switch 

membrane repair on and off, or to modulate stress responses that otherwise lead to untoward cell fate changes or death. 

How can we understand the energy landscape of defect formation to generate ideal membrane disruptions? What kinds of 

disruptions are optimal for delivery in specific cell-cargo combinations? How does the composition of external buffer 

determine which pathways are activated in response to permeabilization? The answers to these, and similar, questions will 

be more attainable with the establishment of better approaches to investigate plasma membrane homeostasis and the 

cellular response (Figure 11). Thus, along with technical advances in membrane disruption, our toolbox for studying cells 

must also improve. 

 

For ex vivo cell-based therapies in particular, quality control procedures may be required to ensure the safety and efficacy 

of engineered cells. Methods for assessing DNA damage, fate changes, and cell functionality will possibly be required to 

avoid re-introduction of malignant or undesirable cells in cGMP settings. More accurate assays to evaluate cell function 

are expected to inform the appropriate and safe use of membrane disruption-based delivery methods going forward. 

Combined with further technological innovations in the way we disrupt membranes, we expect future progress in the field 

to catalyze breakthroughs in delivery applications ranging from fundamental research to ex vivo cell-based therapies. 
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Table 5. Summary of membrane disruption approaches covered in this review. Several are widely used for intracellular delivery 
while others have barely been attempted. Techniques marked with red text represent methods that are either commercially 
available or accessible with common lab equipment. 

 
Modality Methods Membrane Disruption 

Mechanisms 
Spatial Distribution 
Across Cell 

Disruption Size Throughput / 
Scalability 

Suspension / 
Adherent 

DIRECT PENETRATION 

Mechanical Microinjection Mechanical forces at 
contact zone. Membranes 
only tolerate 2-3% lateral 
strain425. Can be strain 
rate dependent (see 
Figure 9) and refs 421,1551 

At contact zone Depends on size 
of injection tip, 
usually 0.3 – 1 μm 

Low, could be 
improved via 
automation 

Mostly 
adherent. 
Suspension 
cells require 
secondary 
holding 
pipette 

Penetrating 
Projectiles 
(Biolistics) 

Depends on size 
of projectile - 
usually micron-
size 

Potentially 
high 

Primarily 
adherent. 
Some reports 
on 
suspension 
cells 

Nanowires, 
Nanoneedles & 
Nanostraws 

Depends on size 
of tip: reported 
range 50 – 1000 
nm 

Potentially 
high 

Mostly 
adherent. 
Suspension 
cells must be 
forced onto 
the array 

PERMEABILIZATION 

Mechanical  
(Solid Contact) 

Cell Scraping Mechanical forces 
transmitted by direct 
contact or cell 
deformation. Membranes 
only tolerate 2-3% lateral 
strain425. Can be strain 
rate dependent (see 
Figure 9) and refs 421,1551 

Presumably at 
contact zone 
otherwise at weak 
points/defects due 
to global membrane 
strain 

Probably depends 
on force, strain 
rate, size of 
contact zone, 
direction of strain 

High Adherent 

Bead Loading High Adherent 

Scratch Loading Low/Medium Adherent 

Microfluidic Cell 
Squeezing / 
Constriction-
Mediated Cell 
Deformation 

High Suspension 

Nanowire 
Permeabilization 

Potentially 
high 

Adherent 

Sudden Cell Shape 
Changes / Protease 
Treatments 

Possibly tearing forces at 
adhesion sites 

Possibly at adhesion 
sites 

Unknown Potentially 
high 

Adherent 

Mechanical  
(Fluid Shear) 

Syringe Loading / 
Microfluidic / Bulk 
Fluid Shear 

Fluid shear forces causing 
membrane strain 

Unknown Unknown Potentially 
high 

Suspension 

Sonoporation / 
Shockwaves 

Stable Cavitation 
(Microstreaming), Inertial 
Cavitation (Jetting), or 
other Acoustic Effects 

Presumably a single 
hole per cavitation 
bubble 

From nanometers 
to several microns 
depending on 
cavitation 
intensity and 
stand-off distance 

High Both 

Laser-Induced 
Cavitation 

Medium to 
High 

Both 

Mechanical 
(Pressure) 

Hypo-Osmotic Shock Mechanical forces 
transmitted by 
osmotic/hydrostatic 
pressure. Membranes 
only tolerate 2-3% lateral 
strain425. Can be strain 
rate dependent (see 
Figure 9) and refs 421,1551 

Presumably at weak 
points or nucleating 
at membrane 
defects 

Probably 
depending on 
membrane 
reservoirs, 
attachment / 
reinforcement of 
membrane, and 
magnitude / rate 
of pressure 

High Both 

Hydrostatic Pressure  High Both 

Osmotic Rupture of 
Endosomes 

Limited by 
endosome 

High Both 

Electroporation Conventional Probability of defect At cell poles. More Nucleate as small High Primarily 
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Electroporation 
 

formation for given pulse-
strength duration at a 
given temperature. See 
section 6.2.1 for details. 
 

permeabilization 
expected on 
hyperpolarized side 

defects then grow 
as a function of 
voltage and 
duration 

Suspension, 
but Adherent 
also possible 

Micro-
Electroporation 

Depends on 
geometry 

Potentially 
high 

Primarily 
Suspension 

Nano-
Electroporation 

Usually single hole 
at nano-aperture 

Currently Low 
/ Medium 

Both, 
depending on 
system 

Thermal Freeze-Thaw 
 

Expansive mechanical 
strain due to ice crystal 
formation 

Location of ice 
crystals 
 
 

Presumably 
variable 

High Both 

Rapid Temperature 
Transitions / Cycles 

Defect formation due to 
phase transitions 

Probably near lipid 
domain boundaries 
and protein clusters 

Presumably small 
defects 

High Both 

Supraphysiological 
Heating 

Dissociation of bilayer 
structure leading to 
defect formation 

Site of maximal 
heat 

Presumably small 
defects 

High Both 

Laser Absorption at 
Membrane or 
Absorbent Particle / 
Structure 

Absorption causes high 
local temperature to 
trigger membrane 
disruption 

Laser focal point or 
location of 
absorbent structure 

Presumably 
variable 
depending on 
local temperature 
effects 

High Both 

Optoporation Laser Optoporation Can be a mix of: 
- Chemical (low energy 
ionizing plasma) 
- Mechanical (cavitation, 
shock waves, 
thermoelastic stress) 
- Thermal (Heat in focal 
region) 

Maximal in focal 
region. Usually one 
hole 

Depending on 
parameters and 
mechanisms. 
Nanometers to 
several microns 

Low to high - 
limited by 
laser focusing 
approach 

Primarily 
Adherent, but 
suspension 
also possible 

Biochemical Organic Solvents & 
Penetration 
Enhancers 
 
 

Perturb bilayer structure 
by burying their 
hydrophobic residues into 
the membrane 

Indiscriminate in 
bulk, otherwise 
depends on local 
concentration 

Presumably small 
defects then 
disintegration of 
the whole bilayer 
at high 
concentration 

High Both 

Detergents / 
Surfactants: Generic 

Insert into bilayer and 
distort the structure, 
leading to defects, pore 
formation, and 
micellization 

Indiscriminate in 
bulk, otherwise 
depends on local 
concentration 

Presumably small 
defects then 
disintegration of 
the whole bilayer 
at high 
concentration 

High Both 

Detergents: Saponin 
Family 

Extracts cholesterol out of 
the bilayer core to form a 
surface complex, induces 
curvature and defect/pore 
formation 

Cholesterol rich 
sites. Indiscriminate 
in bulk, otherwise 
depends on local 
concentration 

From nanometers 
to micron 

High Both 

Pore-Forming 
Toxins: CDC Family 
 
 

Insertion and 
oligomerization into pore 
structure in cholesterol-
rich membranes 
 

Cholesterol rich 
sites. Indiscriminate 
in bulk, otherwise 
depends on local 
concentration 

< 30 nm High Both 

Membrane-Active 
Peptides 

Adopt active 
conformation upon 
membrane binding. 
Concentration dependent 
aggregation / insertion 

Depend on 
membrane 
composition. 
Indiscriminate in 
bulk, otherwise 
depends on local 
concentration 

Presumably small 
defects 

High Both 

Lipid Peroxidation Lipid peroxidation leads to 
structural interference / 

Depends on source 
of oxidation. If local, 

Presumably small 
defects, but large 

High Both 
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distortion of membranes 
to form pores and defects 

can be confined holes are 
conceivable 

Gated Channels 
& Valves 

Endogenous or 
Engineered 
Membrane 
Transporters / 
Channels 

Appropriate stimuli (e.g. 
mechanical, chemical, 
optical) to “gate” opening 
and closing activity 

Depends on 
location of the 
membrane 
transporters / 
channels 

Limited by size of 
the channel. 
Usually only 
amenable for 
transport of small 
molecules < 1 kDa 

High Both 

Synthetic 
Nanodevices 

Insertion of constructs 
into host membrane. 
Gating may be engineered 

Depends on 
location of the 
nanodevices within 
host membrane 

Limited by size of 
the engineered 
central channel 

Potentially 
High 

Both 
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Table 6. Cargo loaded versus membrane disruption approach. Techniques marked with red text represent methods that are either 
commercially available or accessible with common lab equipment. Cargoes are ordered across the table in approximate size order. 
 

MODALITY METHOD CARGO 

Small 
Molecule 
Drugs / 
Probes / 
Dyes / 
Sugars / 
Ions etc. 

Peptides / 
Proteins / 
Antibodies / 
RNPs etc. 

Generic 
Macro-
molecules 
(e.g. 
Dextrans) 

Nucleic Acids and their Analogues Synthetic 
Nano-
materials / 
qDots / 
CNTs etc. 

Large Cargo: 
Bacteria, 
Organelles, 
Beads etc. 

Oligos mRNA vector DNA 

DIRECT PENETRATION 

Mechanical Micro-
injection 

Dyes595, 
Mercury324, 
Trehalose155

2 
 
 

Proteins 
82-86,604,1553, 
Antibodies15

54, 
Peptides603,1

555, Cas9 
protein / 
RNP149 

Dextrans15

56 
Antisense 
Oligonucle
otides211,60

8, siRNA215 

mRNA240,15

57 
pDNA200-

202,607, viral 
DNA200,606,1

558 

qDots294,1559,

1560, MW-
CNTs315, 
SW-CNTs304 

Bacteria324, 
Nuclear 
transplant32

6-328, 
Chromosom
e 
transplant33

3, Sperm / 
IVF331,332, 
Mito-
chondria336, 
Artificial 
vesicles1561 
Beads1562,156

3, 
Superparam
agnetic 
beads357, 
Silicon 
barcodes358 

Penetrating 
Projectiles 
(Biolistics) 

Dyes660,1564, 
Indicators659 

Proteins667-

669, Cas9 
protein / 
RNP670 

 siRNA665,66

6 
Cas9 
mRNA1565, 
mRNA662-

664 

pDNA394,642,

674,675 
PEBBLE 
nano-
sensors1566 

Beads351,353, 
Latex 
particles352 

Nanowires 
& Nano-
needles 

Drugs110, 
Molecular 
Beacons683 

Proteins110,68

0, 
Peptides110, 
Cre 
Recombinas
e682, 
Antibodies42

7 

 siRNA110,68

0,681 
 pDNA109,110,

676,684,713,156

7 

qDots684, 
DNA Nano-
cages685 

 

Nanostraws Dyes700,702, 
Co2+ ions418, 
Ca2+ ions703, 
Small 
molecule 
probes704 

Proteins707 Dextrans70

1,707 
  pDNA700,702,

707 
qDots706  

PERMEABILIZATION 

Mechanical  
(Solid 
Contact) 

Cell Scraping Dyes760-762 Proteins96,543

,745-751, 
Antibodies75

2-754, 
Peptides755,7

56 

Dextrans96,

758, 
Lipopolysa
ccharide759 
 

Antisense 
Morpholin
os757,1568-

1570 

 pDNA545   

Bead 
Loading 

Nucleotides7

31,956, RNA 
probes1571, 
PNA 
probes741, 
SNAP-

Proteins735-

737, Fab 
Fragments73

9,740, 
Antibodies73

2-734, 

Dextrans97,

735,1572 
  pDNA729 qDots744, 

SW-CNTs743 
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reactive 
dyes742 

Peptides738 

Scratch 
Loading 

Dyes764  Dextrans76

3 
   qDots744  

Microfluidic 
Cell 
Squeezing / 
Constriction-
Mediated 
Cell Deform-
ation 

Dyes108,777,79

3, Tags785, 
Drugs784 

Proteins108,78

0,781,785,787, 
Cas9 
RNPs152,793,79

4 

Dextrans10

8,152,777,780,7

88,794 

siRNA108,15

2,780,788,792,7

94, tRNA783 

mRNA108,78

7 
pDNA152,777,

787,792-794 
qDots308, 
CNTs108, 
DNA 
nanostructu
res794 

 

Nanowire 
Permeab-
ilization 

Dyes714,719 Antibodies69

4 
Dextrans80

0 
  Lipid-pDNA 

complexes6

94, pDNA800 

qDots694 ∼200 nm 
polystyrene 
beads694 

Sudden Cell 
Shape 
Changes / 
Protease 
Treatment 

Dyes769 Proteins768,77

1,773,774, 
Peptides768 

Dextrans76

6,768,1573 
Oligonucle
otides768. 

    

Mechanical  
(Fluid Shear) 

Syringe 
Loading / 
Microfluidic 
/ Bulk Fluid 
Shear 

Dyes824, 
Nucleotides8

05,806 

Proteins808,81

2,814-818,821, 
Antibodies80

9-811,813,819 

Dextrans98,

807,821,823,82

5 

Antinsens
e 
morpholin
os804 

 pDNA803,825   

Sono-
poration 

Dyes802,845,85

0,851,857,865,871,

873-881,906, 
Drugs871,882-

886,1574 

Proteins828,86

5, 
Antibodies88

8, 
Peptides889 

Dextrans54

5,827,828,849-

851,864,865,86

7-872,890 

siRNA861,86

2, 
Antisense 
oligonucle
otides860, 
ssDNA1574 

mRNA863 pDNA545,830,

831,833,838,853-

859,890,1574 

25-75 nm 
nanoparticl
es867 

Viral 
particles887 

Shock Wave-
Mediated 
Permeab-
ilization 

Dyes899,903,90

5,906,909, 
Drugs1575 

Proteins901, 
Peptides904 

Dextrans89

7,899,900 
Antisense 
oligonucle
otides1576 

 pDNA1317,15

77-1579 
  

Laser-
Induced 
Cavitation 

Dyes487,879,91

4,918,919,922,926,

928,929,1580,1581 

Proteins340,91

9, 
Antibodies13

25 

Dextrans91

3,918,922,924,9

27,929,1581-

1584 

siRNA921,92

3,924 
mRNA339 pDNA339,913,

917,919,1585 
qDots309,310,1

584, Gold 
nanoparticl
es1586 

Bacteria339,3

40, 
Mitochondri
a341, ∼200 
nm 
polystyrene 
beads339 

Mechanical 
(Pressure) 

Hypo-
Osmotic 
Shock 

Dyes951,1587, 
Lanthanide 
ions/comple
xes967-972, 
Nucleotides9

51-960, 
Nucleosides9

51, BAPTA965 

Proteins92,93,

950,964,966,974, 
Peptides951,9

61 

Dextrans96

2,974,1588 
  pDNA975 qDots311, ∼5 

nm gold 
nanoparticl
es963 

 

Hydrostatic 
Pressure 

Dyes980,984 Proteins980,15

89, 
Antibodies15

89 

 ssODN988,9

89, 
gRNA991, 
siRNA981,98

2,997,1590, 
Antisense 
morpholin
os1591, 
Antisense 
oligonucle
otides996,99

8-1002 

mRNA984 pDNA978,979,

981,984,989,990,

998,1003,1004,1

590,1592,1593, 
Bacterial 
artificial 
chromo-
somes 
(BACs)983 

 ~100 nm 
Polystyrene 
microsphere
s1005 

Osmotic 
Rupture of 

Trehalose103

5, 
Proteins94,95,

1007-1021, 
Dextran94,1

026-1028, 
siRNA1042,1

043, 
  qDots1594, 

Protein-
Virus 
particles1039 
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Endosomes Lanthanide 
imaging 
probes71,72, 
Dyes1026,1036, 
UDP-
glucuronic 
acid1037 

Antibodies10

13,1022-1026, 
Peptides1029-

1031, Cell 
lysate1032 

Hyalurona
n1033,1034 

Antisense 
oligonucle
otides1038, 
Antisense 
morpholin
os804 

conjugated 
qDots306,1040,

1041 

Electro-
poration 

Conventiona
l Electro-
poration 
 

Dyes100,1056,1

078-1080, 
Radio-
tracers1082, 
SNAP-
reactive 
dyes742, 
Sugars79,470,5

34,1083, 
Metabolites1

081,1084, 
Drugs55,56,108

5,1086, 
Ions1087,1088, 
Molecular 
Beacons1089,1

090 

Proteins100,13

5,546,1091-1097, 
Antibodies10

1,125,537,1098-

1102, Cas9 
protein / 
RNP143,144,146

,147,287,1103 

Dextrans54

6,1078,1126,12

59 

Antisense 
oligonucle
otides1104, 
siRNA235,11

05-1109 

mRNA30,146

,185,187,257,25

9-

261,560,1110,1

111,1263,1266,

1271,1275,1277

,1278,1290,129

3,1294 

pDNA184,111

2,1113 
qDots294,312,3

13,1114, 20 
nm gold 
nano-
particles1115 

 

Micro-
electroporat
ion 

Dyes489,1224,1

228-1232 
Proteins1232 Dextrans12

31 
siRNA1232,1

595, 
miRNA1232 

 pDNA1224,12

26,1227,1229,12

30,1232,1595 

  

Nano-
electroporat
ion 

Dyes702,1233, 
Molecular 
Beacons1233,1

242 

Proteins1241 Dextrans12

41,1242 
siRNA1233, 
Oligonucle
otides1233 

 pDNA702,123

3,1234 
qDots1233  

Thermal Rapid 
temperature 
transitions / 
cycles 

Trehalose73,7

5,1035 
       

Supra-
physiological 
Heating 

Dyes1176 Proteins1596    pDNA1318,13

19 
  

Laser 
Absorption 
Converted 
to Heat 
 

Dyes1324,1325,

1327-1329,1597 
Antibodies13

26 
Dextrans13

25,1329 
siRNA1598  pDNA1328,13

29 
  

Opto-
poration 

Laser Opto-
poration 

Dyes252,480-

484,486,1333,1340

,1341,1343,1345,1

346,1348,1354,135

7,1361-1366, 
Sucrose485, 
Molecular 
beacons1367, 
Ions1333,1343,1

368 

Peptides486,1

359, 
Proteins1333,1

343 

Dextrans13

33,1343,1349,1

353,1360,1361 

siRNA1333,1

343,1352, 
Antisense 
morpholin
os1353 

mRNA252,13

53 
pDNA481,483,

484,1330,1332-

1358 

Semi-
conductor 
nano-
crystals1333,1

343, Gold 
nano-
particles1369, 
qDots1370 

~1 μm 
Polystyrene 
beads1371 

Bio-
chemical 

Organic 
Solvents & 
Penetration 
Enhancers 

 Proteins1385   mRNA1385 pDNA1385   

Detergents / 
Surfactants: 
Generic 

Nucleosides1

422, Dyes1422, 
Nutrients & 
Metabolites1

422, Ferro-

Proteins1423, 
Antibodies99,

1423 
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cyanide1396 

Detergents: 
Saponin 
Family 

Inositol1413 Proteins539, 
Peptides539, 
Antibodies14

17, Cyto-
plasmic 
extracts1415 

Dextrans14

15 
   ~20 nm 

nano-
particles1416, 
qDots311 

 

Pore-
Forming 
Toxins: CDC 
Family 
 
 

PNA 
probes1507-

1509, 
Molecular 
Beacons1089,1

510-1516, 
Photosensiti
zers1517, 
Phosphatidic 
acid1518, Rb+ 
ions102, 
ATP102, 
Various RNA 
probes1519-

1521, 
Lanthanum 
probes72,1522

, Nucleotide 
analogues152

6 

Proteins102,12

1,497,1472,1473,1

486-1488, 
Peptides1474,

1489,1490,1526, 
Cyto-plasmic 
extracts508,54

0,1491-1506 

Dextrans14

73,1526 
siRNA238,23

9,1475, 
Antisense 
oligonucle
otides1104,1

471,1476-1485 

  Gold 
nanoparticl
es1523 

 

Membrane-
Active 
Peptides 

Dyes1433,1434 Proteins1435 Dextrans14

36 
Oligonucle
otides1437 

    

Lipid Per-
oxidation 

   siRNA1534     

Gated 
Channels & 
Valves 

Membrane 
Trans-
porters & 
Channels 

Dyes1535,1537,

1545,1550,1599,16

00, Ions1546, 
Trehalose77 

Proteins1547, 
Peptides1547 
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