Bioturbator-stimulated loss of seagrass sediment carbon stocks

Alexandra C.G. Thomson¹*, Stacey M. Trevathan-Tackett¹,², Damien T. Maher³,⁴, Peter J. Ralph¹, Peter I. Macreadie³

¹Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
²Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, 221 Burwood Hwy, Burwood, VIC 3125 Australia.
³¹ Southern Cross Geoscience, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
⁴National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia.

*alexandra.thomson@uts.edu.au

Key Words: Blue carbon • seagrass • bioturbation • microbial priming • carbon sequestration • remineralisation •
Abstract

Seagrass ecosystems are highly productive, and are sites of significant carbon sequestration. Sediment-held carbon stocks can be many thousands of years old, and persist largely due to sediment anoxia and because microbial activity is decreasing with depth. However, the carbon sequestered in seagrass ecosystems may be susceptible to remineralisation via the activity of bioturbating fauna. Microbial priming is a process whereby remineralisation of sediment carbon (recalcitrant organic matter) is stimulated by disturbance, i.e. burial of a labile source of organic matter (seagrass). We investigated the hypothesis that bioturbation could mediate remineralisation of sediment carbon stocks through burial of seagrass leaf detritus.

We carried out a 2-month laboratory study to compare the remineralisation (measured as CO$_2$ release) of buried seagrass leaves (*Zostera muelleri*) to the total rate of sediment organic matter remineralisation in sediment with and without the common Australian bioturbating shrimp *Trypaea australiensis* (Decapoda: Axiidea). In control sediment containing seagrass but no bioturbators, we observed a negative microbial priming effect, whereby seagrass remineralisation was favoured over sediment remineralisation (and thus preserving sediment stocks). Bioturbation treatments led to a 2- to 5-fold increase in total CO$_2$ release compared to controls. The estimated bioturbator-stimulated microbial priming effect was equivalent to 15% of the total daily sediment-derived CO$_2$ releases. We propose that these results indicate that bioturbation is a potential mechanism that converts these sediments from carbon sinks to sources through stimulation of priming-enhanced sediment carbon remineralisation. We further hypothesised that significant changes to seagrass faunal communities may influence seagrass sediment carbon stocks.
Introduction

Estuarine and coastal ecosystems, especially seagrass meadows, saltmarshes, and mangrove forests (known as “blue carbon” ecosystems), are global hotspots for carbon (C) sequestration and storage (Donato et al. 2011; Fourqurean et al. 2012; Mcleod et al. 2011). Investigating how marine ecosystems sequester and release C has been proposed as a scientific priority (Guenet et al. 2010). Gaining a comprehensive understanding of the microbial processes within these environments is essential in order to interpret the factors affecting C sequestration in coastal seagrass sediments. Within seagrass ecosystems, labile organic C that is released directly from the rhizosphere or through microbial hydrolysis of particulate organic C (POC) is rapidly degraded by microbial activity within the sediment (Blum and Mills 1991). The remaining POC can stay buried for centuries to millennia due to anoxic sediment conditions and low microbial activity (Burdige 2007; Mcleod et al. 2011). This burial results in a large pool of relatively “stable” C; however, in terrestrial systems it has been shown that inputs of labile organic matter (OM) can lead to a disproportionate remineralisation, or release, of this “stable” C via the microbial priming effect (Bianchi 2011; Fontaine et al. 2003; Guenet et al. 2010; Kuzyakov et al. 2000).

Burrowing macrofauna are a common feature in coastal benthic ecosystems (Dworschak 2005; Dworschak 2000; Kristensen et al. 2012), but recent studies (e.g. Atwood et al. 2015) suggest that the intensity of bioturbation and the population density of bioturbating fauna is increasing globally due to changes in food web structures, namely via the loss of top-down control. Furthermore, understanding the impact of these bioturbators on the longevity of coastal sediment C stocks is a current research priority (Macreadie et al. 2014). The physical activity of macrofauna can have a major effect on coastal C cycling and sequestration, given their influence on the sediment and their relationship with sediment microbes (Kristensen...
Direct impacts include mechanical re-working of sediment, which disperses C-rich deep sediment onto the sediment surface in oxygenated water. Indirect impacts include feeding processes which alter the microbial community within the deeper parts of the burrow (Kristensen 2008). According to the definition proposed by Kristensen et al. (2012) which is adopted here, bioturbation encompasses all of these activities, including the process of “bioirrigation” or burrow ventilation.

Bioturbators can act as a physical catalyst for sediment metabolism by incorporating organic matter (OM) e.g. seagrass detritus (Aller 1983; Kristensen et al. 1985) into burrow walls and introducing oxygen into an otherwise anoxic environment. Callianassid shrimp, which include the study species *Trypaea australiensis* (Decapoda: Axiidea), are dominant bioturbators in both the sub-tropical and tropical regions of the World (Dworschak 2001; Rowden et al. 1998; Suchanek 1983), and often exist on the boundaries and within seagrass meadows (Berkenbusch and Rowden 2003; Boon et al. 1997; Kneer et al. 2013; Suchanek 1983).

Callianassids are described as “upward conveyors” with regard to their bioturbating activity, meaning they transport deep sediment particles to the surface, a characteristic common to many other bioturbators, including the lugworm *Arenicola* (Kristensen et al. 2012). In Australia, Callianassids are dominant bioturbators, occupying both eastern and western coastlines and establishing burrows in a range of sediments, from mud to coarse sand (Poore 1975; Poore 2008; Sakai 1988). Indeed, Axiidean shrimp burrows are often lined with seagrass detritus, which is actively integrated into the sediment by reworking and faunal ‘gardening’ (Dworschak et al. 2006; Dworschak 2001; Kneer et al. 2008; Stapel and Erftemeijer 2000; Vonk et al. 2008). Bioturbator burrows also support extensive microbial populations, with up to 11-times higher microbial biomass found within the walls of burrows.
compared to in surrounding sediment (Papaspyrou et al. 2005). This coupling of high microbial biomass and increased supply of fresh organic matter can stimulate CO\textsubscript{2} release. The magnitude of this sediment stimulatory effect depends on bioturbator activity and intensity of burrow irrigation, density of fauna, and most critically, the quality and quantity of OM (Banta et al. 1999; Hansen and Kristensen 1998; Papaspyrou et al. 2007).

Although seagrass ecosystems are ideal for rapid, permanent C storage, the preservation of these stocks is threatened by anthropogenic activity, including habitat loss (Fourqurean et al. 2012; Koller et al. 2006; Macreadie et al. 2015; Marbà et al. 2006), and loss of top-down predator control affecting food webs and trophic cascades (Atwood et al. 2015). Such disturbances could lead to microbial priming, which occurs when moderate changes in environmental conditions (e.g. physical disruptions or fresh OM inputs) ‘prime’ or activate microbes into causing leakage (efflux) of stored ‘stable’ (i.e. recalcitrant) C from the sediment (Kuzyakov et al. 2000). Terrestrial studies have shown that inputs of labile OM can lead to significant increases of recalcitrant OM remineralisation (Fontaine et al. 2007; Fontaine et al. 2003; Kuzyakov et al. 2000), in some cases increasing soil respiration rates up to 11-fold (Blagodatskaya and Kuzyakov 2008). The effects of bioturbation on sediments can vary widely depending on density, bioturbation type, and seagrass morphology and density (Kristensen et al. 2012). While in some cases it can cause major turnover of sediments to the point of seagrass habitat loss (Berkenbusch et al. 2007; Valdemarsen et al. 2011; Valentine et al. 1994), not all bioturbation is detrimental to seagrass sediments and in some cases fulfils essential functions in a meadow (DeWitt 2009).

While previous research has highlighted the microbial priming effect (MPE) in both terrestrial and marine systems (Aller 1994; Banta et al. 1999; López et al. 1998), the effect of priming on C cycling has recently garnered increased attention in marine systems (Gontikaki et al. 2009).
2015; Guenet et al. 2010; Steen et al. 2016), specifically with regard to identifying the sources of C remineralisation and release in coastal ecosystems (van Nugteren et al. 2009). Indeed, the stimulation of sediment metabolism by bioturbating macrofauna could be a trigger for remineralisation of recalcitrant C in deep sediment layers, which could be enhanced by the MPE. However, how bioturbation affects the remineralisation (CO₂ release) of different sediment C sources (i.e. detritus) and buried recalcitrant OM stocks in seagrass ecosystems has yet to be investigated. Indeed, compared to sediment C stocks, seagrass detritus itself is relatively labile in nature. Seagrass detritus contains a large portion of labile OM, present as protein, hemicellulose and soluble carbohydrate compounds, making up as much as 30% of the total dry weight (Trevathan-Tackett et al. 2015).

The aim of this study was to determine the effect of (1) bioturbation, and (2) the burial of a labile organic matter (LOM) source (i.e. seagrass leaf detritus) into deeper sediment on remineralisation of sediment carbon stocks. We hypothesise that these disturbances will stimulate sediment metabolism, both separately and in combination. To do this we used an orthogonal laboratory experiment design, added Callianassids and seagrass to sediment, and measured the quantity and sources of net respired CO₂ using isotopically-enriched seagrass detritus and traced the evolution of ^13C-CO₂. We hypothesised that the incorporation of seagrass (LOM) detritus into the sediment via bioturbation would lead to higher fluxes of sediment-sourced CO₂ into the water column, and that a microbial priming effect (MPE) (as defined by Kuzyakov et al. 2000) would increase the overall remineralisation of sediment recalcitrant organic matter (ROM).
Methods

Sediment and seagrass collection

Sand consisting of a fine to medium grain (average grain size between 62.5 – 500µm) sediment (Trevathan-Tackett 2016), with an organic carbon (C$_{\text{org}}$) content of 1.5 – 3%, was collected from Fagans Bay, Brisbane Waters, NSW (-33.43˚, 151.32˚) in August 2015 (Fig. 1). Fagans Bay is the northern-most bay within the Brisbane Waters estuary, with freshwater inputs from Narara Creek. Fagans Bay itself has a high sediment and nutrient load, with minimal variations in water depth and a yearly water temperature range of 12 – 29°C (Gladstone 2006). Zostera muelleri is the dominant seagrass species within the bay, and at the time of sampling seagrass density was estimated as described in McKenzie et al. (2001) at approximately 75 – 80% cover, and ranged in canopy height from 10 cm in the shallows to approximately 50 cm in the deepest part of the meadow.

Collection occurred along the edges and within an existing shallow subtidal Z. muelleri meadow. The top 1 – 2 cm of sediment was removed prior to collection to ensure microalgae were excluded. Sediment was collected to a depth of 30 – 40 cm, wet sieved and homogenised on site using a 2 mm sieve to remove any plant material and macrofauna. Collected sediment was covered in fresh seawater to limit oxygen exposure. Subsamples of the homogenised sediment were dried (60°C for 24 hours) and acidified following the procedure described below (see “sediment characteristics”). The subsamples (n = 3) were then analysed for δ^{13}C on an Isotope Ratio Mass Spectrometer (Thermo-Finnegan Delta V IRMS) to calculate the contribution of sediment to CO$_2$ efflux, and on an elemental analyser (Costech Elemental Analyser) to establish sediment organic carbon content, respectively.
Whole *Z. muelleri* (henceforth referred to as “seagrass”) plants were collected from the same location. Plants were gathered from a meadow approximately 10 m from shore and kept in seawater during transport back to the laboratory. Only plants that appeared visually healthy were collected, while those showing signs of heavy epiphyte colonisation or senescence were excluded from the experiment.

Collection of Callianassids

T. australiensis (henceforth referred to as “Callianassids”) is an upward conveyor deposit-feeding bioturbator (Butler et al. 2009; Kristensen et al. 2012), that constructs complex burrows (typically with two openings) (Katrak and Bird 2003) ranging from < 10 cm (Butler and Bird 2008) to approximately 50 cm in depth (Stapleton et al. 2001). Callianassids typically live on a diet of diatoms and small particles of organic material, preferring particles < 63 µm in size (Stapleton et al. 2001).

Surveys for Callianassid density were performed at several sites in the Sydney region. At Careel Bay, NSW (-33.61°, 151.32°), and Narrabeen Lagoon, NSW (-33.71°, 151.29°), transect lines were run from the shoreline for 50 m through seagrass meadows dominated by *Z. muelleri*. At alternating sides of the transect line, 50 cm² quadrats were placed on the seagrass at 2 m intervals. Active burrow openings (mounds, with fresh sediment on the area surrounding the opening) were counted, and corresponding seagrass density was assessed as described in McKenzie et al. (2001). Callianassid density ranged from 2 – 248 per m², and in areas with seagrass density > 40%, there was an average of 36 active (mound) burrow openings per m².

Callianassids were collected from within an intertidal mixed *Z. muelleri* and *Halophila ovalis* meadow located within Narrabeen Lagoon, NSW (Fig. 1). Similar to Fagans Bay, Narrabeen
Lagoon has a high sediment and nutrient load (Roy et al. 2001), with the sediment characterised as a fine to medium (average grain size between 200 – 412µm) sand with an organic carbon (C$_{org}$) content of 0.5 – 3.9% (Dye and Barros 2005). At the time of sampling, seagrass density estimated following McKenzie et al. (2001) was patchy, with an estimated 40 – 50% seagrass cover. Visible burrows were excavated, and sediment was sieved through a 0.5 cm mesh to retain Callianassids. Smaller-sized (0.6 – 0.7 g total wet weight) adult Callianassids were used to ensure that the sediment volume did not limit burrowing activity. Individuals were transported in seawater back to the laboratory and were left undisturbed in aerated seawater for 2 – 3 days to ensure that their guts were emptied before exposure to the sediment mesocosms (described in the experimental set-up below). Individuals were weighed before their introduction to experimental conditions.
Fig. 1: Map of the Central East Coast of New South Wales (NSW), showing the locations of the three sampling sites (Careel Bay, Narrabeen Lagoon, and Fagans Bay Lagoon) in relation to the NSW capital of Sydney.

Isotopic labelling of seagrass detritus

Epiphytes were gently removed from seagrass leaves, and plants were rinsed in the laboratory with artificial seawater (salinity 32) to remove any sediment. They were then labelled with 99% atm 13C-amended sodium bicarbonate (Novachem, VIC, Australia). Labelled sodium bicarbonate (1.2 g) was mixed with 40 L of artificial seawater (salinity 32). The labelled seawater was transferred into an 80 L container, where the seagrass plants were submerged
and incubated for 72 hours under light (150 \(\mu \text{mol photons m}^{-2} \text{s}^{-1} \)); with 12:12 hour day and night light cycles. Plants were then removed from the solution, and thoroughly rinsed with distilled water to remove salts and excess label. This process and enrichment time likely concentrated enrichment in the labile compounds (e.g. soluble carbohydrates) within the seagrass leaves (Kaldy et al. 2013), however given the short time of this study (65 days), decomposition was most likely linked primarily to these compounds. Leaves were isolated from roots and rhizomes, and chopped into uniform pieces < 15 mm. The prepared leaves were then separated into 4.8 g portions, and each portion was left to partially degrade in artificial seawater (salinity 32) for a further 72 hours. Subsamples of both the labelled seagrass \((n = 3)\), and unlabelled seagrass \((n = 3)\) were analysed for \(\delta^{13}\)C and organic carbon content on an Isotope Ratio Mass Spectrometer (Thermo-Finnegan Delta V IRMS), and elemental analyser (Costech Elemental Analyser), respectively.

Experimental set-up

A laboratory experiment was carried out for 65 days to quantify the effect of Callianassid bioturbation on seagrass degradation and sediment CO\(_2\) fluxes. Four treatments with five replicates each were established, consisting of bioturbated and control (no bioturbators added) sediment mesocosms, with (amended) and without (unamended) the addition of \(^{13}\)C-labelled seagrass leaves. Sediment cylinders (referred to as “mesocosms”) were prepared by filling sediment into 20 acrylic (length = 30 cm; diameter = 8 cm) tubes, to a depth of 22 cm, which were sealed watertight (from the bottom) with rubber caps. The constructed sediment mesocosms were left to settle overnight (approximately 16 hours) at ambient temperature (approximately 22°C).
The following day, 250 g sediment, corresponding to a 4 cm layer, was added to control mesocosms (n = 10). The portions of seagrass detritus (4.8 g wet weight) were mixed with sediment (100 g wet weight) and added to the remaining mesocosms as a 2 cm thick layer, thereafter an additional 2 cm of unamended sediment was added. All sediment mesocosms were left to settle for 12 hours, so that the final sediment depth was 24 cm. Each mesocosm was then topped up with additional artificial seawater, and all 20 sediment mesocosms were transferred to four 90 L seawater tanks filled with artificial seawater (salinity 32), with at least 5 cm of water above each mesocosm. Four tanks were used, to make sure all five replicates of the four treatments could be kept together in one tank to avoid faunal migration or contamination with 13C. Each tank was fitted with two air stones for aeration and mixture of the surface water within tanks and mesocosms. All tanks were covered and kept in the dark inside the laboratory at a constant 22°C (reflecting the average yearly water temperature for the Sydney region of 18 – 23°C) for the length of the experiment to restrict growth of benthic microalgae and contamination of non-seagrass amended treatments.

On day 1 of the experiment, Callianassids were added to each bioturbated mesocosm (10 mesocosms in total, 1 individual in each 0.005 m² mesocosm, corresponding to 0.6 – 0.7 g total wet weight). Given the recorded natural densities of Callianassids, we suggest that this study represents an extreme case of bioturbation, such as that seen in the high densities observed in the field survey portion of this study. The animals were allowed to construct burrows for 24 hours before the first flux incubation was initiated on day 2 of the experiment. Mesocosms were discarded if Callianassids were not viable, with a final n = 3 (in mesocosms with bioturbation, amended with seagrass); n = 4 (in mesocosms with bioturbation, control sediment); and with the remaining treatments n = 5 at the conclusion of the 65 day experiment.
Callianassid metabolism

The contribution of Callianassid metabolism to CO$_2$ and O$_2$ fluxes was determined in a separate experiment. Individual Callianassids were recovered from the sediment mesocosms, and weighed before being transferred to sealed 500 mL glass vials filled with O$_2$ saturated seawater and left for approximately 24 hours to settle. Initial and final seawater samples for both O$_2$ and CO$_2$ were taken (as described above), before and after incubation for 2 hours. During the incubation period, individual Callianassids were held in darkness, and were observed to be moderately active. Vials were kept in darkness at a constant temperature (22 °C) and salinity (32) throughout the incubation. Samples were analysed for DIC and O$_2$ as described above. The resulting flux values for Callianassid metabolism were then subtracted from the relevant mesocosm fluxes.

Sediment metabolism

Benthic fluxes of O$_2$ and CO$_2$ (dissolved inorganic C or DIC concentrations) were determined before and after Callianassids were added to mesocosms (days 2, 4, 7, 15, 21, 28, 35, 42, 49, 56, and 63). Mesocosms were sealed with gas-tight rubber caps, and water circulation was ensured with stirring magnets (1.5 cm long) fitted to the mesocosms, and driven by a rotating external magnet (~ 60 rpm). Stirring magnets were positioned in the middle of the water column (approximately 4 cm from the sediment surface) to prevent any sediment resuspension. All mesocosms were incubated in darkness within their respective tanks at a constant temperature (22°C) for 2 – 3 hours. O$_2$ concentration within the water was measured at the beginning and at the end of the incubation by inserting a Firesting Optical Microsensor, with a 100 µm retractable tip, connected to an Optical Oxygen Meter (FireSting, Pyro Science, Denmark), directly into the overlying mesocosm water. The exchange of O$_2$ (mmol
m2 d$^{-1}$) between sediment and water was calculated from changes in overlying mesocosm water concentrations during incubations, the incubation time, volume of overlying water within each mesocosm, and surface area of the respective mesocosm using the following calculation:

$$O_2\text{Flux} = \frac{[O_2 \text{Conc}_{T1} (mmol \ L^{-1}) - O_2 \text{Conc}_{T0} (mmol \ L^{-1})] \times \text{Water volume} (L^{-1})}{\text{Sediment surface area} (m^2) \times \text{Time} (d^{-1})}$$

Initial and final water samples to determine CO$_2$ flux rate were taken with a 60 mL syringe, transferred to 40 mL gas tight glass vials and preserved with saturated HgCl$_2$ (300 µl). Total CO$_2$ (measured as change in DIC, which also includes seawater carbonate components, HCO$_3$ and CO$_3^{2-}$) samples were stored in darkness at 5°C and analysed with a DeltaV Infared Mass Spectrometer (IRMS) with a precision of < 1‰, coupled to an OI TOC analyser (Maher and Eyre 2011b).

An isotope mass balance model was used to determine the contributions of sediment and seagrass DIC (CO$_2$) effluxed into the overlying water (Maher and Eyre 2011b). Over the course of this study, the δ^{13}C value of fresh unlabelled seagrass was not observed within DIC samples. Fresh unlabelled seagrass was therefore excluded from remineralisation calculations. The δ^{13}C values of accumulated DIC (represented below as x) were calculated by:

$$x = \frac{(\text{DIC Conc}_{T0} \times \delta^{13}\text{C} - \text{DIC}_{T0}) - (\text{DIC Conc}_{T1} \times \delta^{13}\text{C} - \text{DIC}_{T1})}{(\text{DIC Conc}_{T0} - \text{DIC Conc}_{T1})}$$

DIC Conc$_{T0}$ and DIC Conc$_{T1}$ represent the measured initial and final overlying water DIC concentrations, respectively.

The results of the isotope mass balance were then used in a 2-end member mixing model, using the known δ^{13}C values of both the seagrass (established via IRMS analysis of freshly
labelled seagrass subsamples) and the sediment (established via IRMS analysis of fresh sediment subsamples), to determine the proportion of seagrass-derived DIC in the effluxed DIC (represented below as DIC\textsubscript{seagrass}). The equation was rearranged to calculate the proportion of sediment-derived DIC at each time point:

\[
\text{DIC\textsubscript{seagrass} (proportion)} = \frac{(\delta^{13}\text{C} \text{ measured} - \delta^{13}\text{C} \text{ sediment})}{(\delta^{13}\text{C} \text{ seagrass} - \delta^{13}\text{C} \text{ sediment})}
\]

The \(\delta^{13}\text{C}\) measured represents the calculated \(\delta^{13}\text{C}\) value of overlying water DIC (CO\textsubscript{2}) derived from seagrass. These calculated proportions were then multiplied by the rate of CO\textsubscript{2} flux (calculated using DIC accumulation over time) to establish the rate of both seagrass and sediment remineralisation within each treatment.

Microbial priming effect (MPE) estimations were calculated based on the MPE equations given in Kuzyakov et al. (2000). Additive interactions between bioturbation by Callianassids and sediment remineralisation (i.e. changes to CO\textsubscript{2} flux due to burrowing and Callianassid respiration and metabolism) were calculated from control (no seagrass enrichment) treatments using the equation below, with CO\textsubscript{2} representing the measured rate of sediment-derived remineralisation:

\[
\text{Callianassid CO}_2 = \text{Total Sediment CO}_2\text{(faunated control)} - \text{Total Sediment CO}_2\text{(defaunated control)}
\]

As the remineralisation of seagrass was already accounted for, the MPE in relevant treatments was calculated using the equation below (Kuzyakov et al. 2000; Trevathan-Tackett et al. 2017), with CO\textsubscript{2} representing the calculated rate of remineralisation, and Total Sediment CO\textsubscript{2} representing the total sediment-derived CO\textsubscript{2} flux from respective treatments:

\[
\text{MPE} = \text{Total sediment CO}_2 - \text{Sediment CO}_2\text{(faunated control)}
\]
The sediment-associated CO$_2$ release from control (no bioturbators added sediment was added to the calculated Callianassid interaction and both were subtracted from the measured rate of sediment C remineralisation in sediment containing both seagrass and Callianassids. Any additional CO$_2$ released was attributed to the MPE.
Sediment characteristics – measurement of organic carbon content

Upon completion of the experiment, the sediment within each mesocosm was sectioned into 1 cm intervals to 5 cm depth, 2 cm intervals to 17 cm depth, and two 3 cm intervals to the bottom of the mesocosm. Subsamples of each sectioned portion were taken for sediment bulk density and organic C analysis. Callianassids were removed whole (live) from respective treatments, and sediment from each mesocosm depth was homogenised before analysis. 4 ml subsamples of sediment for gravimetric analysis were taken with a cut-off syringe. Samples were transferred to aluminium trays, and the wet weight of each sample was recorded. Samples were dried at 60° C for 24 hours and ground with a mortar and pestle, and subsamples of each section (0.5 g each) were acidified with HCl overnight at room temperature. The acid was then washed out of the sediment with double distilled water (and centrifuged at 1500 rpm for 8 minutes between each wash), and samples dried (60 °C for 48 hours) and ground. The C$_{\text{org}}$ content of each sample (supplementary information) was measured using high temperature (950°C) combustion (Costech Elemental Analyser).

Recovery of buried seagrass detritus from sediment mesocosms

All large pieces of particulate detritus > 0.5 mm were recovered from each sediment slice of each mesocosm and the extent of degradation, quantity, and distribution of seagrass material remaining in the sediment at the end of the experiment was determined. After sediment subsamples were taken, sediment from each slice was individually sieved (0.5 mm mesh) and all visible detritus was retained. The collected detritus was washed in distilled water, visually assessed, and then dried at 60 °C for 24 hours. Seagrass detritus taken from each sediment depth was then re-weighed, and all material recovered from within each mesocosm was pooled. The dried detritus (n = 5, Initial and Control; and n = 3, + Bioturbation) was then
ground using a clay mortar and pestle, and analysed for OM quality using thermogravimetry (Lopez-Capel et al. 2005). The ground detritus from each mesocosm was transferred into a platinum cup, and heated for 10°C min^{-1} to 600 °C under N2 (SDT Q600, TA Instruments, New Castle, DE, USA). Quantification of mass loss within designated thermal intervals was identified using Universal Analysis software (TA Instruments, New Castle, DE, USA).

Allocation of thermal intervals was established based on the rate of change derivative (% mass loss °C^{-1}), indicating separate temperature-driven weight loss intervals. According to Trevathan-Tackett et al. (2015), the first OM mass loss interval (labile OM, corresponding to soluble carbohydrates and hemicellulose) ranges from 200 °C to 300 °C, followed by recalcitrant OM (including cellulose and organic residues) from 300°C to 400°C. Refractory OM (including lignin and insoluble polysaccharide residues) mass loss occurs between 400°C to 600 °C. Estimations for detritus burial were based on the depth of recovery and comparison to initial addition weight.

Statistical analysis

First, a one-way Analysis of Variance (ANOVA) was used to test the impact of Callianassid bioturbation (independent variable) on the degradation of the seagrass detritus (dependent variables: recovered detritus OM composition and total biomass recovery). Next, two-way ANOVAs were used to analyse the effects of fauna and seagrass addition (independent) on total mesocosm sediment C_{org} (g) content (dependent). Lastly, two-way ANOVAs tested the effect of faunal and seagrass addition (independent) on the time integrated release of net CO_{2} release (dependent) and CO_{2} flux over time (dependent with repeated measures).

Levene’s test for homogeneity of variance was performed on data prior to analysis. When appropriate, Tukey’s post-hoc test was used to establish which variables produced a
significantly different interaction. All tests were performed with a significance level of $\alpha = 0.05$, using IBM SPSS Statistics (Ver. 22).
Results

Recovery of seagrass detritus (> 0.5 mm)

The initial sediment and seagrass detritus C$_{org}$ content was 1.18 ± 0.09 % and 30.14 ± 1.11% dry weight (DW), respectively. After the 13C labelling, the seagrass C$_{org}$ content was 31.11 ± 0.23% DW.

Approximately 79% (± 5.51%) of the original detritus buried in control sediment was recovered after 65 days (Fig. 2a), corresponding to approximately 29.1 g C m$^{-2}$. However, recovery of seagrass in bioturbated sediment was significantly lower ($F_{1,4} = 13.031, p = 0.023$), with a total of 65% ± 2.55% of the original seagrass detritus recovered (Fig. 1b), representing approximately 20.5 g C m$^{-2}$. There was no observable visual difference in the seagrass detritus between the bioturbated and control sediments; specifically, there were no bite marks or signs of consumption on the detritus recovered from bioturbated sediments.

Compared to the original detritus burial depth (2 – 3 cm; Fig. 2a), seagrass detritus in the control sediment appeared at a reduced depth relative to the sediment surface due to compression, while bioturbation by Callianassids shifted the distribution of seagrass to approximately 20 cm deeper (maximum depth of 23 cm; Fig. 2b).

All treatments exposed to bioturbation were found to have deposited sediment on the sediment surface of all mesocosms, equating to, on average, an additional 0.81 cm (± 0.80) of deposited sediment. Furthermore, assuming the total burrow length (including offshoot tunnels) was no more than 52 cm and burrow width an average of 0.75 cm, we conservatively estimate that the Callianassid burrows increased the original 50.3 cm2 mesocosm sediment surface area in each mesocosm by up to 105 cm2 (representing more than a 200% increase).
Fig. 2: Vertical profiles of seagrass detritus recovery in Control (no bioturbators added) sediment mesocosms (a), and mesocosms with the Callianassid bioturbation + Bioturbation (b). Column bar width is indicative of the size of the sediment portion sampled. The dashed reference line (2 cm – 4 cm depth) indicates the original burial depth of seagrass detritus. Error bars: SE. N = 5 (Control); and n = 3 (+ Bioturbation).
387 **Organic content of seagrass detritus recovered from sediment**

388 Seagrass detritus recovered from bioturbated sediment contained a significantly lower
389 proportion of soluble carbohydrate associated OM (labile OM, including proteins and
390 hemicellulose) than detritus recovered from control sediment (F_1, 4 = 21.54, p = 0.01; Fig. 3).
391 The total organic matter (OM) of the seagrasses were 49.44 ± 8.71%, 17.84 ± 1.76% and
392 15.48 ± 1.80% for the initial, Control and + Bioturbation samples, respectively. The
393 remaining biomass (> 600 °C) consisted of inorganics and ash/char.
394 There was no difference in the proportion of cellulose-associated OM (recalcitrant OM; F_1, 4
395 = 0.668, p = 0.46) or lignin-associated OM (refractory OM; F_1, 4 = 2.333, p = 0.202) in
396 recovered detritus between bioturbated and control sediment.
Fig. 3: Organic matter composition of seagrass (*Zostera muelleri*) leaf detritus, determined via thermogravimetric analysis. Specifically, the percentage of labile OM (mass lost between 200 – 300 °C), recalcitrant (mass lost between 300 – 400 °C), and refractory OM (mass lost between 400 – 600 °C), in seagrass leaves fresh from the field (initial), recovered from control sediment (Control), and sediment populated with Callianassids (+ Bioturbation), is shown. The percentage of labile, refractory and recalcitrant OM are presented as a percent of total OM. N = 5 (Initial and Control); and n = 3 (+ Bioturbation). Bars represent means ± 1 SE. In some places error bars are too small to be visible.
The addition of Callianassids had a clear impact on the O$_2$ uptake by the sediment (Fig. 4a, 4b), and TCO$_2$ release (Fig. 4c, 4d). The addition of Callianassids increased sediment O$_2$ demand consistently, with consumption of O$_2$ approximately 1.5 – 4 times that of control sediment over time.

O$_2$ uptake was initially similar at about 53 – 64 mmol m$^{-2}$ d$^{-1}$ in the control unamended sediment and control sediment containing seagrass. Sediment containing seagrass displayed relatively consistent O$_2$ consumption over time, with an uptake rate of 46 – 56 mmol m$^{-2}$ d$^{-1}$ in sediment populated with Callianassids, and 33 – 41 mmol m$^{-2}$ d$^{-1}$ in control sediment. O$_2$ uptake in unamended sediment was initially variable, and stabilised after ~ 21 days. After this time, unamended sediment populated with Callianassids consistently had an O$_2$ uptake rate higher than that of control (no bioturbators added) sediment (as described in the previous paragraph).

Significantly more CO$_2$ was released from the sediment populated with Callianassids ($F_{1,4} = 23.972, p = 0.039$), compared to control sediment. The release of CO$_2$ in both Callianassid treatments was double that of control (no bioturbators added) sediment. Callianassid bioturbation had a significant interaction with CO$_2$ release over time ($F_{9,1} = 2.646, p = 0.038$). The presence of seagrass also led to an increase in sediment CO$_2$ release ($F_{1,2} = 43.335, p = 0.021$), however the impact of seagrass enrichment did not have a significantly sustained interaction over time ($F_{1,10} = 1.345, p = 0.283$).

In sediment containing seagrass, bioturbation by Callianassids lead to a 1.6 – 5.8 time increase in CO$_2$ release. A consistent decline in CO$_2$ release was observed in both bioturbated and control sediments throughout the experimental period. CO$_2$ release in unamended
sediments was variable, with release in sediment populated with Callianassids being 1.1 – 6.4 times that of control sediment, until the last measurement.

Callianassid individuals were responsible for an average of 18% (seagrass treatments) and 29% (unamended sediment treatments) of the total CO$_2$ production; and 16% (seagrass treatments) and 21% (unamended sediment treatments) of the total O$_2$ uptake, per day.
Fig. 4: Total oxygen (O₂; Fig. 4a, b) influxes, and carbon dioxide (CO₂; Fig. 4c, d) effluxes over time in sediment mesocosms with (+ seagrass) and without (unamended sediment) seagrass detritus (mmol m⁻² d⁻¹). The two curves in each graph show efflux profiles in sediment mesocosms with (+ Bioturbation) and without (Control) Callianassid bioturbation. Values represent means ± SE. N = 3 (+ Seagrass, + Bioturbation; and + Seagrass); n = 4 (Unamended sediment, + Bioturbation); and n = 5 (Control).
Sediment and seagrass remineralisation rates

Isotopic tracing of released CO$_2$ (DIC) revealed that Callianassid bioturbation had a clear impact on the rate of sediment remineralisation (Fig. 5a, 5b). Significantly more sediment organic matter (OM) was remineralised in treatments with bioturbation by Callianassids ($F_{1, 15} = 351.071, p = 0.003$): the rate of sediment remineralisation was 2–5 fold greater than in control sediment (Fig. 5b). Bioturbation by Callianassids had a significant interaction with sediment remineralisation over time ($F_{9, 1} = 139.047, p = 0.007$). The presence of seagrass detritus also had a significant impact on sediment remineralisation ($F_{1, 10} = 28.958, p = 0.033$), with the average rate of sediment remineralisation in control treatments and in sediment amended with seagrass calculated to be 17.2 ± 1.1 and 8.2 ± 1.3 mmol m$^{-2}$ d$^{-1}$, respectively. These remineralisation rates represent an approximately 45% lower sediment remineralisation rate in control sediment amended with seagrass compared to control sediment; however, the impact of seagrass addition did not have a significantly sustained interaction over time ($F_{9, 1} = 1.638, p = 0.166$).

There were no differences in the rates of seagrass remineralisation ($F_{1, 15} = 0.239, p = 0.673$) in both control and bioturbated sediments (Fig. 5a). Rates declined steadily for the first 3 weeks of the study, and became stable after the first month (~ 7 mmol m$^{-2}$ d$^{-1}$).

A significant interaction was observed between sediment populated with Callianassids and sediment amended with seagrass. Both conditions showed a significantly increased (1.3–6-fold greater) rate of sediment remineralisation (recalcitrant organic matter; ROM) compared to all other conditions ($F_{9, 1} = 25.436, p = 0.037$).
Fig. 5: Total calculated (a) seagrass and (b) sediment remineralisation rates in sediment mesocosms amended with seagrass (+ Seagrass), and without seagrass. The curves in the top
graph (a) show seagrass remineralisation calculated from $\delta^{13}C$ values measured in respective sediment mesocosms with (+ Bioturbation; black symbols) and without (Control; white symbols) Callianassid bioturbation. Curves in graph (b) reflect sediment remineralisation calculated from $\delta^{13}C$ values measured in all treatments. Values represent means ± SE. N = 3 (+ Seagrass, + Bioturbation); n = 4 (+ Bioturbation); and n = 5 (Control, and + Seagrass treatments).
The addition of LOC and/or Callianassid bioturbators to sediments amended with seagrass caused differential CO$_2$ release based on the OM source (Fig. 6). In sediment exposed to Callianassid bioturbation, an increased rate of sediment-based C release was observed. While bioturbation was responsible for an average additional sediment-derived release of ~20.8 mmol CO$_2$ m$^{-2}$ d$^{-1}$ over the period of the study (a proportion of which was estimated to be attributed to Callianassid metabolism), a microbial priming effect (MPE) was observed in bioturbated sediments which contained seagrass. Using integrated daily rates of CO$_2$ remineralisation, the calculated rates of the microbial priming effect (MPE) indicate that treatments amended with seagrass, and exposed to Callianassid bioturbation, were responsible for a MPE that was 15% that of the total C released in these sediments. A negative MPE (preferential degradation of a more labile source of C, i.e. seagrass, over a more recalcitrant source of C, i.e. sediment) was apparent in the first week of the experiment, with positive priming beginning shortly after and peaking after about 1 month (36 mmol m$^{-2}$). A negative MPE was observed in control sediment amended with seagrass: the sediment-derived CO$_2$ in amended sediment was less than half that observed in unamended (control) sediment.
Fig. 6: Estimated contributions of labile organic matter (LOC; seagrass) and recalcitrant organic matter (sediment C) sources to respiration. The contribution of Bioturbation and Seagrass (+ Seagrass; LOC amendment) to microbial priming (MPE) is compared. The fraction of sediment C and added C (seagrass; LOC) contribution to the total CO$_2$ flux was calculated from stable isotope values using a 2-end member mixing model. The portion of TCO$_2$ release attributed to Callianassid metabolism (Callianassid metabolism), and the portion of TCO$_2$ release attributed to the effect of Callianassid activity (Callianassid) including burrow construction was estimated based on measured rates of Callianassid CO$_2$ flux. Values represent means ±SE. N = 3 (+ Seagrass, + Bioturbation); n = 4 (Unamended sediment, + Bioturbation); and n = 5 (Control treatments).
Discussion

Bioturbation is a prevalent process in coastal ecosystems globally (DeWitt 2009; Garbary et al. 2014; Govers et al. 2014; Kneer et al. 2013; Kristensen et al. 2012; Woods and Schiel 1997), and the activities of bioturbating macrofauna have a clear effect on sediment metabolism and carbon (C) remineralisation (Kristensen et al. 2012; Papaspyrou et al. 2004; Webb and Eyre 2004). The results obtained in this study indicate that the effect of Callianassid bioturbation on sediment CO$_2$ release is larger than that of buried seagrass leaves to depth alone, and that the integration of both factors could result in a sediment MPE. These findings have implications for our understanding of the persistence of global seagrass C stocks.

Burial and degradation of seagrass leaf detritus

Burial of seagrass leaf detritus was observed in bioturbated sediments, resulting in the detritus being distributed an additional 2 – 18 cm into the sediment. Rapid burial of seagrass detritus has been observed due to the activity of another Callianassid species (Papaspyrou et al. 2004), and it has been proposed that these animals actively do this to stimulate microbial productivity (i.e. gardening) (Dworschak 2001). Not only did we observe that bioturbation led to an overall decrease in recovery of seagrass leaf detritus within the sediment, but it was noted that a higher proportion of the labile fraction of organic matter (OM) was lost from detritus buried in bioturbated sediments. Due to the short labelling time within this study, the primary source of enriched 13C-CO$_2$ is likely from labile and some recalcitrant compounds of the seagrass detritus. It is possible that the observed decreasing rate of seagrass remineralisation was likely due to this loss of seagrass labile OM (proteins, soluble carbohydrates, etc.). The δ^{13}C values of the seagrass recovered from the mesocosms were not
measured in this study and limits our ability to produce a mass balance for 13C. While it is
typical for isotope mixing models to use fresh substrate for end-members, including post-
decay isotope values in the calculations would have provided more accurate estimates of the
changes in the isotope values during decomposition (Trevathan-Tackett et al. 2017;
Trevathan-Tackett et al. 2018). Loss of seagrass OM content of up to 1% d$^{-1}$ (Harrison and
Chan 1980) can be expected from leaf material, and is comparable to the rates of decay
observed in this study, which were ~ 0.95 – 1.01% d$^{-1}$. Cellulose and lignin compounds within
seagrass detritus generally reduce the rates of microbial degradation, and retention of seagrass
detritus in the sediment at the end of our two-month study (which largely consisted of
recalcitrant and refractory seagrass OM) suggests that there is evidence for future seagrass-
derived C input and replenishment of sediment C stocks. Although we were unable to detect a
significant impact of bioturbation on sediment C$_{org}$ content (supplementary material), we
reaffirm that bioturbation did influence sediment remineralisation based on the rates of
sediment remineralisation measured via overlying water CO$_2$ content. We suggest that we
were unable to measure the extent of the effect within the sediment using the methods
employed within the timeframe of this study.

Sediment fluxes

The addition of seagrass detritus increased sediment O$_2$ demand by 26%, while bioturbation
by Callianassids effectively doubled sediment oxygen consumption (increased by 130%). In
sediments containing both Callianassids and seagrass, O$_2$ consumption was enhanced
substantially compared to control sediment. High sediment O$_2$ uptake rates between 40 and
144 mmol m$^{-2}$d have been reported in sediment populated with Callianassids (Eyre et al.
2011; Maher and Eyre 2011a; Maher and Eyre 2011b; Webb and Eyre 2004). Callianassids
can irrigate their burrows at a rate of ~0.5 l h$^{-1}$ and increase sediment O$_2$ substantially, most of
which is used in microbial and biogeochemical processes (Webb and Eyre 2004). Faunal stimulation of sediment metabolism also causes an increased rate of CO$_2$ efflux, largely due to increases in sediment surface area (burrow), and further stimulates microbial and biogeochemical activity (Banta et al. 1999; Kristensen 2000; Webb and Eyre 2004). Furthermore, deposition of sediment onto the sediment surface and an increase in sediment surface area due to burrow creation and maintenance, will further stimulate OM remineralisation (Heilskov and Holmer 2001). Our results indicate that Callianassid bioturbation is responsible for up to 50% of the total CO$_2$ release; however, given that metabolism of the fauna alone is responsible for ~20% of the total CO$_2$ release, it can be elicited that the remaining ~30% is due to increased sediment surface area via burrow formation, resulting in a stimulation of microbial metabolism. However, due to changes in Callianassid activity and resulting metabolism, the portion of CO$_2$ flux that Callianassid metabolism alone is responsible for may be underestimated.

Similar increases in CO$_2$ efflux have been reported for Axiidean bioturbation in the presence of seagrass (Papaspyrou et al. 2004), and resulted in a net overall increase in C remineralisation with the introduction of bioturbation.

Potential microbial priming effect

By definition, MPE occurs when moderate changes or disruptions in environmental conditions stimulate microbes to metabolise stored or ‘stable’ sediment C (Kuzyakov et al. 2000). These changes may arise due to decomposition of OM by microbes, which is an essential part of the MPE; however priming can also manifest from physical disturbance, such as that observed as a result of agricultural tilling (Bell et al. 2003). Due to the observed increase in sediment-derived CO$_2$ flux after the addition of seagrass detritus, we believe that
there were two pathways that resulted in a MPE; the observed microbial decomposition of
seagrass, and the physical disturbance caused by Callianassid bioturbation. More recent
studies have identified an MPE with addition of seagrass and microalgae to sediments
(Trevathan-Tackett et al. 2017), but we believe this study is an important contribution to the
literature because we were able to trace the source of CO$_2$ flux, while highlighting the
potential of bioturbation to further stimulate this priming process and affect seagrass C
sequestration.

In control sediment amended with seagrass, the observed potential negative MPE was
equivalent to a >50% reduction in ROM-derived CO$_2$ release, indicating a preferential
remineralisation of seagrass (LOM) by the microbial community (Gontikaki et al. 2013).
Negative priming in seagrass sediments may indeed support the long-term preservation of
sediment C$_{org}$ with the microbial community preferentially remineralising labile (i.e. proteins,
hemicellulose and soluble carbohydrates; Trevathan-Tackett et al. 2015) and some recalcitrant
lignocellulose seagrass compounds (Gontikaki et al. 2015), over the sediment-bound C$_{org}$.
However, the extent of the MPE is also related to the added substrate C as a proportion of the
microbial biomass (Blagodatskaya and Kuzyakov 2008), and some of this calculated negative
MPE may also be attributed to changes in redox conditions within the sediment, resulting in
temporarily higher remineralisation rates (Burdige 2007). Once available C has been depleted
and subsequent microbial activity has subsided, remaining C may be more resistant to
degradation (Blagodatskaya and Kuzyakov 2008). Comparing the amount of sediment C$_{org}$
remineralised within bioturbated sediment to that remineralised in control sediment, it is clear
that this negative MPE is negated by the bioturbator-stimulated MPE.

We estimate that the MPE may be responsible for up to 15% of the total CO$_2$ output in
bioturbated sediment amended with seagrass. Within this treatment bioturbation (and
associated bioirrigation) by Callianassids lead to a lower rate of seagrass remineralisation (12%), which was likely due to detrital burial. The sediments in this treatment also displayed a significantly higher rate of sediment remineralisation, however, underestimation of Callianassid metabolism, and remineralisation of unlabelled seagrass fractions (i.e. some recalcitrant and refractory compounds) may be responsible for some of the CO$_2$ flux attributed to sediment remineralisation. Although identified within marine systems (Aller 1994; Guenet et al. 2010; López et al. 1998), in terrestrial systems MPEs have been further investigated and suggested to be a result of the microbial competition for energy, stimulated by the input of a labile OM source, which ultimately results in loss of recalcitrant OM (Fontaine et al. 2007; Fontaine et al. 2003; Kuzyakov et al. 2000). The results of this study support that this process can also occur in bioturbated coastal sediments, as the observed increase in CO$_2$ was attributed to sediment (i.e. recalcitrant C) rather than seagrass remineralisation. We suggest that in this scenario, the measured MPE and resulting CO$_2$ release was largely stimulated by microbial activity attributed to bioturbation (and associated bioirrigation) by Callianassids.

Potential loss of C stocks

Assuming that in ambient conditions, the rate of C burial is reflective of control (no bioturbators added) sediment, the release of CO$_2$ into the water column will range between 3.29 – 3.84 Mg C ha$^{-1}$ yr$^{-1}$. However, the addition of bioturbators (i.e. Callianassids) can increase the rate of C$_{org}$ release 2-fold in sediment (6.65 Mg C ha$^{-1}$ yr$^{-1}$) and 3-fold in sediment containing seagrass (10.40 Mg C ha$^{-1}$ yr$^{-1}$), which is similar to increases observed when studying other Callianassid species (Papaspyrou et al. 2004; Webb and Eyre 2004). While this study represents a case of extreme bioturbation (> 200 Callianassids per m2), extrapolating from the rates of MPE and resulting sediment C loss observed in this study attributed to bioturbation, even a conservative estimate of one bioturbator burrow per m2 may
induce a MPE equivalent to 1.6 g C m$^{-2}$ y$^{-1}$, a large (approximately 16%) portion of the estimated annual Australian seagrass C sequestration of 10.1 g C m$^{-2}$ y$^{-1}$ (Lavery et al. 2013).

Meadows in the geographic area of this study are populated by 2 – 248 (with an average of 36) Callianassid burrows per m2, representing a potential for a much larger loss of C and ultimately a net loss of sediment C. This has implications for the potential for seagrass meadows to store C for long periods of time. If stimulated sediment metabolism and labile OM burial is indeed creating hot-spots of microbial priming to, in effect, leak CO$_2$, an increase in bioturbator populations could decrease seagrass (and other) blue carbon stocks (Atwood et al. 2015). Changes to the natural predatory trophic cascades within seagrass meadows, i.e. loss of meso-predators, could result in increases to bioturbator populations (Atwood et al. 2015). In ecosystems where meso-predators have been excluded from within seagrass habitats, macro-invertebrate abundance has been seen to increase 3 – 10 times compared to their natural density (Lewis and Anderson 2012). We suggest that in these situations, seagrass C sequestration would be negatively affected, whereby sediment C is remineralised via bioturbator-stimulated MPE. Conversely, decreases in bioturbator populations could increase C stocks and sequestration in some instances, especially in environments where C sequestration is reduced by faunal-induced MPE.

Scenarios for microbial priming in bioturbator populated seagrass environments

The potential of bioturbators to effectively facilitate microbial priming warrants further investigation. This study is restricted in its estimates of seagrass sediment carbon stocks due to the use of above-ground seagrass tissue (leaves), rather than total plant biomass (including both above- and below-ground tissue). It is also important to consider that in many seagrass meadows, much of the above-ground seagrass biomass is exported (Duarte and Krause-Jensen 2017). To ensure a complete assessment of seagrass carbon stocks, we would encourage
further research to encompass the full range of remineralisation by-products, including DOC and porewater analysis, as well as incorporating below-ground biomass (i.e. roots and rhizomes) as a contributor to C sequestration. Further investigation on different macrofauna species (i.e. representing different activity) will allow us to make predictions of the vulnerability of seagrass sediment C stocks.

Based on the results of this study, we present a scenario whereby seagrass sediment C stocks may be significantly affected by bioturbation. Atwood et al. (2015) outlined that predation could have significant impacts on communities of bioturbating macrofauna. We suggest that in an ecosystem where there is a lack of top-down control, bioturbating macrofauna may experience growths in population size. While burial of detritus in meadows is continuous (Mcleod et al. 2011) and may therefore supplement C loss to some extent (Trevathan-Tackett et al. 2017), changes to population structure and density may lead to a short-term increase in both priming and CO₂ release (Kuzyakov et al. 2000). Accordingly, bioturbator-stimulated priming may pose a considerable threat to sediment C stock longevity. We suggest that bioturbator-stimulated priming could have a considerable effect on C sequestration and persistence in coastal ecosystems (Guenet et al. 2010).

Acknowledgements

For technical and field assistance we thank Graeme Poleweski and Paul Brooks from the University of Technology Sydney. For providing comments and feedback on the manuscript, we thank Sabina Belli from the University of Technology Sydney. For assistance with experimental concepts, processing of samples, and providing insightful comments, we thank Professor Isaac Santos from Southern Cross University. We also thank the many volunteers from the University of Technology Sydney for assistance in both the field and the laboratory.
We acknowledge the support of an Australian Research Council (ARC) Discovery Early Career Researcher Award DE130101084 (PIM), and an Australian Postgraduate Award (ACGT). This project was undertaken as a part of the CSIRO Marine and Coastal Carbon Biogeochemistry Cluster (Coastal Carbon Cluster) initiative.
References

Govers, L. L., T. Pieck, T. J. Bouma, W. Suykerbuyk, A. J. Smolders, and M. M. van Katwijk. 2014. Seagrasses are negatively affected by organic matter loading and

