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ABSTRACT 36 

Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of morbidity and 37 

death and imposes major socioeconomic burdens globally. It is a progressive and disabling 38 

condition that severely impairs breathing and lung function. There is a lack of effective 39 

treatments for COPD, which is a direct consequence of the poor understanding of the 40 

underlying mechanisms involved in driving the pathogenesis of the disease. Toll-like receptor 41 

(TLR)2 and TLR4 are implicated in chronic respiratory diseases, including COPD, asthma 42 

and pulmonary fibrosis. However, their roles in the pathogenesis of COPD are controversial 43 

and conflicting evidence exists. In the current study, we investigated the role of TLR2 and 44 

TLR4 using a model of cigarette smoke (CS)-induced experimental COPD that recapitulates 45 

the hallmark features of human disease. TLR2, TLR4 and associated co-receptor mRNA 46 

expression were increased in the airways in both experimental and human COPD. CS-47 

induced pulmonary inflammation was similar in TLR2-deficient (Tlr2-/-), TLR4-deficient 48 

(Tlr4-/-) and WT mice. CS-induced airway fibrosis, characterized by increased collagen 49 

deposition around small airways, was not altered in Tlr2-/- mice but was attenuated in Tlr4-/- 50 

mice compared to CS-exposed WT controls. However, Tlr2-/- mice had increased CS-induced 51 

emphysema-like alveolar enlargement, apoptosis and impaired lung function, whilst these 52 

features were reduced in Tlr4-/- mice compared to CS-exposed WT controls. Taken together, 53 

these data highlight the complex roles of TLRs in the pathogenesis of COPD and suggest that 54 

activation of TLR2 and/or inhibition of TLR4 may be novel therapeutic strategies for the 55 

treatment of COPD. 56 

 57 
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INTRODUCTION 60 

Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of morbidity and 61 

death and imposes significant socioeconomic burden worldwide (63). It is a complex, 62 

heterogeneous disease characterized by chronic pulmonary inflammation, emphysema and 63 

airway remodeling, which are associated with progressive lung function decline (39). Indeed, 64 

the major disease features are progressive and become more severe over time that is 65 

accelerated by infection-induced exacerbations. Cigarette smoke (CS) is a major risk factor 66 

for COPD (54). The current mainstay therapies for COPD are glucocorticoids, β2-adrenergic 67 

receptor agonists and long acting muscarinic antagonists (5, 93). However, these agents are 68 

largely ineffective and only provide symptomatic relief rather than modifying the causal 69 

factors or stopping disease progression (5). There is much current interest in increased 70 

microbial carriage and altered lung and gut microbiomes in COPD that could be modified for 71 

therapeutic gain and macrolide antibiotics are currently being tested as new treatments (14, 72 

89, 92). Nevertheless, there is currently a lack of effective treatments for COPD that is 73 

largely due to the poor understanding of the underlying mechanisms.  74 

Toll-like receptor (TLR)2 and TLR4 play vital roles in detecting and initiating 75 

immune responses to microbial membrane components (1, 36, 52). TLR2 and TLR4 are type 76 

I transmembrane receptors expressed on the cell surface (1, 36, 52). However, in some 77 

circumstances TLR4 can be internalized or expressed intracellularly in certain cells (1, 36, 78 

52). TLR2 and TLR4 primarily signal through the adaptor protein myeloid differentiation 79 

primary response gene 88 (MyD88)-dependent or MyD88-adapter-like (Mal)-dependent 80 

pathways (1, 36, 52). Upon ligand (e.g. bacterial peptidoglycan) binding TLR2 forms a 81 

heterodimer with either TLR1 or TLR6 and interacts with cluster of differentiation (CD)14 to 82 

form a functional complex (24, 48). In contrast, TLR4 forms a homodimer upon binding to its 83 
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ligand (e.g. bacterial lipopolysaccharide) and interacts with CD14 and/or MD2 (also known 84 

as lymphocyte antigen 96 [LY96] in humans) (57, 108). This initiates the recruitment of 85 

MyD88 to the intracellular Toll–interleukin 1 (IL-1) receptor (TIR) domain, that 86 

subsequently activates members of the IL-1 receptor-associated kinases (IRAKs) and tumor 87 

necrosis factor (TNF) receptor-associated factor 6 (TRAF6) (1, 52). Consequently, 88 

transcriptional factors of the mitogen-activated protein kinase (MAPK) family and nuclear 89 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) are activated, leading to the 90 

expression of pro-inflammatory mediators (1, 36, 52). 91 

TLR2 and TLR4 are widely implicated in chronic respiratory diseases, including 92 

asthma and pulmonary fibrosis (18, 25, 37, 42, 55, 56, 58, 59, 82, 86, 90, 106). Both are 93 

associated with increased susceptibility to asthma and allergies in children (25, 55). In adults, 94 

increased expression of TLR2, TLR4 and CD14 were observed in subjects with 95 

bronchiectasis and asthma (90). These observations were supported by findings from mouse 96 

models of allergic airway disease (18, 37, 59, 82, 106) and bleomycin-induced pulmonary 97 

fibrosis (42, 56, 58, 60, 86). We have also shown that TLR2 was essential in protecting 98 

against early-life respiratory infection and the development of subsequent chronic lung 99 

disease in later life (6, 27, 44, 96, 97). However, the role of TLR2 and TLR4 in the 100 

pathogenesis of COPD remains controversial and conflicting evidence exists in the literature. 101 

Some studies show that TLR2 and TLR4 expression are increased by CS exposure or in 102 

COPD patients (3, 21, 30, 33, 66, 69, 75, 80, 85, 91). However, others show that these TLRs 103 

are either not altered or are decreased by CS exposure or in COPD patients (22, 65, 80, 87).  104 

Hence, the role of TLR2 and TLR4 in the pathogenesis of COPD remains unclear. 105 

Here, we investigated these roles using an established mouse model of CS-induced 106 

experimental COPD that recapitulates the critical features of human disease (7, 29, 31, 40, 107 

41, 47, 62, 100) as well as gene expression analysis of lung tissues from human COPD 108 
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patients. TLR2, TLR4 and associated co-receptor mRNA were increased in the airways in 109 

both experimental and human COPD. Compared to WT controls CS-induced pulmonary 110 

inflammation was largely unaltered in TLR2-deficient (Tlr2-/-) and TLR4-deficient (Tlr4-/-) 111 

mice when compared to WT controls. However, Tlr2-/- mice had increased CS-induced 112 

emphysema-like alveolar enlargement, apoptosis and impaired lung function whilst CS-113 

induced airway fibrosis was not altered compared to WT controls. In contrast, these features 114 

were reduced or completely ablated in Tlr4-/- mice compared to WT controls, thus implicating 115 

this TLR in the pathogenesis of COPD. 116 

 117 

MATERIALS AND METHODS 118 

Ethics statement. This study was performed in accordance with the recommendations issued 119 

by the National Health and Medical Research Council of Australia. All experimental 120 

protocols were approved by the animal ethics committee of The University of Newcastle, 121 

Australia. 122 

 123 

Experimental COPD. Female, 7-8-week-old, wild-type (WT), Tlr2-/- or Tlr4-/- BALB/c mice 124 

were purchased from the Australian Bioresource Facility, Moss Vale, NSW, Australia. Tlr2-/- 125 

and Tlr4-/- mice were generous gifts from Prof. Shizuo Akira, Osaka University, Japan and 126 

generated by using targeting vectors that introduce a targeted mutation in the mouse Tlr2 and 127 

Tlr4 genes as previously described (46, 99). Mice were housed under a 12-hour light/dark 128 

cycle and had free access to food (standard chow) and water. After period of acclimatization 129 

(up to 5 days), mice were randomly placed into experimental groups and exposed to either 130 

normal air or nose-only inhalation of CS for up to twelve weeks as described previously (7, 131 

29, 31, 40, 41, 47, 62, 100). Recently, studies have shown that COPD prevalence and 132 
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mortality are higher in females, and in the United States in 2009 women accounted for 133 

53% of COPD deaths (78). It is for these and logistical reasons that female mice are used. 134 

 135 

Isolation of RNA and qPCR. Total RNA was extracted and reversed transcribed from whole 136 

lung tissue, blunt-dissected airway and parenchyma and isolated lung macrophages (7, 41, 70, 137 

101). mRNA transcripts were determined by real-time quantitative PCR (qPCR, 138 

ABIPrism7000, Applied Biosystems, Scoresby, Victoria, Australia) using custom designed 139 

primers (Integrated DNA Technologies, Baulkham Hills, New South Wales, Australia), 140 

normalized to the reference gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) 141 

and expressed as relative abundance to WT air controls (Table 1) (7, 41, 70, 101). 142 

 143 

Immunohistochemistry. Lungs were perfused, inflated, formalin-fixed, paraffin-embedded 144 

and sectioned (4-6μm). Longitudinal sections of the left lung were rehydrated through a 145 

series of xylene (2x) and ethanol gradient (2x absolute, 90%, 80%, 70%, 50%, 0.85% saline 146 

and phosphate-buffered saline [PBS]) washes followed by antigen retrieval with citrate buffer 147 

(10mM citric acid, 0.05% Tween 20, pH 6.0) at 100°C for 30 mins. Sections were blocked 148 

with casein blocker (Thermo Fisher Scientific, Pittsburgh, PA, USA) for 1 hour. Sections 149 

were then washed with PBS (5x, 5 mins each) and incubated with either anti-TLR2 (1:200 150 

dilution, MABF84, clone 19B6.2, Merck Milipore, Bayswater, Victoria, Australia), anti-151 

TLR4 (1:1000 dilution, ab47093, Abcam, Melbourne, Victoria, Australia) or anti-active 152 

caspase-3 (1:200 dilution, ab13847, Abcam) antibodies followed by either anti-rabbit 153 

(HAF008; R&D Systems, Gymea, New South Wales, Australia) or anti-mouse (ab6728; 154 

Abcam) secondary antibody conjugated with  horseradish peroxidase and then 3,3'-155 

Diaminobenzidine chromogen-substrate buffer (DAKO, North Sydney, New South Wales, 156 
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Australia) according to manufacturer’s instructions (40, 41). Sections were counterstained 157 

with hematoxylin, mounted and analyzed using a BX51 microscope (Olympus, Tokyo, 158 

Shinjuku, Japan) with Image-Pro Plus software (Media Cybernetics, Rockville, MD). The 159 

aAreas of active caspase-3 in lung parenchyma were determined (n=4 per group, 10 160 

randomized parenchyma images per lung sections) using ImageJ software (Version 1.50, 161 

NIH, New York City, NY, USA), normalized to area of hematoxylin and represented as the 162 

percentage area of active caspase-3. Images with inflammation and airways were excluded 163 

from analysis. 164 

 165 

Isolation of lung macrophages. Lungs were excised, washed and dissected into 1-2mm 166 

cubes in Dulbecco’s Modified Eagle Medium (DMEM, Sigma Aldrich, Castle Hill, New 167 

South Wales, Australia). Lung tissues were then transferred into Medicon cassettes (BD 168 

Biosciences, North Ryde, New South Wales, Australia) and disaggregated using a 169 

Medimachine (BD Biosciences) for 2 mins. Cell suspensions were collected, Histopaque 170 

1083 (Sigma Aldrich) applied and centrifuged (825xg, 30 mins, 22.5 °C). The opaque 171 

interface cell layer where macrophages/monocytes were enriched was collected, washed with 172 

Hyclone™ Dulbecco’s PBS (GE Healthcare Life Sciences, South Logan, Utah, USA) and 173 

centrifuged (100xg, 5 mins, 22.5 °C). Cell pellets were resuspended in fresh DMEM (Sigma) 174 

and macrophages further enriched through adherence to plastic tissue culture flasks (3 hrs, 37 175 

°C). Non-adherent contaminating cells were removed by gentle washing with PBS (GE 176 

Healthcare Life Sciences) prior to RNA isolation.  177 

 178 

Flow Cytometry Analysis. The numbers of CD11b+ monocytes, neutrophils and myeloid 179 

dendritic cells (mDCs) in lung homogenates were determined based on surface marker 180 
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expression using flow cytometry (Table 2) (45, 53, 94, 97, 101). Flow cytometric analysis 181 

was performed using a FACSAriaIII with FACSDiva software (BD Biosciences, North Ryde, 182 

Australia). Flow cytometry antibodies were purchased from Biolegend (Karrinyup, Western 183 

Australia, Australia) or BD Biosciences (Table 3). OneComp compensation beads (Thermo 184 

Fisher Scientific) were used to compensate for spectral overlap. 185 

 186 

Gene Expression in Human COPD Microarray Datasets. Analysis of TLR2, TLR4 and 187 

co-receptors gene expression in published human array datasets (Affymetrix Human Genome 188 

U133 Plus 2.0 Array, Accession numbers: GSE5058 and GSE27597) (13, 16, 102) were 189 

performed using the Array Studio software (Omicsoft Corporation, Research Triangle Park, 190 

NC, USA) by applying a general linear model adjusting for age and gender and the 191 

Benjamini–Hochberg method for p-value adjustment (41). Data are expressed as log2 192 

intensity robust multi-array average signals. The Benjamini–Hochberg method for adjusted P 193 

value/false discovery rate (FDR) was used to analyze differences between two groups. 194 

Statistical significance was set at FDR < 0.05. 195 

 196 

Pulmonary Inflammation. Airway inflammation was assessed by differential enumeration 197 

of inflammatory cells in bronchoalveolar lavage fluid (BALF) (7, 27, 40, 41, 62, 70). Lung 198 

sections were stained with periodic acid-Schiff (PAS) and tissue inflammation assessed by 199 

enumeration of inflammatory cells (7, 41, 70). Histopathological score was determined in 200 

lung sections stained with hematoxylin and eosin (H&E) based on established custom-201 

designed criteria (40, 44, 70).  202 

 203 
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Enzyme-linked immunosorbent assay (ELISA). Right lung lobes were homogenized on ice 204 

in 500uL of PBS supplemented with Complete mini protease inhibitor cocktail (Roche 205 

Diagnostic, Sydney, NSW, Australia) and PhosphoSTOP tablets (Roche Diagnostic). Lung 206 

homogenates were incubated on ice for 5 mins and subsequently centrifuged (8,000xg, 15 207 

mins). Supernatants were collected, stored at -20°C overnight and total protein levels were 208 

determined using Pierce BCA assay kit (Thermo Fisher Scientific) prior to enzyme-linked 209 

immunosorbent assays (ELISAs). TNFα protein levels were quantified with mouse TNFα 210 

Duoset ELISA kit as per manufacturer’s instructions (R&D systems). TNFα protein levels 211 

were normalized to total protein in lung homogenates. Hyaluronan protein levels in BALF 212 

were quantified with mouse hyaluronan Quantikine ELISA kits as per manufacturer’s 213 

instructions (R&D systems).  214 

 215 

Airway Remodeling. Lung sections were stained with PAS or Masson’s Trichrome. Airway 216 

epithelial area (μm2), cell (nuclei) number and collagen deposition area (μm2) were assessed 217 

in a minimum of four small airways (basement membrane [BM] perimeter <1,000μm) per 218 

section (7, 40, 41, 62, 70). Data were quantified using ImageJ software (Version 1.50, NIH) 219 

and normalized to BM perimeter (μm). 220 

 221 

Alveolar Enlargement. Lung sections were stained with H&E. Alveolar septal damage and 222 

diameter were assessed by using the destructive index technique (26) and mean linear 223 

intercept technique respectively (7, 41, 47, 62). 224 

 225 

Apoptosis. Lung sections were stained with terminal deoxynucleotidyl transferase dUTP nick 226 

end labeling (TUNEL) assay kits (Promega, Sydney, New South Wales, Australia) according 227 
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to manufacturer’s instructions (41). Apoptosis in lung parenchyma was assessed by 228 

enumerating the numbers of TUNEL+ cells per high power fields (HPF; 100x) (41). 229 

Lung Function. Mice were anaesthetized with ketamine (100mg/kg) and xylazine (10mg/kg, 230 

Troy Laboratories, Smithfield, Australia) prior to tracheostomy. Tracheas were then 231 

cannulated and attached to Buxco® Forced Maneuvers systems apparatus (DSI, St. Paul, 232 

Minnesota, USA) to assess total lung capacity (TLC) (7, 40). Mice were then attached to a 233 

FlexiVent apparatus (FX1 System; SCIREQ, Montreal, Canada) to assess transpulmonary 234 

resistance (tidal volume of 8mL/kg at a respiratory rate of 450 breaths/mins) (7). All 235 

assessments were performed at least three times and the average was calculated for each 236 

mouse. 237 

 238 

Statistical analyses. Data are presented as means ± standard error of mean (SEM) and 239 

representative from two independent experiments with 6 mice per group. The two-tailed 240 

Mann-Whitney test was used to compare two groups. The one-way analysis of variance with 241 

Bonferroni post-test was used to compare 3 or more groups. Statistical significance was set at 242 

P < 0.05 and determined using GraphPad Prism Software version 6 (San Diego, CA, USA).  243 

 244 

RESULTS  245 

TLR2 and TLR4 mRNA Expression and Protein Levels are Increased in 246 

CS-induced Experimental COPD 247 

To determine whether TLR2 and TLR4 levels are altered in COPD, we first interrogated our 248 

mouse model of experimental COPD (7, 29, 31, 40, 41, 47, 62, 100). WT mice were exposed 249 
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to CS for 4, 8 and 12 weeks and TLR2 and TLR4 mRNA expression were assessed. TLR2, 250 

but not TLR4 mRNA was significantly increased in whole lung homogenates after 4, 8 and 251 

12 weeks of CS exposure compared to normal air-exposed mice (Figure 1A-B). We have 252 

previously shown that many of the hallmark features of COPD were established in mice after 253 

8 weeks of CS exposure (7, 29, 31, 40, 41, 47, 62, 100). To determine the compartment of the 254 

lung in which altered TLR2 and TLR4 expression occurred following establishment of 255 

disease, blunt dissected airways and lung parenchyma were assessed at this time point. To 256 

confirm separation of bluntly- dissected airways from parenchymal tissue we assessed the 257 

mRNA expression of airway epithelial cell-specific mucin 5ac (Muc5ac) and the mouse type 258 

II alveolar epithelial cell-marker surfactant protein C (Sftpc) in normal air-exposed mice 259 

(Figure 1C). TAccordingly, the levels of Muc5ac mRNA wereas increased in airways 260 

compared to lung parenchyma (Figure 1C). Conversely, the levels of Sftpc mRNA wereas 261 

increased in lung parenchyma compared to airways (Figure 1C). This confirms the tissue 262 

specific isolation and location of TLR2, TLR4 and co-receptors in these tissues. TLR2 263 

mRNA was increased in both the airways and parenchyma of CS-exposed mice (Figure 1D-264 

E). In contrast, TLR4 mRNA was increased in the airways, but not parenchyma (Figure 1F-265 

G). These mRNA expression data were supported by increased TLR2 (Figure 1H-I) and 266 

TLR4 (Figure 1J-K) protein levels in small airway epithelial cells and increased infiltration of 267 

parenchyma-associated inflammatory cells that expressed TLR2 or TLR4 in lung histology 268 

sections detected by immunohistochemistry. 269 

 To identify the inflammatory cell source of TLR2 and TLR4, macrophages were 270 

isolated from whole lung homogenates for downstream mRNA analysis. Interestingly, the 271 

mRNA expression of TLR2 and TLR4 were not altered in lung macrophages isolated from 272 

CS-exposed mice (Figure 2A-B). CD11b+ monocytes, neutrophils and mDCs are known to 273 

express TLR2 and/or TLR4 (6, 10, 80, 81), and have roles in COPD pathogenesis (41, 91). 274 
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Thus, we next determined whether CS altered the numbers of these immune cells that 275 

expressed TLR2 and/or TLR4 in the lung usingby flow cytometry. CS-exposed mice had 276 

increased the numbers of CD11b+ monocytes that expressed TLR2 (TLR2+), but not those 277 

that expressed TLR4 (TLR4+) or co-expressed TLR2 and TLR4 (TLR2+TLR4+) (Figure 2C) 278 

compared to normal air-exposed controls. In contrast, CS-exposed mice had significantly 279 

increased the numbers of neutrophils and mDCs that were either TLR2+, TLR4+ or 280 

TLR2+TLR4+ (Figure 2D-E) compared to normal air-exposed controls. 281 

 282 

TLR2 and TLR4 Co-receptor mRNA Expression are Increased in CS-283 

induced Experimental COPD 284 

When activated, TLR2 and TLR4 interact with co-receptors TLR1, TLR6, CD14 and/or 285 

MD2/Ly96 to mediate inflammatory responses (1, 36, 52). Therefore, we next determined 286 

whether the mRNA expression of these co-receptors was altered by CS exposure. TLR1 287 

mRNA was increased in blunt dissected lung parenchyma, but not airways compared to 288 

normal air-exposed controls (Figure 3A-B). In contrast, TLR6 and CD14 mRNA were 289 

increased in both airways and parenchyma (Figure 3C-F). MD2/Ly96 mRNA expression was 290 

not altered by CS exposure (Figure 3G-H). 291 

 292 

TLR2, TLR4 and Co-receptor mRNA Expression are Increased in the 293 

Airways in Human COPD 294 

We next sought to determine whether the mRNA expression of TLR2, TLR4 and their co-295 

receptors were altered in humans with mild-to-moderate COPD (Global Initiative for Chronic 296 

Obstructive Lung Disease [GOLD] Stage I or II (103)). Pre-existing microarray data from 297 



 Opposing roles of TLR2 and TLR4 in pathogenesis of COPD  

  14

non-COPD (healthy non-smokers and healthy smokers) and COPD patients were interrogated 298 

(13, 16, 102). TLR2, TLR4 and co-receptor (TLR1, TLR6, CD14 and LY96) mRNA 299 

expression were not significantly altered in airway epithelial brushings from healthy smokers 300 

compared to non-smokers (Accession: GSE5058 (102), Figure 4A-F). Importantly, however, 301 

TLR2 (~2.4-fold), TLR4 (~8.7-fold), TLR1 (~7.1-fold), TLR6 (~1.5-fold), CD14 (~3.9-fold) 302 

and LY96 (~12.9-fold) mRNA expression were increased in airway epithelial brushings from 303 

patients with mild-to-moderate COPD compared to non-smokers. Notably, TLR2 (~2.4-fold), 304 

TLR4 (~7.2-fold), TLR1 (~4.7-fold), CD14 (~3.6-fold) and LY96 (~6.8-fold) but not TLR6 305 

(~0.8-fold) mRNA expression were also increased in airway brushings from COPD patients 306 

compared to healthy smokers (Figure 4A-F).  307 

 308 

TLR2, TLR4 and Co-receptor mRNA Expression are Decreased in the 309 

Parenchyma in Human COPD 310 

Similarly, we then assess the expression of TLR2, TLR4 and co-receptor expression in pre-311 

existing microarray data from lung parenchyma cores from severe COPD patients (GOLD 312 

Stage IV (103)) compared to non-smokers without COPD (Accession: GSE27597) (13, 16). 313 

In contrast to the data from the airways, TLR2 (~1.5-fold) and TLR4 (~2.0-fold) expression 314 

were reduced, whereas co-receptors TLR1, TLR6 and LY96 were not altered, in the 315 

parenchyma from severe COPD patients compared to non-smokers without COPD (Figure 316 

4G-K). CD14 was not detectable in this dataset.  317 

 318 

CS-induced Pulmonary Inflammation was Largely Unaltered in TLR2-319 

deficeint and TLR4-deficient mice with Experimental COPD 320 
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We next investigated whether TLR2 and TLR4 play a role in the pathophysiology of CS-321 

induced experimental COPD. WT, Tlr2-/- and Tlr4-/- mice were exposed to normal air or CS 322 

for 8 weeks (7, 29, 31, 40, 41, 47, 62, 100). We first assessed pulmonary inflammation in 323 

BALF by staining and differential enumeration of inflammatory cells. As expected, CS-324 

exposure of WT mice resulted in significantly increased total leukocytes, macrophages, 325 

neutrophils and lymphocytes in BALF compared to normal air-exposed WT controls (Figure 326 

5A-D). CS-exposed Tlr2-/- mice had increased neutrophils and lymphocytes, but not total 327 

leukocytes and macrophages, compared to normal air-exposed Tlr2-/- controls. This was due 328 

to an increase in total leukocytes and macrophages in normal air-exposed Tlr2-/- controls 329 

compared to normal air-exposed WT controls. In contrast, CS-exposed Tlr4-/- mice had 330 

increased total leukocytes, macrophages, neutrophils and lymphocytes in BALF compared to 331 

normal air-exposed Tlr4-/- controls. Importantly, total leukocytes, macrophages, neutrophils 332 

and lymphocytes in BALF were not significantly altered in CS-exposed Tlr2-/- or Tlr4-/- mice 333 

compared to CS-exposed WT controls. 334 

We then assessed inflammatory cell numbers in the parenchymal histology. CS 335 

exposure of WT mice significantly increased inflammatory cell numbers in the parenchyma 336 

compared to normal air-exposed WT controls (Figure 5E). CS-exposed Tlr2-/- and Tlr4-/- mice 337 

also had increased parenchymal inflammatory cells compared to their respective normal air-338 

exposed controls and were not significantly different from CS-exposed WT controls.  339 

Next, histopathology was scored according to a set of custom-designed criteria as 340 

described previously (40, 44). CS exposure of WT mice increased histopathology score 341 

(Figure 5F), which was characterized by increased airway, vascular and parenchymal 342 

inflammation (Figure 5G-I). CS-exposed Tlr2-/- and Tlr4-/- mice also had increased 343 

histopathology, airway, vascular and parenchymal inflammation scores compared to their 344 

respective normal air-exposed controls. Representative images are shown in Figure 5J. Tlr2-/-, 345 
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but not Tlr4-/- mice had a small but significantly increased total histopathology score 346 

compared to CS-exposed WT controls, which was characterized by increased parenchymal 347 

inflammation score. Normal air-exposed Tlr2-/-, but not Tlr4-/- mice also had a small increase 348 

in vascular and parenchymal inflammation scores compared to normal air-exposed WT mice.  349 

We then profiled the mRNA expression of the pro-inflammatory cytokine  tumor 350 

necrosis factor (TNF)-α, chemokine (C-X-C motif) ligand (CXCL)1, chemokine (C-C motif) 351 

ligands (CCL)2, CCL3, CCL4, CCL12, CCL22 and COPD-related factors matrix 352 

metalloproteinase (MMP)-12 and serum amyloid A3 (SAA3, ), (Figure 6A-I). CS exposure 353 

induced thisese cytokines, and these chemokines and factors in WT, Tlr2-/- and Tlr4-/- mice. 354 

However, some were not altered in CS-exposed Tlr2-/- and/or Tlr4-/- mice compared to CS-355 

exposed WT controls, whilst others that showed differences (e.g. increased TNF-α, CXCL1, 356 

CCL2, CCL12 and CCL22 in CS-exposed Tlr4-/- mice compared to CS-exposed WT controls) 357 

in expression but were not consistent with the inflammatory cell profile (Figure 5) observed 358 

in CS-exposed Tlr2-/- and Tlr4-/- mice compared to CS-exposed WT controls. Notably, 359 

however, the mRNA expression of the pro-fibroticsis and emphysema factor MMP-12 360 

(Figure 6H) was significantly reduced in CS-exposed Tlr4-/- mice compared to CS-exposed 361 

WT controls.  362 

Given that TLR2 and TLR4 have been previously shown to play roles in mediating 363 

pulmonary oxidative stress (32, 61, 83, 109), we also profiled the mRNA expression of 364 

NADPH oxidase (Nox)1, Nox2, Nox3, Nox4, NAD(P)H quinone dehydrogenase (Nqo)1, 365 

nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), glutamate-cysteine ligase catalytic 366 

subunit (Gclc), glutathione peroxidase (Gpx)2, heme oxygenase (Hmox)1 and glutathione S-367 

transferase pi (Gstp)1 (Figure 6J-S). CS exposure induced the expression of Nox2 (Figure 368 

6K) and suppressed Gstp1 (Figure 6S), whilst other genes were not altered, in Tlr2-/- or Tlr4-/- 369 

mice compared to WT controls. Interestingly, Nox3 (Figure 6L) was increased in normal air-370 
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exposed Tlr4-/- mice compared to normal air-exposed WT controls, but was reduced by CS 371 

exposure. Other oxidative stress-associated genes were, however, not significantly altered in 372 

normal air-exposed Tlr2-/- or Tlr4-/- mice compared to normal air-exposed WT controls.  373 

 To determine whether the TNFα signaling pathway was altered in CS-exposed Tlr4-/- 374 

mice, we next assessed the levels of TNFα protein in lung homogenates. As expected, TNFα 375 

protein levels were increased in CS-exposed WT mice compared to normal air-exposed WT 376 

controls (Figure 6T). In contrast, TNFα protein levels were not altered in CS-exposed Tlr2-/- 377 

and Tlr4-/- mice when compared to normal air-exposed Tlr2-/- and Tlr4-/- mice, respectively. 378 

The lack of increase in CS-exposed Tlr2-/- mice was due to increases in levels in normal air-379 

exposed Tlr2-/- mice compared normal air-exposed WT mice. Notably, TNFα protein was 380 

significantly reduced in CS-exposed Tlr4-/- mice compared to CS-exposed WT controls. 381 

 382 

CS-induced Collagen Deposition is not Altered in TLR2-deficeint Mice but 383 

Completely Ablated in TLR4-deficient Mice with Experimental COPD 384 

We have previously shown that mice develop small airway remodeling and fibrosis in 385 

experimental COPD (7, 40, 41, 62). In agreement with this, CS exposure of WT mice 386 

increased small airway epithelial cell area (epithelial thickening) compared to normal air-387 

exposed WT controls (Figure 7A). CS-exposed Tlr2-/- and Tlr4-/- mice also had increased 388 

small airway epithelial cell thickening compared to their respective normal air-exposed 389 

controls, but were not altered compared to CS-exposed WT controls. CS-induced small 390 

airway epithelial cell thickening in WT, Tlr2-/- and Tlr4-/- mice was associated with increased 391 

numbers of nuclei in the small airways, which is an indicator of increased numbers of 392 

epithelial cells (Figure 7B). The numbers of nuclei in CS-exposed Tlr2-/- and Tlr4-/- mice 393 

were not altered compared to CS-exposed WT controls. 394 
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We next assessed airway fibrosis in terms of collagen deposition around small 395 

airways. As expected, CS-exposed WT mice had increased collagen deposition compared to 396 

normal air-exposed WT controls (Figure 7C). However, CS-exposed Tlr2-/- and Tlr4-/- mice 397 

did not have increased collagen deposition compared to their respective normal air-exposed 398 

controls. The former was due to an increase in collagen deposition in normal air-exposed 399 

Tlr2-/- mice compared normal air-exposed WT controls. The latter was due to no increase in 400 

collagen deposition in CS-exposed Tlr4-/- mice compared to normal air-exposed Tlr4-/- 401 

controls. Notably, CS-induced collagen deposition was attenuated in CS-exposed Tlr4-/- mice 402 

compared to CS-exposed WT controls. This was associated with a concomitant increase in 403 

the levels of hyaluronan in BALF and fibronectin mRNA expression in lung homogenates in 404 

Tlr4-/- compared to WT mice, independent of CS exposure (Figure 7D-E). Notably, CS-405 

induced expression of IL-33 mRNA was also attenuated in Tlr4-/- mice (Figure 7F). 406 

 407 

CS-induced Emphysema-like Alveolar Enlargement, Apoptosis and Lung 408 

Function Impairment are Increased in TLR2-deficient Mice and Decreased 409 

in TLR4-deficient Mice with Experimental COPD 410 

We have previously shown that CS-exposed WT mice developed emphysema-like alveolar 411 

enlargement and impaired lung function after 8 weeks of CS exposure (7, 40, 41, 62). Thus, 412 

we next sought to determine whether TLR2 and TLR4 contribute to these disease features. In 413 

agreement with our previous studies, CS-exposed WT mice had significantly increased 414 

alveolar septal damage and diameter, determined by destructive index and mean linear 415 

intercept techniques respectively, compared to normal air-exposed WT controls (Figure 8A-416 

B). CS-exposed Tlr2-/- and Tlr4-/- mice also had increased alveolar septal damage and alveolar 417 

diameter compared to normal air-exposed Tlr2-/- and Tlr4-/- controls respectively. However, 418 
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CS-exposed Tlr2-/- mice had increased alveolar damage and diameter compared CS-exposed 419 

WT controls. Conversely, CS-exposed Tlr4-/- mice had reduced alveolar septal damage and 420 

diameter compared CS-exposed WT controls. 421 

We have previously shown that increased CS-induced emphysema-like alveolar 422 

enlargement was associated with increased numbers of TUNEL+ cells in the parenchyma, 423 

which indicates increased apoptosis (41). In agreement with this, CS-exposed WT mice had 424 

increased TUNEL+ cells in the parenchyma compared to normal air-exposed WT controls 425 

(Figure 8C). CS-exposed Tlr2-/- mice had increased TUNEL+ cells in the parenchyma 426 

compared to normal air-exposed Tlr2-/- controls. Importantly, and in agreement with the 427 

reduced emphysema-like alveolar enlargement, CS-exposed Tlr4-/- mice did not have 428 

increased apoptosis compared to normal air-exposed Tlr4-/- controls. Accordingly, the 429 

numbers of TUNEL+ cells were increased in CS-exposed Tlr2-/- mice, but reduced 430 

significantly in CS-exposed Tlr4-/- mice compared to CS-exposed WT controls. 431 

To provide further evidence for changes in apoptosis we also assessed the levels of 432 

active caspase-3, a key molecular marker of apoptosis (19, 34, 79), in whole lung sections by 433 

immunohistochemistry. Caspase-3 levels were increased in the lung parenchyma of CS-434 

exposed WT mice compared to normal air-exposed WT controls (Figure 8D). Caspase-3 was 435 

also increased in the lung parenchyma of CS-exposed Tlr2-/- mice compared to normal air-436 

exposed Tlr2-/- controls. In contrast, caspase-3 levels were not altered in lung parenchyma of 437 

CS-exposed Tlr4-/- mice compared to normal air-exposed Tlr4-/- controls. Notably, the levels 438 

of caspase-3 were increased in CS-exposed Tlr2-/- mice but significantly reduced in CS-439 

exposed Tlr4-/- mice compared to CS-exposed WT mice, whilst they were significantly 440 

reduced in CS-exposed Tlr4-/- mice compared to CS-exposed WT mice. 441 
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We next assessed the roles of TLR2 and TLR4 in CS-induced impairment of lung 442 

function, measured in terms of TLC and transpulmonary resistance. As expected, CS-exposed 443 

WT mice had increased TLC (Figure 8E) and transpulmonary resistance (Figure 8F) 444 

compared with normal air-exposed WT controls. CS-exposed Tlr2-/- mice did not have altered 445 

TLC compared to normal air-exposed Tlr2-/- controls. This was due to increased TLC in 446 

normal air-exposed Tlr2-/- mice compared to normal air-exposed WT controls. However, CS-447 

exposed Tlr2-/- mice did have increased transpulmonary resistance compared to normal air-448 

exposed Tlr2-/- mice. Notably, both TLC and transpulmonary resistance were significantly 449 

increased in CS-exposed Tlr2-/- mice compared to CS-exposed WT mice. In contrast, Tlr4-/- 450 

mice did not have increases in TLC and transpulmonary resistance compared to normal air-451 

exposed Tlr4-/- controls.  452 

 453 

DISCUSSION 454 

In this study, we demonstrate that both TLR2 and TLR4 play important, but opposing 455 

roles, in the pathogenesis of CS-induced experimental COPD. TLR2 and TLR4 mRNA were 456 

increased in airway epithelium and parenchyma of mice chronically exposed to CS and in 457 

human COPD patients. Expression of the co-receptors TLR1, TLR6, CD14 or MD2/Ly96 458 

were also increased in CS-exposed mice and human COPD. CS-induced pulmonary 459 

inflammation was unaltered in Tlr2-/- and Tlr4-/- mice compared to WT controls. In contrast, 460 

Tlr2-/- mice had increased CS-induced emphysema-like alveolar enlargement, apoptosis and 461 

impaired lung function, whilst importantly these features were reduced in Tlr4-/- mice. CS-462 

induced small airway epithelial thickening and fibrosis were not altered in Tlr2-/- mice when 463 

compared to CS-exposed WT controls. In contrast, CS-induced airway fibrosis, but not small 464 

airway epithelial thickening, was significantly attenuated in Tlr4-/- mice compared to CS-465 



 Opposing roles of TLR2 and TLR4 in pathogenesis of COPD  

  21

exposed WT controls. This study provides new insights into the role of TLR2 and TLR4 in 466 

the pathogenesis of COPD.  467 

The roles of TLR2 and TLR4 in the pathogenesis of COPD are controversial with 468 

conflicting data in the literature (3, 21, 22, 30, 33, 65, 66, 69, 75, 80, 85, 87, 91). These 469 

conflicting data are likely due to differences between experimental analytes (e.g. peripheral 470 

blood monocytes vs. macrophages), cohorts of patients with varying medical backgrounds, 471 

potential tissue-specificity of TLR expression and the experimental models used (e.g. acute 472 

vs. chronic CS exposure). Notably, the experimental models utilized either in vitro, acute or 473 

whole body CS exposure models, which do not replicate in vivo chronic inhaled mainstream 474 

CS exposure associated with the induction of COPD in humans (3, 21, 66, 75). Furthermore, 475 

these models did not report or demonstrate chronic CS-induced impairment of lung function, 476 

which is a key feature of human COPD (7, 31).  477 

We aimed to address these discrepancies and delineate the roles of TLR2 and TLR4 in 478 

COPD by using an established mouse model of tightly controlled chronic nose-only CS-479 

induced experimental COPD (7, 29, 31, 40, 41, 47, 100). Our models are representative of a 480 

pack-a-day smoker and 8 weeks of smoking in a mouse that lives for a year is equivalent to 481 

10 years in a human smoker (31, 51). Importantly, we have consistently shown that 8 weeks 482 

of CS exposure in our models is sufficient to induce the hallmark features of human COPD: 483 

chronic inflammation, airway remodelling, emphysema and impaired lung function (7, 13, 484 

16, 29, 31, 40, 41, 47, 100, 102). This 8-week timepoint was specifically chosen to 485 

investigate the underlying pathogenic mechanism(s) during the early stages (GOLD I/II) and 486 

identify potential therapeutic targets to halt the progression of COPD. Moreover, these 487 

shorter term models may be relevant for testing of therapeutic interventions because new 488 

therapeutics such as targeting TLR signaling are likely to have little effect during more severe 489 

stages of disease, when invasive interventions, such as lung surgery/transplant, may be 490 
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required (103). Although it is possiblethere is a possibility that nose-only inhalation murine 491 

models of emphysema may introduce other variables such as stress-related to restraint, we 492 

observe that mice quickly acclimatize and grow accustomed to our purpose-built restraining 493 

tubes (7). This is reflectedconfirmed by an initial increase in blood corticosterone levels 494 

(indicator of stress) in restrained mice during the first week of CS exposure, but these levels 495 

returned to baseline after that (unpublished data). 496 

Interestingly, Tlr2-/- mice have not been assessed in the context of CS-induced 497 

pathogenesis of COPD.  whilst Tlr4-/- mice on a variety of backgrounds (e.g. C3H/HeJ, 498 

C57BL/10ScNJ or C57BL/6J) have been investigated in other CS-exposure models (21, 66), 499 

h. However, Tlr4-/- mice on a BALB/c background have not been investigated. Given that 500 

MyD88 is the common downstream signaling molecule of all TLRs including both TLR2 and 501 

TLR4 (1, 52) we also subjected MyD88-/- mice to CS-induced experimental COPD to 502 

determine if TLR2- and TLR4-mediated effects were MyD88-dependent. However, these 503 

mice became very ill and suffered significant weight loss (>15% body weight) after 3-4 504 

weeks of CS exposure (data not shown). MyD88-/- mice are known to be susceptible to 505 

opportunistic infections and this was the likely cause of illness in these mice (9, 98). 506 

Hence, our study adds to the current literature by investigating the pathogenesis of 507 

COPD with, previously uninvestigated, Tlr2-/- and Tlr4-/- on a BALB/c background. 508 

Moreover, our study also used an established experimental COPD model that utilizes a more 509 

clinically relevant CS exposure protocol and is supported by gene expression analysis of 510 

published human microarray datasets from healthy non-smokers and COPD subjects (7, 13, 511 

16, 29, 31, 40, 41, 47, 100, 102).  512 

We showed that TLR2 mRNA was increased in blunt dissected airways and 513 

parenchyma, whereas TLR4 mRNA was increased only in the airways. This suggests that the 514 
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expression of TLR2 and TLR4 may be tissue-specific within the lung, which may in part 515 

explain the discrepancies in the literature on the expression of TLR2 and TLR4 in COPD. 516 

Interestingly, the expression of TLR2 and TLR4 were not altered in lung-isolated 517 

macrophages from CS-exposed mice. This indicates that CS-induced increases in TLR 518 

expression occurs on small airway epithelial cells whilst influxing macrophages may 519 

contribute by having constitutive levels of TLR expression and by increasing in numbers. 520 

These observations were confirmed with immunohistochemistry that showed that TLR2 and 521 

TLR4 expressions were detected on small airway epithelial cells and parenchymal 522 

inflammatory cells, which were significantly increased in experimental COPD. Furthermore, 523 

subsequent flow cytometry analysis showed CS exposure increased the numbers of TLR2- 524 

and/or TLR4-expressing neutrophils and mDCs in the lungs. These results mirrorwere in line 525 

with previous studies, by us and others, that showed TLR2 and/or TLR4 awere expressed on 526 

various cells, including macrophages, peripheral monocytes, neutrophils, mDCs and 527 

airway/bronchial epithelial cells in inflammatory disease setting including experimental and 528 

human COPD (3, 6, 10, 22, 33, 65, 69, 75, 80, 81, 85, 87, 91). 529 

Importantly, using pre-existing microarray datasets, we also showed that the 530 

expression of TLR2 and TLR4 mRNA was increased in airway epithelial cells from bronchial 531 

brushings of patients with mild to moderate COPD. In contrast, TLR2 and TLR4 mRNA 532 

were reduced in lung parenchymal cores from patients with severe COPD. Interestingly, a 533 

previous human study also described similar observations whereby TLR4 expression was 534 

increased in the nasalairway epithelium in mild-to-moderate COPD (FEV1 >1L) but reduced 535 

in severe diseaseCOPD (FEV1 <1L) (65). Collectively, these data suggest that TLR2 and 536 

TLR4 expression is increased in the lung parenchyma early in disease in response to CS-537 

exposure, but are reduced in of severe COPD patients, which may be due to increasedgreater 538 

tissue destruction that results in the loss of tissues/cells expressing these TLRs. This also may 539 
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explain the current discrepancies in the literature on the expression of TLR2 and TLR4 in 540 

COPD. 541 

Others have shown that TLR1 and TLR6 were increased on CD8+ T cells from COPD 542 

patients (30), and that CD14 levels were increased by CS and associated with impaired lung 543 

function in smokers (17, 110). It has been reported that MD2 expression was unaltered in 544 

small airway epithelium, but was reduced in the large airways of smokers and patients with 545 

stable COPD (74). These data suggest that the effects of CS on the expression of TLR2 and 546 

TLR4 co-receptors may also be tissue- or cell-specific (e.g. airway epithelium vs. 547 

inflammatory cells) and dependent on the severity of the disease. Thus, ligation of TLR2 and 548 

TLR4 with their co-receptors may also partially explain the discrepancies in the current 549 

literature. 550 

In contrast to our observations in Tlr2-/- mice, previous studies showed that inhibition 551 

of TLR2 reduced pulmonary inflammation, apoptosis and lung function impairment in other 552 

chronic lung diseases, including pulmonary fibrosis and asthma  (59, 106). Mice deficient in 553 

TLR2 or treated with a neutralizing antibody had reduced bleomycin-induced pulmonary 554 

inflammation, collagen deposition and hydroxyproline levels in the lungs (106). Moreover, 555 

Tlr2-/- mice had reduced airway inflammation and peri-bronchial collagen deposition in an 556 

OVA-induced model of experimental allergic asthma (59). In addition, TLR2 was shown to 557 

promote apoptosis in human kidney epithelial (HEK)-293, human monocytic (THP-1) cells 558 

and endothelial cells in vitro (2, 81). Ovalbumin-induced airway hyperresponsiveness (AHR) 559 

were also previously shown to be reduced in Tlr2-/- mice (38, 59). This may be due to 560 

differences in pathogenesis, mechanisms and inflammatory cells/responses that may dictate 561 

the role of TLR2 in various chronic lung diseases. For example, allergic asthma is dominated 562 

by aberrant Th2-type responses typified by increased infiltration of eosinophils and activated 563 

mast cells into the airways and increased levels of Th2-associated cytokines such as IL-5 and 564 
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IL-13 (44, 45, 95, 96).  In contrast, COPD is typically associated with Th1/Th17-type 565 

inflammatory responses characterized by infiltration of macrophages, neutrophils and 566 

cytotoxic T cells and the production of Th1/Th17-associated cytokines such as IFN-γ and IL-567 

17A (7, 30, 69, 80, 91). Hence, the role of TLR2 in different chronic lung diseases may 568 

largely depend on the presence and type of specific TLR2-expressing cells. Nevertheless, our 569 

studies suggest that TLR2 may potentially have a protective role in CS-induced COPD. The 570 

underlying mechanism remained unclear, but appeared to be independent of oxidative stress 571 

in the lung.  572 

Interestingly, inflammatory infiltrates in the airway lumen and around blood vessels, 573 

TNFα protein and TLC were increased in normal air-exposed Tlr2-/- mice compared WT 574 

controls. Previous studies showed that airway inflammation is negatively associated with 575 

lung function (4, 8) and may cause lung hyperinflation (increased in TLC) (28, 49, 76). 576 

Moreover, increased sputum inflammatory cells (e.g. neutrophils) have been shown to 577 

significantly correlate with air trapping in COPD patients (71, 72). Another study showed 578 

that TLR2 was highly expressed in human fetal lungs and may be important in regulating the 579 

development of this organ (77). Recent studies also have emerged that highlight the 580 

importance and interactions of host microbiome, commensal bacteria, infectious 581 

exacerbations and TLRs in shaping and regulating immune responses in COPD and other 582 

chronic respiratory diseases (11, 14, 15, 43, 68, 89). Taken together, the increased 583 

inflammation and TLC observed in normal air-exposed Tlr2-/- mice may be a consequence of 584 

altered host immune responses, lung development and/or microbiome composition. It is 585 

likely that TLR2 and TLR4 will be important in these interactions and during lung 586 

development. However, this is outside the scope of this study and will require further work to 587 

delineate the relationships. 588 
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TLR4 has been implicated in CS-induced pulmonary inflammation (21, 66). In other 589 

studies, acute (3 days) CS exposure of Tlr4-/- mice on a C57BL/6 background resulted in 590 

reductions in total inflammatory cells in BALF and lung tissue (21). Sub-acute (5 weeks) 591 

exposure of Tlr4defective mice also resulted in reduced numbers of BALF total inflammatory 592 

cells compared to WT C3H/HeJ controls (66). However, in support of our observations, the 593 

numbers of BALF total inflammatory cells were not significantly different in these 594 

Tlr4defective mice compared to WT C3H/HeJ controls following chronic CS exposure (26 595 

weeks) (66). Collectively, these suggest TLR4 may play only a minor role at the chronic and 596 

severe stages of the disease. Whilst CS-exposed Tlr4-/- mice had increased pro-inflammatory 597 

cytokine TNFα mRNA expression in the lung compared to CS-exposed WT controls, this 598 

increase in mRNA expression was in contrast to the significant reduction in TNFα protein 599 

levels in CS-exposed Tlr4-/- mice. Taken together, these results suggest that there are 600 

alterations in the regulation of gene transcriptional regulation and post-translational protein 601 

modificationsproduction in CS-exposed Tlr4-/- mice, which collectively does not affect 602 

airway or parenchymal inflammation. The biology of these changes is not understood.  603 

We previously showed that parenchymal inflammatory cells and alveolar destruction 604 

were further increased in WT mice after 12 weeks of CS compared to those exposed to CS 605 

for 8 weeks (7). Hence, increasing CS exposure time in mice (e.g. from 8 to 12 weeks) may 606 

lead to further alterations in inflammatory gene expression and inflammation. However, 607 

given that TLR2 and TLR4 expression were reduced in lung parenchymal cores from severe 608 

(GOLD III/IV) COPD patients (Figure 2), we speculate that increasing CS exposure time to 609 

induce more severe disease in our model may have similar effects and promote further loss of 610 

tissue/cells expressing TLR2 and/or TLR4. In support of this, a previous human study also 611 

found that TLR4 expression was inversely proportional to COPD severity (65). Moreover, we 612 

also showed that the expression of pro-inflammatory TNF-α and chemokine CXCL1 were not 613 
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increased further with longer exposures, despite an increasesd in parenchymal inflammatory 614 

cells, in WT mice exposed to CS for 12 weeks of CS compared to those exposed for 8 weeks 615 

(7). This may be due to some of the functional/molecular changes being restricted to specific 616 

cell types (e.g. structural versus immune cells) that expressed TLR2 and/or TLR4 in the lung. 617 

Hence, profiling functional/molecular changes in whole lung tissue may have concealed 618 

small but potentially critical functional/molecular changes. TIn addition, the roles of TLRs 619 

(TLR2 or TLR4) on specific cells in the lungs also remains unclear. This could be addressed 620 

in future studies using cell-specific TLR-/- mice or bone marrow chimera studies using Tlr2-/- 621 

or Tlr4-/- mice to delineate the role of TLRs on inflammatory versus structural cells. 622 

 CS-induced small airway fibrosis was significantly reduced in lungs of Tlr4-/- mice 623 

compared to WT controls. Others have proposed that hyaluronan plays a role in modulating 624 

the expression of fibronectin and pulmonary fibrosis in a TLR4-dependent manner (50, 107). 625 

Moreover, IL-33 is known to be a pro-fibrotic factor and has been shown to be important in 626 

chronic lung diseases, including COPD and asthma (20, 84, 105). Thus, the reduction in 627 

small airway fibrosis in Tlr4-/- mice may result from the impairment of the effects of 628 

hyaluronan in BALF and IL-33 and fibronectin in the lungs. TLR4 also plays a critical role in 629 

bleomycin-induced pulmonary fibrosis (42, 58, 60, 86). TLR4 mRNA expression was 630 

increased in mice administered with bleomycin (58), and Tlr4-/- mice were protected against 631 

bleomycin-induced pulmonary fibrosis (increased lung collagen levels) and mortality (60). 632 

Inhibition of TLR4 with an antagonist (E5564) or an inhibitory small hairpin RNA also 633 

reduced collagen synthesis and secretion in the lungs (42, 86). Our data further these 634 

observations by showing that TLR4 is a mediator of small airway fibrosis induced by CS. 635 

Previous studies suggest that mice deficient in, or with mutations of, TLR4 on other 636 

genetic backgrounds (e.g. C3H/HeJ and C57BL/10ScNJ) developed spontaneous emphysema 637 

after 3 months of age in the absence of noxious challenges such as CS (104, 109). This was 638 
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associated with increased Nox3 expression in lungs of these mice (104, 109). We also 639 

observed an increase in Nox3 mRNA in normal air-exposed Tlr4-/- BALB/c mice, however, 640 

these mice did not develop spontaneous emphysema even at 15-16 weeks of age. In fact, 641 

Tlr4-/- mice were protected from CS-induced emphysema-like alveolar enlargement, which 642 

was associated with reduced apoptosis in the lungs. These findings were supported by the 643 

observation of reduced expression of MMP-12, which has been linked to the induction of 644 

emphysema (7, 41), and improved lung function in CS-exposed Tlr4-/- mice. Moreover, CS 645 

exposure appeared to reduce Nox3 mRNA expression in Tlr4-/- BALB/c mice back to levels 646 

observed in WT BALB/c mice. 647 

The differences in genetic background may account for the conflicting results. For 648 

example, spontaneous chronic lung disease (severe lung inflammation, increased collagen 649 

deposition and alveolar wall thickening) only manifest in Src homology 2 domain–containing 650 

inositol-5-phosphatase 1 (SHIP-1)-deficient C57BL/6, but not BALB/c mice (23, 67). In the 651 

context of human COPD, this may be important as the severity of the disease in humans often 652 

varies between individuals and genetic make-up in combination with environmental 653 

exposures are critical. These observations highlight the potential importance of genetic 654 

factors in predisposing certain individuals to COPD. This is clinically relevant as only 50% 655 

of life-long smokers developed COPD (64). Importantly, this may also indicate that certain 656 

individuals may respond better to TLR-based interventions such as Eritoran (currently in 657 

phase 3 clinical trial (73)). Eritoran is a synthetic TLR4 antagonist and was shown to protect 658 

mice against acute lethal influenza infection (88). 659 

Our study demonstrates a previously unrecognized protective role for TLR2 in the 660 

pathogenesis of COPD. This supports current evidence in the literature that shows a loss-of-661 

function polymorphism in the TLR2, but not TLR4, gene is associated with accelerated lung 662 

function declines in COPD patients (12). TLR2 polymorphisms also predispose patients with 663 
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other chronic lung diseases (e.g. cystic fibrosis) to rapid lung function decline (35). This 664 

further highlights the potential protective role of TLR2 in chronic lung diseases, and 665 

screening for TLR2 polymorphisms may be useful in the prognosis of COPD patients. 666 

Furthermore, using a clinically-relevant and established model of CS-induced COPD, our 667 

study demonstrates that TLR4 promotes CS-induced airway fibrosis, apoptosis, emphysema-668 

like alveolar enlargement and lung function impairment. Hence, activating TLR2 and/or 669 

inhibiting TLR4 may be potential therapeutic strategies in COPD. 670 
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FIGURE LEGENDS 1092 

Figure 1. TLR2 and TLR4 mRNA expression and protein levels are increased in CS-1093 

induced experimental COPD. Wild-type (WT) BALB/c mice were exposed to normal air or 1094 

CS and sacrificed after 4, 8 and 12 weeks. (A) TLR2 and (B) TLR4 mRNA expression in 1095 

whole lung tissues. (C) Muc5ac and Sftpc mRNA expressions in blunt dissected airways and 1096 

parenchyma from in normal air-exposed mice. (D-E) TLR2 and (F-G) TLR4 mRNA 1097 

expression in blunt dissected airways and parenchyma after 8 weeks CS exposure. 1098 

Immunohistochemistry for (H-I) TLR2 and (J-K) TLR4 protein on small airway epithelium 1099 

and lung parenchyma after 8 weeks of CS exposure; scale bars equal 50µm. Arrowheads 1100 

indicate TLR2 or TLR4 expressing inflammatory cells. TLR2 and TLR4 mRNA expression 1101 

were normalized to reference gene and expressed as relative abundance compared to normal 1102 

air-exposed controls. Graphs were presented as mean ± SEM and representative from two 1103 

independent experiments of 6 mice per group. Two-tailed Mann-Whitney t-test analyzed 1104 

differences between two groups, whereby *p<0.05; **p<0.01; ***p<0.001 compared to 1105 

normal air-exposed controls and #p<0.05; ###p<0.001 compared to bluntly dissected airway.  1106 

 1107 

Figure 2. TLR2- and/or TLR4-expressing neutrophils and mDCs cells were increased in 1108 

CS-induced experimental COPD. Wild-type (WT) BALB/c mice were exposed to cigarette 1109 

smoke (CS) or normal air for 8 weeks. (A) TLR2 and (B) TLR4 mRNA expressions was 1110 

determined in macrophage isolated from lungs by qPCR. The number of (C) CD11b+ 1111 

monocytes, (D) neutrophils and (E) myeloid dendritic cells (mDCs) expressing TLR2 and/or 1112 

TLR4 in lungs. mRNA expressions were normalized to reference gene and expressed as 1113 

relative abundance compared to normal air-exposed WT controls. Graphs were presented as 1114 

mean ± SEM and representative from two independent experiments of 6 mice per group. 1115 
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Two-tailed Mann-Whitney t-test analyzed differences between two groups in Figure A and B. 1116 

The one-way analysis of variance with Bonferroni post-test analyzed differences between 3 1117 

or more groups for Figure C, D and E, whereby *p<0.05; **p<0.01 compared to normal air-1118 

exposed WT. 1119 

 1120 

Figure 3. TLR2 and TLR4 co-receptor expression are increased in CS-induced 1121 

experimental COPD. Wild-type (WT) BALB/c mice were exposed to normal air or CS for 8 1122 

weeks to induce experimental COPD. (A-B) TLR1, (C-D) TLR6, (E-F) CD14 and (G-H) 1123 

MD2/Ly96 mRNA expressions in blunt dissected airways and parenchyma. mRNA 1124 

expressions were normalized to reference gene and expressed as relative abundance 1125 

compared to normal air-exposed controls. Graphs were presented as mean ± SEM and 1126 

representative from two independent experiments of 6 mice per group. Two-tailed Mann-1127 

Whitney t-test analyzed differences between two groups, whereby *p<0.05; **p<0.01; 1128 

***p<0.001 compared to normal air-exposed controls.  1129 

 1130 

Figure 4. TLR2, TLR4 and co-receptor mRNA expressions are increased in the airways 1131 

in humans with mild to moderate COPD. Airway epithelial cells were collected from 1132 

human healthy non-smokers (NS), healthy smokers without COPD (Smoker) and COPD 1133 

patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (Mild) 1134 

or II (Moderate) disease. (A) TLR2, (B) TLR4, (C) TLR1, (D) TLR6, (E) CD14 and (F) 1135 

LY96 mRNA expression were assessed by microarray profiling. Lung parenchymal cores 1136 

were collected from human healthy non-smokers (NS) and COPD patients with Global 1137 

Initiative for Chronic Obstructive Lung Disease (GOLD) stage IV (severe) disease. (G) 1138 

TLR2, (H) TLR4, (I) TLR1, (J) TLR6 and (K) LY96 mRNA expression were assessed by 1139 
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microarray profiling. Graphs are expressed as log2 intensity robust multi-array average 1140 

signals. The Benjamini–Hochberg method for adjusted P value/false discovery rate (FDR) 1141 

analyzed differences between NS or Smoker and COPD patients.  1142 

 1143 

Figure 5. CS-induced pulmonary inflammation is unaltered in TLR2-deficient and 1144 

TLR4-deficient mice with experimental COPD. Wild-type (WT), TLR2-deficient (Tlr2-/-) 1145 

or TLR4-deficient (Tlr4-/-) BALB/c mice were exposed to normal air or CS for 8 weeks to 1146 

induce experimental COPD. (A) Total leukocytes, (B) macrophages, (C) neutrophils and (D) 1147 

lymphocytes were enumerated in May-Grunwald Giemsa stained bronchoalveolar lavage 1148 

fluid (BALF) cytospin slides. (E) The numbers of parenchymal inflammatory cells 1149 

(arrowheads) were enumerated in periodic acid-Schiff (PAS)-stained lung sections; scale bars 1150 

equal 20µm. (G-I) Histopathology score in lung sections; specifically, in the airway, vascular 1151 

and parenchymal regions. (J) Representative images of lung histopathology scoring; scale 1152 

bars equal 50µm. Graphs were presented as mean ± SEM and representative from two 1153 

independent experiments of 6 mice per group. The one-way analysis of variance with 1154 

Bonferroni post-test analyzed differences between 3 or more groups, whereby *p<0.05; 1155 

**p<0.01; ***p<0.001; ****p<0.0001 compared to normal air-exposed WT, Tlr2-/- or Tlr4-/- 1156 

controls, #p<0.05; ##p<0.01 compared to CS-exposed WT controls and ϕp<0.05; ϕϕp<0.01; 1157 

ϕϕϕp<0.001 compared to normal air-exposed WT controls.  1158 

 1159 

Figure 6. Pro-inflammatory cytokine, chemokine, COPD-related factors and oxidative 1160 

stress-associated gene expressions in CS-induced experimental COPD. Wild-type (WT), 1161 

TLR2-deficient (Tlr2-/-) or TLR4-deficient (Tlr4-/-) BALB/c mice were exposed to normal air 1162 

or cigarette smoke (CS) for 8 weeks. Pro-inflammatory cytokine (A) tumor necrosis factor 1163 
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(TNF)-α, (B) chemokine (C-X-C motif) ligand (CXCL)1, (C) chemokine (C-C motif) ligand 1164 

(CCL)2, (D) CCL3, (E) CCL4, (F) CCL12, (G) CCL22, other COPD-related factors; (H) 1165 

matrix metalloproteinase (MMP)-12 and (I) serum amyloid A3 (SAA3) mRNA expression 1166 

was determined in whole lung homogenates by qPCR. Oxidative stress-associated genes (J) 1167 

NADPH oxidase (Nox)1, (K) Nox2, (L) Nox3, (M) Nox4, (N) NAD(P)H quinone 1168 

dehydrogenase (Nqo)1, (O) nuclear factor, erythroid 2 like 2 (Nrf2), (P) glutamate-cysteine 1169 

ligase catalytic subunit (Gclc), (Q) glutathione peroxidase (Gpx)2, (R) heme oxygenase 1170 

(Hmox)1 and (S) glutathione S-transferase pi (Gstp)1 expression was determined in whole 1171 

lung homogenates by qPCR. mRNA expression was normalized to the reference gene HPRT 1172 

and expressed as relative abundance compared to normal air-exposed WT controls. (T) The 1173 

levels of TNFα protein in lung homogenates were determined by ELISA and normalized to 1174 

total protein. Graphs were presented as mean ± SEM and representative from two 1175 

independent experiments of 6 mice per group. The one-way analysis of variance with 1176 

Bonferroni post-test was used to analyze differences between 3 or more groups, whereby 1177 

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 compared to normal air-exposed WT, Tlr2-/- 1178 

or Tlr4-/- controls, #p<0.05; ##p<0.01; ###p<0.001; ####p<0.0001 compared to CS-exposed 1179 

WT controls, ϕp<0.05; ϕϕϕϕp<0.0001 compared WT air controls and ns denotes not 1180 

significant. 1181 

 1182 

Figure 7. CS-induced airway remodeling and fibrosis is not altered in TLR2-deficient 1183 

mice whilst CS-induced airway fibrosis, but not remodeling, is completely ablated in 1184 

TLR4-deficient mice with experimental COPD. Wild-type (WT), TLR2-deficient (Tlr2-/-) 1185 

or TLR4-deficient (Tlr4-/-) BALB/c mice were exposed to normal air or CS for 8 weeks to 1186 

induce experimental COPD. (A) Small airway epithelial thickness in terms of epithelial cell 1187 

area (μm2) per basement membrane (BM) perimeter (μm) was determined in periodic acid-1188 
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Schiff (PAS)-stained whole lung sections; scale bars equal 50µm. (B) The number of 1189 

epithelial cells in PAS-stained lung sections was assessed by enumerating the number of 1190 

nuclei per 100μm of BM perimeter; scale bars equal 20µm. (C) Area of collagen deposition 1191 

(μm2) per BM perimeter (μm) was determined in Masson’s Trichrome-stained lung sections; 1192 

scale bars equal 200µm. Inserts show expanded images of indicated regions; scale bars equal 1193 

200μm). (D) The level of hyaluronan in BALF was determined by ELISA. The mRNA 1194 

expression of (E) fibronectin and (F) interleukin (IL)-33 were determined in whole lung 1195 

homogenates by qPCR. mRNA expression was normalized to the reference gene HPRT and 1196 

expressed as relative abundance compared to normal air-exposed WT controls. Graphs were 1197 

presented as mean ± SEM and representative from two independent experiments of 6 mice 1198 

per group. The one-way analysis of variance with Bonferroni post-test analyzed differences 1199 

between 3 or more groups, whereby *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 1200 

compared to normal air-exposed WT, Tlr2-/- or Tlr4-/- controls, #p<0.05; ## p<0.01; 1201 

####p<0.0001 compared to CS-exposed WT controls, ϕp<0.05; ϕϕϕϕp<0.0001 compared to 1202 

normal air-exposed WT controls and ns denotes not significant. 1203 

 1204 

Figure 8. CS-induced emphysema-like alveolar enlargement, apoptosis and impaired 1205 

lung function are increased in TLR2-deficient mice and decreased in TLR4-deficient 1206 

mice with experimental COPD. Wild-type (WT), TLR2-deficient (Tlr2-/-) or TLR4-1207 

deficient (Tlr4-/-) BALB/c mice were exposed to normal air or CS for 8 weeks to induce 1208 

experimental COPD. (A) Alveolar septal damage and (B) diameter (μm) were determined in 1209 

H&E-stained lung sections using destructive index and mean linear intercept techniques 1210 

respectively; scale bars equal 50µm. (C) The numbers of TUNEL+ cells (arrowheads) were 1211 

enumerated in whole lung sections at high power field (HPF; 100x); scale bars equal 20µm. 1212 

Immunohistochemistry for (D) active cCaspase- 3 protein on lung parenchyma after 8 weeks 1213 
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of CS exposure; scale bars equal 50µm. Arrowheads indicate cCaspase- 3-expressing alveolar 1214 

septa cells. Lung function was assessed in terms of (E) total lung capacity (TLC) and (F) 1215 

transpulmonary resistance. Graphs were presented as mean ± SEM and representative from 1216 

two independent experiments of 6 mice per group. The one-way analysis of variance with 1217 

Bonferroni post-test analyzed differences between 3 or more groups, whereby **p<0.01; 1218 

***p<0.001; ****p<0.0001 compared to normal air-exposed WT, Tlr2-/- or Tlr4-/- controls, 1219 

#p<0.05; ##p<0.01; ####p<0.0001 compared to CS-exposed WT controls, ϕϕϕϕp<0.0001 1220 

compared to normal air-exposed WT controls and ns denotes not significant.  1221 

1222 
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Table 1. Custom-designed primers used in qPCR analysis 1223 

Primer Primer sequence (5’ → 3’) 

TLR2 forward TGTAGGGGCTTCACTTCTCTGCTT 

TLR2 reverse AGACTCCTGAGCAGAACAGCGTTT 

TLR4 forward TGGTTGCAGAAAATGCCAGG 

TLR4 reverse GGAACTACCTCTATGCAGGGAT 

TNF-α forward TCTGTCTACTGAACTTCGGGGTGA 

Muc5ac forward GCAGTTGTGTCACCATCATCTGTG 

Muc5ac reverse GGGGCAGTCTTGACTAACCCTCTT 

Sftpc forward TGTATGACTACCAGCGGCTC 

Sftpc reverse AGCGAAAGCCTCAAGACTAGG 

TNF-α reverse TTGTCTTTGAGATCCATGCCGTT 

CXCL1 forward GCTGGGATTCACCTCAAGAA 

CXCL1 reverse CTTGGGGACACCTTTTAGCA 

CCL2 forward TGAGTAGCAGCAGGTGAGTGGGG 

CCL2 reverse TGTTCACAGTTGCCGGCTGGAG 

CCL3 forward CTCCCAGCCAGGTGTCATTTT 

CCL3 reverse CTTGGACCCAGGTCTCTTTGG 

CCL4 forward GTGGCTGCCTTCTGTGCTCCA 

CCL4 reverse AGCTGCCGGGAGGTGTAAGAGAA 

CCL12 forward CCGGGAGCTGTGATCTTCA 

CCL12 reverse AACCCACTTCTCGGGGT 

CCL22 forward TGGCTACCCTGCGTCGTGTCCCA 

CCL22 reverse CGTGATGGCAGAGGGTGACGG 

MMP-12 forward CCTCGATGTGGAGTGCCCGA 

MMP-12 reverse CCTCACGCTTCATGTCCGGAG 

SAA3 forward TGATCCTGGGAGTTGACAGCCAA 

SAA3 reverse ACCCCTCCGGGCAGCATCATA 

Nox1 forward CCCCTGAGTCTTGGAAGTGG 

Nox1 reverse GGGTGCATGACAACCTTGGTA 

Nox2 forward AACTGGGCTGTGAATGAAGG 

Nox2 reverse CAGCAGGATCAGCATACAGTTG 
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Nox3 forward CTCGTTGCCTACGGGATAGC 

Nox3 reverse CCTTCAGCATCCTTGGCCT  

Nox4 forward ACAACCAAGGGCCAGAATACTACTAC 

Nox4 reverse GGATGAGGCTGCAGTTGAGG 

Nqo1 forward GTAGCGGCTCCATGTACTCTC 

Nqo1 reverse AGGATGCCACTCTGAATCGG 

Nrf2 forward CTTTAGTCAGCGACAGAAGGAC 

Nrf2 reverse AGGCATCTTGTTTGGGAATGTG 

Gclc foward CGACCAATGGAGGTGCAGTTA 

Gclc reverse AACCTTGGACAGCGGAATGA 

Gpx2 forward ACCAGTTCGGACATCAGGAG 

Gpx2 reverse CCCAGGTCGGACATACTTGA 

Hmox1 forward GGTGCAAGATACTGCCCCTG 

Hmox1 reverse TGAGGACCCACTGGAGGAG 

Gstp1 forward GGCATGCCACCATACACCAT 

Gstp1 reverse ATTCGCATGGCCTCACACC 

Fibronectin forward TGTGGTTGCCTTGCACGAT 

Fibronectin reverse GCTATCCACTGGGCAGTAAAGC 

IL-33 forward CCTCCCTGAGTACATACAATGACC 

IL-33 reverse GTAGTAGCACCTGGTCTTGCTCTT 

HPRT forward AGGCCAGACTTTGTTGGATTTGAA 

HPRT reverse CAACTTGCGCTCATCTTAGGATTT 

 1224 

1225 
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Table 2. Surface antigens used to characterize mouse lung cell subsets by flow cytometry 1226 

Cell subset Cell surface antigens 

CD11b+ monocyte CD45+ F4/80+ CD11c− CD11b+ Ly6C+TLR2+/− TLR4+/− 

Neutrophil CD45+ F4/80− CD11b+Ly6G+TLR2+/− TLR4+/− 

Myeloid dendritic cell CD45+ F4/80− CD11c+ CD11b+ MHCII+TLR2+/− TLR4+/− 

 1227 

1228 
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Table 3. Antibodies used in flow cytometry analysis 1229 

Cell surface antigens Clone Fluorophore Company 

CD45 30-F11 AF-700 Biolegend 

F4/80 T45-2342 BV711 BD Biosciences 

CD11c HL3 BV421 BD Biosciences 

CD11b M1/70 PerCPCy5.5 Biolegend 

Ly6G 1A8 BV510 Biolegend 

MHCII M5/114.15.2 APC Biolegend 

TLR2 T2.5 FITC Biolegend 

TLR4 MTS510 PE BD Biosciences 

 1230 


