
“© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



1

Multidimensional Balance-based Cluster Boundary
Detection for High Dimensional Data

Xiaofeng Cao, Baozhi Qiu, Xiangli Li, Zenglin Shi, Guandong Xu, and Jianliang Xu

Abstract—The balance of neighborhood space around a central
point is an important concept in cluster analysis. It can be
used to effectively detect cluster boundary objects. The existing
neighborhood analysis methods focus on the distribution of data,
i.e., analyzing the characteristic of the neighborhood space from a
single perspective, and could not obtain rich data characteristics.
In this paper, we analyze the high dimensional neighborhood
space from multiple perspectives. By simulating each dimension
of a data point’s k nearest neighbors space (kNNs) as a lever,
we apply the lever principle to compute the balance fulcrum
of each dimension after proving its inevitability and uniqueness.
Then, we model the distance between the projected coordinate of
the data point and the balance fulcrum on each dimension, and
construct the DHBlan coefficient to measure the balance of the
neighborhood space. Based on this theoretical model, we propose
a simple yet effective cluster boundary detection algorithm,
called Lever. Experiments on both low and high dimensional
datasets validate the effectiveness and efficiency of our proposed
algorithm.

Index Terms—Cluster boundary, high dimensional space, un-
limited lever, balance principle.

I. INTRODUCTION

UNSUPERVISED learning is a process of discovering po-
tentially valuable knowledge that facilitates a better un-

derstanding of the underlying data. Of the many methods, clus-
ter analysis [1-5] which aims at learning interesting, nontrivial,
and hidden rules from the unknown data, has been widely
used in different learning systems such as image segmentation
[6-7], biological analysis [8-9], medicine research [10-11],
information retrieval [12-13], and natural language processing
[14]. A rich set of clustering algorithms has been developed
in the literature of neural networks [15-18]. Recently, the deep
learning approach has also been applied to clustering [19]. In
addition to clustering, cluster boundary detection is another
important task of cluster analysis. The boundary data points,
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it is a geometric notion.

with clear class labels, are distributed at the edge of a cluster.
They are different from the internal data of a cluster. From
the perspective of pattern recognition, cluster boundary points
represent the data objects that have a clear ownership but may
depart, e.g., people who have been infected by some virus
but do not yet suffer from a disease, irregular handwritten
characters, target objects which have entered a forbidden area,
etc.

To date, researchers have proposed many cluster boundary
detection algorithms, such as BORDER [20], BRIM [21],
BAND [22], BRINK [23], BERGE [24], and Spinver [25].
These algorithms have gained satisfactory results for low
dimensional data based on some geometric theories. How-
ever, they are inferior for high dimensional data due to the
data sparsity and complexity in high dimensional space. The
concept of a cluster boundary was proposed in the DBSCAN
algorithm [26]. It randomly selects some core points to search
clusters, and the process is terminated when it meets the cluster
boundary objects. The distribution of boundary points’ nearest
neighbors is not uniform. In other words, the neighborhood
spaces are not balanced around central points. In contrast,
the nearest neighbors of core points are uniformly distributed
around the core points. As such, the DBSCAN algorithm
can be considered a search process from balance points to
imbalance points. It is further observed that many other
algorithms also bear the concept of balance, such as k-means
[27-28], FCM (Fuzzy C-Means) [29-30], and Meanshift [31-
34]. The k-means algorithm initializes k centroids firstly, and
then classifies the data points into k clusters. Because the
clusters may be imbalanced around the initial centroids, the
algorithm iteratively recalculates the centroids of the clusters
and reclassifies the data points. The iteration of the algorithm
will not stop until all the clusters are balanced around their
centroids. The MeanShift algorithm drifts the mean vector
by judging whether the module of the mean shift of the
current neighborhood is 0. If the module is higher than 0, the
neighborhood is not balanced, and the mean vector points to
the data points that introduce imbalance. Then, the algorithm
continues to update the positions of the central points until
the module of the mean shift becomes 0 (i.e., the current
neighborhood is balanced).

It is noted that all the aforementioned algorithms are all
concerned with neighborhood distributions. In the DBSCAN
algorithm, the circular neighborhood around a central point is
imbalanced if the number of data points in the neighborhood is
less than a preset threshold. The algorithm changes the search
direction when it meets the boundary points. In the k-means
algorithm, a cluster is imbalanced if the central point and the
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selected centroid are not the same. In the MeanShift algorithm, 
the neighborhood is imbalanced if the module of the mean 
shift is bigger than 0. The concept of balance can be used to 
distinguish a high-density neighborhood from a low-density 
one and a uniform neighborhood from a non-uniform one.

To our knowledge, there are three typical neighborhood 
identification methods, namely, circular range [35], grid range 
[36], and k nearest neighbors [37-39]. Of these, the circular 
range will become a hypersphere space and the grid range 
will become a hypercube space in high dimensional space 
[40-43]. In order to check the neighborhood distribution, a 
typical approach is sampling. However, it is challenging to 
decide the range of the sampling space that has an appropriate 
number of sample points. If the sampling range is too small, 
the space may have only a few points and lose important 
distribution characteristics. On the contrary, if the sampling 
range is too large, the space may have more than enough 
points and their distribution characteristics will be hard to 
analyze. In contrast to the range-based methods, a k-nearest-
neighbors (kNN) method always takes the irregular space 
which is constructed by a point’s k nearest neighbors so that 
the neighborhood distribution can be better captured.

The above sampling methods are focused on the object 
distribution within the neighborhood, and analyze the data 
from a single perspective of distance. But the data distribution 
of high dimensional space is sparse and complex, so judging 
the balance of neighborhood distribution merely based on the 
spatial distance of the data may not be accurate. In this paper, 
we attempt to analyze the data from multiple perspectives, 
i.e., analyzing the balance of each data dimension to judge 
the balance of neighborhood space. Regarding the balance, 
we leverage the classic physics theorem - the lever balance 
principle. The principle shows a special state of balance when 
forces are added to the mechanical device. It has been widely 
used in psychology, physiology, economics, and other fields.

Inspired by the lever balance principle, we take each dimen-
sion of a point’s kNNs as a separate lever. After proving the 
inevitability and uniqueness of the balance fulcrum on each 
dimension, we compute the balance fulcrum of each lever. 
Then, we construct the DHBlan (i.e., High Dimensional 
Balance) coefficient to measure the neighborhood balance. 
Finally, we propose an algorithm, called Lever, to detect 
cluster boundary objects. The main contributions of this paper 
are summarized as follows:
• We proposed a novel idea to analyze high dimensional

data from multiple perspectives;
• We introduce the lever balance principle to cluster bound-

ary detection and propose to detect the cluster boundary
by judging the balance of the neighborhood space;

• We develop the DHBlan coefficient to measure the
balance of a high dimensional neighborhood;

• We design a new cluster boundary detection algorithm
called Lever for high dimensional data.

The remainder of this paper is organized as follows. Section
II introduces the proposed detection model and algorithm,
in which the Section II.A describes the physical assumption
between cluster boundary and balance of lever, Section II.B
reports the used definitions and notations, Section II.C pro-

poses the DHBlan coefficient, and Section II.D proposes the
Lever algorithm. To verify the detection ability of the pro-
posed algorithm, Section III.A reports the data preprocessing
methods, Section III.B presents the quality evaluation standard,
Section III.C to G apply the cluster boundary detection in
various scenarios including synthetic, medical, handwritten
digit, face images, and target tracking. We then, discuss the
parameter settings in Section IV.A, study the scalability of the
proposed Lever algorithm with respect to the dataset size and
the dimensionality of data objects in Section IV.B, and analyze
the importance of DHBlan coefficient in Section IV.C, Our
conclusion is given in Section V.

II. DETECTION MODEL BASED ON LEVER BALANCE

The detection model of this paper is inspired by the lever
balance principle. Therefore, Section II.A describes the phys-
ical assumption between the cluster boundary detection task
and balance analysis of lever. Then, Section II.B represents
the definition of cluster boundary point and used notations of
this paper.

Under this assumption, Section II.C simulates each one-
dimension space of a high dimensional neighborhood space as
an unlimited lever, in which each data point would be taken as
a particle acted by the gravity force. To describe the balance of
one dimension around one data point, we propose the HBlan
coefficient. By scaling it in the high dimensional space, we
then extend it into a high dimensional balance coefficient-
DHBlan. With the help of this effective detection coefficient,
Section II.D proposes the Lever algorithm.

A. Lever and High Dimensional Space

A balance fulcrum is an important physical quantity in the
lever balance principle. The position of the balance fulcrum
reflects the force bearing status of a lever. If we add a force to
the tail of the lever, the balance fulcrum will move toward the
tail. If we add a force to a position near the balance fulcrum,
the position offset of the balance fulcrum will become smaller.
Essentially, the position of the balance fulcrum reflects the
force distribution of the lever.

If we regard the forces as data points, the force analysis
would become data analysis [44] [45]. When some noise points
or isolated points are distributed on the lever, the balance
fulcrum will move toward them. Based on this observation,
we introduce the lever balance principle to cluster boundary
detection for high dimensional data. Specifically, we simulate
each dimension of a point’s kNNs as a different lever. Then,
our analysis can be focused on the levers, rather than the high
dimensional space that is abstract and difficult to understand.
By computing the distance between the balance fulcrum and
the projected coordinate of the point on every dimension
(lever), we judge the balance of the neighborhood space. The
smaller the distance, the higher the level of balance will be.
On the contrary, a bigger distance means more noise points
and isolated points that the lever has.
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TABLE I: A summary of notations

Variable/Coefficient Definition/Function

X Data set with a size of n× d
xi A data point or object in X

xij The j-th dimension’s value of xi
xli The l-th nearest neighbor of xi
xlij the projected coordinate on the j-th dimension

of xli
w A point in the j-th dimension space of xi
kNN k nearest neighbors

kNNs k nearest neighbor space

H(.) Balance function

F l
ij The force acting on xlij
w∗ The balance fulcrum on the j-th dimension

of xi’s kNNs

G The gravity of a particle

Blan(xij) Measure the balance of the j-th dimension of xi
HBlan(xi) Measure the balance of kNNs of xi
Diver To discretize the HBlan coefficient

DHBlan To detect the cluster boundary points

a→ b The logical operation of a equals b

B. Definitions

Cluster boundary point [20]: A boundary point p is an
object that satisfies the following conditions:
1. It is within a dense region IR.
2. ∃ region IR′ near p, Density(IR’)>>Density(IR) or
Density(IR′)<<Density(IR).

Notations: Table I lists the variables (rows 1-9) and coeffi-
cient functions (rows 10-13) used in this paper.

C. Unlimited lever

According to the above analysis, each dimension of xi’s
kNN is simulated as a different lever and each data point is
simulated as a particle acted by the gravity force. Given a
variable fulcrum w on the j-th dimension space, we construct
a balance function H to represent the balance relation between
w and the j-dimension coordinates of xi’s kNNs. It is formally
defined as follows:

H(w) = δwγ
T
w (1)

where γw = (x1ij − w, x2ij − w, ..., xlij − w), δw =
(F 1

ij , F
2
ij , ..., F

l
ij), xlij (l = 1, 2, ..., k) is the projected coordi-

nate on the j-th dimension of object xi’s l-th nearest neighbor,
and F l

i,j is the force that acts on xlij . If the lever has a balance
fulcrum w∗, it must satisfy the condition:

H(w∗)→ 0 (2)

For an unlimited lever, variable w ∈ (−∞,+∞) and Eq.
(1) has a linear relationship with w. So, there must be a point
that can make H(w∗) → 0. Then, Eq. (2) will be true. To
prove the inevitability and uniqueness of the balance fulcrum
in the j-dimension space, we will show that the first-order
partial derivative of H is monotonic.

According the above analysis, our proof goal is:

∃w ∈ (−∞,+∞),H(w∗)→ 0 (3)

The formal proof is shown as follows.
Proof.

∂H(w)

∂w
= −δwIT (4)

where I = (1, 1, ..., 1)1×k. Intuitively, because ∂H(w)
∂w < 0,

H(w) is a monotonically decreasing function. When w in-
creases, H(w) will decrease. In the real lever system, due to
the length limitation of the lever, the lever fulcrum may not
exist. But in the data space, we simulate the dimension as an
unlimited lever, i.e., w ∈ (−∞,+∞). Thus, we can obtain
the following results:{

H(w)→ ε1, ε1 < 0, if w > xlij ,∀l ∈ (1, k)

H(w)→ ε2, ε2 > 0, if w < xlij ,∀l ∈ (1, k)
(5)

where ε1 and ε2 are constants. BecauseH(w) is monotonically
decreasing, when w ∈ (min(xlij),max(xlij)),∀l ∈ (1, k),
there must exist a unique balance fulcrum. In other words,
w∗ uniquely exists.

Now, we solve Eq. (2):

δwγ
T
w = δwX T − δwITw∗ → 0 (6)

where X = (x1ij , x
2
ij , ..., x

l
ij), then

w∗ =
δwX T

δwIT
(7)

For the lever constructed for each dimension, each data
point has the same quality and F l

ij → G, where G is the
gravity of a particle. Hence, Eq. (7) can be rewritten as:

w∗ =
X IT

IIT
(8)

Proof end.
To measure the balance of the dimension, we need to measure
the similarity between H(w) and H(w∗), so:

ε3 = |H(w)−H(w∗)|
= |γwδTw − γw∗δTw |
= |(γw − γw∗)δTw |
= τ1ΛIT

= τ2|w − w∗|

(9)

where Λ = (|w∗−w|, |w∗−w|, ..., |w∗−w|)1×k, ε3, τ1, τ2 are
three constants. So, we propose a Blan coefficient to measure
the balance of each dimension, and its definition is:

Blan(xij) = |xij − w∗| (10)

If the Blan coefficient is 0, the lever system will be
balanced. As for the data points, this means that the neighbors
are distributed uniformly around the central point (i.e., xij).
The farther the distance between the balance fulcrum and the
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central point, the bigger the value of Blan coefficient, and the 
less uniform the data distribution and the lever system would 
be. Note that the Blan coefficient only reflects the balance 
of the lever system for the j-th dimension. It cannot be used 
to measure the balance of all the lever systems, i.e., the high 
dimensional neighborhood space consisting of many different 
dimensions. We assume that the weight of each dimension 
is the same. Consequently, we can use the sum of the Blan 
coefficient of each lever to measure the balance of xi’s kNNs, 
and propose the HBlan coefficient:

HBlan(xi) = ΞIT (11)

where Ξ = (|xi1 − w∗1 |, |xi2 − w∗2 |, ..., |xim − w∗m|), and w∗j
is the best balance fulcrum in the j-dimension of xi’s kNNs.

There are three types of data objects in a dataset: noises,
cluster boundary objects, and core objects. The task of cluster
boundary detection aims to classify the three types of data
objects. An efficient method should be able to quickly capture
the unique characteristics of boundary objects. We propose
to use the HBlan coefficient to detect the cluster boundary.
Because the kNNs of a core object is uniform, the balance of
the space of core objects is strong and the HBlan coefficient
values are small. On the other hand, the HBlan coefficient
values of cluster boundary objects are generally larger than
those of core objects, while noises are expected to have the
largest HBlan coefficient values.

However, in the real world, some datasets may have a lot
of noises and the kNNs of some noises may be sparse. As a
result, their HBlan coefficient values may be close to those
of boundary objects. To reduce the influence of such noises,
we use the divergence of kNN to discretize the HBlan
coefficient. The divergence is defined as follows:

Diver(xi) = ΘIT (12)

where Θ = (e||x
1
i−xi||2 , e||x

2
i−xi||2 , ..., e||x

k
i−xi||2) and xji is

the j-th nearest neighbor of xi. Due to the sparsity of noises
and isolated points, their Diver values would be relatively
large. Finally, we propose the DHBlan coefficient as the
product of Diver and HBlan:

DHBlan(xi) = ΘIT ΞIT (13)

If the DHBlan coefficient of a data object is relatively
large, the data object may be a noise. Otherwise, it may be a
core object. Therefore, we can get the following inequality:

DHBlan(noise) > DHBlan(boundary) > DHBlan(core)
(14)

Then, we describe Eq. (13) in a probability density function
(PDF) to further show Eq. (14):

f(xi) = 1− 1√
2π
exp(−ΘIT ΞIT ) (15)

We plot the curve of this function in Figure 1, which shows
the PDF change on the normalized data (the normalization
step is to be detailed in Algorithm 1). Then, we can use the
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Fig. 1: The PDF change on the normalized data.The x-axis of
colored block represents the boundary points while the noises
and core points lie to the left and the right, respectively.

DHBlan coefficient to detect the cluster boundary objects
and the proposed Lever algorithm will be introduced in the
next section.

D. Lever algorithm

Based on the proposed DHBlan coefficient, we now pro-
pose a cluster boundary detection algorithm, named Lever.
Firstly, we find the kNN objects for each data object (line 6).
Then, we compute their DHBlan coefficient values and store
them in an array (lines 7-9). Next, we get the normalized serial
number of each data object (lines 11-18). Finally, we identify
the cluster boundary objects according to the input parameters
(lines 19-23). In addition, we suggest users normalizing the
data sets with large value ranges into the range [0, 1] before
running the algorithm, such as the data preprocessing methods
used in the experiment section. One reason is to reduce
memory consumption and the other is to balance the two parts
of our objective function.

III. EXPERIMENTS

In this section, we conduct a series of experiments to
evaluate the performance of the proposed Lever algorithm:
• Sections III.A reports the used data preprocessing meth-

ods of this paper;
• Sections III.B describes the quality evaluation method of

the cluster boundary detection task;
• Sections III.C and III.D compare the boundary detection

ability of different algorithms on some synthetic and
medical datasets;

• Sections III.E and III.F further examine Lever’s boundary
detection ability on handwritten digits and face image
datasets;

• Section III.G details some interesting experiments on
target tracking.

A. Data preprocessing

The datasets used are summarized in Table II. Before
conducting the experiments, we perform some preprocessing
on these datasets. The preprocessing methods are as follows:
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Algorithm 1. Lever

1: Input: X // data set; k // number of nearest neighbors;
2: λ1 // lower bound; λ2// upper bound
3:Output: Y // boundary object set
4:Initialization: i, j ← 1; A,B,R,Y ← ∅
5: Begin:
6: Find the kNN set of each data object in X;
7: for i=1 to n do
8: A(i) = DHBlan(xi)
9: endfor
10: Sort A by descending order and store them in matrix B
11: for i=1 to n do
12: for j=1 to n do
13: if A(i)− B(j)→ 0 do
14: R(i)← j/n // calculate the sort number and normalize them
15: break
16: endif
17: endfor
18: endfor
19: for i=1 to n do
20: if R(i) ∈ (λ1, λ2) do // detect the cluster boundary
21: Y ← Y ∪ xi
22: endif
23: endfor

TABLE II: Datasets and preprocessing methods

D n Dimensionality Preprocessing

Mnist 10,000 28 (c)
Colon 62 2,000 (a)
Prostate 102 10,509 (b)
Pointing 1,395 384 (c)
Waving Trees 287 160 (c)
Moved Object 1,745 160 (c)

• the value of each dimension of each data object is divided
by 103 ;

• the value of each dimension of each data object is divided
by 104;

• for each image, read the x × y grayscale matrix and
compress it into a single-column matrix (i.e., with a size
of 1× y) with the average grayscale values.

Preprocessing steps (a) and (b) aim to reduce the compu-
tation overhead (speed and memory) since the data domain is
large. Then the values will be normalized to [0, 1] after being
proprocessed. Step (c) is an image processing approach which
transforms the image type to numerical type.

B. Quality evaluation

In cluster analysis, there are two methods that can be used
for quality evaluation [46-47]. The first is a supervised method
based on trained data classification results. It requires knowing
the class label of each data object before the data is analyzed.
The second is unsupervised and takes the separability and
compactness of clusters as the evaluation standard.

In our study, we focus on the cluster boundary of all
the clusters, not on that of each single cluster. The cluster
boundary detection results are unique. We only need to analyze

whether each data object is a boundary object or not. In this
paper, we use the accuracy rate and the recall rate to evaluate
the effectiveness of the detection results, and adopt the F-
measure [48-49] as a comprehensive performance evaluation
metric. The related definitions are as follows:

Precision =
a

b

Recall =
a

d

F -measure =
2

a
b + a

d

where a is the number of real boundary objects detected, b
is the number of detection results, and d is the number of
real boundary objects. The accuracy rate and the recall rate
complement each other. When the algorithm detects most of
the real boundary objects (i.e., achieves a high recall rate), we
cannot immediately say that the algorithm is good. In cases
where the detection results also include a lot of noises or core
points, the detection results may suffer from a low accuracy
rate. The F-measure combines these two metrics and serves as
an overall performance metric.

C. Synthetic datasets

Fig. 2 shows four different synthetic data sets, namely DS1,
DS2, DS3 and DS4 [25]. There are 7,832, 5,034, 5,400, and
4,800 data points in these four data sets, among which 640,
538, 1,077, and 1,204 are cluster boundary points, respectively.
DS1 contains two diamond clusters, and the two clusters are
close. DS2 contains five clusters surrounded by a lot of noises.
DS3 contains three elliptic clusters and noises are located
near the edge of clusters. DS4 includes a circular cluster and
an annulus cluster, and the noises are distributed uniformly
between the clusters. Fig. 3 shows the best boundary detection
results of different algorithms on these four datasets. Detailed
experimental results are reported in Table III.

In the cluster boundary detection results of BORDER(see
Figs. 2(a) and 3(a)), as the number of noises’ reverse kNNs
is less than that of boundary points, all the noises and
isolated points are detected as boundary points by mistake. The
BAND and BRINK algorithms use the variable coefficient to
detect the cluster boundary and get a better performance than
BORDER. As shown in the detection results of BAND(see
Figs. 2(b) and 3(b)), the noises and isolated points located
far away from clusters are filtered precisely, but the noises
near the cluster edges are still detected as cluster boundary
points. Similar results are observed for BRINK. The reason
for this is that these special noises have similar neighborhood
distributions with the boundary points. The BERGE algorithm
uses the idea of statistical learning to detect the cluster
boundary objects. But a wrongly labeled result will affect its
subsequent labeling process. Thus, it cannot be successfully
used in the datasets with a lot of noises. The Spinver algorithm
applies the theory of space inversion to convert the static
space into a dynamic space. It uses the improved Hopkins
statistics to judge the uniformity of the neighborhood space.
A 2-d Gaussian filter is also employed to smooth the noises.
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The results reported in Table III show that Spinver performs 
better than BORDER, BAND, and BRINK, but still worse than 
Lever. In the detection results of Lever(see Figs. 2(c) and 3(c)), 
all the noises are filtered accurately; its boundary detection 
results are more accurate than those of other algorithms. This 
verifies the effectiveness of our proposed model that leverages 
the multidimensional balance of the neighborhood space for 
cluster boundary detection.

D. Medical datasets

Cancer prevention and treatment are challenging issues in
medical research. Because of the long incubation period of
malignant tumor viruses and no obvious symptoms in the early
stage of illness, cancers are difficult to discover until they
evolve to the terminal stage. In medical databases, clustering
can classify people as normal and patients. We often focus on
patients, but ignore the abnormal individuals of normal people.
These individuals may have been infected by the virus but
have not yet suffered from the disease. The effective detection
of these people not only ensures they receive prophylactic
treatment, it also enables the incubation period characteristics
of cancers to be studied. Here, we define such individuals as
the cluster boundary points of normal people. Similarly, the
cluster boundary may be defined as the objects which carry
the recessive infection virus or mutant genes. Our work may
help medical researchers in further research.

The Biomed dataset [50] has 134 normal objects and 75
objects which have been infected by the virus. Of the normal
objects, there are 30 virus carriers, who are defined as the clus-
ter boundary of normal people. The Cancer dataset [51] has
241 malignant tumor objects and 75 benign tumor objects. Of
these, 30 benign tumor objects may become malignant tumor
patients, and they are considered as the cluster boundary of
normal people. The Colon dataset [52] is a colon cancer gene
expression [53] dataset with 62 samples, including 22 normal
samples and 40 colon cancer samples. Each sample has 2,000
genes. The Prostate dataset [54] is also a gene dataset, which
has 102 samples, including 50 norm samples and 52 prostate
cancer samples. In this dataset, each sample has 10,509 genes.
Before the experiments, we perform statistical experiments
on DBSCAN to get seven cluster boundary objects for the
Colon dataset and 18 cluster boundary objects for the Prostate
dataset. Then, we preprocess these datasets according to Table
II.

As shown in Table III, BAND has the worst cluster bound-
ary detection performance. While the BRINK algorithm uses
the weighted Euclidean distance to measure the similarities
between data objects, its performance is better than BAND.
Regarding BORDER, although it cannot separate the noises
and isolated points, its detection results include most of the
real boundary points. Since the datasets tested here are small
and have no or few noises, the drawback of BORDER is
not apparent and a good performance is gained. BERGE
uses the idea of evidence accumulation to detect the cluster
boundary. But the algorithm is sensitive to the centers of
clusters. When the dataset has a small number of samples,
this algorithm cannot obtain credible results. Spinver applies

the Hopkins statistics to detect the cluster boundary objects.
Its main drawback is that it cannot separate the noises and
boundary points accurately. But because the datasets tested
have few noises, the detection results are good, being only
slightly worse than that of Lever. Clearly, the best performance
is achieved by the Lever algorithm, which simulates the high
dimensional space as many levers and uses the DHBlan
coefficient to detect the boundary objects. The results validate
the effectiveness of the proposed DHBlan coefficient.

E. Handwritten digits
Next, we perform some experiments on image datasets

to further verify the performance of Lever. In the fields of
identity authentication, code scanning, signature recognition,
and handwritten digit recognition [55-56] are of important
value and practical significance. Due to personal preferences
and habits, there are big differences in digital shapes, sizes,
and line widths for the same digit. The cluster boundary is thus
defined as the digit images which appear difficult to recognize.

The Mnist dataset [57] contains 10 handwritten digits,
including 60,000 training image samples and 10,000 test image
samples. The images are stored in 8-bit depth BMP formats.
Each image has 28×28 pixels, and each pixel has a gray value
in the range of 0-255. We choose the handwritten digit ’8’
(974 images) from the image samples to detect the cluster
boundary using the Lever algorithm and the result is presented
in the Fig. 4. It can be seen that Lever effectively detects the
irregular images as cluster boundary objects and the relatively
standard digits as cluster core objects. This demonstrates the
effectiveness of the Lever algorithm for cluster boundary
detection in high dimensional space.

F. Face images
With the increasing abundance of computer image theories

[58] and the support of machine learning [59] and deep learn-
ing [60], face recognition techniques have developed rapidly
[61]. In these applications, the facial features of humans are
used to match faces. Compared to normal face images, bound-
ary face objects are those images that have features of strong
illumination, faint illumination, sunglasses, or face profiles. As
such images affect the accuracy of face recognition, effectively
detecting them provides an important reference for face image
feature extraction and face recognition.

The Pointing dataset [62] contains different head posture
images of 15 volunteers. Each volunteer has 9 postures in the
vertical direction and 13 postures in the horizontal direction.
Pointing includes two sequences and we take the first sequence
in our experiments. The first sequence has a total of 1,395
images, with 93 images from each volunteer. The image format
is JPG with 8-bit depth. The pixel size is 288×384 and
the grey level of each pixel ranges from 0 to 255. Before
conducting the experiments, we transformed these images into
a 1,395×384 matrix. We choose 93 face images of a volunteer
to detect the cluster boundary objects (see Fig. 5). The results
for all face images are shown in Fig. 6. As can be seen,
the detected images all have a large side angle on horizontal
and/or vertical directions, suggesting the success of detecting
boundary face objects.
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Fig. 2: Synthetic datasets.

G. Target tracking

Target tracking [63-65] is a complex research area in com-
puter vision. Researchers leverage image segmentation tech-
niques to capture moving target objects. Usually, target objects
are dynamically moving, but the background environment of
the video can be static or dynamic. Thus, the target tracking
research can be divided to two categories, i.e., target tracking
under a static scene and target tracking under a dynamic scene.
Here, different from computer vision researchers, we attempt
to use our Lever algorithm to detect moving targets. The
Waving Trees [66] is a public dataset released by Microsoft
Research. It contains data on the continuous monitoring of
the scene of one building. In the process of monitoring, a
volunteer passes by the monitored area. In the captured video,
no other volunteers or animals broke into the monitored area,
and only the trees are waving in the wind. The dataset has 287
images, eight images of which capture the volunteer. Thus,
our objective is to detect the eight volunteer images. The
Moved Object dataset is another public dataset from Microsoft
Research. It contains data on the continuous monitoring of a
scene of an office. A volunteer walks into the office and leaves
after a period of time. The dataset has 1,745 images, 363 of
which are volunteer images to be detected.

Fig. 7 shows the cluster boundary detection results for the
Waving Trees dataset. As there are a total of 363 cluster
boundary objects for the Moved Object dataset, it is too busy

to show all of them. We show 50 of these objects in Fig. 8.
The detailed detection results of the different algorithms are
reported in Table III.

From the experimental results, it is clear that the perfor-
mances of BAND and BRINK are similar. It was observed
in the experiments that it is hard for these two algorithms
to detect a special boundary image (see Fig. 9(a)). Because
the image only includes a small part of the volunteer’s body,
it is very similar to the images which do not capture the
volunteer. The performances of BORDER and Spinver are
good for the Waving Trees dataset, but they are not so good for
the Moved Object dataset. The main reason is that the latter
dataset has some special images too (see Fig. 9(c)). Actually,
before the volunteer enters the office, the monitor captures
1,138 static images (see Fig. 9(b)). After the volunteer leaves,
the chair’s position has slightly changed and the monitor
captures 244 images. These 244 images have an influence
on the performance of BORDER and Spinver. On the whole,
Lever outperforms all the other algorithms.

IV. DISCUSSIONS

To further analyze the properties of the Lever algorithm,
Section III.A discusses the functions of the input parameters
of the Lever algorithm and gives reasonable parameter sug-
gestions after a series of tests. Then, Section III.B studies
the scalability of the proposed Lever algorithm with respect
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TABLE III: The boundary detection results of different algorithms on different data sets.

Data sets Algorithms Dimensions Real points on boundary Points detected Correct points Precision rate Recall rate F-measure

DS1 BAND 2 640 823 556 0.6756 0.8688 0.7601
BORDER 723 540 0.7469 0.8438 0.7924
BRINK 667 520 0.7795 0.8125 0.7957
BERGE 662 532 0.8036 0.8313 0.8172
Spinver 611 542 0.8871 0.8469 0.8665
Lever 620 576 0.9290 0.9000 0.9143

DS2 BAND 2 538 749 454 0.6061 0.8439 0.7055
BORDER 669 445 0.6366 0.8271 0.7195
BRINK 499 438 0.8778 0.8141 0.8447
BERGE 553 472 0.8535 0.8773 0.8652
Spinver 540 482 0.8926 0.8959 0.8942
Lever 540 503 0.9315 0.9349 0.9332

DS3 BAND 2 1077 1629 961 0.5899 0.8923 0.7103
BORDER 1252 831 0.6637 0.7716 0.7136
BRINK 1540 914 0.8935 0.8478 0.6985
BRIM 1880 935 0.7870 0.8682 0.8256
Spinver 1049 993 0.9466 0.9220 0.9341
Lever 1032 1002 0.9709 0.9304 0.9502

DS4 BAND 2 1204 1944 1056 0.5432 0.8771 0.6709
BORDER 1802 1089 0.6043 0.9045 0.7246
BRINK 1817 1003 0.5520 0.8331 0.6640
BRIM 1355 1062 0.7838 0.8821 0.8300
Spinver 1264 1111 0.8790 0.9228 0.9003
Lever 1205 1108 0.9195 0.9203 0.9199

Biomed BAND 4 30 26 22 0.8462 0.7333 0.7857
BORDER 26 23 0.8846 0.7667 0.8214
BRINK 36 30 0.8333 1.0000 0.9089
BERGE 26 24 0.9231 0.8000 0.8572
Spinver 29 27 0.9310 0.9000 0.9153
Lever 29 27 0.9310 0.9000 0.9153

Cancer BAND 10 37 37 25 0.6757 0.6757 0.6757
BORDER 37 28 0.7568 0.7568 0.7568
BRINK 37 29 0.7837 0.7837 0.7837
BERGE 37 28 0.7568 0.7568 0.7568
Spinver 35 34 0.9714 0.9189 0.9444
Lever 34 34 1.0000 0.9189 0.9577

Colon BAND 2000 7 6 5 0.8333 0.7143 0.7692
BORDER 7 7 1.0000 1.0000 1.0000
BRINK 6 5 0.8333 0.7143 0.7692
BERGE 6 5 0.8333 0.7143 0.7692
Spinver 7 7 1.0000 1.0000 1.0000
Lever 7 7 1.0000 1.0000 1.0000

Prostate BAND 10,509 18 17 16 0.9412 0.8889 0.9143
BORDE 19 18 0.9474 1.0000 0.9730
BRINK 17 16 0.9412 0.8889 0.9143
BERGE 17 16 0.9412 0.8889 0.9143
Spinver 18 18 1.0000 1.0000 1.0000
Lever 18 18 1.0000 1.0000 1.0000

Waving Trees BAND 160 17 17 15 0.8824 0.8824 0.8824
BORDE 17 17 1.0000 1.0000 1.0000
BRINK 17 15 0.8824 0.8824 0.8824
BERGE 17 15 0.8824 0.8824 0.8824
Spinver 17 17 1.0000 1.0000 1.0000
Lever 17 17 1.0000 1.0000 1.0000

Moved Object BAND 160 363 250 250 1.0000 0.6887 0.8157
BORDE 363 222 0.6116 0.6116 0.6116
BRINK 250 244 0.9760 0.6722 0.7961
BERGE 363 250 0.6887 0.6887 0.6887
Spinver 363 222 0.6116 0.6116 0.6116
Lever 363 356 0.9807 0.9807 0.9807
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Fig. 3: The best detection results of different algorithms on synthetic datasets.
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(a) cluster boundary objects (b) core objects

Fig. 4: The cluster boundary and core objects of ‘8’.

Fig. 5: The boundary detection result of Lever on a volunteer.

Fig. 6: The boundary detection result of Lever on the first
sequence of Pointing dataset.

Fig. 7: The boundary detection result of Lever on Waving
Trees.

to the dataset size and the dimensionality of data objects.
Considering the Lever algorithm is based on the DHBlan
coefficient, we present some interesting discussions involved
with its advantages in Section III.C.

Fig. 8: The part of boundary detection result of Lever on
Moved Object.

(a) (b) (c)

Fig. 9: Special images.

A. Parameter settings

The Lever algorithm uses three parameters to detect the
cluster boundary. A lot of experiments show that when k ∈
[10, 100], λ1 ∈ [0.02, 0.05], λ2 ∈ [0.15, 0.30], the algorithm
achieves good performance. and reflect the number of core
objects, boundary objects, and noises. It is observed that noises
usually occupy 2%-5% of the whole dataset, boundary objects
are 13%-25%, and core objects are 70%-85%.

To obtain the optimal parameter settings, we perform ex-
periments on the datasets used in the paper. The results are
reported in Figs. 10-12 to show the change of F-measure when
setting different k, λ1, λ2 values, respectively. In these figures,
Digit ’8’ refers to the dataset of handwritten digit ’8’, Waving
refers to the Waving Trees dataset, and Moved refers to the
Moved Object dataset. It is important to note that λ1 = 0 in
the datasets without noises, and we only use λ2 to detect the
boundary for those datasets. Hence, the experiment shown in
Fig. 11 does not include the datasets without noises. It is found
that when the value of k is located in the range [10, 100],
the algorithm can achieve good boundary detection results.
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Compared to the dataset size, the value of k is relatively small. 
In practice, the dataset size has an influence on the selection 
of k, which cannot be too big or small. λ1 controls the number 
of noises. The bigger it is, the more noises that are filtered. 
But some of these filtered data objects may be real boundary 
objects. For this reason, with an increase of λ1, the algorithm 
filters more boundary objects and the F-measure values drop 
too. When λ1 is fixed, we can still use λ2 to achieve good 
detection accuracy. λ2 is used to separate the boundary and 
core objects. The smaller it is, the more real boundary objects 
will be lost. The bigger it is, the more core objects will be 
detected as boundary objects. Consequently, when λ2 is too 
small or too large, the F-measure is small. Figs. 10-12 show 
when k = 30, λ1 = 0.02, λ2 = 0.2, the algorithm obtains the 
best results. As such, it is advised to use these settings for 
cluster boundary detection.

Nonparametric cluster boundary detection remains a chal-
lenge. In fact, cluster boundary detection is to choose one type 
of objects from all the objects. Capturing the characteristics 
which are different from other types of data objects is essential 
to detect the boundary objects. Separating the objects without 
using any parameter is challenging because some data objects 
share similar characteristics and are hard to distinguish.

B. Scalability

Theory analysis shows that the time complexity of all the
algorithms evaluated are O(n2) [25]. A set of experiments is
conducted to compare their runtime performance.

The results are reported in Fig. 13, where the dataset size
is varied from 2,000 to 20,000, and Fig. 14, where the data
dimensionality is varied from 500 to 10,000. It can be seen that
when the runtimes of BAND, BRINK, BERGE, and Spinver
are close to each other, Lever achieves the best performance.
The BORDER algorithm uses the reverse kNN to detect the
cluster boundary. Because much more time is consumed in
the kNN computation, it has the worst performance. The
main time consumption of BAND is the computation of the
coefficient variation. Compared to BAND, BRINK needs to
compute the weighted Euclidean distance in addition to the
coefficient variation. Hence, BRINK costs more time than
BAND. The BERGE algorithm needs to label the cluster
boundary objects many times; so its runtime quickly increases
with dataset size. The main time consumption of Lever is the
kNN computation, and the time complexity of this process
is O(n2). Also, computing the DHBlan coefficient costs
some time. But the time complexity of this step is only
O(n). Therefore, reducing the time consumption of kNN
computation is the key for Lever to perform better than all
the other algorithms.

C. DHBlan coefficient

Our proposed method uses the DHBlan coefficient to de-
tect the cluster boundary and the experiments show promising
results. The biggest advantage of the proposed algorithm is
the effective separation of the noises from the datasets. This
section discusses this interesting aspect. Detecting noises is
known as noise detection in data mining research and noise

smoothing in image analysis. In data mining and pattern
recognition, a cluster is defined as a pattern. Each cluster
has a special and different distribution, density, and structure.
Generally, the data objects are categorized into two types, i.e.,
objects within the cluster and objects outside the cluster. The
second type of objects are noises. But some noises located
far from the clusters may also have a high density. Thus,
the concept of isolated objects has been proposed to analyze
such special data objects. With the study of cluster boundary
detection, it is observed that the data objects located at the
edge of a cluster also have important value. As such, the
objects within a cluster are further classified into two types,
i.e., core objects and boundary objects.

How to separate the noises from a dataset is a challenging
problem. In data mining, researchers use the density [67-68]
or distribution [69-71] to eliminate noises or isolated points.
Furthermore, clustering [72-73] and classification algorithms
[74-75] provide functions to eliminate them. In image analysis,
the pixel distribution characteristic is used to smooth noises.
Also, advanced techniques such as Fourier transform and
wavelet transform [76-77] have been proposed. In our pro-
posed method, we take the viewpoint of ‘’object separation”
to smooth noises. Identifying the key differences between
different data objects helps us recognize noises. Noises are
always located far from clusters, and the most significant
feature is the low density. The balance of their neighborhood
space is very weak. Regarding cluster boundary objects, most
of their neighbors are core objects and some others are noises.
Hence, its density is higher than that of noises, but lower than
that of core objects. The balance of their neighborhood space
is stronger than that of noises. Core objects are distributed
in high-density areas and their neighbors are uniformly dis-
tributed on each dimension. The balance of their neighborhood
space is the strongest. As such, we use Eq. (11) and Eq. (12) to
describe the balance and diversity of the neighborhood space,
respectively. Finally, Eq. (13), which integrates Eq. (11) and
Eq. (12), is employed to detect the boundary objects. In a
nutshell, our proposed method can be summarized as objects
separation. Different from traditional methods, we analyze the
data distribution of each dimension to judge the balance of the
neighborhood space.

V. CONCLUSION

The balance of neighborhood space around a central point
is an important concept and has interesting applications in data
mining. Existing methods for identifying the balance of neigh-
borhood space, based on single-perspective analysis, all focus
on the neighborhood distribution characteristics of objects.
Due to the characteristics and sparsity of high dimensional
space, single-perspective analysis cannot obtain much valuable
information. In this paper, we proposed the idea of analyz-
ing high dimensional space from multiple perspectives, i.e.,
multidimensional balance. By simulating the high dimensional
space as levers, we proved the inevitability and uniqueness
of the existence of the balance fulcrum. We applied the
lever balance principle to solve the cluster boundary detection
problem in high dimensional space. Experiments based on
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both synthetic datasets and real data sets demonstrate that our
proposed model is effective and efficient.

Interdisciplinary thoughts may bring interesting ideas to
the research on data mining. Analyzing the same problem
from different perspectives may spark new solutions. How to
detect the cluster boundary from more complex data, such
as high-dimensional mixed-attribute data, from comprehensive
perspectives will be our future work.
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