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Abstracts

Is F automatic?

Murray Elder

Let G be a group with finite symmetric generating set X = X−1. An automatic
structure for (G,X) is the following collection of finite state automata (FSA):

– an FSA M accepting L ⊆ X∗ in bijection1 with G
– for each x ∈ X ∪ {ϵ} an FSA Mx accepting {u⊗ v | u, v ∈ L, v =G ux}

where the notation u⊗ v means words of the form
(
u1

v1

)
. . .
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us

vs

)(
$

vs+1

)
. . .

(
$
vt

)

if u = u1 . . . us, v = v1 . . . vt with t ! s,
(
u1

v1

)
. . .

(
ut

vt

)(
ut+1

$

)
. . .

(
us

$

)

if s > t, and $ is a padding symbol2. If such a structure exists then (G,X) is
automatic.

An equivalent, more geometric definition is (G,X) is automatic if there is:

– a regular language L ⊆ X∗ in bijection with G
– a constant k ∈ N such that for each u, v ∈ L with v =G ux for some
x ∈ X ∪ {ϵ}

dX(u(t), v(t)) " k.

That is, in the Cayley graph for (G,X) L-words which start at the identity and
end distance at most 1 apart must synchronously k-fellow travel.

Example 1. Z2 = ⟨a, b | ab = ba⟩, L = {aibj | i, j ∈ Z}. Figure 1 shows the
automaton Ma.

Example 2. If G is any δ-hyperbolic group with finite generating set X = X−1,
the set of all shortlex geodesics is regular and satisfies the synchronous fellow trav-
elling condition for a constant depending on δ. In fact, the set of all geodesics also
gives an automatic structure (replacing bijection by surjection in the definition),
as does the set of all (λ, µ)-quasigeodesics provided λ ∈ Q and some mild extra
conditions [23].

Here are some facts [18]:

– being automatic is independent of the choice of finite generating set

1Equivalently, L surjects to G.
2Equivalently, (u, v) are accepted by a synchronous 2-tape automaton.
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Figure 1. The FSA Ma for Z2.

– L-words are quasi-geodesics; this follows easily from the pumping lemma
for regular languages as follows. Let u ∈ L be the L-word for the identity,
|u| = c, m the maximum number of states in any Mx, and consider a
geodesic v = a1 . . . an ∈ X∗. Define a sequence of L-words recursively by
v0 = u, vi =G vi−1ai Then |vi| " |vi−1|+m since otherwise one could pump
the suffix containing

($
x

)
symbols and obtain infinitely many L-words for

v. Then |vn| " mn+ c.
– the word problem for automatic groups can be solved in at most quadratic
time and linear space (use the previous argument to compute the L-words
vi for a given input word v = a1 . . . an)

– automatic implies G has a Dehn function that is at most quadratic
– automatic implies G is type FP∞ [20, 1].

So, is F automatic? Recall that Thompson’s group F has the finite presentation

⟨x0, x1 | [x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]⟩.

It is known that F has quadratic Dehn function [21], is type FP∞ [10], has a
quasi-linear (n log n) time word problem (algorithm: draw the tree pair diagram).
So none of the obvious properties rule F out from being automatic.

Guba and Sapir give the following regular normal form for elements of F : L =
all freely reduced words which avoid factors (i > 0):

– x±1
1 xi

0x1

– x±1
1 xi+1

0 x−1
1 .

The comparison automaton Mx0 is easy to construct, since multiplying a word
in L on the right by x0 changes the suffix by at most one letter. However multi-
plication by x1 can cause word length to explode: consider wi = x1xi

0 with i > 0.
Then

x1x
i
0x1 → xi

0x1x
−i−1
0 x1x

i+1
0 .
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Then the L-words for wi, wix1 have length difference 2i + 3 so when i is greater
than then number of states of Mx1 we can apply the pumping lemma to obtain
infinitely many words u with wi ⊗ u accepted, which is a contradiction.

Note that a weaker version of automatic is to allow words that end at most
an edge apart to asynchronously fellow travel, or equivalently the comparator
automata Mx to read words asynchronously. Consider wm,i = xm

1 xi
0 with m, i > 0.

The L-word for wm,ix1 is
xi
0x1x

−i−1
0 xm

1 xi+1
0

and a careful pumping lemma argument also leads to a contradiction showing that
the language also fails to give an asynchronous automatic structure for F .

Non-automatic groups with quadratic Dehn function. Stallings’ group
〈

a, b, c, d, s [a, c] = [a, d] = [b, c] = [b, d] = 1,
(a−1b)s = a−1b, (a−1c)s = a−1c, (a−1d)s = a−1d

〉

is not type FP3 [25] and has quadratic Dehn function [15]. It can be seen as the
kernel of the map F2 × F2 × F2 → Z which sends words to their exponent sum;
taking n copies of F2 gives the n-th Bieri-Stallings group which is type FPn−1 but
not type FPn [5], and these (for n > 3) were also shown to have quadratic Dehn
function [12].

Another interesting example is
〈
a, b, s, t | ab = ba, as = ab, at = ab−1

〉

which is type FP∞, not CAT(0) [19], has a quadratic Dehn function [6], has
an asynchronously automatic structure [16], but does not admit an automatic
structure [7]. The proof of non-automatic relies on a direct argument that, if it
were, the set of slopes you would expect to see in the embedded Z2 planes in the
Cayley graph should be finite, which leads to a contradiction. It is possible that
some similar direct argument can be constructed to rule out the possibility that
F is automatic.

Why should F not be automatic? None of the following facts prove that F
cannot have an automatic structure, but they do not bode well.

– F has many “bad” subgroups such as Zd for any d ∈ N∪{∞}, and arbitrary
iterated wreath products of Z.

– Cleary, the author and Taback [13] showed that for the standard generating
set, any set of words that contains at least one geodesic for each element
cannot be regular, so (F, {x0, x1}) has no geodesic automatic structure.

– Jeremy Hauze [22] strengthened this to: languages that have at least one
representative of each element of F of word length that is within a fixed
constant of the geodesic length cannot be part of an automatic structure.

Is F graph automatic? Weakening the notion of automatic further we arrive at
the following. A graph automatic structure [24] for (G,X) is:

– a finite symbol alphabet S (not necessarily corresponding to group ele-
ments)
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– an FSA M accepting L ⊆ S∗ in bijection3 with G
– for each x ∈ X ∪ {ϵ} an FSA Mx accepting {u⊗ v | u, v ∈ L, v =G ux}.

Example 3. The 3-dimensional Heisenberg group consisting of matrices
⎛

⎝
1 a c
0 1 b
0 0 1

⎞

⎠

which correspond to triples (a, b, c) of integers. Writing a, b, c in binary we can
use an alphabet S = consisting of symbols (i, j, k) with i, j, k ∈ {0, 1,+,−}. For
example ⎛

⎝
1 −3 2
0 1 4
0 0 1

⎞

⎠

is represented as (−,+,+)(1, 0, 0)(1, 0, 1)(0, 1, 0). It is easy to check that multi-
plication by generators (1, 0, 0), (0, 1, 0) simply adds 1 in one position. Berdinsky
and Trakuldit [4] attribute this observation to Sénizergues.

Other examples of graph automatic groups include include all Baumslag-Solitar
groups, various wreath products, all finitely generated nilpotent groups of nilpo-
tency class at most two [24, 3, 2]. As for automatic groups we have [24]:

– L-words (over symbols) have quasi-geodesic length
– at most a quadratic time word problem
– being graph automatic is invariant under change of finite generating set
– can assume without loss of generality that S is a subset of the generating
set. However, paths in the Cayley graph labeled by S-edges do not nec-
essarily end anywhere near the group element represented by the label of
the path. See [4].

Thompson’s group F seems like a natural candidate for graph automaticity,
since we have many nice ways to represent elements, for example as tree pair
diagrams. However, any encoding of a tree pair using a finite alphabet will require
some memory. This leads to the notion of a C -graph automatic structure where
we replace regular languages by languages in the class C in the definition. This
even weaker notion still implies some nice properties: for counter-graph automatic
with a quasigeodesic normal form we still have a polynomial time algorithm to
compute L-words, which means a polynomial time word problem [17]. In [26]
Taback and Younes constructs a (3-counter)-graph automatic structure based on
tree pair diagrams for F .

Encoding the infinite normal form in a certain way, the author and Taback were
able to lower the complexity to (1-counter)-graph automatic. We write words

xi0
0 xi1

1 . . . xir
r x−js

s . . . x−j0
0

as strings over an alphabet {#, a, b} in such a way that the conditions required to
have unique representatives are regular to check. The single counter is needed to

3Equivalently, L surjects to G
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check multiplication by x1. Specifically we represent xi0
0 . . . xir

r x−js
s . . . x−j0

0 as

ai0bj0# . . .#aimbjm

where m = max{r, s}. The words obtained are quasigeodesic [11].

Final remarks. Another extension of the notion of automatic which I did not
discuss in the talk is autostackable [9] and the weaker notion of algorithmically
stackable [8]. Brittenham, Hermiller and Holt introduced these notions, showing
that they also imply some nice computation properties. Cleary, Hermiller, Stein
and Taback prove that F is algorithmically stackable with respect to a determin-
istic context-free language of normal forms [14, 8].

Whether F is another example of a group with quadratic Dehn function that
is not automatic, or if in fact it admits some nice automatic or graph automatic
structure remains open. Once again F proves itself to be an enigma.
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