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Abstract—Atmospheric scattering model (ASM) has been
widely used in hazy image restoration. However, the recovered
albedo might deviate from the real scene once the input hazy
image cannot fully satisfy the model’s assumptions such as the
homogeneous atmosphere and even illumination. In this paper, we
break these limitations and redefine a more reliable atmospheric
scattering model (RASM) that is extremely adaptable for various
practical scenarios. Benefiting from RASM, a simple yet effective
Bayesian dehazing algorithm (BDPK) is further proposed based
on the prior knowledge. Our strategy is to convert the single
image dehazing problem into a maximum a-posteriori probability
(MAP) one that can be approximated as an optimization function
using the existing priori constraints. To efficiently solve this opti-
mization function, the alternating minimizing technique (AMT) is
introduced, which enables us to directly restore the scene albedo.
Experiments on a number of challenging images reveal the power
of BDPK on removing haze and verify its superiority over several
state-of-the-art techniques in terms of quality and efficiency.

Index Terms—Image Haze Removal, Atmospheric Scattering
Model, Bayesian Theory, Depth Map, Scattering Distribution.

I. INTRODUCTION

Under bad weather conditions, the irradiance of objects is
absorbed and scattered by the atmospheric suspended particles
before reaching the camera. Images captured in inclement
weather are often plagued by low visibility and thus result
in contrast reduction and color distortion as shown in Fig.
1(a). This poor quality is bound to seriously degenerate the
performance of computer vision applications that are primarily
designed for high-quality inputs, such as surveillance [1], [2],
intelligent vehicles [3] and object recognition [4], [5]. To make
the buried information visible, an effective and applicable
single image dehazing technique is urgent needs.

It is well-known that image haze removal is an inherently
ill-posed issue since measuring scene depth is difficult for
cameras. Directly employing traditional image enhancement
methods [6]–[14] to restore the contrast of hazy images may
be the most intuitive and simplest way to recall the visibility
in buried regions. However, these techniques are somehow
limited due to the ignored degrading mechanism [15]. For
example, histogram equalization (HE) [6] improves the global
contrast of the input image by stretching the dynamic range
for the color channels, yet it lacks the capability of enlarging
the local visibility in each region. Although the adaptive
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histogram equalization (AHE) [7] effectively overcomes the
above defect, the over-enhancement may be aroused and its
large computational complexity has to be considered. Retinex
methods [8]–[10] have made great progress through decades of
development. They realize better dynamic range compression
and the tonal rendition. Regrettably, the poor edge-preserving
ability would give rise to halo artifacts in discontinuous areas
[16]. The core idea of gamma correction [11] and nonlinear
stretching operation [12] is to revise individual pixel value
without considering its neighbor content, thus their enhanced
results lack visual realism. Homogeneous filtering [13] jointly
utilizes the frequency filtering and grayscale transformation
to resume the target clarity of the input image, but the
recovery quality relies on the parameter initialization. Detail
enhancement [14] increases the high-frequency details by
sharply highlighting the object contours in the whole image.
Undoubtedly, it is difficult to reach a better trade-off between
the over-sharpening of close-range regions and the weak-
sharpening of long-range ones.

Benefiting from atmospheric scattering theory [15], [17],
Narasimhan et al. [18] proposed the haze removal strategy
using two images of the same scene taken in different at-
mospheric conditions. The premise of using this method is
that the original input should contain the infinite far-point
and near-point. Otherwise, over-saturation will be introduced
into the small-depth areas. In [19], Kopf et al. exploited
the given geo-referenced digital terrain and urban models to
extract the scene depth, and then automatically conducted the
haze removal. According to the polarization characteristics,
Schechner et al. [20], [21] utilized different polarization angles
from two of same scenes in order to remove the haze from
the degraded images. Generally, these early approaches are
capable of achieving satisfactory recovery results, but these
additional requirements must be hard to fulfill. Thus, their
methods lack practicality in many real applications.

Recently, single image dehazing techniques have attracted
much research attention. The success of these techniques lies
in using the strong priori constraints. For instance, Tan [22]
successfully removed the haze cover in an input based on
the fact that clear-day image has richer contrast than the
corresponding one polluted by haze. This method is very
positive for dense hazy images, but the resumed colors for
misty scenes are prone to be over-saturation. Fattal [23]
assumed that surface shading and medium transmissions are
uncorrelated in a local patch, and the haze is eliminated by
utilizing independent component analysis (ICA). Obviously,
this technique is challenged when the images contain less
color information. Later in [24], Fattal further derived a
local model that explains the color-lines meaning in vague
region and used it to seek the more accurate transmission.
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Still, this approach may fail with the mono-color images
where the notion of color-lines is trivialized. The significant
contribution of the dark channel prior (DCP) [25] allows us
to directly detect the rough haze thickness, thereby recovering
the realistic results by refining the initial transmission using
soft matting (SM) [26]. Unfortunately, this prior cannot fully
suitable to the case where the scene brightness is naturally
similar to the airlight. Besides, DCP’s results always appear
too dark and this approach is time-consuming due to the
complex SM. To improve the recovery quality of the DCP,
the dynamic repair strategy [27], the I2-norm-based DCP
[28], and the Laplacian-based mechanism [29] were proposed
to boost the performance of estimated transmission. Fisher’s
linear discriminant-based scheme [30] was designed to exclude
the interference of localized light sources and the scene
radiance constraint [31] was provided to tackle the darkness
problem of dehazed scenes. For efficiency, Huang1 et al. [32]
defined a hybrid DCP for circumventing halo effects in the
recovered results, Gibson et al. [33], Huang2 et al. [34], He1

et al. [14], Yu et al. [35] and Xiao et al. [36] sought the
replacements of SM to reduce the computational complexity,
such as the median filter, improved median filter [34], guided
image filtering [14] and guided joint bilateral filtering [35],
[36]. From the geometric perspective of DCP, Meng et al. [37]
presented the dehazing algorithm with a boundary constraint
and contextual regularization. This method can thoroughly
unveil the scene structures of interesting parts, yet it does
not fundamentally solve the inherent shortcomings of DCP.
The strategy proposed by Chen et al. [38], which includes
two modules designed using Bi-Histogram modification, is
able to produce the restored results with satisfactory visual
quality. Nevertheless, the rebuilt sky would suffer from serious
color shift when the constant-airlight assumption is invalid.
Relying on the difference structure preservation prior, He2 et
al. [39] computed the scene transmission by assuming that
each patch can be linearly represented to a dictionary. Lai
[40] introduced both theoretic and heuristic bounds to restrict
the solution space, and designed two objectives for scene
priors to excavate the optimal transmission. Kim et al. [41]
estimated the transmission using the defined cost function that
consists of the contrast term and the information loss term,
and its dehazing effect can be adjusted by manually setting
the coefficient involved in the function. Based on the color
attenuation prior (CAP), Zhu et al. [42] created a linear model
and determined the parameters in this model with a supervised
learning method, which makes mining the depth structure
task more convenient. Regrettably, the recovery quality is not
guaranteed due to the unspecified scattering coefficient.

Taking advantage of the machine learning framework
(MLF), Tang et al. [43], Cai et al. [44] and Ren et al.
[45] provided a new clue for haze removal by blending the
established assumptions/priors to train the Dehaze-Systems.
Although their systems can remedy the weaknesses of haze-
relevant features to a large extent, the intricate MLF employed
is bound to reduce the real-time performance. Galdran et al.
proposed the perceptual color correction framework (PCCF)
[46] and the enhancement framework named STRESS [47],
which performs image dehazing from a single input. To

(a) (b) (c) (d)

Fig. 1. Comparison with fusion-based dehazing techniques. (a) Hazy region.
(b) Ancuti et al.’s result. (c) Choi et al.’s result. (d) BDPK’s result

obtain more realistic results, their team modified the previous
PCCF and further developed a fusion-based variational image-
dehazing (FVID) [48] to maintain high contrast in long-range
regions while preserving reasonable content in the close-range
ones. Another solution advocated by Nishino and Kratz [49]
adopts the Bayesian posterior probability model to remove
haze by fully leveraging the latent statistical structures. This
approach can have the very promising results for most cases,
whereas it may yield some dark artifacts in regions approach-
ing infinite depth. Moreover, the factorial Markov random field
(FMRF) employed in this method has much computational
overhead, which influences the application prospects of this
method.

In this paper, based on our previous work [50] and the fact
that inhomogeneous atmosphere phenomenon does exist in
the real world [42], we redefine the imaging parameters in
the atmospheric scattering model (ASM) in order to improve
the model’s universality. Benefitting from this redefined model
(RASM) and inspired by [49], a simple but effective single
image dehazing algorithm that uses Bayesian theory is further
proposed. More concretely, the haze removal optimization
function in terms of the scattering distribution map, depth
map and scene albedo is first deduced by relying on the
existing prior knowledge. Then, by combining the optimization
function and the introduced alternating minimizing technique
(AMT), we can recover the visually realistic result and obtain
two by-products of haze removal (scene depth and scattering
distribution map). The experimental results, as shown in
Fig. 1, demonstrate that the proposed BDPK achieves better
restoration of the edge contrast and color vividness compared
with the famous fusion-based dehazing techniques including
Ancuti et al. [51] and Choi et al. [52].

II. REFINED ATMOSPHERIC SCATTERING MODEL

In machine vision and computer graphics, the atmospheric
scattering model (ASM) [15], [17], [18] is widely used to
describe the formation of hazy images (see Figs. 2(a,b)). This
model can be simply expressed as

I(x, y) = A · ρ(x, y) · t(x, y) +A · (1− t(x, y)) (1)

where I is a hazy image, ρ is the expected scene albedo, A
is the atmospheric light that is usually assumed as a constant
[22]–[25], [27]–[45], [49], and t is the medium transmission.
In Model (1), the first term on the right-hand side is called
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Fig. 2. (a) Homogeneous atmosphere case. (b) The atmosphere scattering
model illustrated for homogeneous case. (c) Inhomogeneous atmosphere case
(The distribution of suspended particles varies among the different color
boxes). (d) The atmosphere scattering model illustrated for inhomogeneous
case.

Direct Attenuation, and it describes the direct impact of
scene’s reflected light from suspended particles. The second
term is Airlight which demonstrates the color shift caused
by the scattered light. When the atmospheric distribution is
homogeneous, the transmission t is defined as

t(x, y) = e−β0·d(x,y) (2)

where β0 and d are the scattering coefficient and the scene
depth, respectively. Equations (1) (2) indicate that the scene
albedo is exponentially attenuated with scene depth. Our
preliminary work [50] has unveiled that the traditional ASM is
invalid for the uneven illumination condition, and this defect
can be addressed by redefining the global atmospheric light
A as the scene incident light S (More technical details can
be found in our study [50]).

In this paper, we further consider the spatially inhomoge-
neous phenomenon of particle distributions that exists in some
specific scenarios. This means that β0-constant assumption
would face the difficulties when processing the inhomoge-
neous cases (see Figs. 2(c,d)). Therefore, we intend to break
this plausible assumption, that is, redefine the constant β0 as
the scattering distribution β that varies along with the pixel
location. Based on above analysis, a more reliable atmospheric
scattering model (RASM) can be described as

I(x, y) =S(i) · ρ(x, y) · e−β(x,y)·d(x,y)

+ S(i) · (1− e−β(x,y)·d(x,y))
(3)

where S(i) is the incident light of the ith scene [50]. Although
RASM is more in line with the real world compared to ASM,
it is a more challenge task when using the proposed model to
remove the haze because the available structure information is
significantly insufficient.

III. PROPOSED BDPK

As we explained in Section I, the success of single image
haze removal depends on the validity of the prior knowledge,
whereas the limitations of the aforementioned priors are in-
evitable in some exceptional circumstances. To this end, we

develop a fast image dehazing technique called BDPK based
on the Bayesian theory and the RASM. It can compensate for
these shortcomings by fully leveraging the latent relationships
of the image priors, and thereby recover the more visually
comfortable results.

A. MAP Model

Motivated by [49], [53]–[55], the key step of BDPK is
to factorize the hazy image I into the scene albedo ρ, the
scene depth d and the scattering distribution β for each pixel
across the entire input. To avoid (3) being nonnegative, we
first reverse it as

S(i)− I(x, y) = S(i) · (1− ρ(x, y)) · e−β(x,y)·d(x,y) (4)

Afterwards, taking the logarithm operation of each side in (4)
yields

ln(S(i)− I(x, y)) =ln(S(i) · (1− ρ(x, y)))

− β(x, y) · d(x, y)
(5)

Considering the noise from sensors is another important degra-
dation factor [54] and letting I ′(x, y) = ln(S(i) − I(x, y)),
ρ′(x, y) = ln(S(i)−S(i) ·ρ(x, y)), Equation (5) is simplified
as

I ′(x, y) = ρ′(x, y)− β(x, y) · d(x, y) + n(x, y) (6)

where n denotes additive noise. If the incident light S has
been estimated using [50], we can regard I ′ as the “new hazy
image” since it is a known component and contains all the
information of I . Similarly, ρ′ can be considered as the “haze-
free image”.

According to the Bayesian theory, the posterior probability
constituted by all parameters in (6) can be described as

p(ρ′, β, d|I ′) =
p(I ′|ρ′, β, d) · p(ρ′|β, d) · p(β|d) · p(d)

p(I ′)
(7)

where p(I ′) is a determined constant due to the given I ′.
Moreover, it can be noticed that ρ′, β, and d are totally
uncorrelated in the real world. Therefore, Equation (7) is
further equivalent to

p(ρ′, β, d|I ′) ∝ p(I ′|ρ′, β, d) · p(ρ′) · p(β) · p(d) (8)

To restore the “haze-free image” ρ′, we take the logarithm
operation of each side in (8) and then maximize its posterior
probability. Accordingly, the maximum a-posteriori probability
(MAP) model for haze removal can be expressed as

argmax
{
p(ρ′, β, d|I ′)

}
∝ argmin

{
− ln(p(I ′|ρ′, β, d))−

ln(p(ρ′))− ln(p(β))− ln(p(d))
} (9)

where we have explicitly illustrated the inner relationship
among all the probability density functions of imaging factors
in (6). This is the strong foundation for approximating the
optimization function of image haze removal.
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B. Model Approximation

The MAP model for haze removal is given, but it is a fun-
damentally under-constrained problem due to the insufficient
available information. Fortunately, some image priors have
been explored. This inspires us to design each probability den-
sity function (PDF) to approximate an optimization function
corresponding to (9), which enables us to directly restore the
scene albedo.

Definition I: To alleviate the model’s complexity, we as-
sume the additive noise n is white Gaussian noise. Addi-
tionally, based on the fact that the relationship among all the
parameters is constrained to (6) [Model Constraint Prior], we
might as well define

p(I ′|ρ′, β, d) = e−
‖I′−ρ′+β·d‖22

λ1 (10)

where λ1 is the variance of the exponential power distribution
(Please note that the subsequent parameters λ2, λ3 and λ4
have the same meaning as λ1). The above PDF restricts the
solution space of all unknown components and thus ensures
the authenticity of the recovery result.

Definition II: Clear-day images possess higher visibility
than the corresponding hazy ones [22], which indicates that
richer image contrast information results in a higher probabil-
ity that the scene is a real scene [Contrast Prior]. Following
this hypothesis, the PDF of ρ′ is defined as

p(ρ′) = e−
‖(F−∇ρ′)‖22

λ2 (11)

where F is the maximum upper limit of ∇ρ′. In addition
to the highlighted pure-white objects, we roughly generalize
that ∇ρ′ ∈ [0, 4.6] due to S(i) · (1 − ρ(x, y)) ∈ [0.01, 1]
in general. Thus, we set F = 5 in this work. Although the
contrast prior could basically reflect the objective discipline
of the scene albedo, the results recovered by Tan [22] indicate
that solely stressing the enhanced of visibility in the degraded
image may lead to the over-saturated phenomenon. To address
the limitation of the contrast prior used in the PDF (11), an
esthesia matrix on haze density is introduced. It is expressed
as

W = e−
(Ī−1)2

σ · e−
(Is)2

σ (12)

where σ = 0.3 is a prescribed coefficient, Ī and Is are
the brightness component and saturation component of input
I , respectively. It is obvious that the quantization value of
the matrix is proportional to scene brightness and inversely
proportional to saturation, which conforms to human visual
perception (HVP) for natural haze [42]. Taking this esthesia
matrix (12), the final PDF of ρ′ can be rewritten as

p(ρ′) = e−W ·
‖(F−∇ρ′)‖22

λ2 (13)

where W is able to flexibly control the contrast weights
for all pixels with respect to the HVP. Generally, a thicker
haze density results in a greater contrast weight. This strategy
promises the restoration quality for dense hazy scenes and
avoids the over-enhancement of the misty ones.

Definition III: A “good” depth map should preserve the
overall depth structure consistent with the original hazy image,

and with minimal texture detail simultaneously [25], [41]
[Structure Prior]. Hence, the PDF of d can be defined as

p(d) = e
−γ1·‖d−d̃‖

2
2−γ2·‖∇d‖

2
2−γ3·‖∇d−∇Ī‖

2
2

λ3·(γ1+γ2+γ3) (14)

where γ1, γ2 and γ3 are weight coefficients and d̃ represents
the initial estimation of the scene depth. Referring to [49],
[53], the minimal component of I can be regarded as the
closest depth, thus we initialize this component as the initial
depth, that is

d̃ = min
c∈{R,G,B}

(Ic(x, y)) (15)

where c denotes color channel index and Ic is a color channel
of I .

Definition IV: Similar to scene depth, we notice that
the scattering distribution equally shares the original spatial
structure and local smoothing feature (see Fig. 2(c)). Based
on this observation, the PDF of β is defined as

p(β) = e
−γ4·‖β−β̃‖

2
2−γ5·‖∇β‖

2
2−γ6·‖∇β−∇Ī‖

2
2

λ4·(γ4+γ5+γ6) (16)

where γ4, γ5, and γ6 are weight coefficients and β̃ represents
the initial estimation of the scattering distribution. Here, two
different atmospheric conditions are required to be taken into
account: 1) Regarding the homogeneous case, we set β̃ = 1,
which has been proven to be ample for most situations [42]; 2)
The brightness of pixels in an inhomogeneous image usually
sharply varies along with the change of the concentration of
atmospheric particles (see Fig. 2(c)). Thus, we initialize the
estimation β̃ = Ī for inhomogeneous case.

Optimization Function: Substituting the PDFs (10) (13)
(14) (16) into the MAP model (9), the optimization function
for haze removal can be approximated as

argmin
{
p(ρ′, β, d|I ′)

}
= argmin

{
θ1 · ‖I ′ − ρ′ + β · d‖22 + θ2 ·W · ‖∇ρ′ − F‖22

+ θ3 · ‖d− d̃‖22 + θ4 · ‖∇d‖22 + θ5 · ‖∇d−∇Ī‖22 + θ6

· ‖β − β̃‖22 + θ7 · ‖∇β‖22 + θ8 · ‖∇β −∇Ī‖22
}

(17)

where θ1 = 1
λ1

, θ2 = 1
λ2

, θ3 = γ1

λ3·(γ1+γ2+γ3)
, θ4 =

γ2

λ3·(γ1+γ2+γ3)
, θ5 = γ3

λ3·(γ1+γ2+γ3)
, θ6 = γ4

λ4·(γ4+γ5+γ6)
,

θ7 = γ5

λ4·(γ4+γ5+γ6)
and θ8 = γ6

λ4·(γ4+γ5+γ6)
are regular

parameters. Minimizing function (17) is computationally in-
tractable because of too many unknown components. In the
following section, we will introduce an efficient optimization
technique to obtain ρ′, β and d.

C. Effective Resolving with AMT

Instinctively, we employ the alternating minimizing tech-
nique (AMT) [37], [56] to solve the optimization function (17).
The core idea of AMT is to alternatively minimize β, d, and
ρ′ by assuming that the other components are known. This
process is repeated until they converge. Specifically, function
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Fig. 3. Two dehazing examples of different types of hazy images using our BDPK by setting the jmax ∈ {5, 10, 15} with η = 0. Top: The scattering
distribution maps (Best viewed in color). Middle: The scene depth maps (Best viewed in color). Bottom: The restored haze-free images.

TABLE I
THE EMPIRICAL PARAMETERS OF DIFFERENT ATMOSPHERIC CONDITIONS USED IN BDPK

Atmospheric condition θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
Homogeneous 3 0.1 0.5 0.5 + (j − 1) 0.5 0.5 0.5 + (j − 1) 0.5

Inhomogeneous 3 0.3 0.5 0.5 + 2 · (j − 1) 0.5 0.5 0.5 + 2 · (j − 1) 0.5

(17) is first separated into three independent sub-problems,
which are expressed as

d =argmin
{
θ1 · ‖I ′ − ρ′ + β · d‖22 + θ3 · ‖d− d̃‖22

+ θ4 · ‖∇d‖22 + θ5 · ‖∇d−∇Ī‖22
} (18)

β =argmin
{
θ1 · ‖I ′ − ρ′ + β · d‖22 + θ6 · ‖β − β̃‖22

+ θ7 · ‖∇β‖22 + θ8 · ‖∇β −∇Ī‖22
} (19)

ρ′ =argmin
{
θ1 · ‖I ′ − ρ′ + β · d‖22

+ θ2 ·W · ‖(F −∇ρ′)‖22
} (20)

To accelerate the calculation, the gradient approximation
method [50] is selected to resolve sub-problems (18)∼(20).
Then, their optimal solutions after the jth iteration can be
computed as

d(j) =
−θ1 · β(j−1) ◦M1 +

∑
·(θ4 + θ5) ·M3 + θ3 · d̃+M5

θ1 ◦ β(j−1) ◦ β(j−1) +
∑2 ·(θ4 + θ5) + θ3

(21)

β(j) =
−θ1 · d(j−1) ◦M1 +

∑
·(θ7 + θ8) ·M2 + θ6 · β̃ +M6

θ1 ◦ d(j−1) ◦ d(j−1) +
∑2 ·(θ7 + θ8) + θ6

(22)

ρ′(j) =
θ1 · (I ′ + β(j−1) ◦ d(j−1)) + θ2 ·

∑
·(M4 + F )

θ1 + θ2 ·
∑2 ·W

(23)

where M1 = I ′ − ρ′(j−1), M2 = β(j−1)
⊗

Λ, M3 =
d(j−1)

⊗
Λ, M4 = ρ′(j−1)

⊗
Λ, M5 = θ5 ·

∑
·(
∑
·I −

Ī
⊗

Λ), M6 = θ8 ·
∑
·(
∑
·I − Ī

⊗
Λ), ◦ and

⊗
rep-

resent element-wise multiplication and convolution operator,

respectively. Λ = [0 1 0; 1 0 1; 0 1 0] is the convolution kernel
and

∑
= 4 is the sum of elemental value in Λ. It should

be noted that, the mathematical meaning of PDFs (14) (16)
constructed using the structure prior are very similar to those
of the guided image filter [14], the guided joint bilateral filter
[36] and the guided total variation model [50]. However, the
corresponding solution formulas (21) (22) are not the simple
filtering process due to the interaction of each imaging pa-
rameter during the iteration procedure. Once the stop criterion
‖ρ′j−ρ′j−1‖1/‖ρ′j‖1 ≤ η or the maximal number of iterations
jmax is satisfied, the iteration is terminated and the scene
albedo can be restored as

ρ(x, y) =
S(i)− eρ′(x,y)

S(i)
(24)

For clarity, the entire procedure of BDPK is summarized in
Algorithm 1 (Please refer to Algorithm 1 for other details
that we cannot cover in the text). To achieve a better balance
between accuracy and efficiency, we empirically provide the
parameters for different atmospheric conditions as listed in
Table I. Fig. 3 shows two dehazing examples of homogeneous
and inhomogeneous atmospheres using our BDPK by setting
jmax ∈ {5, 10, 15} with η = 0. As can be seen, increasing
the number of iterations, more thoroughly removes the haze,
and the scattering distribution map as well as scene depth are
more in accordance with our intuitions. Interestingly, we do
not state that the scattering value is correlated with altitude,
even though the left scattering map estimated by BDPK in
Fig. 3 obviously is affected by gravity [57]. This precise
result illustrates that our BDPK has the ability to merge the
advantages of all introduced priors by reasonably selecting a
set of regular parameters.
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Algorithm 1 Haze Removal Procedure
Input:

Hazy image I , Maximal number of iterations jmax,
Stop threshold η, Upper limit F ,
Regular parameters θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8,
Prescribed coefficient σ, Convolution kernel Λ,
Atmospheric condition: Homogeneous or Inhomogeneous.

Initialization:
Estimate incident light S from I using previous work [50].
Obtain esthesia matrix W via Eq. (12).
Calculate ρ′(0) = I ′ = ln(S−I) and d̃ = d(0) via Eq. (15).
Switch (condition)

=

{
Case “homogeneous”: set β̃ = β0 = 1

Case “inhomogeneous”: set β̃ = β0 = Ī
while not converged do
j = j + 1
Update d(j) via Eq. (21)
Update β(j) via Eq. (22)
Update ρ′(j) via Eq. (23)

end while
Recover ρ via Eq. (24)

Output: Optimal solution ρ, β = β(j), d = d(j)

IV. EXPERIMENTAL COMPARISON AND ANALYSIS

In this section, the relevance analyses of all priors intro-
duced in BDPK are first illustrated experimentally. Next, we
test BDPK on various hazy images and compare with classical
image enhancement methods [6]–[8], [12]–[14] as well as
the well-known techniques, including BD [49], BFCD [54],
SIBF [55], OCE [41], MCP [22], MPE [19], FVR [58], DCP
[25], SIIM [50], BCCR [37], CAP [42] and DN [44]. Among
these techniques, the Bayesian-based BD, BFCD, and SIBF
are selected for verifying the rationality of the optimization
function designed in BDPK. The remaining methods qualita-
tive and quantitative compared. The parameters involved in
BDPK are initialized as follows: jmax = 25, η = 10−3, and
the remainder are set as described in Section III (Please note
that the initialization of β̃ requires user intervention). More
test results and MATLAB code of BDPK are available on
line: https://www.researchgate.net/profile/Can Ding3/.

A. Relevance Test of Introduced Priors

In BDPK, three priori constraints are introduced for approx-
imating the optimization function of haze removal. To check
that all PDFs contained in BDPK can effectively be restrained
to recover a realistic haze-free scene, we carry out the rele-
vance test for BDPK by changing the regular parameters or
redefining the PDF as a constant component. Fig. 4 shows the
recovery results of BDPK with the different initialization states
displayed in Table II. Through comparison, we find the model
constraint prior is particularly important for BDPK due to its
influence on the constrained solution space. The contrast prior
[22] is used to highlight the visual clarity of the vague image.
The structure prior [41], [50] imposes the scene depth and
the scattering distribution has the efficacy to compensate for
the interference of color distortion and remove the haze more

thoroughly. It should be noted that although the structure prior
used in BDPK is able to rectify the color distortion problem
to a large extent (see Fig. 4G to 4J), the final result dehazed
by BDPK shown in Fig. 4J still exhibits slight color shift.
This is due to the fact that the incident light of each scene
calculated via [50] would encounter estimation failure when
the scene contains a bright target with large size. Meantime,
the convolution operation employed in formulas (21-23) might
introduce some halo artifacts into depth discontinuities of
recovery results, but this interference is visually negligible
and does not deteriorate the recovery quality of BDPK. In
addition, two non-reference metrics are further employed to
quantitatively assess the relevance results tested on real-world
images, including the Fog Aware Density Evaluator (FADE)
[52] and mean ratio of the gradients at the visible edges R
[59]. In general, a smaller FADE leads to more complete haze
removal. A higher R results in richer contrast information. The
evaluated values for the dehazed results in Fig. 4 are listed in
Table III. Analyzing these data, the outputs compromised via
all priors achieve the best scores for the above-tested metrics.

B. Example Results Using BDPK

To validate the robustness of the proposed BDPK in this
work, several types of hazy images are selected from previous
research [24], [41], [50] and we process them with our BDPK.
The corresponding recovery results shown in Fig. 5 greatly
reveal the scenic structures in vague regions and improve the
global contrast of hazy inputs, regardless of homogeneous
and inhomogeneous weather conditions. Furthermore, BDPK
is also equipped with the illumination compensation capability
(ICC) (see the last group example). We believe the above
superior performance mainly benefits from the universality of
RASM and the accuracy of the optimization function designed
in Section III.

C. Qualitative Comparison with Image Enhancement Methods

Because the traditional methods only blindly increase the
textural contrast of degraded images, three hazy images that
lack color information are picked for the subjective evaluation
between the classic enhancement methods and our BDPK, as
shown in Fig. 6 (a). Figs. 6(b-h) are the results restored by the
histogram equalization [6], the adaptive histogram equalization
[7], the Retinex method [9], the linear transformation [12], the
homomorphic filtering [13], the Detail enhancement [14] and
our BDPK, respectively. We observe that all the methods are
able to locally or globally eliminate the haze from the hazy
image to some extent. For the histogram equalization, linear
transformation and homomorphic filtering, they have poorer
restoration quality than other methods. It mainly reflects in
the relatively dark (or bright) areas after processing might
be saturated and thus loss the corresponding scenic details
(see Figs. 6(b,e,f)). The results dehazed by Retinex method, as
shown in Fig. 6(d), have clear scenic content in the misty parts.
But, its dense hazy scenes still contain much haze or other
unfavorable effects. In Figs. 6(c,g), the edge details become
distinct remarkably, yet the dim color affects the visual quality
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TABLE II
THE REGULAR PARAMETERS USED IN BDPK FOR THE RECOVERY RESULTS SHOWN IN FIG. 4.

Recovery Results θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Fig. 4A 0 0.1 0.5 0.5 + (j − 1) 0.5 0.5 0.5 + (j − 1) 0.5

Fig. 4B 3 0 0.5 0.5 + (j − 1) 0.5 0.5 0.5 + (j − 1) 0.5

Fig. 4C 3 0.1
0 0 0

0.5 0.5 + (j − 1) 0.5
set d = d̃ directly

Fig. 4D 3 0.1 0.5 0.5 + (j − 1) 0.5
0 0 0

set β = β̃ directly

Fig. 4E 3 0.1 0.5 0.5 + (j − 1) 0.5 0.5 0.5 + (j − 1) 0.5

Fig. 4F 0 0.3 0.5 0.5 + 2 · (j − 1) 0.5 0.5 0.5 + 2 · (j − 1) 0.5

Fig. 4G 3 0 0.5 0.5 + 2 · (j − 1) 0.5 0.5 0.5 + 2 · (j − 1) 0.5

Fig. 4H 3 0.3
0 0 0

0.5 0.5 + 2 · (j − 1) 0.5
set d = d̃ directly

Fig. 4I 3 0.3 0.5 0.5 + 2 · (j − 1) 0.5
0 0 0

set β = β̃ directly

Fig. 4J 3 0.3 0.5 0.5 + 2 · (j − 1) 0.5 0.5 0.5 + 2 · (j − 1) 0.5

TABLE III
QUANTITATIVE PERFORMANCE COMPARISON OF THE RECOVERY RESULTS SHOWN IN FIG. 4 USING FADE AND R.

Metric Fig. 4A Fig. 4B Fig. 4C Fig. 4D Fig. 4E Fig. 4F Fig. 4G Fig. 4H Fig. 4I Fig. 4J
FADE - 0.5339 0.5178 0.4112 0.3320 - 0.5963 0.3506 0.4202 0.2685

R - 2.2285 2.0247 2.2196 2.7695 - 1.6148 1.7261 1.4499 2.7347

Fig. 5. Image dehazing results using BDPK. For each group: the above is the hazy image and the bottom is the restored result by BDPK.

of the dehazed images. In contrast, BDPK makes a good com-
pensation for the brightness of low-illumination regions and
perfectly uncovers the underlying target contour. Although the
results dehazed by BDPK contain slight color distortion (the
same reason as mentioned in Section IV-A), the restoration

quality is better than other comparable enhancement methods.

D. Qualitative Comparison with Bayesian-based Techniques

To our best knowledge, there are three Bayesian-based
methods for single image haze removal. They are BD [49],
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Quantitative comparison between the traditional enhancement methods and our BDPK. (a) Hazy images. (b) Histogram equalization. (c) Adaptive
histogram equalization. (d) Retinex method. (e) Linear transformation. (f) Homomorphic filtering. (g) Detail enhancement. (h) Our BDPK.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 9. Experimental results of different methods on eight real-world hazy images. (a) Hazy Image. (b) FVR’s results. (c) DCP’s results. (d) SIIM’s results.
(e) BCCR’s results. (f) CAP’s results. (g) DN’s results. (h) BDPK’s results.

BFCD [54] and SIBF [55]. The posterior probabilities used
in BD were built using the gradient distribution prior and
spatial smooth prior to restore the scene albedo with the
canonical expectation maximization algorithm. Based on BD,
BFCD further considered the noise factor into the degradation
model and employed the BM3D [60] as well as the probability
density function of transmission to simultaneously remove the
haze and noise. In SIBF [55], the minimization function for

restoring the degraded images was constructed by imposing the
sparse prior on both the recovery result and the transmission
map. To prove that the BDPK has better properties than the
existing Bayesian-based works, the comparison between these
similar methods [49], [54], [55] and BDPK is given in Fig. 7.
Compared with the hazy image and the dehazed results (which
are downloaded in [49], [54], [55]), the visual quality of each
restored image shows different degrees of improvement, and
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Homogeneous

Hazy Image A B

C D E

Inhomogeneous

Hazy Image F G

H I J

Fig. 4. The relevance test with different initialization states listed in Table II.

Hazy Image Result of BD Result of our BDPK

Hazy Image Result of BFCD Result of our BDPK

Hazy Image Result of SIBF Result of our BDPK

Fig. 7. Comparison with the Bayesian-based works BD [49], BFCD [54] and
SIBF [55].

all the methods can somewhat relieve the influence of haze.
As shown in the first row in Fig. 7, BD can realize deep
dehazing, but the over-enhancement often occurs in the flat
areas that have slight textural details. In particular, the rocky
areas in the recovered result are quite dark (see the yellow
box). Likewise, due to the employed factorial Markov random
fields [61], the halo artifact occurs in the red box. Similarly,
BFCD suffers from over-saturation and produces much noise
in the sky part (see the yellow box of the second row in
Fig. 7). While SIBF rules out the interference of the above

Fig. 8. Comparison with well-known image restoration techniques. From left
to right: Hazy images, OCE’s results, MCP’s results, MPE’s results, BDPK’s
results.

negative problems, the dehazing degree is visually weak (see
the third row in Fig. 7). Conversely, BDPK’s results have
gentle sharpness and contrast, as well as the recovered color
always looks very natural.

E. Qualitative Comparison with Well-Known Techniques on
Real-world Images

1) First Group: In Fig. 8, OCE [41], MCP [22] and MPE
[19] are processed with the two benchmark images. The
reason that these methods were selected for comparison is
that the recovery results are easily downloaded from Kim’s
websites: http://mcl.korea.ac.kr/projects/dehazing/. As we ob-
served, OCE’s results clearly show the object itself in the
misty scene. However, since the control factor used in the
cost function [41] is empirically set as a constant, the strength
of the removed haze in the dense haze region is unstable com-
pared to MCP, MPE and BDPK. For MCP, it can completely
reveal the target contour for the given examples, yet the over-
enhancement was unfortunately introduced. Taking advantage
of the given depth information, MPE successfully removes all
the haze cover in the degenerated images. However, due to the
constant atmospheric light defined in ASM, the visual clarity
of recovered dark areas lacks competitiveness compared to
BDPK (see the yellow box in the first row of Fig. 8). Through
comparison, our resumed images are more distinct and clear,
have a stronger sense of stereovision, and can address all of
the above unfavorable effects.

2) Second Group: As is known, almost all the dehazing
techniques are able to restore ideal results on general outdoor
hazy images, it is very difficult to illustrate the superiority
of the BDPK for restoration quality [42], [44]. Therefore,
we focus on eight challenging real-world hazy images as the
test samples of the second group, including the images with
large gray scenes, misty haze, dense haze, uneven illumination
and inhomogeneous atmosphere. Fig. 9 shows the qualitative
comparison with six representative algorithms and BDPK on
these challenging images. Fig. 9(a) depicts different types of
hazy images to be dehazed, Figs. 9(b-h) show the restored
results of FVR [58], DCP [25]+Guided Filter [14], SIIM [50],
BCCR [37], CAP [42], DN [44] and BDPK, respectively.
The recovery results corresponding to these representative
methods shown in Fig. 9 are produced with the available
MATLAB codes downloaded from the authors’ websites in
the MATLAB2010 environment on the same PC with Intel(R)
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Core(Tm) i5-4210U CPU @ 1.70GHz 8.00 GB RAM. This
ensures the fair comparison.

As shown in Fig. 9(b), FVR recovers most of the scenic
details and can be implemented in real time due to the
linear complexity. However, FVR’s results seriously suffer
from over-enhancement since the inherent problem of over-
estimating the transmission is inevitable (see the second im-
age). Furthermore, owed to the median filter with poor edge-
preserving properties, the halo artifacts appear near the depth
discontinuities (see the zoom-in patch of the fifth image).
Although DCP has mostly promising results (see Fig. 9(c)),
the color distortion still emerged in the sky regions (see the
fourth image). This is since the accuracy of the estimated
transmission mainly relies on the validity of DCP, which
may be invalid when the scene’s brightness is similar to the
atmospheric light. For SIIM, this method could achieve im-
pressive visual effects for most examples. However, its results
might have adverse visual effects in dark regions with vague
classification features (see the zoom-in patch of the fifth image
in the Fig. 9 (d)). BCCR’s results can fully eliminate the haze
and unveil the scenic surface for all hazy targets. Regrettably,
the dehazing results accompanied by over-saturation are bound
to make the visual effect appear unrealistic. As we observe in
Fig. 9(e), the rebuilt color in the sky region is significantly
distorted, especially in the fourth and seventh images. In Fig.
9(f), although CAP avoids the halo artifacts and the over-
enhancement, the haze residual is obvious in the sixth image
because simply regarding the scattering coefficient as a fixed
constant may not suitable for all situations. As displayed the
first four images in Fig. 9(g), DN is capable of generating the
restored results with vivid color and necessary details. Never-
theless, it does not work well for dense hazy images, as the
corresponding results often appear shrouded by a small amount
of haze (see the sixth image). The reason might be explained
as follows. The DehazeNet trained in [44] is designed only for
transmission estimation and it lacks the contrast enhancement
ability. On the other hand, the image pairs that are selected
to train DehazeNet are artificially synthesized images rather
than real-world images, which makes DehazeNet has a limited
capability on dealing with real-world hazy images.

Apart from the above-mentioned problems, these dehaz-
ing techniques still share two common limitations: 1) These
methods (except for SIIM) lack the ICC and thus cannot
appropriately handle hazy images under uneven illumination
(see the seventh row in Fig. 9) and 2) These methods may fail
in the cases that the atmosphere is inhomogeneous (see the
eighth row in Fig. 9). On the contrary, we notice that BDPK
is completely unaffected by these limitations and can produce
the realistic haze-free images while avoiding the halo artifacts,
over-enhancement, over-saturation and the color distortion (see
Fig. 9(h)).

F. Comparison with Well-Known Techniques on Synthetic Im-
ages

1) Qualitative Comparison: Assessing the recovery tech-
niques for a single hazy image is a difficult task because
the haze-free reference images could not be provided in the

real-world. To verify the utility on complete images, the six
representative techniques and BDPK are compared on the
synthesized hazy images collected in the D-HAZY dataset
[62], in which the corresponding ground truth reference images
are known. In Fig. 10, we show the results processed with dif-
ferent methods on these synthesized images. Fig. 10(a) depicts
the hazy images with names ‘Piano’, ‘Couch’, ‘Jadeplant’,
‘Room’, ‘Shelves’, ‘Sticks’, ‘Bicycle’ and ‘Vintage’. Fig. 10
(b) provides the ground truth images for fair comparison. Figs.
10(c-i) exhibit the results of FVR [58], DCP [25]+Guided
Filter [14]], SIIM [50], BCCR [37], CAP [42], DN [44] and
BDPK, respectively.

As seen in Fig. 10(c), FVR’s results usually look much
darker than the ground truth images, and the halo artifacts can
be found in the depth discontinuities (see the jadeplant image).
For DCP, as shown in Fig. 10(d), the recovered images achieve
a good compromise between haze removal degree and target
clarity. However, the ground of the bicycle image shows its
inaccuracies. In Figs. 10(e,f), the results restored by BCCR
and SIIM are visually compelling, yet the restored colors
might be more over-saturated than they should be, especially
in the sticks image. By observing Figs. 10(g,h), we notice that
CAP and DN are very positive for the given misty examples,
while their dehazed results for the other hazy images are still
surrounded by a small amount of mist (see the playroom
image and piano image). Different from these techniques,
BDPK’s results do not possess the unpleasing effects and they
maintain the original tones of the scene targets. This further
illustrates the outstanding performance of BDPK compared to
these techniques in terms of the human visual perspective.

2) Quantitative Comparison: To overcome the inevitable
bias of qualitative comparisons and fairly assess these algo-
rithms, we compute the non-reference metrics R, FADE as
previously mentioned for the recovery results and choose three
commonly used reference evaluation indicators as test crite-
rion, namely structural similarity (SSIM) [63], mean squared
error (MSE) and peak signal-to-noise ratio (PSNR). For these
three metrics, a greater SSIM indicates better structural sim-
ilarity between the dehazed result and ground truth image.
A lower MSE and higher PSNR represent that the recovery
results are more acceptable. Due to the unavailable haze-free
scenes of the real-world hazy images, we only implement the
quantitative comparison on the restoration

The quantitative assessments of the recovered results in Fig.
10 using SSIM, R, FADE, MSE and PSNR are summarized
in Table IV. For the ease of measuring the effectiveness
of different approaches, we have also calculated the mean,
median and root mean square values of these scores over the
set of images. Note that the best scores are highlighted with
bold character in the table.

By analyzing the data, we notice that BDPK outperforms
all the other methods for all the examples when assessed by
SSIM, which indicates that BDPK produces the best image
structures. For the metrics R and FADE, BDPK’s scores are the
best for the first five images, but they are not as good as FVR,
SIIM, DCP and BCCR for the last three samples. However,
this does not necessarily mean that other dehazing methods are
better than BDPK. The reason they have a better score when
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Fig. 10. Experimental results of different methods on eight synthesized images. (a) Hazy Image. (b) Ground Truth images. (c) FVR’s results. (d) DCP’s
results. (e) SIIM’s results. (f) BCCR’s results. (g) CAP’s results. (h) DN’s results. (i) BDPK’s results.

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iterations

St
op

 C
ri

te
ri

on

 

 
Piano

Couch

Jadeplant

Room

Shelves

Sticks

Bicycle

Vintage

(a)

[100 100] [200 200] [400 400] [800 800] [1600 1600]
10

−1

10
0

10
1

10
2

10
3

Image Resolution

T
im

e 
C

os
t (

s)

 

 
FVR

DCP

SIIM

BCCR

CAP

DN

BDPK

(b)

Fig. 11. (a): The convergence speed of the proposed BDPK in this work. The images used in this experiment are shown in Fig. 10. (b): Time comparison
of different techniques with varying image sizes.

assessed by R and FADE is because the recovered results of
these methods usually appear to be over-saturated or too dark.
For example, BCCR’s result (see Fig. 10(f)) on the bicycle
image obtains the highest R and FADE values, whereas almost
all the negative effects can be visually observed. BDPK’s MSE
and PSNR scores are relatively lower than those of DCP and
BCCR for dense hazy images (the first four examples) and
are inferior to those of CAP and DN for misty images (the
last four examples). Although DBPK does not have the best

score for every example, the statistics results demonstrate that
DBPK have the best performance on average.

G. Complexity

The computational complexity is another critical assessment
factor for the dehazing technique. By analyzing Algorithm 1,
we infer that the main computational overhead consumed in
BDPK is the iteration module. Each iteration procedure mainly
contains three convolution operations and other low-complex
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TABLE IV
QUANTITATIVE COMPARISON OF THE RECOVERED IMAGES IN FIG. 10 USING SSIM, R, FADE, MSE, PSNR.

Metric Examples FVR DCP SIIM BCCR CAP DN BDPK

SSIM

Piano 0.694 0.7367 0.6075 0.7555 0.7075 0.7081 0.8007
Couch 0.7176 0.7241 0.7271 0.7633 0.6568 0.6262 0.8247

Jadeplant 0.5625 0.5821 0.4939 0.5974 0.5688 0.549 0.6687
Room 0.6995 0.7772 0.7152 0.7722 0.7297 0.7154 0.7995

Shelves 0.7872 0.7788 0.7275 0.8611 0.835 0.884 0.8931
Sticks 0.8899 0.8618 0.7909 0.8677 0.9335 0.9412 0.9471

Bicycle 0.7282 0.7595 0.7659 0.6203 0.8303 0.8613 0.8743
Vintage 0.819 0.74 0.8348 0.7113 0.9409 0.9414 0.9498

SSIM Average 0.737238 0.745025 0.70785 0.7436 0.775313 0.778325 0.844738
SSIM Median 0.7229 0.74975 0.7273 0.7594 0.78 0.78835 0.8495

SSIM Root Mean Square 0.700392 0.705817 0.674245 0.706455 0.740216 0.745514 0.800608

R

Piano 1.8263 1.8263 2.1719 1.8713 1.5218 1.2195 2.4619
Couch 2.456 1.9693 2.5389 2.3699 1.7395 1.5637 2.5801

Jadeplant 1.5156 1.6296 1.7597 1.6056 1.2815 1.1199 1.7915
Room 2.2472 2.1 2.1072 2.339 1.4895 1.2848 2.4766

Shelves 1.6437 1.745 1.9907 1.9711 1.495 1.3616 2.0847
Sticks 2.6907 2.3316 2.9984 2.857 1.9161 1.6009 2.4916

Bicycle 2.4772 2.4874 2.1892 3.2258 1.9435 1.7443 2.2375
Vintage 4.0082 4.7389 3.1836 5.2087 2.3577 2.161 3.4917

R Average 2.358113 2.353513 2.36745 2.68105 1.718075 1.506963 2.45195
R Median 2.3516 2.03465 2.18055 2.35445 1.63065 1.46265 2.46925

R Root Mean Square 2.329951 2.389905 2.275014 2.723378 1.648063 1.451687 2.352618

FADE

Piano 0.3271 0.2568 0.3543 0.3166 0.4899 0.5889 0.2379
Couch 0.285 0.3394 0.268 0.3161 0.4934 0.6156 0.2516

Jadeplant 0.4404 0.2859 0.2094 0.3284 0.6024 0.7437 0.3704
Room 0.258 0.2128 0.2828 0.2413 0.4854 0.5824 0.2092

Shelves 0.3124 0.2562 0.3877 0.2762 0.3992 0.6185 0.2437
Sticks 0.1958 0.2369 0.1732 0.1995 0.5011 0.6203 0.2148

Bicycle 0.3323 0.327 0.4378 0.2652 0.4777 0.6333 0.4144
Vintage 0.6306 0.3305 0.863 0.2674 1.1127 1.2393 0.4767

FADE Average 0.3477 0.280688 0.372025 0.276338 0.570225 0.70525 0.314838
FADE Median 0.31975 0.27135 0.31855 0.2708 0.49165 0.6194 0.29765

FADE Root Mean Square 0.369585 0.284183 0.423958 0.279318 0.608143 0.735042 0.328652

MSE

Piano 0.0327 0.0154 0.0828 0.0155 0.0365 0.0336 0.0203
Couch 0.0585 0.0298 0.0386 0.0238 0.0653 0.0793 0.0308

Jadeplant 0.1354 0.1216 0.1384 0.1162 0.1785 0.2035 0.1234
Room 0.0482 0.0183 0.0562 0.0178 0.0466 0.0488 0.0294

Shelves 0.0323 0.0213 0.03 0.0216 0.011 0.015 0.0206
Sticks 0.031 0.0203 0.0343 0.0165 0.0075 0.0077 0.0092

Bicycle 0.0751 0.0444 0.0228 0.0857 0.0167 0.0105 0.0213
Vintage 0.0457 0.0536 0.0287 0.054 0.0165 0.0122 0.0185

MSE Average 0.057363 0.040588 0.053975 0.043888 0.047325 0.051325 0.034188
MSE Median 0.04695 0.02555 0.03645 0.0227 0.0266 0.0243 0.02095

MSE Root Mean Square 0.066031 0.052389 0.065268 0.056596 0.071027 0.080432 0.048422

PSNR

Piano 14.8582 18.1232 10.8219 18.0832 14.3762 14.7383 16.4392
Couch 12.4006 15.2578 14.1356 16.239 11.8494 11.0082 15.1177

Jadeplant 8.7484 9.1501 8.5902 9.3464 7.4848 6.9138 9.0889
Room 13.3944 17.3765 12.5034 17.4888 13.3157 13.1201 15.3198

Shelves 14.905 16.6521 15.2349 16.3373 19.5694 18.2491 17.2228
Sticks 15.09 16.9328 14.6498 17.8224 21.1166 21.0534 20.3731

Bicycle 11.2459 13.5309 16.428 10.6685 17.7772 19.7946 16.7214
Vintage 13.4043 12.7071 15.414 12.6784 17.8318 19.144 17.3395

PSNR Average 13.00585 14.96631 13.47223 14.833 15.41514 15.51519 15.9528
PSNR Median 13.39935 15.95495 14.3927 16.28815 16.0767 16.4937 16.5803

PSNR Root Mean Square 13.16481 15.22944 13.69874 15.17821 15.98158 16.19086 16.23287

operations (see Equations. (21-23)). Ignoring these simple
calculations, for the given image with resolution res and the
determined convolution kernel Λ, the theoretical complexity of
BDPK is only O(res·|Λ|·ja) (|Λ| is the number of elements in
Λ and ja is the actual iteration number). Despite this, it may
be more intuitive to see how many iterations are needed to
empirically converge. Fig. 11(a) plots eight iteration curves for
the images shown in Fig. 10. From these plots, we notice that
the changing trends of the eight plots are similar to each other,
and the actual iteration number is approximately 10 iterations

for all tests. Fig. 11(b) gives the comparison between FVR
[58], DCP [25] + Guided Filter [35], SIIM [50], BCCR [37],
CAP [42], DN [44] and our BDPK in terms of time costs
(In the same PC described above, all the calculation times
are recorded by running the authors’ codes or the projects
simulated by us on the hazy images with different resolutions).
As we expected, the BDPK proposed in this work is much
faster than FVR, DN, SIIM, DCP and BCCR, as well as is
very close to the CAP with high efficiency. Even when the
given hazy image is very large, BDPK still achieves high-
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speed processing.

V. DISCUSSION AND CONCLUSION

In this paper, we have redefined a novel atmospheric
scattering model (RASM) according to our previous work
[50] and the observation of atmospheric particles distribution.
Afterwards, a single image dehazing algorithm called BDPK
was further proposed based on this RASM. Unlike previous
works, the key contribution of our BDPK is to convert the haze
removal into an optimization function by combining Bayesian
theory and prior knowledge. This allows us to directly recover
the scene albedo with an alternating minimizing technique
(AMT). Experimental results demonstrate the superiority of
the proposed BDPK in terms of the dehazing effectiveness and
the robustness compared with the state-of-the-art techniques.

Although we have designed an effective and robust de-
hazing method, there are some future studies that should
be conducted. Atmospheric conditions are required to be
artificially determined in our BDPK. Therefore, seeking an
adaptive approach to detect the atmospheric conditions in hazy
images is of practical significance. Considering that the weight
coefficients involved in AMT are empirically determined, we
will develop a learning-based strategy to pursue a set of
optimal coefficients that can achieve a better balance between
dehazing quality and computational efficiency.
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