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Abstract—In this letter, a concise gamma-correction-based de-
hazing model (GDM) is proposed. This GDM explicitly describes
the inner relationship between the gamma correction (GC) and
the traditional scattering model. Combined with the existing
priori constraints, GDM is further approximated into a one-
dimensional function to seek the only unknown constant that is
used for haze removal. Using the determined constant, the scene
albedo can be recovered, eliminating the haze from single hazy
images. The proposed GDM is able to suppress the halo/blocking
artifacts in the recovered results due to the scene albedo is
less sensitive to the determined constant. Simulation results on
different types of benchmark images verify that the proposed
technique outperforms state-of-the-art methods in terms of both
recovery quality and real-time performance.

Index Terms—Haze Removal, Dehazing Model, Maximum
Contrast, Image Prior, Gamma Correction.

I. INTRODUCTION

UNDER hazy weather, due to the influence of turbid media
(e.g., suspended particles, water droplets) distributed in

the atmosphere, images captured by camera always feature
poor visibility and dim color. These hazy images can lead to
significant performance deterioration of computer vision based
systems. Therefore, research on a restoration technique for
hazy images is of extreme importance.

Current image dehazing techniques can be grouped into two
categories: classic image enhancement [1]–[3] and physically-
based methods [4]–[9]. The former solely stresses the textural
contrast in hazy images without taking the degradation mecha-
nism into consideration, thus the recovery quality is generally
limited. The latter category is based on a physical model
and the haze removal is realized by fully utilizing the latent
image priors. Although good quality images can be obtained,
this kind of techniques usually utilize quite complex tools
which require long processing time, thus reducing the real-
time performance. For example, the dark channel prior (DCP)
proposed in [5] is a kind of statistics of outdoor haze-free
images, which is based on a key observation that − in most
local patches in outdoor haze-free images, at least one color
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Fig. 1. Comparison with Wang et al.’ work. Left: Hazy Image. Middle: Wang
et al.’s result. Right: Result from this work

channel contains pixels with low intensity close to zero. This
DCP allows us to directly estimate the haze thickness, but the
local-constant assumption leads to the blocking effect in the
restored results. For this reason, the use of time-consuming
soft matting [6] or its alternatives [7]–[9] are inevitable to
refine the rough transmission map. Taking advantages of the
machine learning framework (MLF), some works [10]–[12]
excavate the scene depth by merging the merits of the haze-
relevant features. These approaches provide a new idea for
single image haze removal, whereas the complicated MLF re-
quires a lot of time to perform the operation. Another solution
developed in [13] constructed a Bayesian dehazing model that
jointly predicts the scene albedo and depth map by utilizing
the factorial Markov random field (FMRF) with super-high
complexity. Apart from the aforementioned techniques, almost
all the existing dehazing methods [14]–[18] contain these
intricacy operators to estimate or repair the depth information,
which results in long processing time.

In this letter, we firstly defined a novel dehazing model
called gamma-correction-based dehazing model (GDM) by
bridging the gamma correction and traditional atmospheric
scattering model (ASM) mathematically. Then, a fast visi-
bility restoration technique for single hazy image is further
developed based on GDM and the existing prior knowledge.
Different from previous works, the proposed method only
needs to estimate one unknown constant to resume the image
by combining the scene prior and maximum contrast principle,
which diminishes the solution space and accelerates the pro-
cessing speed. Moreover, thanks to the low sensitive property
of the scene albedo in GDM, unlike what happens in ASM,
the employed simple mean filter without the edge-preserving
ability does not visually arouse the halo artifacts in dehazed
results. This avoids the time-consuming refining process and
significantly reduces the processing time. Even compared with
the recent state-of-art algorithm from Wang et al. [19], the
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Fig. 2. The limitation of gamma correction for haze removal.

proposed technique not only consumes less time but also can
obtain better restoration in terms of both colors and details
(see Fig. 1).

II. THE PROPOSED TECHNIQUE

Gamma correction (GC) has the ability to remove haze from
single image to some extent, but it is difficult to achieve an
optimal trade-off between the over-saturation of close-range
regions and the complete dehazing of long-range regions.
For example, as shown in Fig. 2, with the correction factor
increasing, the hazy area in long range region gets clearer but
the tree in close-range region becomes darker. Traditionally,
the result processed by GC is expressed as

IG = IΓ (1)

where I is the hazy input and Γ is the correction factor.
To investigate the physical meaning of GC in terms of haze
removal, we assume that IG and I can fully satisfy the
premises of using the atmospheric scattering model (ASM)
[4], that is{

I = A · ρ(x, y) · e−β·d(x,y) + A · (1− e−β·d(x,y))

IG = AG · ρ(x, y) · e−βG·d(x,y) + AG · (1− e−βG·d(x,y))

(2)

where ρ is the scene albedo, d is the depth map, A, β and
AG, βG are the atmospheric light and scattering coefficient
of I and IG, respectively. Substituting Equation set (2) into
Equation (1), which yields the following

AG · [1 + (ρ(x, y)− 1) · e−βG·d(x,y)]

= AΓ · [1 + (ρ(x, y)− 1) · e−β·d(x,y)]Γ
(3)

Since the GC process does not change the location of the
atmospheric light in the image, which means AG = AΓ, then
Equation (3) can be simplified to

(ρ(x, y)− 1) · e−βG·d(x,y)

= [(ρ(x, y)− 1) · e−β·d(x,y) + 1]Γ − 1
(4)

For simplicity, here we further assume that the values of (ρ−
1) · e−β·d are very close to zero. According to the equivalent
infinitesimal theorem, that is when x → 0, (1 + x)a ∼= a · x,
Equation (4) can be rewritten into

(ρ(x, y)− 1)·e−βG·d(x,y) ∼= Γ · (ρ(x, y)− 1) · e−β·d(x,y)

⇒ βG ∼= β − ln(Γ)

d(x, y)
(5)

Hazy Image Blurred Brightness Map

Estimate τ

Restored Result

Fig. 3. An overview of the visibility restoration technique proposed in this
letter.

Fig. 4. Left: The changing rate of the scene albedo ρ corresponding to
the ASM after simple deformation ρ = 1 − (1 − I/A) · eβ·d. Right: The
changing rate of the scene albedo ρ corresponding to the proposed GDM
ρ = (I/A)e

β·d
.

By analyzing Equation (5), we notice that the failure reason
for GC is attributed to the fixed coefficient Γ, that is to say a
smaller scene depth leads to a stronger dehazing strength and
vice versa. Following a simple derivation, the variable Γ̌ to
ensure βG = 0 can be written as

Γ̌ = eβ·d (6)

Referring to [14], the distorted hue caused by ambient light
can be restored by dividing the atmospheric lights into the
corresponding color channels. Accordingly, a more concise
GC-based dehazing model (GDM) for haze removal is defined
as

ρ = (
I

A
)Γ̌ = (

I

A
)e
β·d

(7)

where A can be easily estimated according to [5]. GDM is the
key contribution in this letter and it bridges the relationship
between GC and traditional ASM. Although GDM appears
to be simpler compared to ASM, acquiring Γ̌ is still a
naturally ill-posed problem. Fortunately, the scene brightness
is increased along with the change of the scene depth, and
scene depths within a local patch are invariable in general [17].
Inspired by this, a linear model of scene depth is proposed as

d = δ ·Mean(Ī) (8)

where Ī is the brightness component of I, δ > 0 is the
unknown coefficient and Mean(·) represents the mean filter
which is used for excluding the unexpected textures in Ī . The
reason that we employ this operator Mean(·) is due to its low
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Fig. 5. Image dehazing results using the proposed method.

Fig. 6. Comparison with MCP and BD. From left to right: Hazy Images,
MCP’s results, BD’s results and our results.

complexity. Substituting Equation (8) into (7), GDM can be
approximated as

ρ = (
I

A
)e
τ·Mean(Ī)

(9)

where τ = β · δ is an unknown constant, which is critical for
restoration quality. To determine τ accurately, a whole-image-
wise-based search function is designed via maximum contrast
principle (MCP) [14] as

τ = argmin(−
∑
c

∥∥∥∇((
Ic

Ac )e
τ·Mean(Ī)

)
∥∥∥2

2
) (10)

where c ∈ {R,G,B} is the colour channel index and ∇ is the
gradient operator. In contrast to the pixel-wise [9], patch-wise
[15] and scene-wise strategies [16], the above whole-image-
wise search function is capable of making up the limitation
of MCP. This is due to the fact that the information of the
whole image is richer than that of a patch or scene, thus global
optimum results instead of local ones can be obtained. Once τ
is determined via one-dimensional function (10) with golden
section method, the haze shroud in the degraded image can
be removed via Equation (9). Fig. 3 shows an overview of
the technique proposed in this letter. It is observed that the
technique can thoroughly reveal the target contour and truly
restitute the original color. It should be pointed out that the
mean filter that lacks edge-preserving ability does not visually
introduce halo artifacts in the dehazed results. The reason can
be explained as follows: GDM has a slower response of scene
albedo with respect to its independent variable compared to
that of ASM [4] as shown in Fig. 4. This relieves the sharp
change of pixel values in the edge-discontinuities regions, thus
avoiding the halo/blocking artifacts.

III. EXPERIMENTS

To assess the effectiveness of the proposed technique, it
was tested by a wide set of hazy images. Then the outcomes
were qualitative and quantitative compared with state-of-the-
art methods, including MCP [14], BD [13], DCP [5]+GF
[7], BCCR [15], CAP [17], DehazeNet [11] and DEFADE
[20]. In the proposed algorithm, the atmospheric light was
estimated according to [5] and the mean filter size was
empirically initialized as 45. For fairness, the experimental
results of MCP and BD were downloaded from Fattal’s website
http://www.cs.huji.ac.il/∼raananf/, and the rest were produced
in MATLAB2010 on a PC with Intel(R) Core(Tm) i5-4210U
CPU@ 1.70GHz 8.00 GB RAM. The simulation codes of [7],
[11], [15], [17], [20] are available on the authors’ website.

A. Robustness Test

Being able to handle different types of images is a necessary
precondition for a dehazing technique. Therefore, images with
different scene contents, spatial resolutions, and haze densities
were selected to access the proposed method as shown in
Fig. 5. As can be seen, the proposed technique successfully
removed the haze cover in the hazy images and restored the
vivid colors from the dim scenes. Moreover, the common
interferences, such as over-enhancement in sky regions and
the over-saturation in misty regions, are effectively prevented
by employing the whole-image-wise strategy.

B. Quality Comparison

The proposed method was firstly compared with MCP [14]
and BD [13] as illustrated in Fig. 6. MCP and BD can
dramatically highlight the texture details, but the colors of the
recovered images are usually over-saturated, especially in the
white rocky areas. This is due to the fact that the maximum
contrast principle used in MCP and the chromaticity gradient
prior used in BD solely emphasize the image contrast instead
of physically recovering the scene albedo. Besides, due to the
Markov random field employed in MCP, the haze residue can
be noticed near the depth discontinuities (see the yellow box).
In comparison, the restored images by the proposed method
are enhanced moderately and contain minimal halo artifacts.

Fig. 7 illustrates the comparison between the five repre-
sentative dehazing approaches [5], [11], [15], [17], [20] and
the proposed technique’s performance on four well-recognized
benchmark hazy images [11]. As shown in Fig. 7(b), DCP

http://www.cs.huji.ac.il/~raananf/
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Fig. 7. Qualitative comparison of the different techniques. (a) Hazy Images. (b) DCP. (c) BCCR. (d) CAP. (e) DehazeNet. (f) DEFADE. (g) Proposed method.

TABLE I
QUANTITATIVE COMPARISON OF DEHAZED RESULTS OF IMAGES SHOWN IN FIG. 7.

Examples Metric DCP BCCR CAP DehazeNet DEFADE Proposed Method
e 0.2350 0.3619 0.1915 0.1954 0.3127 0.3651

First Row SSIM 0.8355 0.7312 0.9120 0.9079 0.7387 0.9136
(185× 223) T/s 0.8819 1.3778 0.3410 0.9317 6.4403 0.2114

UIQI 0.8071 0.8139 0.7924 0.8081 0.7918 0.8176
e 0.8029 0.9576 0.5376 0.5601 1.0115 1.0866

Second Row SSIM 0.7251 0.6047 0.8681 0.8865 0.5978 0.8926
(185× 231) T/s 0.7706 1.5182 0.3636 0.9591 6.0503 0.2131

UIQI 0.8541 0.8646 0.8370 0.8348 0.7261 0.8779
e 0.1171 0.1496 0.1223 0.1115 0.1018 0.1572

Third Row SSIM 0.8799 0.9015 0.9455 0.9412 0.7944 0.9466
(384× 512) T/s 1.2702 1.7698 0.4912 3.2908 24.6136 0.3377

e 0.7445 0.7790 0.1721 0.0875 0.5439 0.5820
Fourth Row SSIM 0.7673 0.7829 0.8990 0.9533 0.6524 0.9560
(512× 768) T/s 3.0041 2.9521 0.7695 6.3991 52.6477 0.5895

is capable of achieving promising results for the first three
images. However, the restored sky of the fourth image shows
an adverse over-enhanced phenomenon, which may be caused
by the limitation of DCP for bright regions [5]. Similarly,
BCCR shown in Fig. 7(c) has the same problem even though
its core contribution on boundary constraint can uncover the
more naturalistic and clear edges. As observed from Fig. 7(d)
and 7(e), CAP and DehazeNet lead to realistic results for
the first and fourth images, but they are invalid for the rest
images. Fig. 7(f) demonstrates that DEFADE’s results are
visually pleasuring for most of the given examples, whereas
the dehazing quality of dark hazy scenes is poor because
the low-luminance pixels play an important role when fusing
several images into the single one. Overall, it can be concluded
that the proposed method can get rid of these negative visual
effects and have a stronger sense of stereo vision.

C. Quantitative Analysis and Efficiency

Quantitative comparison was conducted based on the edges
newly visible after restoration (e) [21], structural similarity
(SSIM) [22], and Universal Image Quality Index (UIQI) [23].
A greater e represents more thorough dehazing, a higher

SSIM means a better spatial structure, and a larger UIQI
value indicates a higher similarity or less structural distor-
tion between the dehazed results and real haze-free scenes.
Moreover, the time cost of the dehazing process (T ) is also
considered as an evaluation factor, since it is very critical for
real-time applications. The quantitative scores corresponding
to the dehazed results in Fig. 7 are summarized in Table I. Note
that the premise of using the UIQI is that we have objective
haze-free image as a reference standard. Thus, the UIQI was
only implemented on the first two examples in Fig. 7 where
the ground truth solutions are available [11], [17]. It can be
concluded from Table I that the proposed method outperforms
the others from the perspective of SSIM and UIQI. Although
the values of e are inferior to those of DCP and BCCR for
the last image, the higher e does not necessarily indicate a
better performance since it is attributed to the pseudo-edges
(or over-enhanced) as discussed above, thereby the comparison
should be recalled. Most importantly, the processing time
is significantly reduced by using the proposed method for
all the images. The significantly reduced processing time is
attributed to the fact that, both the mean filter and the whole-
image-wise search function in the proposed method have lower
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complexity than the complex tools employed in the state-of-art
approaches, such as the guided filter in DCP, the convolutional
neural network in DehazeNet, and the pyramid fusion in
DEFADE.

IV. CONCLUSION

In this letter, a novel dehazing model (GDM) derived from
GC and classic ASM was proposed. In addition to the essential
properties owned in original model, GDM also has an ability
to circumvent the halo effects in the recovered results due to its
slow-changing response feature of scene albedo. Afterwards,
a fast visibility restoration technique was further developed by
combining the GDM and the existing priori constraints. This
method converts the ill-posed image dehazing issue to a one-
dimensional search one, which not only dramatically reduces
the required time of haze removal but also globally improves
the restoration quality. Experimental results illustrate that
the proposed approach achieves both outstanding restoration
performance and high efficiency.
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