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Feature Selection for the Detection of Sleep Apnea using Multi-Bio
Signals from Overnight Polysomnography*
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Abstract— Patients with sleep apnea (SA) are at increased
risk of stroke and cardiovascular disease. Diagnosis of sleep
apnea depends on the standard overnight polysomnography
(PSG). In this study, the DREAM Apnea Database was used
to evaluate the importance of the various features proposed
in the literature for the analysis of sleep apnea. Various time-
and frequency- domain features that include wavelet and power
spectral density were extracted from ECG, EMG, EEG, airflow,
SaO2, abdominal and thoracic recordings. Evaluation measures
of one-way analysis of variance (ANOVA) and Rank-Sum
test were used to test the performance of different features.
The selected feature subset indicated that frequency-domain
features outperform time-domain ones. This study will help in
enhancing the detection accuracy of sleep apnea for the various
polysomnography signals.

I. INTRODUCTION

There are three basic types of respiratory disturbances in
sleeping, and the most common sleep disorder is sleep apnea.
Sleep apnea (SA) is considered as a temporary closure of
the upper airway repeatedly during sleep and it leads to the
complete cessation of breathing for more than 10 seconds
in adults [1]. Sleep apnea is found to be associated with
increased mortality, stroke and cardiovascular disease. Sleep
apnea is classified into three types, Obstructive Sleep Apnea
(OSA), Central Sleep Apnea (CSA) and Mixed Sleep Apnea
(MSA). To exacerbate SA, it has been recommended that
SA should be objectively evaluated. The ApneaHypopnea
Index (AHI) is an index used to indicate the severity of
sleep apnea. It is represented by the number of apnea and
hypopnea events per hour of sleep. In adults, an AHI that is
more than five or a minimum oxygen saturation of less than
85 percent is defined abnormal [2]. The gold standard for
diagnosing sleep apnea is overnight polysomnography (PSG,
see in Figure 1). This diagnosis includes the monitoring
of the breath airflow, snore, midsagittal jaw movement,
respiratory events, oxygen saturation (SaO2), body position,
electroencephalography (EEG), electromyography (EMG),
electrooculography (EOG), and electrocardiography (ECG)
[3]. Since the PSG recording lasts the whole night and the
data of PSG is huge, the detection by expert physicians is a
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time-consuming task. Thus, automatic detection is desirable.
In automatic detection, feature extraction and selection play
an important role. Several pervious studies attempted to
achieve the goal of obtaining better feature sets. Most of the
existing feature evaluation studies focus on limited number
of PSG signals, where the efficacy of the selected feature set
is evaluated based on the classification performance.

In general, sleep respiratory disturbances are related to de-
saturation. Oxygen saturation (SaO2) and airflow are usually
utilized to detect apnea. For example, three methods were
applied to extract features from oxygen saturation signals
in [4]: approximate entropy (ApEn), central tendency mea-
sure (CTM) and Lempel-Ziv Complexity (LZC). Multilayer
perceptron network provided a diagnosis when fed with
those input features. Otero et al. showed the relationship
between apnea and the drop in oxygen saturation [5]. The
SA diagnosis algorithm was based on a computational rep-
resentation of the morphological criteria from a physician,
and a Multivariable Fuzzy Temporal Profile model. Gunes
et al. [6] used four features and a multi-layer perceptron
artificial neural network to identify sleep apnea. These fea-
tures included arousal index, apnea and hypopnea index, the
SaO2 minimum value in the stage of rapid eye movement
and percent sleep time. The level-5-detail coefficients were
obtained by Discrete Wavelet Transformation and used as
the inputs for a feedforward artificial neural network [7]. In
a recent work by Otero et al., it was reported that sudden
changes in the basal value of the respiratory airflow was
found in apneic polysomnography fragments, and the amount
of inhaled and exhaled air. A fuzzy set was used for the apnea
identification [8].

Sleep respiratory disturbances are accompanied by
changes in electrocardiography (ECG), electroencephalogra-
phy (EEG) and chin Electromyography (EMG). Therefore,
there is an increased interest by researchers to utilize these
signals. In [9], a heuristic splitting and relevance approach
was proposed to extract features from ECG signals and
classify those features using a K-nearest neighbor classifier.
Hassan et al. [10] calculated statistical and spectral features
from the ECG signals to differentiate between apneic and
non-apneic conditions. Bootstrap aggregation was used to
classify apneic portions of data from normal ones. Band-
pass filter and Hilbert-Huang Transformation were utilized to
calculate trend features [11]. Ubeyli et al. [12] presented an
adaptive neuro-fuzzy inference system (ANFIS) to diagnose
SA using EEG signals. This method was performed in
two stages: feature extraction using Discrete Wavelet Trans-
formation and classification by the ANFIS. Other studies



Fig. 1. Example of Polysomnography signal

considered chin EMG, as muscle activities was found to play
an important role in identifying apnea portions [13], [14],
[15]. Some other studies focused on abdominal and thoracic
signals since there is a correlation between two-effort signals
with the patients airflow signal. In [16], the two-effort signals
were decomposed into spectral components using Discrete
Wavelet Transformation and the mean energy levels were
used as inputs for multiplayer neural networks. Similarly, the
abdominal respiratory signals were decomposed by Discrete
Wavelet Transformation and the spectral components were
used to train an artificial neural network [17].

In this paper, we proposed a new algorithm for evaluating
a number of feature extraction methods that can be applied
to analyse various polysomnography signals in terms of their
capability in detecting sleep apnea. The one-way analysis of
variance (ANOVA) and rank-sum test were used to evaluate
the importance of features. The goal of this work is to build a
robust and efficient feature set that can be used for detecting
sleep apnea. The next section discusses the features that will
be extracted from the different sleep apnea signals.

II. MATERIAL AND METHODS
The DREAM Apnea Database that consists of 12 PSG

signals is used in this study. Each recording consists of ECG,
EMG, EEG, airflow, SaO2, abdominal and thoracic signals,
and lasts for approximately 9 h. The PSG data are recorded
at 200 Hz sampling frequency. These data recordings are
annotated based on the respiratory events by an expert. Each
signal is divided into 10 s windows since this duration is the
minimum obstruction duration to detect an SA.

In the paper, we used wavelet transformation and pow-
er spectral density to extract frequency-domain features.
Wavelet transformation is an extension of the classical
Fourier transform. It works on a multi-scale basis and is
suitable to analyze non-stationary signals because it has a
varying window size, i.e., broad at low frequencies and
narrow at high frequencies. Wavelet transformation employs
scaling functions and wavelet functions, being related to

low-pass and high-pass filters, to decompose signals into
an approximation level and detail levels. For example, a
wavelet of depth 9 provides a decomposition of a given
signal into a set of the approximation coefficient (A9) and
detail levels (i.e. D8). On the other hand, power spectral
density can describe the distribution of frequency power
components. Power spectral density estimation methods can
be divided into non-parametric and parametric. The non-
parametric methods have less computational complexity,
while parametric methods are generally more accurate as
they depend on some a priori knowledge to calculate the
power spectral density.

A. ECG features

It has been stated in previous studies that the ECG signals
of SA patients show distinct patterns in R-R intervals, with
lower heart rates than healthy people [18]. ECG signals are
influenced by the motion of thoracic cavity since electrodes
are placed on chests [19]. In addition, ECG electrodes could
be used to record the cardiac electric activity and motion of
the chest at the same time. The baseline offset caused by
patient’s movement could cause a problem in detecting the
R peak of the QRS complex. For this reason, clearing the
signal would involve discarding the A9 wavelet coefficient
(low frequency components) and applying a band-pass filter
with cutoff frequencies of 0.5 - 40Hz. The modified Pam-
Tompkin method was utilized to find the R-peak, which was
used to compute the R-R intervals. We utilized statistical
time-domain features such as mean, variance, kurtosis and
R-R interval duration, and spectral features such as spectral
flatness, spectral centroid, spectral spread, spectral decrease
and spectral slope. On the other hand, we extracted means of
Power Spectrum Density in 10-20Hz (mean of PSD10/20)
and 80-100Hz (mean of PSD80/100) respectively, since the
lower heart rate results in fewer ECG cycles and less typical
saw-tooth morphology and typical respiratory overexertion
increases the respiratory rate.

B. EEG features

It has been shown that a decrease in Delta wave (1-4Hz)
is accompanied by an increase in Theta (4-8Hz) and Alpha
waves (8-13Hz) [20]. We utilized wavelet transformation to
decompose EEG window signals and obtain approximated
Delta, Theta and Alpha waves. We used level-8 wavelet
transformation and Daubechies wavelets 2. Since the sample
rate is 200Hz, D8 and D7 (0.78125 - 3.125Hz) were consid-
ered as the Delta wave, D6 (3.125 - 6.25Hz) was considered
as Theta wave and D5 (6.25 - 12.5Hz) was considered as the
Alpha wave. The A9 wavelet coefficient was removed and a
band-pass filter with cut-off frequencies of 0.5 - 45 Hz was
applied to remove noise. The EEG feature set included: mean
of absolute value, maximum, minimum, standard deviations
and variance of EEG windows of Delta, Theta and Alpha.

C. EMG features

There are bursts of EMG activity in apnea periods [15],
and they cause changes in the frequency domain. In addition,



bursts result in saw-tooth morphology, which causes higher
values in low-frequency band. More chin activity causes an
increase in high-frequency band. Power spectrum density of
the EMG signal was first obtained, and then the maximum,
mean, summation and median for each windows were cal-
culated. More specifically, the frequency associated with the
maximum value (freq - max of PSD) and the summation
within 80-100Hz (sum of PSD80/100) were obtained. The
decomposition of a window was performed using the wavelet
transform, and for this work, it was determined to include
the variance and standard deviation of D1 in the feature set.

D. Oxygen saturation features

One of the most important apnea criteria is the severity and
duration of oxygen desaturation, i.e., the drop of oxygen level
below a certain threshold (usually 3% or 4% decline from
baseline) [21]. Sleep apnea events are usually associated
with pseudo-periodic patterns [22], [23]. Sudden downturns
and relatively sudden recoveries in oximetry saturation are
linked to apnea, and these sudden changes show some typical
saw-tooth morphology in the oximetry curve [21]. Firstly,
SaO2 signals were down-sampled from 200Hz to 1Hz. SaO2
feature set includes medians of windows. In addition, rapid
restoration events defined as an increase in SaO2 > 4%
within a time interval of 10s (ODI4−10) were identified,
and the mean of Power spectral density within the frequency
range of 0.016 and 0.05Hz (mean of PSD.016/.05) was added
to the feature set, since cyclic oxygen desaturation shows a
peak at low-frequency range in Power spectral density. Also,
the standard deviation called SD1 was computed, and this
parameter indicates the short-term variability of SaO2 signal
[21].

E. Airflow features

An apnea criterion is defined as a decrease in the airflow
to less than 10% from its basal value for at least 10s [5].
Also, when a patient misses two breaths, then this would
indicate an occurrence of apnea [24]. Firstly, recordings were
down-sampled from 200Hz to 1Hz. Time-domain statistical
features included the mean, median, and standard deviation.
Power spectral density within the frequency ranges of 0
and 0.1Hz (mean of PSD.0/.1) and 0.4 and 0.5Hz (mean
of PSD.4/.5) were calculated, since missing two cycles
causes less respiratory frequency range and fast respiratory
overexertion increases the respiratory frequency. Wavelet
transformation, with depth 3 and Daubechies wavelets 3, was
utilized. Means of every reconstruction detail levels (D3, D2,
and D1) and the approximation level (A3) were computed.

F. Abdominal and thoracic features

During apnea periods, the respiratory muscles become
active, which means movements of patients thorax and
abdomen [8]. Firstly, feature sets were computed using
abdominal signals. The time-domain feature set included:
summation, standard deviation, mean of the absolute value
of every window. Power spectrum density was used to obtain
the mean of the frequency range from 80 to 100Hz (mean of

PSD80/100) and means of D1 and D2 were computed. Then
other features were also extracted from the thoracic signals,
which include summation, median, standard deviation, mean
and variance of each window. The mean was extracted in the
spectral band (80 to 100Hz) (mean of PSD80/100).

III. RESULTS

Feature selection is an important step before the classifi-
cation stage since it can optimize classification performance.
A small subset with high-discriminatory power is obtained
by feature selection to avoid the curse of dimensionality
problem and reduce the complexity of the classification.
Statistical significance of the features was analyzed. One-
way analysis of variance (ANOVA) and Rank-Sum test were
used for descriptive comparison of features between apnea
and normal since these two test methods assess for a given
feature the difference between the two groups. ANOVA is
used to analyze the differences among group means and
associated labels, and the p-value was calculated. A p-value
that is < 0.05 indicates significant difference between means
of the subgroups. Rank-sum test is a non-parametric test and
a randomly selected value from the first group is compared
with a randomly selected one from the second group. This
test is used to confirm two groups are independent. The p-
value is also computed for rank-sum test. A p-value of 1
indicates that the two groups are independent.

All individual features were evaluated for two groups
(apnea and normal) to show the statistically significance,
as shown in Figure 2. Results were coherent for the time
and frequency domain. In the time domain, ECG features of
variance, kurtoses and RR intervals were found to quantify
apneas, which agreed with slower heart rate for SA patients
that is reported in literature. For the airflow features, means,
medians and standard deviations of windows were different
between apnea and normal, due to some airflow decrease
and recovering of normal breaths. In EEG signals, means of
absolute windows, maximum, minimum, standard deviation
and variance of windows represented events triggering an
awakening activity, and they were different between apnea
and normal. Due to the declined in SaO2 parameters during
apnea, medians of windows, ODI4−10 and SD1 were found
relevant (this agrees with reported studies). For features ex-
tracted from abdominal signals, summation, standard devia-
tion, and mean of windows were found to partially agree with
the reported studies, which mentioned that the respiratory
muscles are active, however, the obtained p of ANOVA was
< 0.05 but p of Rank-Sum was 0. Meanwhile, summation,
median, mean and variance in thoracic signals were found
relevant to the classification of apneas.

In frequency-domain statistics, the following ECG features
were found relevant: spectral flatness, spectral centroid,
spectral spread, spectral decrease, spectral slope, mean of
PSD10/20 and mean of PSD80/100. For airflow features,
mean of PSD.0/.1, mean of PSD.4/.5, mean of A3 were
able to differentiate between apnea and normal. In EEG
signals, maximums of Alpha and Theta waves, minimums



Fig. 2. Statistical significance of preselected features from different signals
(yellow features are time-domain)

of Alpha and Theta waves, standard deviations of Alpha and
Theta waves and variances of Alpha and Theta waves agreed
with reported studies, as they identified decrease in Delta
wave and increase in Alpha and Theta waves. Due to sudden
downturns and fast recoveries in SaO2 that occur during
apnea, mean of PSD.016/.05 was found relevant. About
EMG features, maximum, mean, summation and median
of PSD, freq - max of PSD, summation of PSD80/100,
variance, and standard deviation of D1 were all found to
be relevant features, as they reflected bursts of EMG activity
in apneas. Similarly, oxygen saturation features were also
found to be linked to physiological criteria. During apnea,
the decline from baseline is widely defined to confirm sudden
downturns that are followed by sudden recoveries, which
both lead to changes in the frequency domain.

IV. CONCLUSION

In this paper, we have presented a new algorithm to extract
and evaluate feature sets from multiple PSG signals, which
included ECG, EMG, EEG, airflow, SaO2, abdominal and
thoracic signals. From these signals, time- and frequency-
domain features were used to reflect changes in behavior
between apnea and normal PSG. Since the relevant features
improve classification accuracy, ANOVA and Rank-Sum test
were utilized to analyze and quantify the performance of
features. The proposed approach proved useful in identifying
features that provided the best contribution in separating
the two classes of apnea and normal. These features could
enhance the diagnosis of sleep apnea when fed to a classifi-
cation algorithm.
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and G. Castellanos-Dominguez, “Detection of obstructive sleep apnoea
using dynamic filter-banked features,” Expert Systems with Applica-
tions, vol. 39, no. 10, pp. 9118–9128, 2012.

[10] A. R. Hassan and M. A. Haque, “Computer-aided obstructive sleep
apnea screening from single-lead electrocardiogram using statistical
and spectral features and bootstrap aggregating,” Biocybernetics and
Biomedical Engineering, vol. 36, no. 1, pp. 256–266, 2016.

[11] C.-C. Hsu and P.-T. Shih, “A novel sleep apnea detection system in
electroencephalogram using frequency variation,” Expert Systems with
Applications, vol. 38, no. 5, pp. 6014–6024, 2011.
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